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ABSTRACT

Motivation: Gene duplication (D), transfer (T), loss (L), and incomplete
lineage sorting (I) are crucial to the evolution of gene families and the
emergence of novel functions. The history of these events can be inferred via
comparison of gene and species trees, a process called reconciliation, yet
current reconciliation algorithms model only a subset of these evolutionary
processes.

Results: We present an algorithm to reconcile a binary gene tree with a
non-binary species tree under a DTLI parsimony criterion. This is the first
reconciliation algorithm to capture all four evolutionary processes driving
tree incongruence and the first to reconcile non-binary species trees with
a transfer model. Our algorithm infers all optimal solutions and reports
complete, temporally feasible event histories, giving the gene and species
lineages in which each event occurred. It is fixed-parameter tractable,
with polytime complexity when the maximum species outdegree is fixed.
Application of our algorithms to prokaryotic and eukaryotic data shows that
use of an incomplete event model has substantial impact on the events
inferred and resulting biological conclusions.

Availability: Our algorithms have been implemented in NOTUNG, a freely
available phylogenetic reconciliation software package, available at http:
Ilwww.cs.cmu.edu/"durand/Notung

Contact: mstolzer@andrew.cmu.edu

1 INTRODUCTION

The phylogeny of a gene family evolving by vertical desceiit w
agree with the associated species tree. Gene duplicatiene g

loss, horizontal gene transfer (HGT), or incomplete lireeagrting

an ever growing number of cases where all four processes
are active (e.g., [1, 32, 26]), leading to calls for algarith
that model multiple evolutionary processes [11, 7]. Algurs
lacking a model of incongruence due to ILS will overestimtte
number of duplications and/or transfers. For example, @&ntc
analysis, based on a model that did not consider ILS, regorte
an inexplicable but dramatic increase in duplications icergly
sequenced mammalian genomes [18]. For large scale analiysis
multigenome phylogenetic data sets, reconciliation dlgas that
allow ILS to be distinguished from other sources of incorgze
are essential.
Related Work. Gene tree incongruence has been considered
from two perspectives. Multispecies coalescent modelsifam
ILS as a source of incongruence [reviewed in 7]. The basic
assumption underlying this work is that gene tree inconygae
arises from ILS due to genetic drift, although some methdsis a
take hybridization and/or recombination into account iered in
7, 11]. The multispecies coalescent explicitly relatespitebability
of an incongruent gene tree to the time between speciegeénees
and the effective size of the ancestral population. In theeod of
tree inference, these parameters can be inferred from actioth
of gene trees. Event inference, however, requires priomagts of
population parameters since only one tree is under coragider

In contrast, reconciliation focuses on incongruence thises
from processes that change the number of loci in a gene family
i.e., duplication, loss, and transfer. Most event infeesalgorithms
consider either gene duplication or HGT [9, 20, 19], but not
both. Exact algorithms with exponential time complexity&déeen

(ILS) can result in a gene tree that differs from the speciespresented for the Duplication-Transfer (DT) [28] and Dagtion-
tree [15]. The history of such events can be inferred throughtransfer-Loss (DTL) models [6], under a parsimony critario

topological comparison of gene and species trees, a proedissl

Event inference with transfers is NP-complete [12], but ben

reconciliation. Reconciliation encompasses two related problemsisplyed in polynomial time under a restricted model wherey onl
event inference and tree inference. Given rooted gene Wee a transfers between contemporaneous species are considéiad
species trees, a mapping from extant genes to extant speciegodel [reviewed in 13, 9] requires estimates of speciatiores,

and an event model, the goal efent inference is to infer the

which are frequently not known. In addition, algorithms tbis

association between ancestral genes and species and thmlopt astricted model may fail to recognize transfers if theyolme a

event history with respect to a combinatorial or probatidis
optimization criterion. A complete solution must includbet

taxon missing from the data set [19, 13].
Reconciliation implicitly assumes that inter-speciationes are

specific events and the gene and species lineages in whisk thosufﬁcienﬂy long that genetic drift and incomplete lineaggting

events occurred. Given a set of gene tretese inference seeks

the species tree that optimizes the combined events mgditom
reconciliation with each gene tree in the input set.

may be safely excluded from consideration. This assumjtieaks
down when the species tree contains polytomies or very short
branches. In these situations, allelic variation can sermultiple

Here, we address the event inference problem for a modefpeciation events, leading to gene trees with branchirtgrpatthat

that captures all four evolutionary processes contrilgutm gene

differ from the species tree. Such cases are increasinghymmn

tree incongruence. Whole genome sequencing data is negeali que to increased sequencing of closely related speciehodethat
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do not consider ILS will incorrectly interpret incongruenarising
from ILS as evidence of duplication or transfer.

To avoid this problem, algorithms that can distinguish lestw
ILS and other events are needed. In fact, one parsimonyriorite
that considers ILS has been proposed: Minimization of thaber
of extra gene lineages on a species branch due to Deep Garadesc
(MDC) has been used as a criterion for tree inference [15216,
21, 17]. However, the MDC criterion assuma$ incongruence is
due to ILS. MDC is not a suitable basis for event inferenceabse
it cannot distinguish between extra lineages arising fra® and
those arising from duplication or transfer [31]. Two apmioes to
the event inference problem combine ILS with gene duplicesind
loss in a single model (DLI). In earlier work, we presentee finst
event inference algorithm for the DLI model under a parsiynon
criterion [29]. An event inference algorithm for a DLI mod®sed
on the multispecies coalescent relates the probabilityL&f 1o
branch lengths and population sizes explicitly [23]. Thesslels
have different strengths. The model based on the coalesaptitres
more detail, but is limited to the small number of data sets fo
which estimates of ancestral population sizes and spenitithes
are available. To our knowledge, no reconciliation aldoris that
consider ILS and transfer are in existence.

Our contributions: We present the first reconciliation algorithm
for a DTLI event model that captures all four major causeseanfeg
tree incongruence. Our algorithm is also the first to alleansfers

in reconciliation with a non-binary species tree. Our alfon

is based on a simple, elegant model that recognizes ILS as
source of incongruence, but avoids the computational eaettof

a full coalescent model and does not require estimates @fstiat
population sizes and speciation times.

Our parsimony-based algorithm reconciles a binary gereentitn
a non-binary species tree and distinguishes between incenge
that could only arise through duplication or HGT and incaregice
that can be more parsimoniously explained by ILS. Our albori
places no restriction on speciation times and reports aihnab
reconciliations that are temporally feasible. For a fikédthe time
complexity of our algorithm iO(hs|Vg||Vs|?) time, wherek* is
the out-degree of the largest polytomy in the species thees
the height of the species tree, aM$| and |Vs| are the number of
vertices in the gene and species trees, respectively. Gil@nary
species tree, our algorithm infers histories under the Doideh

DTLI algorithm. Second, since many published algorithmsndo
include losses in the optimization criterion [4, 14, 34, 28y.,],
we compared models with losses (DTLI, DTL) and without l@sse
(DTI, DT). Explicit inclusion of losses in the optimizatidanction
resulted in substantial changes to the inferred ratio oficaions to
transfers, suggesting that the practicgagt hoc inference of losses
should be revisited.

Finally, when the event model includes transfers, the mimm
cost event history is not, in general, unique. All algorithoited
above report only one of possibly many optimal solutions. We
applied our algorithm to assess the extent to which mulbpkemal
solutions occur. We discovered that multiple optimal dohs
are a frequent occurrence, especially in data sets whemnsféra
is the dominant process. In the analysis reported here, 20% o
1128 cyanobacterial trees had multiple optimal solutiorith w
inconsistent event histories. In other words, for one in frees,
the arbitrary selection of a single optimal solution coutéd to
conclusions that might not be supported by other optimaitgmis.
The results presented here are exciting and important, &s th
demonstrate that degeneracy and the applied event model hav
substantial impact on the histories inferred and, hencethen
resulting biological conclusions.

Notation: Given a treeT; = (Vj,E;), L(Ti) designates the leaf
set of T, andp; designates its root. We ugee Vg ands € Vs to
represent genes and species, respectiVgly) is the subtree of;
rooted at € V;. C(v) andP(v) denote the children and the parent of
W respectively, witlc; € C(v) denoting thejth child ofv. We adopt
the notation that ifu,v) € E;, P(v) = u. Given nodesi, v € 4, if uis
on the path fronv to p, thenu is an ancestor of, designated >; v,
andv is a descendant af, designated <; u. If v ;_ﬁ uandu ;7_% Vv, u
andv areincomparable, designatedi;v.

2 ALGORITHMS

Here, we propose a reconciliation model based on duplizatio
transfer-loss parsimony that distinguishes between nsgad the
species tree where ILS is likely, and those where only gene
duplication and transfer need be considered. These diffeseare
specified using a non-binary species tree: At binary nodes, w
assume that ILS is so rare that incongruence is always eséden
of gene duplication or transfer. At polytomies, ILS is catesid,

Both the DTL and DTLI algorithms have been implemented in and gene duplication and transfer are invoked only if topicial

Java and integrated inOYUNG, a freely available software package
for phylogenetic reconciliation. Our software offers aque and
comprehensive combination of functions: it includes Issisethe
optimization criterion, does not require estimates of &iEm
times, and reports all optimal event histories. Reportddtisms
are complete, temporally feasible event histories, gitimg gene
and species lineages in which each event occurred.

disagreement cannot be explained by ILS. This model can be
invoked for both non-binary species trees and for binarcigse
trees with short branches where ILS is suspected: Even wieen t
binary branching order of the species tree is known, the caer
collapse edges in the species tree to indicate in whichdeedLS
should be considered as an alternate hypothesis.

A key aspect of our model is that even when ILS is allowed, it is

To demonstrate the advantages of a full DTLI model on realnot possible to explain all incongruence in terms of ILS reirea

data, we applied our algorithm to two phylogenetic datatieds

uniquely labeled gene tree. Lggbe a node iffg and lets € Vs be the

have been used in previous analyses of HGT and phylogenetiassociated node in the species tree. We wish to determintherhe

incongruence [8, 24, 33]. First, if no incongruent treesehav
patterns that could be most parsimoniously explained as theh

the divergence a is consistent with a co-divergencesair whether
it can only be explained by events that give rise to a new laoels

models with and without ILS should give same results. In,fact duplication and transfer. If the branch pointgarose through a

we observed just the opposite. The models that did not doiwec
ILS substantially overestimated duplications and transsi& recent
study using a quartet decomposition approach reportedraeve
highways of gene transfer between specific pairs of cyariebat

co-divergence witls, then each species lineage descending from
s should inherit at most one of descendantgofThe presence of
more than one descendant @findicates that the divergence at
must be due to acquisition of an additional locus by duglceor

species [2]. We observed the same highways using the DTliransfer. An operational test for detecting more than orseetedant
algorithm. Only one of these highways remained when usieg th on a branch results from the observation that any branchétignm
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Fig. 1: Reconciliation of binary gene trees with a non-binary sged¢iee under our DTLI mode{a) A binary gene tree that is consistent with a binary
resolution of the species tree. The divergenceg a@ndx; are consistent with ILSb) A gene tree that does not correspond to any binary resolofidine
species tree. Nodg is not consistent with deep coalescence: the embeddingresqwo descendants g on the branch frone to f, a violation of model
constraints. This can only be explained by persistent pofpimism (light and dark dots) on a long branch. DTLI recdatidn of the gene tree in (b) with
the non-binaryTs results in two optimal solutions for suitable choicesdph andt: (c) one duplication followed by three losses gl one transfer and a
loss. Duplications are represented by a filled boxes, sf@uaby open circles, transfers by open boxes and arrows|amses by dashed lines and filled
half-circles. Each dot represents an allele of a singleviddal, with the dot’s color indicting the type of allele. We represent generations of individuals.

that is consistent with a binary resolution of the polytonande  species tree and have zero cost. We refer to the cost of event
explained by lineage sorting. ee{D,7,5,c}asK(e).

For example, the gene tree in Fig. 1a represents a validrybina A rooted, binary gene tre@g; a rooted, arbitrary species tree
resolution of the species tree, consistent with ILS. Theesiding of ~ Tg; a mappingM : L(Vg) — L(Vs) from contemporary genes to the
the gene tree in the species tree shows that each speciéndege  species from which they were sampled; and a set of permiteute
inherits exactly one descendantxaf and at most one descendant are given as input. The reconciliation © with Ts results in an
of xo. Both x; and x; can be interpreted as deep coalescencesannotated treeRss = (Vg, Eg), in which every internal nodey, is
In contrast, there is no binary resolution of the species thmt  annotated with the speciss Vs that contained geng, designated
corresponds to the gene tree in Fig 1b. The embedding of thi#1(g), and the event that caused the divergence, alesignated
gene tree requires two descendantsygfin the lineage frome £(g). In addition, eveng € Vg \ {pc} is annotated with: (g), the
to f, a violation of model constraints. The only way to explain genes lost on the edge froR{g) to g. Each loss is labeled with the
two descendants of, on the branch frone to f is by inferring a  species in which the loss occurred. We $ay) € Eg is a transfer
duplication (Fig. 1c) or a transfer (Fig. 1d). edge if£(u) = 7 andM(u)£sM(v) and defineA\(Rgs) C Eg to

Prior to introducing our algorithm, we discuss the meanifg o be the set of transfer edges Ras. If (u,v) € A(Rgs), a transfer
a polytomy in our model. A species polytomy can be consideredbccurred from donor species = M(u) to recipient species =
from two perspectives: a “hard” polytomy represents siemgbus  M(v).
divergence of three or more populations. A “soft” polytomy Here, we present the DTLI event inference problem under the
represents a binary branching process in which the bragarifer  constraint that a deep coalescent is inferred &t each lineage
is unknown. Our model assumes that a polytomy represeritsoap descending fronM(g) inherits at most one descendanigof

simultaneous species divergence. However, it also admitseful TheDTLI Event Inference Problem

interpretation for soft polytomies. A soft polytomy can bewed Input: A rooted non-binary species tredg; a rooted,
as a set of hypotheses, namely the set of binary resolutibtigeo binary gene tre€lg; the leaf mappingV, .

polytomy. Our model offers a conservative stance: evergaly Output: All reconciliation historiesRgs that minimizeTt
inferred when the topology of the gene tree does not corresfm and satisfy the model constraints.

any of these hypotheses. Note that in some cases, the hasbfind  A|gorithms for the DTLI event model must address severaldss
polytomy models are closely linked: the branching ordemefc®es  yat do not arise when only a subset of the events is considletp
that arose through multiple speciations in rapid succasdi?, 10] There may be more than one combination of duplicationssfeas
is often difficult to resolve. and losses that gives rise to the same pattern of tree incence
(i.e., there may be more than one optimal solutiBgg). (2) The
21 TheDTLI Algorithm value of M(g) is not uniquely determined by the children gf
In our DTLI model, divergence in a gene tree arises throughain ~ and multiple possible values ®(g) must be considered because
four events: duplication), transfer (), speciation §), and deep  transfers cause genes to jump to distant locations in theespiee.
coalescence(). The score of a reconciliation under this model is (3) An optimal reconciliation at the root may entail a sulopl

the weighted sum of the number of duplicatiohs, |, losses N, ), reconciliation at an internal nodg, Inferring a more costly event
and transfersN; ): atg may change the values bf(-) in nodes ancestral @such that
the overall score is reduced. Therefore, the valudd(@) and (g)
T=0-Np +A-N, +T-Ng, @) required for an optimal solution cannot be determined usinky

local information, and more than one optimal solution masute
To accommodate these requirements, it is necessary to eateme
all possible assignments d(g) and (g), for each node € .

where 8, A and 1, respectively, are the costs of a duplication,
loss, and transfer. Speciation and deep coalescence eaprEs
divergence with binary nodes and polytomies, respectivialyhe
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At eachg, the associated information is stored in two tablggand
#q. For each candidate assignmem Vs, the score that minimizes
the cost of reconcilindlg(g) with Ts(s), is stored inkg[s]. The
associated events and other information needed to recchstre
history atg are stored irvg|s].

Optimal reconciliations are calculated by a two-pass digor.
The first pass (Alg. 2.1.1), is a dynamic program that popslatch
XKg and #g in a post-order traversal dfg. It returns the optimal
reconciliation score, the values Bff(pg) andW(pg) corresponding
to that score, and the number of optimal histories. The sbpass
(Alg. S1.3.1), is a traceback algorithm that reads inforamafrom
eachxy to construct an optimal solution. Each optimal history is
generated by traversing, in pre-orderTef, each unique path that
lead to the optimal label(s) irp; . Appropriate values d¥1(g) and
Z(g) at each nodg are selected fronky. Each candidate optimal
history is then tested for temporal feasibility, as desdilin the
next section. Only those histories that are temporallyifdasre
reported.

A key calculation in the dynamic program difstPass is
determination of the possible events gafor a given candidate
species assignmenl/i(g) = s. These events, in turn, depend on
M(c1) = s1 and M(cp) = s, wherecy,c; € C(g). The basis for
determining candidate events that are consistent gyith ands,
is the following observation: If a duplication occurredgathen the
species that inherit the descendants;adind the species that inherit
the descendants a$ will not be disjoint.

We define a test, based on this observation, for distinguishi
duplication from other events:

£ = iff N(c1)NN(cp) # 0, @)

Whereﬁ(g) is the set of species that vertically inherit descendant
of P(g). If N(c1) and N(cp) are disjoint, than one of the other

three eventsy, ¢, or 7) must have occurred. These events can be

distinguished from one another usifgg), M(g), andM(c;) and
M(cp), as seeninostCalc inAlg. 2.1.1. Note that Eq. 2 is different
from the standard least common ancestoa)(test; however, when
M(g) = s is binary, the descendants sfare partitioned into two
sets, the left and right descendantssoiff there is no duplication.
Therefore, it is equivalent tica reconciliation [29].

Because N only consists of elements that were vertically
inherited, we must exclude transfer edges in the calculattor
this purpose, we define

®.(9) = {heL(Ts(9))[Fz> (P(2),2) e A(Res) "h <6 2<c 6, }

the set of leaves Oic(g) that were acquired through HGT. Formally,
we defineN : Vg — VS+ to be a mapping fronvg to sets of nodes
in Vs, whereVy is the powerset ofs. N(g) is the set of children of
M(P(g)) such thaiN(g) = {M(g)} if M(P(g)) € L(Ts); otherwise,
N(g) =

{Xxe C(M(P(g))) >23yeL(g)\&(9),x>sM(y)}. (3)

Formally, ifM(g) € L(Ts), W(g) = {M(g)}; otherwiseW(g) =

{XxeC(M(g)) >3yecL(@)\® (9).x=sM(y)}.  (4)

Alg. 2.1.1, traverse3g in post-order callingcalcCost  at each
g € V. The challenge in the DTLI model is to determine the sets of
species that inherit the descendants;ofndc, whenM(g) =sis a
polytomy; i.e., how to calculat®(c;) andN(c,). Whensis binary,
the descendants afare easily partitioned into two sets; wheis
a polytomy, all possible ways to partition the descendanistrhe
considered. Each child af can be retained in any subset of the
children ofs, ranging from size 1 t¢C(s)| — 1. Our DTLI algorithm
addresses this by considering all ways of partitiord{g) into two
non-empty subsets.

At each internal nodey, the algorithm assesses all possible
values forM(g) andW(g) by looping through alls;,s;) € Vs x Vg
and all (\W1,W>) € C(sy)" x C(sp)*. Considering all power sets
corresponds to considering all the ways to parti@gs; ) andC(s,).
The optimal event and child mapping undsandW is determined
by minimizing the cost of the candidate solutiorgat

K(€) + Ko, [S1][Wa] + Kc, [S2] Wa] +A - (N (€1) +n.(C2))  (5)
wheren, (ci), the number of losses on edgeg c;), is calculated
using the loss heuristic in [29]. Note that for eagtthe local cost
and history tables are also indexed by all possible valued/ of
which are inC(s)™.

2.2 Temporal Infeasibility

Since the donor and recipient species of any transfer must ¢
existed, each transfer implies a temporal constraint. Ameitiation
is temporally feasible if an ordering of species exists that satisfies

Sthe constraints of all inferred transfers. Because rediations

inferred by Alg. 2.1.1 are not guaranteed to be feasibleheac

candidate optimal solution is tested for feasibifiyst hoc.

To determine whether a reconciliati®gs is temporally feasible,
we construct a directed timing gra = (M, Et) that encodes all
temporal constraints on species Ta. Only species that are the
donor, d, or recipient,r, of a transfer edge iM(Rgs) must be
considered. Thus, the vertex set is definettas {v € Vs|3(g,h) €
A(Tg) 2 v=M(g) vv=M(h)}.

The edges iiE; represent three types of temporal constraints:

1. If speciess is an ancestor of specisgin Ts, thens predates
sj: for every(s,sj) in t X\, add(s;, sj) to Et iff § >gsj.
Let(g,h) and(d',h’) be transfers iM(Rgs), such thag >g ¢'.
Thend = M(g) andr = M(h) must have occurred no later than
bothd’ = M(d') andr’ = M(K). We add(P(d),d’), (P(d),r’),
(P(r),d"), and(P(r),r’) to E.

3. Given a transfefg, h) € A(Rgs), speciedvi(g) andM(h) must
be contemporaneous. Further, any species that prebHgs
must also predat&1(h), and vice versa. For everfs,s;j) €
W x W, add(s,sj) to E iff 35 €  such thats >g s and
s ands; are the donor and recipient, or vice versa, of some
transfer(g,h) € A(Rgs).

We test each candidate optimal history for temporal fekisibi

2.

One more piece of machinery is needed: in order to determindy verifying that the associated timing grafh is acyclic, using

N(g), we must know the children d¥l(P(g)), but we do not have
that information until we visiP(g). Therefore, we define a similar
set mappingWV : Vg — Vg, to aid in the calculation oRl. W(g) is
the set of children oM(g) that vertically inherit a descendant gf

a modified topological sorting algorithm i®(|\t| + |Et|) [5].
Temporally infeasible histories are not reported. Note ihas
not the case that if one optimal history is infeasible, altimgl
histories are infeasible. Finding the optimal, tempordégsible
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Algorithm 2.1.1 DTLI Reconciliation

I nput :
Cut put :

Te; Ts; ML
Kg,Hg VQE VG, T
firstPass(Tg, Ts,ML) {
1 for each geVg\L(Vg) i n postorder {
for each (s1,s)€VsxVs {
for each (W1,Wa)eC(s))" xC(s)* {
cost Cal ¢(g,s1,5,W1,Wy)
}
}
} .
T min{ %o (9]}
{(s W)}

argmin - { Ko [S|W]}
seVsWeC(s)+

© oO~NOoOOhr~WN

10 }

cost Cal ¢(g,s1,5,W1,W2) {

11 // consider M(g)=lca(s;,s), W(g)=N;UN;

12 Np«clinb(lca(sy,s),Wi); Na<climb(lca(s;,s;),Ws)
13 if (NynN2#£0) { e« } /1 Duplication
14  else if (s1%sx) { €+ } /1 Speciation
15 else { e+ } /| Deep coal escence
16 t abl e(g,lca(s1,sz)7(NluNz),s,sLsQ,VA\/LVAVzNLNz)

17 if (s%9V(SE=AW1NWo=0)) { // Transfer
18 /1 consider HGT s to s, M(g)=s1, Ws=W;
19 t abl 9(9751-,\7\\/17‘2',517527\7\\/1,\7\\/27\7\\/1,\7\\/2)

20 /1 consider HGT s to s, M(g)=s, Ws=W,
21 t abl 8(9152,VA\/2,T,sl,SQ,VVl,VVg,VVl,VVZ)

22}

23 1

clinmb(sW) {

24 select xeW at random

25 if (x=sVP(x)=s) { return W }

26 while (P(x)#s) {

27 X+ P(x); N« {x}

28 }

29 return N

30 }

tabl e(g.5Ws,€,51,5,W1,W2,N1,Np) {

31 cost«K(g)+ Key [s1][Wa] + Ke, [$2][Wa] +A- (N, (1) + N, (C2))
32 if cost< xg[s|[Wg {

33 %g[s|[Ws] « cost

34 Hg[S][Ws] — (8751,52,\7\\/1,/\\7\\/27&1,&2)

35 } else if cost=x%xg[gWq {

36 enqueue (g,51,5,W1,Wp,N1,Np) to #[s][Wg

37

38 } )

reconciliation is NP-complete [28]; we leave the problem of
obtaining an optimal, feasible solution when all candidatieitions
have infeasible timing constraints for future work.

2.3 Complexity and Running Time

Our algorithm is fixed-parameter tractable with polynomial
complexity when the size of the largest polytonky, is fixed. In
practical data analyse&; is likely to be small. Recent genome-
scale analyses of ILS have focused on species treekivitt8 [e.g.,

10, 22]. In general, event inference will not yield inforimatresults
when the species tree is highly unresolved.

THEOREM 2.1. Given a binary gene tree Tg and a non-binary
speciestree Tg, f i r st Pass takes O(|Vg|(|Vs| + n2<)2(hs+k*))
time.

PROOF. firstPass  visits eachg € Vg in post order. At eacly,
costCalc is called once for evergs;, s,) € Vs x Vs and(W1,W3) €
C(s1)* x C(s2)™, resulting in a total ofO(|Vg|(| Usevs C(S)])?)
calls to costCalc . BecauselC(s)*| = 2/°) is O(1) whens is
binary, | Usevs C(s)*| is bounded above bjvs| — n +n2<, and
the number of calls t@ostCalc is O(|Vg|(|Vs| + n2<)2). We
precalculatelca(s;,sp) and test whethes;£sp, for all species
pairs, inO(|Vs|2) time. Therefore, the complexity @bstCalc s
dominated by the calculations &f for | andr, N(I) UN(r), and
N(I) N N(r). These values can be computedOths), O(log(k*))
and O(k*) time, respectively. Thus, each call tostCalc has
complexityO(hs+ k*). Once the post order traversal is completed,
we extract the minimum score iR, and all values ol (pg) and
W(pg) corresponding to that score. Singgy,| = | Usevs C(9) 7|, @
linear search accomplishes this@{|Vs| + n2X') time. Thus, the
total complexity iSO(|Vg|(|Vs| + n2< )2(hs+k*)). O

THEOREMZ2.2. secondPass returnseach optimal reconciliation
inO(|Vg|(hs+k")).

PROOF. secondPass starts from théVl(pg) andW (pg) found in
firstPass . It then constructs an optimal solution by visiting each
subsequeny € Vg, assigning mappings and events by looking up
values in#g in constant time. Losses are inferred @ik* + hg)
time [see 29]. Thus, the complexity for returning each optim
history isO(|Vg|(hs+Kk*)). |

When Ts is binary, firstPass  is completed inO(hg|Vg|[Vs|?)
time, andsecondPass reports each optimal solution i@(hs|Vg|)
time.

Our NoTuNG implementation is efficient in practice. We
measured the time required to reconcile 1128 cyanobakctgise
trees with a species tree of si?és| < 21 for all the parameter
settings given in Table 1. To assess the effect of polytorng, sive
also collapsed edges in the species tree to create a polytomging
in size from 2 to 6. The maximum average running time obseoved
a single AMD Opteron 2.3ghz, 64-bit processor was)5 seconds
per solution.

3 EMPIRICAL RESULTS

To assess the importance of a four-event model, we implesdenir
DTLI algorithm in NOTUNG 2.7 and applied it to two phylogenetic
data setsin which ILS, HGT, and hybridization have beenistl,
30]. Because a number of algorithms and software packagestdo
include losses in the optimization criterion, we soughtdsess the
impact of this modelling choice. Therefore, we also impleted
and applied models excluding losses in the optimizatioteican
(DT and DTI) models. Except where stated, the trends regdireee
were observed consistently in both data sets.

The data sets analyzed contain 1128 cyanobacterial geeg tre
sampled from 11 species (Figs. 2 and S1), and 106 yeast gmse tr
sampled from 15 species (Fig. S2), respectively. Each geréas
at most one gene copy per species. In order to assess thetiofipac
our ILS model, for each data set we compared the performaice o
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Fig. 2: Predicted transfer highways using the DTL and DTLI modelhwi
d=3, 1=25 andA = 2. The internal edge n16-n18 was collapsed for
the DTLI model. Predicted highways with transfer countsatgethan 1.5
standard deviations above the mean are shown, with the riataber of
transfers labeled. Highways predicted by Bansal et al. {&] shown as
dashed lines.

Table 1. Event counts for the cyanobacteria data set, with3 andA = 2.

Model T || mp nr n. nc || Infeasible Degenerate
DT 2.5 7 1798 1560 0 84 6
DT 6 1648 191 6096 0 0 0
DT 10 2066 0 7520 0 0 0
DTI 25 6 1521 1468 55 3 67
DTI 6 1425 133 5133 59 0 0
DTI 10 1691 0 5921 63 0 0
DTL 2.5 0 2121 781 0 42 13
DTL 6 73 1740 1516 0 82 50
DTL 10 1324 480 4797 0 83 40

DTLI 2.5 0 1783 895 40 92 16

DTLI 6 82 1458 1456 54 90 109

DTLI 10 1122 405 4093 60 4 53

Event counts from 314 gene trees with temporally infeasibleonflicting degenerate
solutions in any model were removed; the number of trees onsidered for each
model and setting is given in the last two columns, respelgtiv

our algorithm on a binary and a non-binary species tree. Tine n
binary species tree was created by removing one edge residti

trees were rooted with SITUNG's rooting optimization algorithm
using event parsimony. If a tree had multiple optimal soli (one
or more optimal roots or reconciliations for a specified ypibtvas

only retained if all solutions yielded the same counts faheavent.

Our observations highlight the extent to which model choice
and degeneracy affect biological inferences. Approxihgal®%
of trees were removed because they are potentially misigatiie
to temporal infeasibility. Hallett et al. [12] reported nentporal
infeasibility for the application of their DT algorithm tosamulated
data set. Our results suggest that infeasible cases can b=
prevalent in real data.

In addition, approximately 20% of trees had conflicting ol
solution, suggesting that inferences based on a singleloraly
selected optimal solution could lead to conclusions thatrant, in
fact, supported by the data. This result highlights the irge
of taking multiple solutions into account when performinget
reconciliation.

When the models with and without ILS are compared, we
observed a substantial decrease in the combined number of
duplications and transfers, ranging from 15-18% in cyantdsa
and 11-14% in yeast. We also observed considerable desrgase
the number of losses, as high as 20% in the case of DT vs DTI.
These differences indicate the extent to which ignoringdh8 lead
to overestimation of other events.

Recently, great interest has been focusecighways of HGT
(i.e., pairs of species with very active genetic exchanghktive to
HGT in other species) [i.e., 2, 3]. We considered evidendd ®T
highways in our cyanobacterial data, where a highway is dieou
in the total number of transfers, in both directions, betwa@air of
species. With the DTL model, we observe traffic (Fig. 2, reed)
similar to the HGT highways reported by Bansal et al. [2] {eldt
lines), for the same data set. However, when events wereréafe
with the DTLI model, the elevated transfer rates in the Ghamber
group disappeared, resulting a single highway (blue lifdélese
results demonstrate that use of a complete event modeldmtfar
accurate inference.

In general, including losses in the optimization criteriesulted
in (1) a dramatic decrease in the number of losses, and (Zrageh
in the ratio of the number of duplications to transfers. Tiksly
occurs because duplications and losses are coupled. Wéssslare
included in the optimization, their cost may prevent the eidbm
over-inferring duplications. This suggests that for anplaation
where accurate reconstruction of event histories matiteckjding
losses in the optimization criterion is crucial.

mo

4 DISCUSSION

a single polytomy of size 3. In each case, the selected edge wal his work presents the first reconciliation algorithm foe tbvent

short and associated with substantial gene tree incongeuétach

inference problem under a model that captures the four major

polytomy was chosen as a reflection of an area of the speeies tr evolutionary processes driving tree incongruence: dapba, loss,
where ILS may be occurring. In both cases, the selected edge wtransfer, and ILS. Our algorithm reconciles a binary geree tr

one that is reportedly difficult to resolve [2, 25, 30].

with a non-binary species tree and is, to our knowledge, the

We reconciled each tree using each of the four models (DT, DTlfirst algorithm to allow non-binary species trees with a $fan

DTL, and DTLI), with T € {2.5,6,10}, 6 = 3, andA = 2 (when
considered). We tabulated (1) the number of events of eguh ty
(2) the gene and (3) species lineages in which they occu(fgd,

model. Our algorithm outputs detailed event histories cdemg
the specific events inferred and the lineages in which theyroed.
When restricted to binary species trees, our algorithmaesltio

the donor and recipient of each transfer, and (5) the number oan event inference algorithm for the DTL model that can irsfiér

temporally infeasible reconciliations (Table 1 for cyaacteria;
Table S3 for yeast). Trees that had no temporally feasiblgisn
for at least one set of parameter values, were eliminateah fro
analysis under all models and valuestofFor each setting, gene

optimal solutions and does not require estimates of spesitimes

or otherwise restrict transfers to a limited set of specassp
Algorithms that capture duplication, transfer, and ILS isiragle,

integrated model are of increasing importance [7]. New srqing
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technologies are leading to rapid growth of whole genoma sketis,

in which there is evidence for both HGT and ILS. Our empirical

analyses of two different data sets, representing bothgpyokic
and eukaryotic data, indicate that use of a complete evedehimas
substantial impact on the events inferred and, hence, thétirg
biological conclusions. For example, it is possible thapaapnt
HGT highways could be, at least in part, mis-interpretatiohdeep
coalescence.

Our model is a compromise between current reconciliation

63(2):240-250, Aug 2006.

[5]T. Cormen, C. Leiserson, and R. Rivestntroduction to Algorithms. MIT
Press/McGraw-Hill, 1990.

[6]L. David and E. AIm. Rapid evolutionary innovation dugian Archaean genetic
expansionNature, 469:93-96, Jan 2011.

[7]3. Degnan and N. Rosenberg. Gene tree discordance,gengtic inference and
the multispecies coalescefitends Ecol Evol, 24:332—-340, Jun 2009.

[8]F. Delsuc, H. Brinkmann, and H. Philippe. Phylogenonzosl the reconstruction
of the tree of life.Nat Rev Genet, 6:361-375, May 2005.

[9]3. Doyon, V. Ranwez, V. Daubin, and V. Berry. Models, alfons and programs
for phylogeny reconciliationBrief Bioinform, 12:392—400, Sep 2011.

models, which ignore ILS everywhere, and coalescent models[10]i. Ebersberger, P. Galgoczy, S. Taudien, S. TaenzeRIktzer, et al. Mapping

which explicitly relate the probability of incongruence the

length and population size associated with every branchr Ou [11]
model is more expressive than the former and more efficiedt an [12]M. Hallett, J. Lagergren, and A. Tofigh.

more widely applicable than the latter. A great strength af t
multispecies coalescent is that it explicitly relates thebgbility
of incongruence to effective population size and the timsvben
species divergences. Estimates of these population pteesrae
only available for a limited set of well studied species. tdoer,
given a sufficiently large set of gene families, populatiangmeters
can be inferred directly from the data, but this is compaotailly

demanding. For example, species tree inference from a set o
106 genes in 8 yeast species required 800 hours using Bayesia[17]
estimation on a coalescent model, where as a parsimony thetho

inferred the identical tree in only a “fraction of a secona7].

A parsimony model, on the other hand, does not take branch

lengths into account, resulting in a potential reductioméouracy.
Future simulation studies are planned to characterize ¢cberacy
of this approach. The benefits of this simpler model are thedn
be applied to any set of taxa, not just species for which paijmur
parameters can be estimated, and it is not sensitive to threyfi
Because it is fast and general, it is highly suitable for pesing
large, genome-scale data sets.

The work presented here could profitably be generalized in

several ways, including a model of transfers in which mistip
genes are transferred in a single event; inference mettodiafa
sets involving extinct or missing species; and ILS modelst th
deviate from the assumption of a uniform gene tree distdbut
and take branch lengths and population size into accountddta
sets where such information is available. Another impdrerea
for future work is the selection of event costs and invesiiga
of the robustness of results with respect to small changahan

human genetic ancestrylol Biol Evol, 24:2266-2276, Oct 2007.

S. Edwards. Is a new and general theory of molecularesyatics emerging?

Evolution, 63:1-19, Jan 2009.

Simultaneousernitification of
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[15]W. Maddison. Gene trees in species tre®st. Biol., 46(3):523-536, 1997.
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S1 SUPPLEMENTARY INFORMATION
S1.1 Empirical Input and Output

Synechocys Synechocys
Crocosphae
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ng Nostoc ng Nostoc

n7 Anabaena n7 Anabaena

———Trichodesm ————Trichodesm
nlé
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el nis ——3Prochloro nis ——3Prochloro
Synechococ —n20 Synechococ
n20
Thermosyne Thermosyne
Gloeobacte Gloeobacte
@ (b)

Fig. S1: Thega) binary andb) non-binary species tree for the 11 cyanobacterial speDigly.tree topologies, not branch lengths, are shown.

Table S1. Strain names for cyanobacterial
species.

Shortname  Long name

Synechocys  Synechocystis
Crocosphae  Crocosphaera

Nostoc Nostoc

Anabaena Anabaena

Trichodesm  Trichodesmium
1Prochloro  Prochlorococcus 1 (CCMP)
2Prochloro  Prochlorococcus 2 (MED)
3Prochloro  Prochlorococcus 3 (MIT)
Synechococ  Synechococcus
Thermosyne Thermosynechococcus
Gloeobacte  Gloeobacter
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n15 Skud X3 Skud
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n n
Scer Scer

(@) (b)

Fig. S2: The(a) binary and(b) non-binary species tree for the 15 yeast species. Onlydpesdgies, not branch lengths, are shown.

Table S2. Names for yeast species.

Short name Long name

Ylip Yarrowia lipolytica

Dhan Debaryomyces hansenii
Calb Candida albicans

Sklu Saccharomyces kluyveri
Kwal Kluyveromyces waltii

Klac Kluyveromyces lactis

Agos Ashbya gossypii

Cgla Candida glabrata

Scas Saccharomyces castellii
Shay Saccharomyces bayanus
Skud Saccharomyces kudriavzevii
Smik Saccharomyces mikatae
Spar Saccharomyces paradoxus
Scer Saccharomyces cerevisiae

Table S3. Event counts for the yeast data set, with 3 andA = 2.

Model t || o nr  n.  nc || Infeasible Degenerate
DT 25 1 207 192 nl 3 1
DT 6 192 26 684 nl 0 0
DT 10 245 0 841 nl 0 0
DTI 2.5 8 172 180 67 4 11
DTI 6 162 25 568 69 0 0
DTI 10 213 0 720 72 0 0
DTL 25 0 233 138 nl 4 1
DTL 6 6 203 192 nl 3 1
DTL 10 155 53 563 nl 0 11
DTLI 2.5 0 208 115 62 4 12
DTLI 6 10 172 172 66 2 13
DTLI 10 138 42 493 67 1 10

Event counts from 31 gene trees with temporally infeasibleconflicting
degenerate solutions in at least one model were removeduthber of such trees
for each model is shown in the last two columns, respectively

S2



DTLI Reconciliation

S1.2 Heatmaps Describing Transfer s Between Species
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Fig. S3: Transfers in cyanobacteria, inferred with 3, A = 2 andt = 2.5 under(a) the DTL-model,(b) DTLI-model, (c) the DT-model(d)

DTI-model
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Fig. S5: Transfers in yeast, inferred wilh= 3, A = 2 andt = 6 under(a) the DTL-model(b) DTLI-model, (c) the DT-modeld) DTI-model
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Fig. S6: Transfers in yeast, inferred wih= 3, A = 2 andt = 10 under(a) the DTL-model(b) DTLI-model, (c) the DT-mode(d) DTI-model
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(b)

Fig. S7:(a-c) Three examples of temporally infeasible transfer pairsloypmthetical species tree with four leaves. Dashed arrowsspond
to inferred transfers.

S1.3 Traceback Algorithm, Multiple Optimal Solutions, and Temporal Feasibility

Our event inference algorithm infers a most parsimoniowenehistory in three passes. Pass 1, described in Alg. Zhlthei main text,
populates the cost and event tables for each nagea(d 7y, respectivelyyg € Tg) in a post-order traversal of the gene tree. Pass 1 returns
the minimum event cost at the ro@ig, and the set of all pairs

(W)= argmin {%pels W]} ®)
seVsWeC(s)*

that give that minimum cost. Recall that eahs a node in the species tree that, when assigned teesults in an optimal score and that
W’ is the set of children of* that inherent a descendantf in this event history.

In Pass 2, the traceback algorithm (Alg. S1.3.1) uses tlwermdtion in the tables populated in Pass 1 to generate alidate optimal
reconciliations. These minimum cost histories are aalydidate optimal reconciliations because they are not guaranteee temporally
feasible. To obtain temporally feasible, optimal recaatibns, the candidates will be checked for temporal inistescies in Pass 3.

The set of all candidate optimal reconciliatiof&cs}, is generated by recursively enumerating event historiesseries of pre-order
traversals offg. At pg, there may be more than o(@,W*) pair that yields a minimum cost event history. For a gi(/@hVA\l*), descendants
of pg may also have more than one optirTQa,IVA\/) pair. For internal nodes other thag, we say a(s,W) pair is optimal if it leads to a
minimum cost history apg; (s,VA\/) may not result in the lowest cost @t The complete set of minimum cost histories for a gi‘(/EhVA\/*)
pair is generated by considering all ways of combining amagithistory for the right child opg and an optimal for the left child gds. This
strategy is applied recursively during the pre-order treake The final set of optimal candidate reconciliationshis tinion over aI(s*,VA\/*)
pairs inKp,.

In secondPass , all (s*,VAV*) pairs associated withg are enqueued intsolutionQueue , which stores event histories that have not yet
been explored. The enumeration then proceeds by calticeback for an entry insolutionQueue . This process begins at the root with an
unlabeled copy of the gene trd&;s = Tg. The nodes oRgs are labeled with the species mapping, event, and lossesgmised down the
tree during the traversal, resulting in a fully labeled ddatk reconciliation when the traversal is complete. Winaeback is called on
nodeg, it receives a partial reconciliatiakss from its parent. Irtraceback , ®gs is augmented by initializing the mapping(g), the event
Z(g), and the losses at The species in which losses occurred are inferred usingebsstic approach described in [29]. This procedure is
exact when the corresponding species nddigg), has less than four children. After the labeling stepg ate complete, an optimal event
history forTg(g) is obtained by recursive calls to the childrengoif there is more than on@s,W) pair atg that will yield an optimal event
history atpg, the remaining pairs are enqueued isdlutionQueue  for later processing.

In Pass 3, each candidate optimal reconciliation is testetemporal feasibility. As described in Section 2.2 of thaimtext, a graph is
constructed that encodes all temporal constraints impbgete species tree and the set of inferred transfers. If thphgis acyclic, then
the event history contains no temporal constraint viotetiand is a legitimate reconciliation. The constraints veppse in Section 2.2 are
appropriate for inferring detailed event histories andcfmunting the number of optimal solutions and can be usedallifour event models
(DT, DTI, DTL, and DTLI). Our approach builds on a feasihjilithecking scheme proposed by Tofigh et al. [28] for the lesBictive
DT model, but imposes additional constraints. For exanmgilehree scenarios in Fig. S7 are temporally infeasible ahthree violate the
constraints introduced in Section 2.2. Only Fig. S7b viedahe constraints introduced in [28].

Tofigh’s constraints are appropriate for applications wtarly thenumber of duplications and transfers is inferred (e.g., for saptirees
for the tree inference problem), but the specific events arefinterest. Under the DT model, there exist certain ehstibries that have a
cycle, but for which a temporally feasible reconciliaticamde identified that has the same number of duplicationsrandfers, but more
losses. Since losses incur no cost under the DT model, thidble reconciliation has the same cost as the originaasible history. For
example, the infeasible histories in Figs. S7a and c can beeced into feasible histories by lifting the transferipgent on @,C) so that
it enters the edged(B), above the other transfer. Note that this operation géeei@new history that is temporal feasibility but incurs an
additional loss in specidd. For the purposes of inferring only the optimal reconditiatcost, it is not necessary to construct the feasible
history, but simply to verify that it exists.
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Therefore, the constraints proposed by Tofigh et al. do retaut infeasible histories for which there exists a feasitiktory with the
same DT cost. This is sufficient if only the cost is of interésit insufficient for applications where the goal is to irtfez donor and recipient
species of specific transfers. Similarly, the Tofigh coristsaare not appropriate for counting the number of optins&ltsons, because the
set of optimal solutions reported under these constraiititgwiude infeasible solutions like those in Figs. S7a ands well as their feasible
counterparts. This will lead to an overestimate of the nunaealid, optimal reconciliations.

Algorithm S1.3.1 DTLI Reconciliation Traceback

Input: To, Ts, %g,#g VgeVe S,W
Qutput: Rgs, the set of all optinmal Rgs

secondPass (T, Ts, kg, #gVg € Vi, W) {
1 Res«{}

2 for each (s""W") {

3 enqueue (Tg,pg,s,W",0) to sol uti onQueue
4 }

5 while solutionQueue is not enpty {

6 dequeue (Rgs,g,sW,N) from sol uti onQueue
7 Ris = traceback(Rgs,g,5W,N)

8 add Rig to Rgs

9 }

10 }

traceback(Rss g,5W,N) {

11 M(g) <« s VA\/(g)eW N(g)<—ﬁ

12 dequeue {g,s1,%, Wl,Wz Nl Nz} from #g[s ][W]

13 £(g)«+¢

14 if (g#pe) { o

12 , £(g) « inferLosses(z(P(g)),s,M(P(9)),W(g),W(P(9)),N(9))

1

17 if (9¢L(Res)) { o o
18 Rgs = traceback(Rgs,1(9),51,W1,N1); Rgs = traceback(Rgs,r(9),s,W2,N2)
19 whil e xg[s[W(g)] is not enpty {

20 dequeue {g,s1,%, Wl,Wz Nl,Nz} from J{g[s][W( )]
21 enqueue (Rgs,(9),51,W1,N1) to sol uti onQueue
22 enqueue (Rgs,1(g),5,W2,N2) to sol uti onQueue
23 1

24}

25 return reconciliation Rgs

26 }

nf er Losses ( (P(g)),M(g).M(P(g)).W(g),W(P(g)).N(g)) {
27 1 osses=0

28 if (M(g)¢L(Ts)AM(g) #M(P(g)) { // polytony I|oss
29 | osses+ =C(M(g)) \W(g)

30 }

31 select xeW(g) at random

32 while (P(x)#M(P (g))) { /1 skipped species |osses
33 if (P(x)#M(g)) { | osses+= C(P(x))\x }

34 x=P(x) /] clinmb

35 }

36 if (£(P(g)=DAW(P(g)\N(g)#0) { // dup Ioss

37 | osses+=W(P(g))\N(g)

38 }

39 return

40 }
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