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Abstract: 

Coordinated and efficient operation of water resource systems becomes essential to deal with 

growing demands and uncertain resources in water-stressed regions. System analysis models and 

tools help address the complexities of multireservoir systems when defining operating rules. This 

paper reviews the state of the art in developing operating rules for multireservoir water resource 

systems, focusing on efficient system operation. This review focuses on how optimal operating 

rules can be derived and represented. Advantages and drawbacks of each approach are discussed. 

Major approaches to derive optimal operating rules include direct optimization of reservoir 

operation, embedding conditional operating rules in simulation-optimization frameworks, and 

inferring rules from optimization results. Suggestions on which approach to use depend on 

context. Parametrization–simulation–optimization or rule inference using heuristics are 

promising approaches. Increased forecasting capabilities will further benefit the use of model 

predictive control algorithms to improve system operation. 

Introduction 

Managing multireservoir systems can benefit from coordinating operation of facilities to better 

achieve objectives within system constraints (Labadie, 2004; Oliveira & Loucks, 1997). 

Coordination requires an integrated vision, accounting for interrelations and interdependencies 

among system components. However, integration increases the complexity of reservoir system 

operation and increases analysis complexity from the many variables, stakeholders, and often 

conflicting goals to consider, and uncertainty in the system's future (Loucks, 2017; Lund et al., 

2017; Oliveira & Loucks, 1997; Rani & Moreira, 2010). System analysis tools, including 

simulation, optimization, and their combinations, can help address the complexities of operating 

multireservoir systems and deal with concerns such as stakeholder participation, water pollution, 

environmental awareness, sustainability, good governance, resiliency, and efficiency (Brown et 

al., 2015; Cai, Vogel, & Ranjithan, 2012; Lund et al., 2017). Achieving efficient water 

management is vital with increasing competition for water, growing demands, and uncertain 

water supplies. In response, the European Union considers increasing efficiency in water 

management and use as a main direction for water policy (European Commission, 2012a), 

establishing a hierarchy for policy-making in which additional water supply infrastructure should 
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only be built when other options are impossible (European Commission, 2007, 2012b). 

Identifying and evaluating how efficiency in water management can be improved is a main 

objective of water resource systems models (Loucks, 2017). A wide range of system analysis 

models have been applied to improve efficient and integrated use of water resources with 

available infrastructure. They usually link system features (physical, hydrological, economic, 

institutional, etc.) with system management (target storages and releases, deliveries to the 

system's demands, hydropower scheduling, environmental protection, etc.) and performance 

(economic prosperity, public health, ecosystem support, equity, etc.) through a set of 

mathematical equations modeling system processes (hydrology, reservoir operation, conveyance, 

demand deliveries, etc.). These mathematical models can be divided into simulation and 

optimization. In simulation, operating rules are described and used as an input to assess system 

performance (positive approach), while in the second, system operation is prescribed (normative 

approach) to maximize defined system performance indicators. Simulation models have become 

routine and widespread for analyzing water policy impacts, assessing alternatives, and 

developing water plans (Brown et al., 2015). 

Optimization models can be powerful tools to suggest efficient management strategies, but have 

drawbacks and limitations that hinder their use in practice (Jain & Singh, 2003; Labadie, 2004; 

Loucks, 2017; Maier et al., 2014; Rogers & Fiering, 1986), such as: approximate framing of 

optimization tools into wider management practices; problem simplifications commonly needed 

for optimization; the lack of decision-maker involvement in model development; and that many 

optimization models can only produce optimal time series of prescribed decisions for specified 

scenarios, rather than actual operation prescriptions. Furthermore, optimization requires 

substantial consensus on performance objectives or, ideally, a single objective (e.g., minimize 

net costs), as is common for water distribution, hydropower, and levee systems (Brown et al., 

2015). Reservoirs usually operate using predefined rules that respond to regulatory frameworks 

rather than seeking an overall efficient operation of water resources (Labadie, 2004; Lund et al., 

2017; Oliveira & Loucks, 1997). Simulation and optimization models have been combined in 

methodological frameworks to infer improved operating rules, employing the advantages of both 

methods. The ways in which efficient operating rules can be derived from optimization 

algorithms have increased recently with the rise in computer power and affordability and 

heuristic programming methods that more easily link simulation and optimization approaches 

(Maier et al., 2014; Rani & Moreira, 2010). Today, a wide range of methods can define operating 

rules based on mathematical algorithms. This paper reviews the use of mathematical models to 

infer operating rules in multireservoir water resource systems, focusing on inference for effective 

operations. Main novelty of this review is its focus on how to define and derive optimal 

operating rules, and the functional forms in which they can be represented. Alternatives to define 

reservoir operation policies from optimization algorithms are analyzed. These range from the 

traditional regressions on optimization results to recent applications of parametrization–
simulation–optimization (PSO) frameworks and heuristic techniques such as artificial neural 

networks (ANNs) or machine learning. We make recommendations on how to infer efficient 

operating rules for problems with varying features and goals. 
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Deriving operation strategies using optimization models 

Optimization models can provide time series of optimized decisions and, in some cases, optimal 

operating rules. System operators usually rely on conditional operating rules (Labadie, 2004), 

and decision-making is seen as a broader process in which operating rules help guide in 

achieving consensus on system management (Oliveira & Loucks, 1997). To identify promising 

optimal operating rules, system operators could use the following approaches (Figure 1): (a) 

direct optimization, by applying an optimization algorithm to directly suggest optimal operating 

decisions; (b) a priori functional forms, in which the mathematical formulation of the desired 

operating rules (rule form) is fixed, with parameter values to be optimized; and (c) inferring rules 

from optimization results, in which both the rule form and parameter values are inferred by 

manual or automated means. Optimization is required in all cases: in the first one, their 

application is the only process needed; while in other cases optimization is part of a broader 

framework to develop operating rules. 

  

Figure 1. Approaches to develop optimal operating rules 

Direct optimization of operations 

Optimization models have been widely used to identify potential operation improvements for 

water resource systems. Some optimization methods, such as stochastic dynamic programming 

(SDP), provide optimal operating rules as output directly, while other methods provide time 
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series of optimal decisions for specific inflow scenarios. If the rule form is in line with the user 

needs, or if just optimal decisions are desired directly, there is no need for postprocessing. 

Otherwise, optimization results need to be translated into operating rules using inference or with 

predefined rule forms. Many algorithms have been applied for optimizing the management of 

water resources systems, including deterministic (implicit stochastic) optimization, (explicit) 

stochastic optimization, heuristic optimization, and model predictive (optimal) control. 

Optimization algorithms have been commonly reviewed in the literature (Ahmad, El-Shafie, 

Razali, & Mohamad, 2014; Labadie, 2004; Rani & Moreira, 2010; Simonovic, 1992; Singh, 

2012; Wurbs, 1993; Yeh, 1985). 

Implicit stochastic optimization 

Implicit stochastic optimization (ISO) uses deterministic programming procedures to optimize 

system operation for a large wide-ranging set of inflow time series that captures the stochastic 

nature of expected inflows. Its primary advantage is the reduced need to simplify system details 

compared to explicit stochastic programming. However, the optimal decisions obtained are 

unique to the employed time series and assume perfect foresight of future inflows, something 

unusual in real-life systems (Labadie, 2004). Common solution algorithms include (Table 1): 

linear programming, in which all the mathematical equations are linear; network flow 

optimization, in which the system is conceptualized as a network of nodes and links and solved 

using network algorithms; nonlinear programming which can cope with some nonlinearities; and 

dynamic programming, in which a multistage programming problem is decomposed into a set of 

sequentially solved single stages. The “curse of dimensionality” of dynamic programming is the 
exponential growing of the computational burden with the system size (Bellman, 1957; Bellman 

& Dreyfus, 1962; Giuliani, Castelletti, et al., 2016; Nandalal & Bogardi, 2007). Approaches 

reducing computational burden usually imply further simplifying the system, interpolating 

benefit values, and using alternative approaches (Goor, 2010). 

Table 1. Implicit stochastic optimization solution algorithms and example applications 

Algorithm Examples of application 

Linear Programming (LP) Das et al. (2015); Jenkins et al. (2004); Satti et al. (2015) 

Network flow optimization Andreu et al. (1996); Andreu & Sahuquillo (1987); Haro-Monteagudo et 

al. (2017); Labadie et al. (2000); Lund & Ferreira (1996); Pulido-

Velazquez et al. (2008) 

Nonlinear Programming (NLP) Cai et al, (2001); Satti et al. (2015); Theodossiou (2004); Vieira et al. 

(2011) 

Dynamic Programming (DP) Grüne and Semmler (2004); Hall & Buras (1961); Johnson et al. (1993); 

Liu et al. (2011); Nandalal & Bogardi (2007); Turner & Galelli (2015) 
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Explicit stochastic optimization 

Explicit stochastic optimization (ESO) (stochastic programming) uses probabilistic descriptions 

of inflows in the formulation of the algorithm; thus, optimization is run with probabilistic 

(imperfect) knowledge of future inflows (Labadie, 2004; Rani & Moreira, 2010), the primary 

advantage of this approach. The primary disadvantages of ESO are the additional system 

simplification needed for computation and the limited types of correlation structures that can be 

represented. ESO models are more computationally challenging than their ISO equivalents as 

they need to embed the probabilistic description of inflows within its formulation (e.g., SDP). 

This approach is divided into (Table 2) chance-constrained programming, in which inflows are 

treated as simplified random variables and risk levels are assumed; stochastic linear 

programming, in which the problem is decomposed into two or three stages according to the 

uncertainty level; and SDP, which extends dynamic programming to include an explicit 

representation of inflow uncertainty. 

Table 2. Explicit stochastic optimization algorithms and examples of application 

Algorithm Examples of applications 

Chance-constrained 

programming 

Eisel (1972); Houck (1979); Revelle et al. (1969); Sahinidis (2004); 

Sreekanth et al. (2012); Xu et al. (2017); Zeng et al, (2013) 

Stochastic Linear Programming 

(SLP) 

Loucks & van Beek (2005); Marques et al. (2005); Zhu et al. (2015) 

Stochastic Dynamic 

Programming (SDP) and its 

derivatives 

Nandalal & Bogardi (2007); Pereira-Cardenal et al. (2015); Pereira & 

Pinto (1991, 1985); Stedinger et al. (1984); Tejada-Guibert et al. (1993); 

Turner & Galelli (2015); Zhao et al. (2014); Haguma et al. (2018); 

Castelletti et al. (2013, 2010); Davidsen et al. (2014); Lee & Labadie 

(2007); Macian-Sorribes et al. (2017); Tilmant et al. (2008); Tilmant & 

Kelman (2007); Lei et al. (2018); Faber & Stedinger (2001); Kelman et 

al. (1990) 

Subject to the curse of dimensionality, SDP provides optimal operating rules in policy tables 

(e.g., Karamouz & Houck, 1987; Nandalal & Bogardi, 2007). Some algorithms reduce SDP's 

curse of dimensionality, such as sampling SDP (Côté & Arsenault, 2019; Faber & Stedinger, 

2001; Kelman et al., 1990); fuzzy SDP (Tilmant, Faouzi, & Vanclooster, 2002; Tilmant, Van Der 

Zaag, & Fortemps, 2007; Tilmant, Vanclooster, Duckstein, & Persoons, 2002); Bayesian SDP 

(Karamouz & Vasiliadis, 1992; Mujumdar & Nirmala, 2007); demand-driven SDP (Vasiliadis & 

Karamouz, 1994); reinforcement learning (Castelletti et al., 2010, 2013; Lee & Labadie, 2007); 

and stochastic dual dynamic programming (Macian-Sorribes et al., 2017; Pereira & Pinto, 1985, 

1991; Rougé & Tilmant, 2016; Tilmant & Kelman, 2007). 

Heuristic optimization 

Heuristic optimization, also known as computational intelligence, evolutionary algorithms, or 

metaheuristics, addresses optimization by making analogies with natural selection based on the 

survival or success of better solutions (Labadie, 2004). Their main advantage is their efficiency 

in handling nonlinearities and discontinuous variables, their suitability to solve multiobjective 



6 

 

(and even many-objective) problems and that they can be linked easily to simulation procedures 

(Maier et al., 2014; Rani & Moreira, 2010). For multiobjective and many-objective optimization, 

results can be shown as a Pareto front (Kasprzyk, Nataraj, Reed, & Lempert, 2013; Reed, Hadka, 

Herman, Kasprzyk, & Kollat, 2013). 

A large range of algorithms have been developed to employ computational intelligence. Each 

algorithm has its own advantages, drawbacks and applicability range. The most popular are 

genetic algorithms (GA), based on evolutionary processes (Bozorg-Haddad, Azarnivand, 

Hosseini-Moghari, & Loáiciga, 2017; Chen, Leon, Fuentes, Gibson, & Qin, 2018; Giuliani, 

Castelletti, et al., 2016; Hu, Mao, Tian, Dai, & Rong, 2018; Maier et al., 2014; Oliveira & 

Loucks, 1997; Reed et al., 2013; Salazar, Reed, Herman, Giuliani, & Castelletti, 2016). The main 

advantages of GA are an ability to handle nonlinear and even discontinuous goal functions, its 

capacity to adapt to a wide variety of applications, and its ability to escape inferior local optima 

(Maier et al., 2014; Oliveira & Loucks, 1997). Multiobjective evolutionary algorithms (MOEAs) 

can efficiently handle problems with multiple operating goals expressed in different units to find 

Pareto-optimal alternatives (Reed et al., 2013). 

Another heuristic technique is simulated annealing, which mimics the annealing process in glass 

making or metallurgy (e.g., Teegavarapu & Simonovic, 2002). Its main advantage is combining 

continuous and discrete variables. However, an adequate choice of annealing parameters and 

initial values for variables is crucial (Cunha & Antunes, 2012; Teegavarapu & Simonovic, 2002). 

Ant colony optimization is based on how ants find the shortest paths to food, being suited to deal 

efficiently with discrete variables, and with a low dependence between the problem size 

(variables and constraints) and the quality of optimal solution (e.g., Kumar & Reddy, 2006; 

Safavi & Enteshari, 2016). Particle swarm optimization is inspired by natural grouping behaviors 

(e.g., Kumar & Reddy, 2007; Ostadrahimi, Mariño, & Afshar, 2012; Spiliotis, Mediero, & 

Garrote, 2016; Taormina, Chau, & Sivakumar, 2015). It can handle nonlinearities and 

nonconvexities, although it can be trapped by local optima (Kumar & Reddy, 2007; Spiliotis et 

al., 2016). Honey bees mating reproduces honey bees behavior, and can solve highly nonlinear 

constrained and unconstrained optimization problems with discrete and/or continuous variables 

(e.g., Haddad, Afshar, & Mariño, 2006). Bat algorithms mimic the echolocalization system of 

bats when flying (e.g., Bozorg-Haddad, Karimirad, Seifollahi-Aghmiuni, & Loáiciga, 2014; 

Zarei, Mousavi, Eshaghi Gordji, & Karami, 2019). Recent heuristic algorithms and their 

application to water resource systems optimization include Tabu search (Marchand, Gendreau, 

Blais, & Emiel, 2019), spider monkey algorithm (Ehteram, Karami, & Farzin, 2018a) and kidney 

algorithm (Ehteram, Karami, & Farzin, 2018b). 

Model predictive control 

Optimal control with forecasting, or model predictive control (MPC) with forecasting 

(Castelletti, Pianosi, & Soncini-Sessa, 2008; Lin & Rutten, 2016), is based on a rolling horizon 

principle: the optimization problem is solved over a finite time horizon for which a forecast is 

available, but only the decision of the first-time step is implemented. Time step after time step, 

the problem is updated and resolved again (Bellman, 1957; Bellman & Dreyfus, 1962; Castelletti 

et al., 2008; Galelli, Goedbloed, Schwanenberg, & van Overloop, 2014; Lin & Rutten, 2016; 
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Yakowitz, 1982; Yeh, 1985). The main advantages of MPC are its flexibility and being more 

realistic (Jain & Singh, 2003). However, its applicability is restricted to situations in which 

forecasts with the adequate lead time are available and reliable enough to be employed. 

The same optimization algorithms presented in ISO, ESO, and heuristic optimization can be used 

in a MPC approach once combined with forecasts, which is the main distinct feature of MPC. 

The direct use of optimization in real-time operation is mainly applicable to short-term (e.g., 

hourly or daily time steps and time spans of weeks or months), and in the operation of water 

resource systems with a clear and unique management objective, such as maximizing 

hydropower benefits or minimizing pumping cost (e.g., Castelletti et al., 2008; Ficchì et al., 

2015; Galelli et al., 2014; Teegavarapu & Simonovic, 2000). The main options for inflow 

forecasting used in MPC are shown in Table 3, and the main applications are summarized in 

Table 4. 

Table 3. Main options for inflow forecasting in Model Predictive Control 

Inflow forecasting approach Examples of applications 

Hydrologic and/or hydraulic 

models forced with 

meteorological forecasts 

Bianucci et al. (2015); Caseri et al. (2016); Côté & Leconte (2015); 

Faber & Stedinger (2001); Ficchì et al. (2015); Pianosi & Ravazzani 

(2010); Raso et al. (2014) 

Stochastic autoregressive 

models 

Mizyed et al. (1992); Pianosi and Ravazzani (2010); Pianosi and 

Soncini-Sessa (2009) 

Prediction trees making 

forecasts based on present and 

past hydrometeorological 

information 

Chazarra et al. (2016); Côté and Leconte (2015); Galelli et al. (2014); 

Raso et al. (2014, 2013) 

Table 4. Main applications of Model Predictive Control 

Application Examples 

Urban reservoir management Galelli et al. (2014) 

Irrigation and drainage control Mizyed et al. (1992); Overloop et al. (2008) 

Hydropower generation Bianucci et al.(2015); Côté & Leconte (2015); Sordo-Ward et al. (2012); 

Teegavarapu & Simonovic (2000) 

Flood protection Caseri et al. (2016); Ficchì et al. (2015); Raso et al. (2014); (Vermuyten 

et al., 2018) 

A priori rule forms 

In this approach, the mathematical representation of the operating rule form is decided before 

running the optimization algorithm. The optimization essentially calibrates the parameters of the 

a priori rule form to achieve the best performance. This calibration can be optimized directly 

(optimization), or in combination with simulation (parametrization–simulation–optimization). 
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Optimization 

Here the equations of the chosen rule form are directly introduced in the formulation of the 

optimization problem. The algorithm calibrates the rule parameters to optimize an indicator of 

system performance (e.g., economic efficiency). For example, Wan et al. (2016) used 2-stage 

optimization to find the parameters that define the optimal hedging rule for reservoir refill 

considering two conflicting economic objectives: reducing flood damage versus increasing water 

conservation benefits. Objective functions employed in the literature include minimizing the 

required reservoir capacity (Houck, 1979; Loucks, 1970; Luthra & Arora, 1976; Revelle et al., 

1969); optimizing performance indicators (Bolouri-Yazdeli, Bozorg Haddad, Fallah-Mehdipour, 

& Mariño, 2014; Gundelach & ReVelle, 1975; ReVelle & Gundelach, 1975; Revelle & Kirby, 

1970); and maximizing the economic benefits (Draper & Lund, 2004; Eisel, 1972; Houck, 

Cohon, & ReVelle, 1980; Wan et al., 2016). 

These approaches yield optimal rules within the given form. Nevertheless, the rule form 

equations should be as simple as possible, or they might require simplifications for practical 

optimization algorithms. Optimization problem definition may require simplifications to deal 

with the additional equations and constraints of the given rule form, being subject to the 

drawbacks of the optimization algorithm employed. Main functional forms used when 

optimizing a priori operating are in Table 5. 

Table 5. Main functional forms used when optimizing operating rules 

Appliation Examples 

Mathematical equations (e.g. 

linear or piecewise linear 

functions) 

Bolouri-Yazdeli et al. (2014); Eisel (1972); Gundelach and ReVelle 

(1975); Houck (1979); Houck et al. (1980); Loucks (1970); Luthra and 

Arora (1976); Revelle et al. (1969); ReVelle and Gundelach (1975); 

Revelle and Kirby (1970) 

Rule curves Draper & Lund (2004); Wan et al. (2016). 

Parametrization–simulation–optimization 

Parametrization-simulation-optimization (PSO), also known as direct policy search combines the 

detailed system representation allowed by simulation models with the efficiency levels attained 

by optimization. It uses an “intelligent search” of the best operating rules, able to obtain them 
without long trial-and-error processes (Celeste & Billib, 2009; Jacoby & Loucks, 1972; Johnson, 

Stedinger, & Staschus, 1991; Koutsoyiannis & Economou, 2003; Oliveira & Loucks, 1997). Its 

applications have risen considerably in the last decade due to faster heuristic optimization, which 

can combine simulation and optimization while considering complex performance criteria 

(Ashbolt, Maheepala, & Perera, 2016; Giuliani, Castelletti, et al., 2016; Kumar & 

Kasthurirengan, 2018; Lerma, Paredes-Arquiola, Andreu, & Solera, 2013; Lerma, Paredes-

Arquiola, Andreu, Solera, & Sechi, 2015; Shourian, Mousavi, & Tahershamsi, 2008; Spiliotis et 

al., 2016; Yang & Ng, 2016). 
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PSO (Figure 2) requires establishing a rule form and its parameters. Their optimal values are 

obtained iteratively combining simulation and optimization (Celeste & Billib, 2009; Giuliani, 

Castelletti, et al., 2016; Koutsoyiannis & Economou, 2003; Nalbantis & Koutsoyiannis, 1997). 

For each iteration, a set of parameter values is chosen and used as input to the simulation 

algorithm, which obtains the system performance for the given operating rule (rule form plus 

parameter values) for different inflow scenarios. Their results are used by the optimization 

algorithm to update the parameter set, which is introduced into the simulation again. The process 

is repeated until the best performance is reached (Celeste & Billib, 2009). Its main advantage is 

its efficiency to obtain an optimal operating rule, achieving adequate performance levels 

regardless of the system's complexity and the rule's simplicity (Celeste & Billib, 2009; 

Koutsoyiannis & Economou, 2003; Nalbantis & Koutsoyiannis, 1997). 

 

Figure 2. Parametrization–simulation– optimization flowchart 

Main PSO methods, combining different rule forms and optimization algorithms, are shown in 

Table 6. Regarding rule form, main approaches are mathematical equations, hedging rules, rule 

curves, radial basis functions (RBF), ANNs, fuzzy rule-based (FRB) systems, and decision trees. 

Heuristic programming is the optimization method mostly adopted because it can handle 

nonlinear problems with local optima and discontinuities (Koutsoyiannis & Economou, 2003), 

commonly genetic and particle swarm algorithms. PSO approaches can benefit from using 

general-purpose decision support systems (DSS) as simulation models (Lerma et al., 2013, 2015; 

Shourian et al., 2008). The combination of MOEAs with PSO, known as evolutionary 

multiobjective direct policy search (EMODPS) can find Pareto-optimal operating rules for 

multipurpose water resource systems (Desreumaux et al., 2018; Giuliani et al., 2018; Giuliani, 

Castelletti, et al., 2016). Alternatively, optimization methods may be replaced by game theory 

approaches such as the Nash equilibrium (Wu, Li, Cheng, Miao, & Ying, 2019). 
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Table 6. Overview of main PSO methodologies and examples 

Rule form 
Optimization 

method 
Examples 

Mathematical 

equations 

Genetic algorithms 

(GA) 

Ahmadi et al. (2014); Dariane & Momtahen (2009); 

Fallah-Mehdipour et al. (2012); Guariso et al. (1986); Kim 

et al. (2008); Koutsoyiannis & Economou (2003); Oliveira 

& Loucks (1997) 

Hedging rules 

Genetic algorithms 

(GA) 

Tan et al. (2017); Zeff et al. (2014); (Kumar & 

Kasthurirengan, 2018); Srinivasan & Kumar (2018); Azari 

et al. (2018) 

Particle swarm 

optimization (PSO) 
Wan et al.,(2018) 

Pattern search 
Celeste & Billib (2009); Xiaozhong, Chao, & Jijian( 

2018) 

Rule curves 

Genetic algorithms 

(GA) 

Ahmadi Najl et al. (2016); Ashbolt et al. (2016); 

Borgomeo et al. (2016); Cui & Kuczera (2005); Lerma et 

al. (2015, 2013); Zhu et al. (2013); Ashbolt & Perera 

(2018); Rashid et al. (2018) 

Particle swarm 

optimization (PSO) 

Guo et al. (2013); Shourian et al. (2008); Spiliotis et al. 

(2016); Wan et al. (2018) 

Pattern search Celeste & Billib (2009) 

Radial basis 

functions (RBF) 

Genetic algorithms 

(GA) 

Culley et al. (2016); Giuliani et al. (2018, 2016, 2014); 

Salazar et al. (2016); Desreumaux et al. (2018); Wild et al. 

(2019) 

Artificial neural 

networks (ANN) 

Genetic algorithms 

(GA) 
Giuliani et al. (2015) 

Fuzzy rule-based 

systems (FRB) 

Genetic algorithms 

(GA) 
Yang and Ng (2016) 

Decision trees 
Genetic algorithms 

(GA) 
Herman & Giuliani (2018) 

Rule inference from optimization results 

This approach executes an optimization algorithm and analyses its results to infer optimal 

operating rules. Both implicit and explicit stochastic approaches can be used (e.g., Karamouz & 
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Houck, 1987; Labadie, 2004; Rani & Moreira, 2010). The fitting or learning required to 

transform time series of optimal decisions into operating rules depends on the selected rule form. 

The obtained operating rules should then be tested and refined using simulation models 

(Karamouz & Houck, 1987; Labadie, 2004). Most early applications employed regression (e.g., 

Loucks, 1970; Young, 1967) or interpolation from SDP-derived policy tables (Nandalal & 

Bogardi, 2007; Tejada-Guibert et al., 1993). New techniques include heuristic procedures, such 

as ANNs or FRB systems, taking advantage of the increased computer power and affordability. 

Empirically based rules 

This category includes regression, interpolation, rules-of-thumb, and data mining. They 

unambiguously obtain the operating decisions (target storages, releases, etc.) in response to the 

values of certain explanatory variables (storages, inflows, etc.) using classic mathematical 

formulations (e.g., linear equations, polynomial equations, logarithms, etc.). They are derived by 

mathematical procedures (fitting and interpolation), engineering principles, or even visual 

inspection (Lund, 1996; Lund et al., 2017; Lund & Ferreira, 1996). 

Regression 

Regression was the first wide-used method to represent optimal operating rules, often expressing 

reservoir releases at some time period as function of the current storage and inflow (Bhaskar & 

Whitlatch, 1980; Karamouz & Houck, 1982; Young, 1967). Advantages are that it is a well-

known and simple method, with a wide range of application, scalability, and easiness to embed 

within optimization and simulation algorithms. The main drawback is that it may lead to poor 

correlation coefficients that invalidate the resulting rules (Labadie, 2004; Lund & Ferreira, 

1996). Moreover, regression results depend on the functional form assumed. Table 7 shows the 

main regression types used in the literature. 

Table 7. Examples of regression approaches applied to the development of reservoir operating 

rules 

Regression procedure Examples 

Linear regression 

Bhaskar & Whitlatch (1980); Dariane & Momtahen (2009); Karamouz et al. 

(1992); Karamouz & Houck (1987, 1982); Ostadrahimi et al. (2012); Young 

(1967) 

Non-linear regression Bhaskar & Whitlatch (1980); Celeste et al. (2009); Celeste & Billib (2009) 

Piecewise linear regression 
Huang et al. (2016); Lund (1996); Lund & Ferreira (1996); Pulido-

Velazquez et al. (2004) 

Fuzzy regression Malekmohammadi et al. (2009); Mousavi et al. (2007) 

Support vector regression Aboutalebi et al. (2015); Ji et al. (2014) 

Interpolation 

Interpolation defines optimal operating rules by extending the values of optimal operation 

decisions available at some points (target storage and/or target release) to the whole state space 
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of independent variables. It should be distinguished from interpolating benefit values, which is 

used in direct optimization of operations (see Section 3). The main advantage of interpolation is 

the conservation of the optimal values, as well as a better representation of the variability across 

the independent variables space (Celeste et al., 2009). However, the resulting equations can be 

complex. The most popular equations in interpolation are piecewise linear and piecewise cubic 

(a.k.a. cubic splines). Interpolation is often used with discrete dynamic programming or SDP. In 

these cases, interpolation reduces the need of finer discretizations of the state space, diminishing 

the computational and time requirements (Celeste et al., 2009; Davidsen, Liu, Mo, Rosbjerg, & 

Bauer Gottwein, 2016; Goor, 2010; Nandalal & Bogardi, 2007; Philbrick & Kitanidis, 1999; 

Tejada-Guibert et al., 1993). 

Rules-of-thumb 

These methods are based on conceptual or mathematical deductions, experience and engineering 

principles, or visible patterns in operation results (Lund, 1996; Lund et al., 2017; Lund & 

Guzman, 1999). Many rule forms have been developed such as the standard operating policy, 

hedging rules, rule curves, zone-based rules, space rules, and so on (Table 8, based on reviews 

by Jain & Singh, 2003; Lund, 1996; Lund et al., 2017; Lund & Guzman, 1999). Although each 

rule has advantages and drawbacks, all have in favor a conceptually simple definition and the 

confidence of system operators. Some are often used in regulatory frameworks. Since their 

purpose is to guide system operators, they are usually used in real-life in conjunction with expert 

judgment (Jain & Singh, 2003; Oliveira & Loucks, 1997). Often these rules or rule forms are 

derived by optimizing operating specific purposes. 

Table 8. Examples of regression approaches applied to the development of reservoir operating 

Rule name 
System 

types 
Operating purposes Examples 

Standard 

operating policy 

Single 

reservoir 

Water supply, flood control, 

navigation, environmental, 

recreation 

Celeste and Billib (2009), Lund (1996), 

Vedula, Mujumdar, and Chandra Sekhar 

(2005) 

Hedging rules Single 

reservoir 

Water supply, flood control, 

navigation, environmental, 

recreation 

Celeste and Billib (2009), Draper and 

Lund (2004), You and Cai (2008), Wang, 

Cheng, Wu, Shen, and Cao (2019) 

Pack rules Single 

reservoir 

Water supply, hydropower 

production 

Lund (1996), Lund and Guzman (1999) 

Rule curves Single 

reservoir 

Water supply, flood control, 

navigation, environmental, 

recreation 

Andreu et al. (1996), Zhou and Guo et al. 

(2013) 

Zone-based 

operation 

Single 

reservoir 

Multiple purposes Andreu et al. (1996), Lund (1996), Lund 

and Guzman (1999) 

Water storage 

rules 

Reservoirs 

in series 

Water supply, navigation, 

environmental, recreation 

Lund (1996), Lund and Guzman (1999) 
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Rule name 
System 

types 
Operating purposes Examples 

Flood control 

rules 

Reservoirs 

in series 

Flood control Lund et al. (2017), Lund and Guzman 

(1999) 

Hydropower 

rules 

Reservoirs 

in series 

Hydropower production Lund (1996), Lund et al. (2017), Zhang et 

al. (2019) 

New York City 

space rule 

Reservoirs 

in parallel 

Water supply, navigation, 

environmental, recreation 

Lund (1996), Lund and Guzman (1999) 

Equal ratio 

space rule 

Reservoirs 

in parallel 

Water supply, navigation, 

environmental, recreation 

Lund et al. (2017), Lund and Guzman 

(1999) 

Flood control 

space rule 

Reservoirs 

In parallel 

Flood control Hui, Lund, Zhao, and Zhao (2016), Lund 

(1996), Lund et al. (2017), Zhao, Zhao, 

Lund, et al. (2014) 

Support technique: data mining 

This technique efficiently analyses large data sets to reveal hidden patterns or trends (Bessler, 

Savic, & Walters, 2003), as well as which state variables are most important (Hejazi & Cai, 

2009). Instead of using preset candidate variables, data mining identifies variables that best help 

define the operating rules by sorting the variables according to its relevance and redundancy with 

each other (Hejazi & Cai, 2011). Data mining can be used jointly with operating rule forms such 

as decision trees (Bessler et al., 2003; Wei & Hsu, 2008; Yang, Gao, Sorooshian, & Li, 2016) or 

as a preanalysis technique (Hejazi & Cai, 2009; Soleimani, Bozorg-Haddad, Saadatpour 

Loáiciga, 2016), to avoid an inadequate selection of state variables. 

Heuristic operating rules 

Operating rule definitions for water resource systems with multiple reservoirs and objectives 

using empirically based rules may be cumbersome. These systems would require complex fitting 

processes ending often with poor correlations (Labadie, 2004), or are beyond the applicability of 

rules-of-thumb (Lund et al., 2017). Heuristic operating rules are a suitable alternative in those 

cases (Rani & Moreira, 2010). Their use has grown favored by new heuristic methods and 

increasing computation power. 

Artificial neural networks 

ANNs link input to output variables based on a mathematical process inspired by the human 

brain, in which simple units (neurons) are massively aggregated and interlinked to reproduce 

complex relationships. Each neuron or node implements a single-input single-output function fed 

with a weighted sum of the inputs to the ANN (Labadie, 2004). Mathematical relationships can 

be modeled by establishing the number of nodes and the way they are connected (in different 

layers), as well as the functions and weights in each node. The advantages of the ANN are its 

ability to reproduce complex mathematical relationships and its computational efficiency 

compared with similar approaches (Cancelliere, Giuliano, Ancarani, & Rossi, 2002). Its main 
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drawback is that they are perceived as “black boxes” whose behavior is difficult to understand by 
users and decision-makers (Russell & Campbell, 1996). 

ANNs have been widely applied in assessing optimal operating rules since the 90s (Cancelliere 

et al., 2002; Chandramouli & Raman, 2001; Liu, Guo, Xiong, Li, & Zhang, 2006; Raman & 

Chandramouli, 1996). Its performance is often superior to regression (Chandramouli & Raman, 

2001; Raman & Chandramouli, 1996), rules-of-thumb (Cancelliere et al., 2002; Chandramouli & 

Raman, 2001; Liu et al., 2006), and interpolation from SDP's results (Raman & Chandramouli, 

1996). A derivative approach combining ANNs and FRB systems, named adaptive network-

based fuzzy inference system, consisting in dynamically modifying the inputs of a FRB system 

using an ANN, has been applied to define optimal operating rules with good results (Celeste & 

Billib, 2009; Chang & Chang, 2001; Coerver, Rutten, & van de Giesen, 2018; Mousavi et al., 

2007). 

Bayesian networks 

Despite being little used in reservoir optimal operating rules, Bayesian networks (BNs) have 

been widely applied in environmental modeling for decision-making under uncertainty 

(Castelletti & Soncini-Sessa, 2007a; Keshtkar, Salajegheh, Sadoddin, & Allan, 2013; Uusitalo, 

2007). A BN has two components: a graphical representation of the logical relationships among 

variables, based on nodes and links, and a probabilistic model of conditional probabilities 

attached to each link (Castelletti & Soncini-Sessa, 2007b). Input values enter the network in the 

root nodes and follow the links between nodes until they find leaf nodes, whose values are the 

outputs. The distinctive features of BNs are that output values are given as probability 

distribution functions with inputs as single values (certain) or probability distributions 

(uncertain) (Castelletti & Soncini-Sessa, 2007b). Output probability functions can provide 

supporting information to decision-makers (Castelletti & Soncini-Sessa, 2007b), or single values 

and/or intervals can be picked from them using statistical moments or percentiles (e.g., 

Malekmohammadi et al., 2009 used the expected value). 

BNs can be better understood by nonexperts on the method, using their explicit graphical 

representation. They are efficient in mapping complex relationships while taking into account 

uncertainty (Malekmohammadi et al., 2009). However, they cannot model multicomponent 

systems (like water resources systems) unless each component is expressed in a compatible way. 

Another important limitation is the difficulty to address dynamic processes, since nontransient 

treatments of the cause–effect relationships are assumed. Although dynamic BNs have been used 

for water resource system management (e.g., Molina, Pulido-Velázquez, García-Aróstegui, & 

Pulido-Velázquez, 2013; Ropero, Flores, Rumi, & Aguilera, 2017), they are mainly suitable for a 

nontransient treatment of cause and effect. BNs have been compared with regression procedures 

to reproduce optimal operating rules, showing better results (Malekmohammadi et al., 2009); as 

well to decision trees (Sherafatpour, Roozbahani, & Hasani, 2019). 

Fuzzy rule-based systems 

This procedure maps input to output variables using fuzzy set theory and fuzzy logic (Mamdani, 

1974; Zadeh, 1965). A fuzzy rule-based system consists of a set of logical rules expressed using 

IF-THEN statements (fuzzy rules), using fuzzy numbers and fuzzy operators (Sen, 2010; 
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Shrestha, Duckstein, & Stakhiv, 1996). The mapping process is known as fuzzy inference 

procedure. Main advantages of fuzzy systems are its efficiency in input–output mapping and its 

ability to mathematically express linguistic concepts and thus to combine numerical data with 

expert judgment (Pedrycz, Ekel, & Parreiras, 2011; Sen, 2010; Simonovic, 2009). However, its 

concepts and quantifications may be perceived as “strange” in comparison with classical 
statistical approaches due to its different approach to uncertainty (Sen, 2010). Complex FRB 

systems may become cumbersome due to an excessive number of rules (Sen, 2010). 

Fuzzy logic has been applied in combination with deterministic (Mousavi, Ponnambalam, & 

Karray, 2005; Senthil Kumar et al., 2013) and stochastic optimization algorithms (Macian-

Sorribes, 2017; Panigrahi & Mujumdar, 2000; Russell & Campbell, 1996). Several studies have 

found fuzzy logic to be superior to interpolation (Moeini, Afshar, & Afshar, 2011; Russell & 

Campbell, 1996) and regression (Mousavi et al., 2005). It has also been compared with other 

heuristic procedures such as ANNs and decision trees showing better performance (Senthil 

Kumar et al., 2013). 

Decision trees 

Decision trees (e.g., Quinlan, 1986, 1993) develop operating rules by classifying input variables 

through “if-then” rules sequentially applied (Bessler et al., 2003). They adopt a graphical 

representation consisting of arcs and nodes. Nodes can be decision nodes with an “if-then” rule 
associated; or leaf nodes with an outcome (Bessler et al., 2003; Quinlan, 1986). To determine the 

operating decision to be made we start at the root node of the tree, evaluate its “if-then” rule, and 
move to the next node through the arc corresponding to the answer given. The process is 

repeated until a leaf node is reached. Decision trees can be built using data mining algorithms 

such as ID3 (Quinlan, 1986); C4.5 and its successor C5.0 (Quinlan, 1993); random forest 

(Breiman, 2001); and CART (Breiman, Friedman, Olshen, & Stone, 1984). Although the 

decision trees approach shares features with FRB systems (if-then rules) and BNs (graphical 

representation), the way information is treated and results are presented differs. Decision trees 

are combined with data mining to ensure an efficient choice of variables and tree structure. 

Main advantages of decision trees are conceptual simplicity, large data sets handling and the 

possibility to complement them with expert knowledge (Bessler et al., 2003; Wei & Hsu, 2008). 

Main drawbacks are the possibility of overfitting, which would require to apply pruning methods 

to reduce the size of the tree (Bessler et al., 2003); and inefficiency in handling 

interdependencies among variables (Wei & Hsu, 2008). They are efficient approaches to infer 

optimal operating rules (Bessler et al., 2003; Senthil Kumar et al., 2013; Wei & Hsu, 2008; Yang 

et al., 2016). Their performance has been found to be superior to regression (Bessler et al., 

2003); and similar to ANNs (Senthil Kumar et al., 2013) and BNs (Sherafatpour et al., 2019). 

They have also been used to forecast future inflows to be used by optimization algorithms 

(Castelletti et al., 2010; Chazarra et al., 2016; Côté & Leconte, 2015; Ficchì et al., 2015; Housh, 

Ostfeld, & Shamir, 2013). 

Discussion 

Each of the three families of methods described has its own advantages and limitations, 

depending on the context and the conditions of the applied problem. Direct optimization 
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outperforms methods based on operating rules (Celeste & Billib, 2009; Dariane & Momtahen, 

2009; Galelli et al., 2014; Lee & Labadie, 2007). However, this performance requires reliable 

forecasting for deriving optimal decisions (e.g., Ficchì et al., 2015; Raso et al., 2014). Direct 

optimization also assumes perfect cooperation in system operation, for which the results 

represent an upper bound of what could be achieved. Comparisons between a priori functional 

forms and rule inference from optimization results show no agreement on which one performs 

better. Celeste and Billib (2009) obtained better performance with the rule inference in the 

application to a single reservoir case. Dariane and Momtahen (2009) and Ostadrahimi et al. 

(2012) found the opposite for three-reservoir system case studies. The performance of the 

method to define the reservoir operating policy depends on issues like the system configuration, 

the operating goals, the system hydrology, and so forth. 

The selection of the approach to define system operating rules should consider management 

goals and regulatory frameworks. Table 9 shows some suggestions on method depending on 

conditions. Direct optimization for real-time operation is preferable for well-defined problems 

with clear and measurable operating goals and performance indicators, in which an adequate 

forecast exists to support practical application, and in which real-time decisions depending on 

these results can be effectively made (e.g., Caseri et al., 2016; Ficchì et al., 2015; Galelli et al., 

2014; Raso et al., 2014). In cases in which these premises hold, direct optimization of operations 

would be the best alternative, since its performance is superior to the others. However, most 

water systems do not fulfill all requirements to apply it. If realtime optimization-based operation 

is not suitable, a key question is what rule form is the best to choose. For that purpose, one 

should examine the existing regulatory framework, interact with stakeholders and operators, and 

examine available data records on operating decisions. If a rule form can be identified, an a priori 

functional form framework with this rule form is a promising alternative. If not, a desirable 

alternative is rule inference. Furthermore, a priori functional forms, in particular EMODPS, are 

promising alternatives if the operating goals are multiple and cannot be combined into a single 

objective. If expert knowledge is a key driver in decision-making it may be adequate to use rule 

inference from optimization results, more specifically heuristic rule forms able to include expert 

knowledge within its formulation (Bessler et al., 2003; Macian-Sorribes, 2017; Russell & 

Campbell, 1996; Wei & Hsu, 2008). For example, Macian-Sorribes et al. (2017) present 

development of optimal operating rules for the Jucar River basin (Eastern Spain) combining 

optimal results from stochastic programming with the expert knowledge of system operators 

from the Jucar River Basin Authority. 
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Table 9. Suggested approaches for optimal operating rule definition depending on system 

features 

System condition Approach suggested for definition of 

optimal operating rule 

Management 

goals 

Regulatory 

framework 

Example cases Method 

suggested 

Examples of 

application 

Single and 

measurable 

goal, or 

aggregation of 

multiple goals 

into one 

Flexible (no 

bounded rule 

form) 

Single purpose water 

systems operated for 

economic profit (e.g., 

hydropower), or short-

term operation for 

flood control 

Direct 

optimization of 

operations (if 

adequate 

forecasts are 

available) 

Galelli et al. (2014), 

Lee and Labadie 

(2007), Raso et al. 

(2014), Tilmant and 

Kelman (2007) 

Rule inference 

from 

optimization 

results (absent or 

unreliable 

forecasts) 

Cancelliere et al. 

(2002), Celeste and 

Billib (2009), Lund 

and Ferreira (1996), 

Mousavi et al. (2005), 

Russell and Campbell 

(1996) 

Strong (rule form 

bounded by law 

or 

decisionmakers) 

Multipurpose water 

systems with only 

commercial activities 

(e.g., agriculture and 

hydropower) 

A priori 

functional form 

(with the 

selected rule 

form introduced) 

Fallah-Mehdipour et 

al. (2012), 

Koutsoyiannis and 

Economou (2003), 

Lerma et al. (2013, 

2015) 

Multiple and 

measurable 

goals that 

cannot be 

aggregated 

Flexible Multipurpose systems 

combining commercial 

and nonprofit water 

uses (e.g., urban, 

agriculture and 

environment) with a 

centralized 

management 

Direct 

optimization of 

operations (with 

heuristic 

optimization 

algorithms) 

Bozorg-Haddad et al. 

(2014), Kumar and 

Reddy (2007), Maier 

et al. (2014), Reed et 

al. (2013), 

Teegavarapu and 

Simonovic (2002) 

Strong Multipurpose systems 

combining commercial 

and nonprofit water 

uses (e.g., urban, 

agriculture and 

hydropower) with 

well-developed 

governance structures 

and precise operating 

rules 

A priori 

functional form 

(with the 

selected rule 

form introduced) 

Ahmadi et al. (2014), 

Giuliani et al. (2014), 

Giuliani, Castelletti et 

al. (2016), Kim et al. 

(2008), Oliveira and 

Loucks (1997), 

Salazar et al. (2016) 
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System condition Approach suggested for definition of 

optimal operating rule 

Management 

goals 

Regulatory 

framework 

Example cases Method 

suggested 

Examples of 

application 

Single or 

multiple 

nonmeasurable 

goals, or goals 

set by expert 

judgment 

Flexible (but 

with complex 

governance) 

Water systems without 

precise operating rules, 

in which decisions are 

made based on 

knowledge of operators 

and stakeholders 

Water systems 

without precise 

operating rules, 

in which 

decisions are 

made based on 

knowledge of 

operators and 

stakeholders 

Bessler et al. (2003), 

Macian-Sorribes et al. 

(2017), Panigrahi and 

Mujumdar (2000), 

Wei and Hsu (2008) 

One critical issue in the management of water resource systems is how to deal with uncertainty. 

The degree of uncertainty associated with each case study may condition the choice of method 

(Dobson, Wagener, & Pianosi, 2019) and, conversely, each method implements and/or admits 

certain uncertainty analyses (e.g., BNs offer probabilistic outputs). A review of optimization 

algorithms with a focus on uncertainty was provided by Sahinidis (2004), dealing in particular 

with stochastic and fuzzy optimization algorithms. Dobson et al. (2019) present a classification 

of optimization methods based on how they handle uncertainty. The most likely influential 

source of uncertainty is hydrology. Sorted by growing uncertainty levels, in line with Dobson et 

al. (2019), the main approaches for integrating inflow uncertainty in the optimization algorithms 

are: (a) capturing the stochastic nature of inflows through a large set of inflow time series (ISO 

and derived operating rules); (b) characterizing inflows using probability distributions (ESO and 

operating rules derived); and (c) employing dynamically updated inflow forecasts (MPC). 

Alternative methods for dealing with inflow uncertainty include fuzzy set theory and logic (e.g., 

Mousavi, Karamouz, & Menhadj, 2004; Mousavi, Mahdizadeh, & Afshar, 2004; Nguyen & 

Novák, 2018; Sen, 2010), BNs (e.g., Kim & Palmer, 1997; Mujumdar & Nirmala, 2007), copula 

functions (Lei et al., 2018), and interval numbers (Luo, Maqsood, & Huang, 2007). 

Besides hydrological uncertainty, there is uncertainty in the definition of demands (urban, 

agriculture, etc.), infrastructure features (reservoir capacity, dead storage, etc.), and even in the 

system configuration (future reservoirs, future demands, evolving legal frameworks, quality 

standards, etc.). The most widely used method to deal with those uncertainties consists in 

defining alternative scenarios for the uncertain variables and analyzing changes in system 

operation (Culley et al., 2016; Giuliani, Li, et al., 2016; Haguma & Leconte, 2018; Herman & 

Giuliani, 2018; Mateus & Tullos, 2016; Zhou & Guo, 2013). Alternative approaches expand the 

methods previously indicated to include additional uncertainty sources. These can be divided 

into: (a) using probability distributions to characterize uncertain variables (e.g., Biglarbeigi, 

Giuliani, & Castelletti, 2018; Kong et al., 2018; Qin & Boccelli, 2019; Sheibani, Alizadeh, & 

Shourian, 2019; Soleimani, Bozorg-Haddad, & Loáiciga, 2016); and (b) forecasting uncertain 

variables, for example water demands (e.g., Fazlali & Shourian, 2018; He et al., 2018; Li, 

Giuliani, & Castelletti, 2017; Zubaidi, Gharghan, Dooley, Alkhaddar, & Abdellatif, 2018). The 
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impact of uncertainties in the operating rules can be analyzed using uncertainty and sensitivity 

analysis (Quinn, Reed, Giuliani, & Castelletti, 2019). In case of deep uncertainty, optimization 

algorithms could be replaced by uncertainty-driven procedures such as robust optimization (Ben-

Tal, El Ghaoui, & Nemirovski, 2009; Fu, Li, Cui, Liu, & Lu, 2018; Hadka, Herman, Reed, & 

Keller, 2015; Kasprzyk et al., 2013; Kwakkel, Haasnoot, & Walker, 2016; Maier et al., 2016; 

Matrosov, Padula, & Harou, 2013; Roach, Kapelan, Ledbetter, & Ledbetter, 2016). 

Another challenge in the definition of optimal operation strategies regards to adapting their time 

scales (from real-time to long-term) to operating needs. On a broader view, hydropower, flood 

protection, and urban uses would benefit from flexible operation at finer time scales (from real-

time to daily time steps); agriculture would benefit from operative decisions made months in 

advance and maintained during the irrigation season (from weekly to monthly time steps); while 

river basin administrations need also to consider larger time periods (several years or decades) to 

foresee, design and develop programs of measures to adapt to climate and socioeconomic 

changes. Approaches relying on MPC are the most efficient to derive operation decisions at finer 

time scales (Galelli et al., 2014; Pianosi & Soncini-Sessa, 2009); while a priori approaches or 

rule inference provide stable conditional operating rules that better suit water systems with 

multiple competing users and complex decision-making processes (Labadie, 2004; Lund et al., 

2017; Oliveira & Loucks, 1997). Methodological approaches to combine real-time (short-term) 

and long-term operation goals have been developed in the literature including: (a) prescribing 

final state boundary conditions and constraints to MPC (e.g., Becker & Yeh, 1974; Sreekanth et 

al., 2012); (b) using cost or benefit functions associated to the terminal system state of MPC, 

defined either by empirical experimentation or by optimization models working at larger time 

scales (e.g., Côté & Leconte, 2015; Faber & Stedinger, 2001; Ficchì et al., 2015; Kelman et al., 

1990); and (c) employing variable time steps (e.g., Raso & Malaterre, 2017). 

Most real-life applications of reservoir optimization are for hydropower systems, with a single 

and easily measurable goal (maximize economic profit), a fully coordinated operation and 

concerns on inflow uncertainty, features in line with the characteristics of optimization 

algorithms (Lund et al., 2017). Other real-life applications are challenged by the large number of 

variables, competing goals and alternatives existing in water resource systems operation. The gap 

between theory and practice has been distinctly narrowed with the use of DSS, stakeholder 

involvement, and combination between simulation and optimization algorithms (Loucks, 2017). 

Successful real-life applications of optimization algorithms require close communication 

between researchers and decision-makers, adequate framing of optimization algorithms and 

optimal operating rules into the wider concept of decision-making processes and advancing in 

developing decision support tools (Maier et al., 2014). 

Conclusion 

The most common challenge for optimal operation of water resource systems in multireservoir 

river basins regards governance and management complexity. Raising awareness and research on 

the nexus between water, energy, food, climate, and environment will keep adding stakeholders 

and conflicting objectives to water resource system operations. Moreover, nonstationarity of 

resources and demands due to population growth, increasing living standards, and climate 

change may require expanding operational integration to include surface and ground water, 
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reuse, desalination, water transfers, rainwater harvesting, and demand management. The need to 

combine efficiently this increasing number of alternatives to satisfy growing demands will boost 

the necessity of optimal operating rules as well as improved governance to balance operation 

efficiency with equity, stakeholder preferences, and so forth. This will be particularly true in 

water systems with distinct impacts from climate and global change, which will offer the best 

opportunities to apply optimal operating rules. The need for improved governance structures to 

support the adoption of optimal operating rules will demand an active involvement of 

stakeholders and system operators in the codevelopment of optimal operating rules. The need to 

efficiently address a growing number of operational goals will favor the use of multiobjective 

optimization in which multiobjective heuristic algorithms, such as MOEAS, appear as a 

prominent area of future research. Promising methodological alternatives to build optimal 

operating rules in response to the highlighted challenges would be: (a) a priori PSO with 

heuristic multiobjective optimization (EMODPS) representing operating rules by RBF, ANNs, or 

FRB systems; and (b) rule inference from heuristic multiobjective optimization with heuristic 

rules. In both cases, stakeholder involvement will be needed to choose their preferred option 

considering trade-offs among objectives. 

A key issue within this challenge is the nonstationarity of supply and demand, boosted by 

climate change and a quick global change in general (Cosgrove & Loucks, 2015), which will add 

distinct uncertainties to the definition of optimal operating rules. To adequately deal with this 

issue, operating rules should switch from being efficient against single/few future scenarios to be 

robust against a wide range of possible alternatives. This may be achieved by combining a priori 

or implicit approaches with robust optimization (e.g., Herman, Reed, Zeff, & Characklis, 2015; 

Kasprzyk et al., 2013; Lempert & Collins, 2007) or with decision scaling (e.g., Brown, Ghile, 

Laverty, & Li, 2012). Under this increasing uncertainty, each optimal operating rule would have 

an applicability range, which should be considered when choosing between alternatives. An 

alternative approach that would efficiently deal with nonstationarities while outperforming the 

use of operating rules would be to resort to MPC with forecasting. The continuous advance in 

forecasting systems, tools, and skill may improve the performance of MPC optimization models 

and expand its applicability. However, this will require distinct efforts to build trust in MPC and 

forecasting systems, as well as to achieve a fully coordinated operation. Furthermore, it will 

require forecasting systems skilful enough, as well as researchers adequately trained to acquire 

and integrate forecasting services with MPC models. Researchers should be ready to spot and 

exploit such opportunities of MPC implementation. Anyway, water resource system models 

relying on operating rules and/or MPC would need to constantly update their features to adapt to 

the dynamic evolution of water resource systems, including if necessary additional sources of 

information (e.g., climate change scenarios, population change, macro-economic indicators, 

farming decisions), and their performance would need to be constantly monitored with feedback 

from observations through a “learning by doing” process. 
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