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Abstract

Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions
of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which
throws away many important information since genes execute their functions through interacting others. To
overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein
complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are
constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite
network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher
the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the
result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing
biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed
method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.
sinaapp.com/Drug_Complex_Disease/Data_Download.html.

Background
Diseases are often caused by congenital disorder or

expression of abnormal genes, which induces multi-factor-

driven alterations and disrupts functional modules [1].

Drugs accomplish their therapeutic effect by changing

downstream processes of their targets, which contend

with the alterations of the abnormal genes. Drug develop-

ment is expensive, time consuming and has a high risk of

failures. By conservative estimates, it now takes ~15 years

[2] and $800 ~ $1000 million to bring a single drug to

market [3]. This situation hampers the pharmaceutical

industry to find innovative strategies against currently

incurable diseases. Drug repositioning (or drug repurpos-

ing) attempts to find previously unknown targets for drugs

already established on the market or drugs currently in

advanced development stages. Several examples through-

out history have shown that such repositioning can be

very successful (one example is Sildenafil, also known as

Viagra) [4]. Therefore, more and more research is focusing

on inferring drug-disease associations by computational

methods.

Several network-based methods have been studied to

infer the relationships between drugs and disease (for a

review, see [5]). Matteo indicated that the combination

of bipartite network projections, weighted integration of

different pharmacological spaces and kernelized score

functions with random walk kernels play a key role in

significantly improving the drug ranking results with

respect to DrugBank therapeutic categories [6]. Cheng

[7] integrated three networks, chemical, gene and dis-

ease, to infer chemical hazard profiles, identify exposure

data gaps, and incorporate genes and disease networks

into chemical safety evaluations. Lee established a data-

base PharmDB, an integrated tripartite database, coupled

with Shared Neighborhood Scoring (SNS) algorithm, to

find new indication of known drugs [8]. With increasing

evidence in genetic and molecular biology, we know

that protein complexes and pathways are not affected by

a single gene, instead a group of interacting genes
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underlying similar diseases, which point out the thera-

peutic importance of those modules [9]. Therefore, it is

of great importance to investigate how drugs and disease

phenotypes are associated on the basis of gene modules

[10]. In 2004, different tumor types were tentatively

characterized by predefined gene modules using gene

expression data [11]. Wong et al. defined a module map

to connect gene modules with human cancers, which

was shown to guide new disease therapies [12]. PRE-

DICT is based on the observation that similar drugs are

indicated for similar diseases, and utilizes multiple drug-

drug and disease-disease similarity measures for the pre-

diction task [13]. It allows easy integration of additional

similarity measures among diseases and drugs. In 2012,

Daminelli constructed a drug-target-disease network

and extracted the bi-cliques where every drug is linked

to every target and disease [14]. This method can repo-

sition drugs and predict a drug’s off targets simulta-

neously. Ye integrated known drug target information

and proposed a disease-oriented strategy for evaluating

the relationships between drugs and specific diseases

based on their pathway profile [15]. Zhao et al. devel-

oped a Bayesian partition method to discover drug-

gene-disease co-modules. Such a co-module approach

offered a systematic and holistic view to study drug-

disease relationships and their molecular basis [16]. A

huge amount of chemical, genomic and disease pheno-

type data is rapidly accumulated, but the drug-diseases

associations are still not clear.

Protein complexes are key molecular entities that inte-

grate multiple gene products to perform cellular func-

tions. CORUM provides a comprehensive dataset of

protein complexes for discoveries in systems biology,

analyses of protein networks and protein complex-asso-

ciated diseases [17]. Therefore, based on the known

complexes in CORUM database, we design a method to

infer drug-complex-disease phenotype relationships using

a network model, where protein complexes are related to

not only drugs but also to the disease phenotype.

In our study, based on a symmetrical conditional prob-

ability model, we construct a weighted tripartite hetero-

network of drugs, protein complexes, and diseases. From

this drug-complex-disease tripartite network, we are able

to obtain indirect weighted relationships between drugs

and diseases, which is a bipartite hetero-network. A drug

which has high correlation with a complex set receives a

higher closeness score with disease, which also highly

related to the same complex set. We rank the associa-

tions between drugs and diseases in descending order, by

edge weights, in drug-disease network. The larger the

weight of the association, the greater the degree of relia-

bility, thus the greater the possibility of relation of drug

to disease. We select mental disorders and hypertension

as our test data. We use the both curated and inferred

drug-disease associations from Comparative Toxicoge-

nomics Database (CTD; http://ctd.mdibl.org)[18]as our

benchmark. Our ranked results show that our proposed

method obtain higher specificity and sensitivity. Our

approach renders a promising perspective to investigate

drug-disease associations and provides computational

evidence in revealing their mechanism basis.

Materials and methods
The integrated network, including three heterogeneous

data of drug, disease, protein complex are illustrated in

Figure 1.

Materials

Data sources

Drug data The DrugBank database combines detailed

drug (i.e. chemical, pharmacological and pharmaceutical)

data with comprehensive drug target (i.e. sequence,

structure, and pathway) information [19,20]. We collect

FDA-approved drugs in the latest release of DrugBank

database (version 4.0) [21].

Protein complexes data The CORUM database is a

comprehensive resource of manually annotated protein

complexes from mammalian organisms. All the informa-

tion is obtained from individual experiments published

in scientific articles, and data from high-throughput

experiments are excluded. We download the all Com-

plexes from CORUM [17](the release February 2012).

Disease data The disease data is downloaded from

FunDO (http://django.nubic.northwestern.edu/fundo/)

[22]. FunDO takes a list of genes and finds relevant dis-

eases based on statistical analysis of the Disease Ontol-

ogy annotation database [23].

Protein-protein interaction network We obtain rela-

tionships between genes (or equivalently, proteins) as

demonstrated by Liu et al. [24]. The final binary protein-

protein interaction network contains 7,533 nodes and 22,

345 edges. Genes are identified by their NCBI gene IDs.

We use the PPI network to filter the predicted drug-

disease associations. If a drug and a disease are associated

with two different genes in a same complex, and there is a

direct connection between the two genes in the PPI net-

work, we will track the association, or else we discard it.

Benchmark of drug-disease associations

We extract all the known associations between chemicals

(or equivalently, drugs) and disorders or its descendants

from Comparative Toxicogenomics Database (CTD) in

May 2014 as our benchmark [25]. CTD contains curated

and inferred chemical-disease associations. Curated

chemical-disease associations are extracted from the pub-

lished literature by CTD biocurators. Inferred associa-

tions are established via CTD-curated chemical-gene

interactions. In our research the curated and inferred

associations have been identified, and they can help
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researchers develop hypotheses about environmental

diseases and their underlying mechanisms.

Functional enrichment analysis

In order to evaluate our method further, we perform

functional enrichment analysis using DAVID [26,27] on

the target sets of predicted drugs. With the target genes

as inputs, we observe gene-disease associations and the

enriched KEGG pathways on the related biological pro-

cess. With Benjamin multiple testing correction method

[28], the enrichment p-value was corrected to control

family-wide false discovery rate under certain rate (e.g.

≥ 0.05).

Methods

Weighted network construction

To construct a weighted tripartite network of drugs,

protein complexes, and diseases, we map the UniProt

ID of each drug target to the Entrez gene ID. We

obtain a list of gene targets for each drug. There are

6,039 relations between 1,481 drugs and 1,583 targets

(additional file 1). We collect the list of protein subu-

nits for each complex in the all Complexes set, which

are referenced by their Entrez IDs (additional file 2).

The same operation is conducted for all genes related

to diseases, resulting in a list of Entrez gene identifiers

for each disease (additional file 3). The relations

between drugs, protein complexes, and diseases can be

represented as a tripartite network, which can be

expressed as:

GTPD = (T,P,D,ET,ED) (1)

T, P, and D are finite sets of drug, protein complex, and

disease; ET and ED denote the two types of undirected

links in the network: drug-complex and complex-disease.

The relevance between drug ti (ti ∈ T, i = 1,...,|T|) and

Figure 1 The overview of our proposed method. Firstly, we construct a drug-complex network. If the target set of a drug has at least one
common protein with a complex, there will be an edge between the drug and the complex. Then, we construct a complex-disease network. If
there is an edge between a complex and a disease, at least one protein of the complex is also a protein related to the disease. In this way, we
get a drug-complex-disease tripartite network. Based on the tripartite, we can extract the associations between drugs and diseases. If a drug and
a disease have at least one common protein complex neighbor, there will be a connection between them.
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complex pj (pj ∈ P, j = 1,...,|P| ), wT(ti, pj) is calculated by

symmetrical conditional probability, as in equation (2).

wT(ti,pj) =
√

pro(ti|pj) · pro(pj|ti) (2)

Equation (2) indicates that the relevance between ti
and pj is determined jointly by their conditional prob-

abilities on each other.

Suppose that g(ti, pj) denotes the number of elements

shared by the target set of the drug ti and the complex set

pj, g(ti) and g(pj) stand for the number of targets of the

drug ti and the number of proteins in complex pj respec-

tively. Accordingly, equation (2) can be expressed as:

wT(ti,pj) =

√

g(ti,pj)

g(ti)
·
g(ti,pj)

g(pj)
(3)

Similarly, we can obtain the weight wD(pi, dj) (pi ∈ P,

dj ∈ D, i = 1,...,|P|, j = 1,...,|D|) to the links between

complexes and diseases. (pi, dj) ∈ ED if at least one pro-

tein of the complex pi is also a protein related to the

disease dj, where pi ∈ P, dj ∈ D, i = 1,...,|P|, j = 1,...,|D|.

Derivative Network

To identify the drug-disease association, a derived drug-

disease network can be extract with an immediate purpose

to facilitate the association identification. A bipartite net-

work GTD = (T, D, ETD) is used to illustrate their associa-

tions, where T, D are finite sets of drug and disease

respectively. ETD denotes the undirected links between

drugs and diseases. The drug-disease interaction exists if

and only if the following two constraints are met simulta-

neously: i) the drug and the disease have at least one com-

mon protein complex neighbor in GTPD network; ii) at

least one protein target of the drug was also a subunit of

the protein complex. Specifically, it is defined as

ETD = {(t,d)|(∃p ∈ P)((t,p) ∈ ET ∧ (p,d) ∈ ED) ∧ t ∈ T ∧ d ∈ D} (4)

where P is the set of protein complexes. For each edge

(t, d) ∈ ETD, its weight wTD(t, d) can be calculated by

equation (5):

wTD(t,d) =

√

gT(t,C)

g(t)
·
gD

(
d,C)g(d) (5)

Suppose C represents the set of protein complexes

that both drug t and disease d connect to in GTPD net-

work, then:

C = {p|p ∈ P ∧ (t,p) ∈ ET ∧ (p,d) ∈ ED ∧ t ∈ T ∧ d ∈ D} (6)

gT(t, C) represents the sum of edge weights between

drug t and protein complexes in set C. The formulas of

gT(t, C) and gD(d, C) are given as follows:

gT(t,C) =
∑

p′∈C

wT(t,p′) (7)

gD(d,C) =
∑

p′∈C

wD(p′,d) (8)

g(t) and g(d) in equation (5) respectively indicate the

sum of edge weights between drug t, disease d and pro-

tein complexes in set P. Therefore:

g(t) =
∑

p′∈P

wT(t,p′) (9)

g(d) =
∑

p′∈P

wD(p′,d) (10)

If drug t’ and disease d’ cannot be connected by com-

mon complex neighbors, but at least one protein target

of drug t’ is also a protein related to disease d’, a con-

nection will be created between t’ and d’. Similarly, the

weight of edge (t’, d’) can be calculated by equation (3).

Network conversions

In order to verify the predicted drug-disease correlations

by modularity, we first need to convert GTD into two net-

works. Each converted network is composed of a single

type of node. The bipartite network for drugs and dis-

eases GTD is converted into two independent networks,

which are denoted by G1 = (V1,E1) and G2 = (V2,E2). G1

and G2 are the drugs and the diseases networks respec-

tively. In G1, nodes of V1 are connected together if they

have at least one common neighbor (D) in GTD. The set

of edges E1 can be defined as:

E1 = {(t, t′)|(∃d ∈ D)((t,d) ∈ ETD ∧ (t′,d) ∈ ETD ∧ t �= t′)} (11)

The set of edges E2 is defined similarly. The weight of

edge (t, t’) ∈ E1, w(t, t
’) is defined as:

w(t, t′) =
∑

d∈D

min(wTD(t,d),wTD(t′,d)) (12)

Edge weights in G2 have a similar definition. There-

fore, we get two weighted networks: a drug-drug net-

work and a disease-disease network.

Module structure in converted network

We use ClusterONE (Clustering with Overlapping

Neighborhood Expansion) [29] to obtain modules in

converted networks. ClusterONE is a graph clustering

algorithm that is able to handle weighted graphs. Owing

to these properties, ClusterONE is especially useful for

detecting modules in networks with associated confi-

dence values.
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Results
Bipartite network of drugs and diseases

The weighted tripartite network of drug-complex-

disease consists of two bipartite networks: drug-complex

and complex-disease. The drug-complex network con-

tains 1,229 nodes (628 drugs and 601 complexes) and

3,405 weighted edges (additional file 4). The complex-

disease network contains 1932 nodes (1,472 complexes

and 460 diseases) and 14,848 weighted edges (additional

file 5). The bipartite network of drug-disease obtained

from the tripartite network includes 1,634 nodes (1,127

drugs and 507 diseases) and 30,722 weighted edges

(additional file 6). In order to improve the reliability of

the predicted correlations between drugs and diseases,

we first use PPI network to filter the results, then we

discard the edges whose weights are lower than 0.50.

The final network consists of 353 nodes (231 drugs and

122 diseases) and 594 weighted edges (weight ≥ 0.50)

(additional file 7). This is a scale-free network, with a

small number of nodes connected to many edges and

the majority of nodes connected to few edges (Figure 2).

All network visualizations were produced using the

Cytoscape software [30]. Every connected subgraph

represents a module, resulting in 29 modules with bipar-

tite structure as shown in Figure 2. Nodes with a large

degree can be seen among both drugs and diseases (See

Table 1).

Table 1 shows the number of edges directly related to

the hubs (column: Number of directed edges) and the

sum of weight on these edges (column: Sum of weight

on edges). We find that the sum of weights of edges

may more accurately reflect the role of nodes in the net-

work. For example, cystic fibrosis has more direct neigh-

bors than primary biliary cirrhosis in bipartite network.

But, the correlation between the drugs and primary bili-

ary cirrhosis is greater than that between the drugs and

Figure 2 Bipartite network of drugs and diseases. A drug is connected to a disease if they share at least one complex and the value of
relationship is not lower than 0.5. Drugs are represented by triangles and diseases by squares. Different types of nodes also distinguish from
each other by color. Every connected subgraph is a module. Drugs and diseases are labeled by their DrugBank identifier and name in FunDO,
respectively.
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cystic fibrosis. In Table 1 the most connected disease is

mental disorders (Synonym: behavior disease), which is

a mental or behavioral pattern, or an anomaly that

causes either suffering or an impaired ability to function

in ordinary life (disability). The most connected drug is

anti-thymocyte globulin (ATG). It is an infusion of

horse or rabbit-derived antibodies against human

T cells, which is used in the prevention and treatment

of acute rejection in organ transplantation and therapy

of aplastic anemia.

Case study: Mental Disorders

Potential drugs and Mental Disorders relations

Mental disorders are one aspect of mental health [31],

which are generally defined by a combination of how a

person feels, acts, thinks and perceives. This may be asso-

ciated with particular regions or functions of the brain, or

any part of the nervous system, often in a social context.

226 drug-mental disorders relations are found in our

candidate sets (additional file 8). In order to improve the

accuracy of the prediction, an association will not be con-

sidered if its weight is below 0.5. The reason is that based

on the experiments, 0.5 as threshold can conserve more

real correlations, as well as avoid including too many

false-positive ones. Finally, 51 drug-mental disorders cor-

relations are obtained (see Table 2).

Since the predictions are merely assumptions, we need

to further examine these predictions using external lit-

erature support: 40 known associations agree with the

benchmark (CTD), 9 predicted associations are sup-

ported by the literature (in bold italic). We find the 9

predicted drugs for the treatment of mental disorders

may have a good effect. For example, vilazodone [32]

(ID = 30) is approved for treatment of acute episodes of

major depression. Major depressive disorder (MDD) is a

mental disorders characterized by a pervasive and per-

sistent low mood that is accompanied by low self-

esteem and by a loss of interest or pleasure in normally

enjoyable activities.

Pipotiazine (ID = 31) is a typical antipsychotic of the

phenothiazine class [33] used in the United Kingdom

and other countries for the treatment of schizophrenia.

Thioproperazine (ID = 35) is an antipsychotic. Antipsy-

chotics [34] are a class of psychiatric medication primar-

ily used to manage psychosis, in and concentration

[35,36]. Certain mental health problems, such as depres-

sion and disturbances, including hallucinations, delu-

sions and paranoia, are possible complications of

Parkinson’s disease and/or its treatment. Rotigotine

(ID = 43) is for treatment in neurologic disorders and

Parkinson’s disease, as well as moderate-to-severe pri-

mary Restless Legs Syndrome [37]. Paliperidone (ID =

44) is the major active metabolite of risperidone. It is

used for schizophrenia and schizoaffective cinitapride

(ID = 19) and penbutolol (ID = 45), there is no direct

support in literature. However, we are confident that

they maybe effective in the treatment of mental disor-

ders. Cinitapride is a substituted benzamide with 5-HT

receptor antagonist and agonist activity [38]. The 5-HT

receptors are the target of a variety of pharmaceutical

drugs, including many antidepressants, antipsychotics,

etc [39], so cinitapride may be effective in the treatment

Table 1. Top diseases and drugs with a large degree in the bipartite drug-disease network

Disease Name Number of direct
neighbors

Sum of weight on
edges

Drug ID Drug name Number of
directed edges

Sum of weight on
edges

Mental disorders 51 39.58 DB00098 Antithymocyte
globulin

27 19.90

Cystic fibrosis 33 18.56 DB01259 Lapatinib 18 15.07

Primary biliary cirrhosis 30 20.28 DB08916 Afatinib 17 13.79

Attention deficit
hyperactivity disorder

26 16.40 DB00054 Abciximab 16 13.49

Anorexia nervosa 25 17.14 DB00775 Tirofiban 15 15.31

Panic disorder 25 16.77 DB00072 Trastuzumab 12 9.13

Sudden infant death
syndrome

25 18.27

Epilepsy 24 13.37

Hypertension 24 13.26

Migraine 21 11.10

Supranuclear palsy,
progressive

21 11.51

Mucocutaneous lymph node
syndrome

11 8.45

Subacute sclerosing
panencephalitis

10 5
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of mental disorders. Similarly, penbutolol is able to bind

both b-1 adrenergic receptors (ARs) and b-2 adrenergic

receptors [40], and the interaction between b-1 ARs and

testosterone has been shown in anxiolytic behaviors in

the basolateral amygdale [41]. b-2 receptor is also

involved in brain-immune-communication [42]. There-

fore, we can conclude that penbutolol has a high corre-

lation with mental disorders.

The significant modules related to mental disorders in

drug-drug network

Modular structure is one of the emerging properties of

complex networks. A module is associated to sets of

nodes with specific function. In order to further validate

the effectiveness of our algorithm, we run ClusterONE

with parameter Minimum density set to 0.35 and other

parameters using default values in drug-drug network.

We get 23 clusters from drug-drug network (additional

file 9); nodes representing drugs. All drugs associated

with mental disorders are scattered into two overlapping

modules (cluster 1 and cluster 3, i.e. Cluster Label = 1

and Cluster Label = 3 in additional file 9). To analyze

drugs associated with mental disorders, we merge these

two modules (shown in Figure 3). Diamonds represent

overlapping drugs of cluster 1 and cluster 3. In Figure 3,

drugs colored pink have been shown to be associated

with mental disorders by the benchmark (CTD). Purple

nodes are drugs predicted by our method. They are

listed in Table 2, and their correlations with mental dis-

orders are not lower than 0.5 in drug-disease network.

They are closely linked with known drugs (pink nodes),

which further confirms that they have a high functional

similarity with known drugs. That is, the 11 predicted

drugs also have a strong association with mental disor-

ders. The 3 green nodes are new predicted drugs by

clustering the drug-drug network. They are also closely

connected with known drugs, and are supported by lit-

erature. For example, dexmethylphenidate (DB06701) is

used as a treatment for Attention Deficit Hyperactivity

Table 2. Drug-mental disorders associations (weight ≥ 0.5)

ID Drug ID Drug Name Weight ID Drug ID Drug Name Weight

1 DB00904 Ondansetron 0.89 27 DB00334 Olanzapine 0.82

2 DB00669 Sumatriptan 0.85 28 DB01186 Pergolide 0.82

3 DB00734 Risperidone 0.73 29 DB01618 Molindone 0.82

4 DB00490 Buspirone 0.77 30 DB06684 Vilazodone 0.82

5 DB01149 Nefazodone 0.93 31 DB01621 Pipotiazine 0.82

6 DB01142 Doxepin 0.83 32 DB01616 Alverine 0.82

7 DB01392 Yohimbine 0.87 33 DB01200 Bromocriptine 0.82

8 DB00540 Nortriptyline 0.89 34 DB00216 Eletriptan 0.81

9 DB01224 Quetiapine 0.82 35 DB01622 Thioproperazine 0.79

10 DB00363 Clozapine 0.82 36 DB01614 Acepromazine 0.79

11 DB00477 Chlorpromazine 0.78 37 DB00960 Pindolol 0.77

12 DB00571 Propranolol 0.75 38 DB04946 Iloperidone 0.76

13 DB00321 Amitriptyline 0.69 39 DB08807 Bopindolol 0.75

14 DB00726 Trimipramine 0.90 40 DB08815 Lurasidone 0.75

15 DB00247 Methysergide 0.87 41 DB06216 Asenapine 0.74

16 DB00656 Trazodone 0.86 42 DB01049 Ergoloid mesylate 0.74

17 DB00315 Zolmitriptan 0.85 43 DB05271 Rotigotine 0.72

18 DB00952 Naratriptan 0.85 44 DB01267 Paliperidone 0.72

19 DB08810 Cinitapride 0.84 45 DB01359 Penbutolol 0.60

20 DB00589 Lisuride 0.84 46 DB00866 Alprenolol 0.60

21 DB00268 Ropinirole 0.84 47 DB00696 Ergotamine 0.56

22 DB00413 Pramipexole 0.84 48 DB00998 Frovatriptan 0.55

23 DB00714 Apomorphine 0.83 49 DB00918 Almotriptan 0.55

24 DB00248 Cabergoline 0.83 50 DB00953 Rizatriptan 0.53

25 DB01238 aripiprazole 0.82 51 DB00320 Dihydroergotamine 0.50

26 DB00246 ziprasidone 0.82

Drug ID represents the unique DrugBank accession number of a drug. Drug Name represents the corresponding name of a Drug ID. Weight represents the

correlation between a drug and the mental disorder. 40 drugs are approved by our benchmark, 9 predicted drugs are supported by literature (in bold italic), and

2 are not directly supported by the literatures (in underlined bold).
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Disorder (ADHD), ideally in conjunction with psycholo-

gical, educational, behavioral or other forms of treatment

[43] Levomilnacipran (DB08918) is an antidepressant

developed by Forest Laboratories and Pierre Fabre Group

for the treatment of depression [44-46]. For ephedra

(DB01363), studies have shown that it may cause serious

mental illness [47]. Maglione et al. reviewed all 1,820

adverse event reports related to dietary supplements con-

taining herbal ephedra from FDA MedWatch files as of

Sept. 30, 2001. Fifty-seven serious psychiatric events were

reported. Therefore, clinicians should be aware that

serious psychiatric symptoms could be associated with

ephedra use.

Functional enrichment analysis on target genes of potential

drugs of mental disorder

Functional analysis are performed on the target sets of

eleven drugs, which are not approved by CTD (see

Table 2, drugs in bold italic and underlined bold).

Gene-disease associations and KEGG pathway enrich-

ment analysis are made on them with the functional

annotation tool of DAVID. We find ten target sets of

them are directly associated with mental disorder or the

same type of diseases, such as depressive disorder, and

personality disorders. In addition, the same ten target

sets of drugs are significantly enriched in the mental dis-

order related pathways: neuroactive ligand-receptor

interaction. Adkins et al. systematically screened associa-

tions between 58 neuroactive ligand-receptor interaction

pathways and antipsychotic treatment efficacy by bioin-

formatics tools [48]. The target set of vilazodone (Drug

ID=DB06684) is not obtained annotations from DAVID.

We infer the reason is that the set only includes one

gene (HTR1A). In fact, vilazodone is already approved

for treatment of acute episodes of major depression [32].

Case study: Hypertension

Potential drugs and Hypertension relations

Hypertension, also referred to as high blood pressure, is a

condition in which the arteries have persistently elevated

blood pressure. A blood pressure of 140/90 or above is

considered hypertension. Hypertension can lead to

damaged organs, as well as several illnesses, such as renal

failure (kidney failure), aneurysm, heart failure, stroke, or

heart attack [49].

We find 339 drug-hypertension relations in our candi-

date sets in all (additional file 10). 69.3% of the weight is

Figure 3 Drugs associated with mental disorder within the module after merging cluster 1 and cluster 3. Nodes represent drugs.
Diamond nodes represent the overlap of cluster 1 and cluster 3. Nodes colored pink represent drugs that have been shown to be associated
with mental disorder by the benchmark (CTD). Purple nodes represent drugs predicted by our method. Green nodes are newly predicted drugs
related to mental disorder. Drugs are labeled by their DrugBank identifiers.
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less than 0.1, and there are 31 associations with high

confidence (weight ≥ 0.5, see Table 3). Among them, 26

known associations agree with the benchmark (CTD).

Through in-depth analysis of the other 5 associations

(in bold italic), there are two types of correlation

between diseases and drugs: positive and negative corre-

lations. Positive correlations refer to the positive effect

of drugs on diseases. For example, drugs can treat dis-

eases. Negative correlations, for example, are that drugs

can cause diseases, namely, side effects of drugs, or

drugs that worsen diseases, etc. Both are very important

in discovering the causes of a disease or in using drugs

safely, so that we can treat diseases more effectively.

Using SIDER (Side Effect Resource, http://sideeffects.

embl.de) [50], we find asenapine (ID = 1) has the side

effect of hypertension [50]. For trimipramine (ID = 29)

and paliperidone (ID = 31), although there is no clear

evidence showing they have side effect of hypertension,

there have been some indications that they are likely to

lead to high blood pressure [50,51]. Mehtysergide (ID =

20) is metabolised into methylergometrine in humans

[52]. Adverse effects of methylergometrine include cho-

linergic effects, pulmonary hypertension, and severe sys-

temic hypertension, etc [53]. The last drug, iloperidone

(ID = 30), plays an active role in the treatment of hyper-

tension. Considering the alpha1 antagonism characteris-

tics of iloperidone, the effect of anti-hypertensive agents

would be potentiated when administered concomitantly

[54]. This shows that iloperidone has certain effects on

lower blood pressure.

The significant modules related to hypertension in

drug-drug network

Of the 23 drug modules, 11 are found to be related to

hypertension. Five predicted drugs (purple rectangle

nodes: DB06216, DB00247, DB00726, DB04946,

DB01267) are in the same cluster (Figure 4). They are

listed in Table 2 and their associations with hyperten-

sion is not lower than 0.5. The pink circular nodes have

been confirmed to be associated with hypertension by

CTD. It can be seen that the interactions between the

five predicted drugs and the known drugs are very fre-

quent. These results further indicate that they are highly

correlated with hypertension. In addition, twenty-six

nodes in Figure 4 are shown in Table 4. They includes

two types of drugs: (1) predicted by our method, but

their association with hypertension is lower than 0.5; (2)

new drugs predicted by clustering drug-drug network.

The first sixteen drugs (ID = 1 to ID = 16) were pre-

dicted by our method previously. The remaining ten

drugs (ID = 17 to ID = 26) are newly predicted by clus-

tering drug-drug network. They have high accuracy:

nine of them are approved by CTD database (Correla-

tion=CTD, see Table 4); one is supported by literature

[55] (ephedra (ID = 17)). Ephedra containing products

(ECPs), which are most often found in sources of caf-

feine alkaloids, may be an under-recognized cause of

hypertension. For the previously predicted drugs with

lower weights (ID = 1 to ID = 16), seven of them may

cause high blood pressure, and are negatively correlated

with hypertension (Correlation = N, see Table 4).

Table 3. Drug-hypertension associations (weight ≥ 0.5)

ID Drug ID Drug Name Weight ID Drug ID Drug Name Weight

1 DB06216 Asenapine 0.71 17 DB00413 Pramipexole 0.52

2 DB00571 Propranolol 0.66 18 DB00589 Lisuride 0.52

3 DB08807 Bopindolol 0.66 19 DB01149 Nefazodone 0.52

4 DB00960 Pindolol 0.64 20 DB00247 Methysergide 0.52

5 DB00866 Alprenolol 0.59 21 DB01049 Ergoloid mesylate 0.52

6 DB01359 Penbutolol 0.59 22 DB00714 Apomorphine 0.52

7 DB01200 Bromocriptine 0.54 23 DB00656 Trazodone 0.51

8 DB00248 Cabergoline 0.54 24 DB01142 Doxepin 0.50

9 DB00246 Ziprasidone 0.53 25 DB00904 Ondansetron 0.50

10 DB00334 Olanzapine 0.53 26 DB08815 Lurasidone 0.50

11 DB01238 Aripiprazole 0.53 27 DB00216 Eletriptan 0.50

12 DB00363 Clozapine 0.53 28 DB00734 Risperidone 0.50

13 DB01224 Quetiapine 0.53 29 DB00726 Trimipramine 0.50

14 DB01186 Pergolide 0.53 30 DB04946 Iloperidone 0.50

15 DB01392 Yohimbine 0.52 31 DB01267 Paliperidone 0.50

16 DB00268 Ropinirole 0.52

Drug ID represents the unique DrugBank accession number of a drug. Drug Name represents the corresponding name of a Drug ID. Weight represents the value

of correlation between a drug and the mental disorders. 26 drugs are approved by our benchmark. Among the remaining 5 drugs, 4 (in bold italic) have

negative relationships with the mental disorders and 1 (in underlined bold) has a positive relationship with the mental disorders.
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Figure 4 Drugs associated with hypertension. Nodes represent drugs. Circular nodes represent drugs that have been shown to be associated
with hypertension by the benchmark (CTD). Rectangle and diamond nodes respectively represent our predicted drugs whose relationship with
hypertension are higher than 0.5 and lower than 0.5. Drugs are labeled by their DrugBank identifiers.

Table 4. Correlations of twenty-six Drugs with hypertension

ID Drug ID Drug Name Correlation (CTD, N, or Unknown) ID Drug ID Drug Name Correlation (CTD, N, or Unknown)

1 DB00315 Zolmitriptan[60] N 14 DB01622 Thioproperazine Unknown

2 DB00476 Duloxetine[61] N 15 DB06701 Dexmethylphenidate Unknown

3 DB04896 Milnacipran[56] N 16 DB08810 Cinitapride Unknown

4 DB06204 Tapentadol[62] N 17 DB01363 Ephedra [55] N

5 DB06684 Vilazodone[63] N 18 DB00472 Fluoxetine CTD

6 DB06700 Desvenlafaxine [57] N 19 DB00176 Fluvoxamine CTD

7 DB08918 Levomilnacipran [64] N 20 DB00543 Amoxapine CTD

8 DB00805 Minaprine Unknown 21 DB01104 Sertraline CTD

9 DB00952 Naratriptan Unknown 22 DB06148 Mianserin CTD

10 DB00998 Frovatriptan Unknown 23 DB01577 Methamphetamine CTD

11 DB01614 Acepromazine Unknown 24 DB01151 Desipramine CTD

12 DB01616 Alverine Unknown 25 DB00852 Pseudoephedrine CTD

13 DB01621 Pipotiazine Unknown 26 DB00514 Dextromethorphan CTD

Drug ID represents the unique DrugBank accession number of a drug. Drug Name represents the corresponding name of a Drug ID. There are three types of

correlation: (a) CTD represents the drug-hypertension correlation that can be found in the CTD database; (b) N represents the drug-hypertension correlation that

may be negative, supported by literature; (c) Unknown means that there is no evidence suggesting the drug-hypertension relation as yet.
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Milnacipran (ID = 3) for example, researchers presented

the case of a patient with major depressive disorder

(MDD) who developed hypertension during treatment

with regular therapeutic doses of milnacipran [56].

Desvenlafaxine (ID = 6) is similar to venlafaxine, its use

may worsen preexisting hypertension [57]. For the

remaining eight drugs, there are no evidence suggesting

drug-hypertension relations. From the results, we

derived two indications: 1) as a metric, our definition of

weight is reasonable in assessing the credibility of drug-

disease correlation - the greater the degree of reliability,

the larger the weight, while the smaller the weight, the

lower the reliability; 2) combined with modularity in

projected network, our method is very effective in pre-

dicting drug-disease associations.

Functional enrichment analysis on target genes of potential

drugs of hypertension

There are five drugs predicted by our method, but not

approved by the benchmark (see Table 3, drugs in bold

italic and underlined bold). We perform the gene-

disease associations and KEGG pathway enrichment

analysis on their target sets with DAVID. The enrich-

ment result thus obtained show that three target sets of

them are directly associated with hypertension. But all

of them are significantly enriched in the hypertension

related pathway, such as gap junction. It is instructive to

note that the gap junction has been proved to be rele-

vant to hypertension [58].

Comparison with other method

To evaluate the performance of our method, we com-

pare it with a popular web tool, PROMISCUOUS [59].

PROMISCUOUS contains three different types of enti-

ties: drugs, proteins and side-effects as well as relations

between them. It is kind of knowledge-based drug repo-

sitioning method, which offers exploits known interac-

tions between a drug and a target and combine this

information with new knowledge about the target’s role

in a new indication.

We compare our method and PROMISCUOUS on

eleven potential drugs of mental disorder one by one.

They are shown in Table 2 (drugs in bold italic and

underlined bold). By experimentation, five of them,

pipotiazine, thioproperazine, acepromazine, ergoloid

mesylate and paliperidone, are found to be antipsychotic

medications by PROMISCUOUS, which are consistent

with our prediction. Penbutolol (ID = 45) and bopindo-

lol (ID = 39) are not shown associated with the treat-

ments of mental disorders directly by PROMISCUOUS.

However, for penbutolol, based on the fact that similar

drugs often act on the same targets, PROMISCUOUS

finds eight drugs similar to it. One of them is pemoline,

which is a kind of antipsychotic drugs. Moreover,

PROMISCUOUS also find penbutolol and bopindolol

are related to KEGG pathways: neuroactive ligand-

receptor interaction, which is proved associated with

antipsychotic treatment [48]. Therefore, one can assume

that penbutolol and bopindolol may also be effective for

treatment of mental disorders. Because PROMISCUOUS

integrated multiple public database, such as Drugbank,

Protein Data Bank, KEGG, UniProt, SIDER, etc., the

comparative results show the validity of our algorithm

from another side. The last four drugs, cinitapride, vila-

zodone, iloperidone and rotigotine, are not found closely

related to mental disorders by PROMISCUOUS. But

with the exception of cinitapride (ID = 19), the other

three drugs are all directly supported by the literatures.

A comparison also is made between PROMISCUOUS

and our method on five potential drugs of hypertension

(see Table 3, drugs in bold italic and underlined bold).

Among the five drugs, PROMISCUOUS finds methyser-

gide and paliperidone related to gap junction pathway,

which is supported to be associated with hypertension

[58]. The other three drugs, asenapine, trimipramine

and iloperidone, are not found by PROMISCUOUS.

More likely the reason is that they may have the side

effect of hypertension. This is also consistent with our

inference.

Conclusions
We integrate the information of drugs, protein complexes

and diseases from available experimental data and knowl-

edge as weighted drug-complex-disease tripartite networks

and obtain a derived connected relationships network, i.e.

drug-disease bipartite network. One of the advantages of

our model is its relative simplicity. It is not like other

existing algorithms that first need to construct drug and

disease similarity networks. With protein complexes as the

bridge, we apply drug-complex-disease approach for infer-

ring and evaluating the likelihood of the probability

between drugs and diseases. In our simulation experiment,

we take mental disorders and hypertension as our case

study. The results of the experiment are encouraging.

Both the positive and negative associations can be

predicted and are found to be reinforced by existing bio-

medical literature. The success of our methods can be

attributed to the following factors: first, we integrate

heterogeneous data and knowledge about drugs, protein

complexes, and diseases into our model; next, we use sym-

metric probability modelling dependencies between drugs,

protein complexes, and diseases; last, our method com-

bines the information derived from other connected het-

ero-networks to infer the drug-disease associations. We

believe that the integration of networks and heterogeneous

data sources will help us bring about new hypotheses to

infer the drug-disease associations and even speed up drug

Yu et al. BMC Medical Genomics 2015, 8(Suppl 2):S2

http://www.biomedcentral.com/1755-8794/8/S2/S2

Page 11 of 13



development processes. Our study provides opportunities

for future toxicogenomics and drug discovery applications.

However, we find that it is difficult to automatically distin-

guish the positive and negative associations between drug

and disease. For the next step, we suggest: 1) for com-

monly used data, such as drugs, targets, protein com-

plexes, and diseases, we need to integrate data sources

with higher confidence to improve the accuracy of the pre-

diction; 2) in order to predict the positive and negative

associations automatically as much as possible, we need to

integrate data sources that can offer information about the

side effects of drugs, such as drug side effect resources,

response profiles, pharmacological data and therapeutic/

toxicological expression profiles.
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