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ABSTRACT

Motivation: To improve the understanding of molecular regulation
events, various approaches have been developed for deducing gene
regulatory networks from mRNA expression data.
Results: We present a new score for network inference, η2, that
is derived from an analysis of variance. Candidate transcription
factor:target gene (TF:TG) relationships are assumed more likely if the
expression of TF and TG are mutually dependent in at least a subset
of the examined experiments. We evaluate this dependency by η2, a
non-parametric, non-linear correlation coefficient. It is fast, easy to
apply and does not require the discretization of the input data. In the
recent DREAM5 blind assessment, the arguably most comprehensive
evaluation of inference methods, our approach based on η2 was rated
the best performer on real expression compendia. It also performs
better than methods tested in other recently published comparative
assessments. About half of our predicted novel predictions are true
interactions as estimated from qPCR experiments performed for
DREAM5.
Conclusions: The score η2 has a number of interesting features
that enable the efficient detection of gene regulatory interactions.
For most experimental setups, it is an interesting alternative to other
measures of dependency such as Pearson’s correlation or mutual
information.
Availability: See http://www2.bio.ifi.lmu.de/˜kueffner/anova.tar.gz
for code and example data.
Contact: kueffner@bio.ifi.lmu.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The reconstruction of gene regulatory networks (GRNs) from
expression data can help to improve our understanding of molecular
regulation events. A variety of algorithms have been devised to
predict gene regulatory interactions, frequently based on mutual
dependencies between the expression of regulators and their targets
(see related work).

We propose to evaluate transcription factor:target gene (TF:TG)
interactions by the measure η2 [Cohen (1973)], a non-linear
correlation coefficient derived from an analysis of variance
(ANOVA). Although η2 has a number of interesting features it
has, to our knowledge, not been applied to network inference or
to bioinformatics in general.

∗To whom correspondence should be addressed.

A high proportion of our predicted novel interactions were
confirmed by small-scale qPCR experiments performed by the
DREAM5 organizers. In addition, our approach was evaluated
as the best performer for the inference of real datasets in the
recent DREAM5 blind assessment [http://wiki.c2b2.columbia.edu/
dream/index.php; Marbach et al. (2010); Prill et al. (2010)]. Here,
29 participating teams applied a diverse set of inference methods to
a variety of large real (Escherichia coli, Saccharomyces cerevisiae)
and artificial expression compendia with thousands of genes from
several hundreds of microarray measurements. The microarray
experiments consisted of various gene, drug or environmental
perturbations that were in some cases carried out as time courses.

After a brief summary of related work we describe the GRN
inference setting, introduce our inference approach based on the
score η2 and evaluate its properties and performance.

1.1 Related work
The inference of large GRNs of 500+ nodes is frequently tackled
by unsupervised, data-driven approaches that aim to resolve
dependencies from expression data alone. We briefly review some
commonly used techniques in the following and refer the reader
to review papers [e.g. by Altay and Emmert-Streib (2010b), Lee
and Tzou (2009) and Markowetz and Spang (2007)] for a more
comprehensive overview of methods.

Unparameterized topologies can be approximated even for large
networks by measures of pairwise gene dependencies, e.g. using
Pearson’s linear correlation coefficient [Butte and Kohane (1999)].
To take non-linear correlations into account, information theoretic
approaches can be employed such as Bayes conditional probability
tables or mutual information [Butte and Kohane (2000); Ding and
Peng (2005); Faith et al. (2007); Margolin et al. (2006); Meyer
et al. (2007); Zhao et al. (2006)]. The latter techniques require a
very careful discretization of the expression data to avoid the loss
of signal [Altay and Emmert-Streib (2010a); Mukherjee and Speed
(2008); Zhu et al. (2008)].

One source of false positive predictions are indirect effects,
i.e. in a cascade A→B→C methods are likely to also predict
the additional effect A→C. Extensions like the data processing
inequality [ARACNe, Margolin et al. (2006)] and gene dependent
background distributions [CLR, Faith et al. (2007)] have been
proposed to overcome this problem. The minimum redundancy
maximum relevance concept [Ding and Peng (2005); Meyer et al.
(2007)] offers another way to select important edges. Indirect effects
might also be identified and removed by partial correlations [Castelo
and Roverato (2009)], elastic net or lasso, a L1-penalized estimation
of the inverse covariance matrix [Friedman et al. (2008); Kabir
et al. (2010); Wang et al. (2009)]. All of the mentioned approaches
measure global dependencies, i.e. dependencies that are visible
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across the majority of measured experimental conditions. Local
dependencies that are only apparent in a subset of the conditions
[Kwon et al. (2003)] might thus be missed.

Models like Boolean, (probabilistic) Bayesian networks, ordinary
differential equations (ODE) or Petri Nets are generative i.e. they
allow the generation of the original training datasets by simulation.
Optimization approaches minimize the deviation from given data
by parameterizing models [Guthke et al. (2005); Küffner et al.
(2010); Wang et al. (2006)]. Due to the huge parameter space these
algorithms may not scale well to large networks.

The assessment of the multitude of reconstruction algorithms is
quite difficult. Comparative studies [Hache et al. (2009); Michoel
et al. (2009); Narendra et al. (2011); Soranzo et al. (2007);
Zou and Feng (2009)] evaluate only subsets of approaches. More
comprehensive assessments are facilitated through community-wide
challenges conducted by the DREAM consortium.

2 METHODS

2.1 Inference setting, data sources and evaluation
Problem statement and evaluation. GRN inference aims at the detection
of gene regulatory relationships from mRNA expression datasets. The
task is to reverse engineer the directed topology of one network for
each of the available expression datasets (Table 1). In the following, we
describe a setup for the evaluation of inference methods that has been
adopted by many comparative assessment studies including DREAM5
(http://wiki.c2b2.columbia.edu/dream/index.php/D5c4) and Narendra et al.
(2011).

For each dataset, potential TFs are given. Only these TFs should be
included as regulators in the network predictions as the used gold standards
do not contain gene regulatory interactions for other regulators such as sigma
factors or miRNAs. The list of TFs was available to all participants of the
challenge. Approaches were then required to check and rank |TF|×|Genes|
candidate relationships. Lists of ranked candidate interactions are evaluated
against the true topology (in case of the artificial dataset) or against
experimentally determined TF:TG interactions. Candidate lists are evaluated
against gold standard networks (see below) based on the area under the
precision-recall curve (AUPR) and the area under the receiver-operator
characteristics curve [AUROC; see Prill et al. (2010)]. In DREAM5, only
the top 100 000 interactions were considered for this analysis. The resulting
AUPR and AUROC will be lower if only a subset of the interactions is
considered. Although this difference has only little effect on the ranking of
the approaches, we will report AUROC values for the top 100 000 predictions
as well as for all predictions in order to enable the comparison to other
studies [e.g. Narendra et al. (2011)]. The performance evaluation in this
article focuses on the AUROC, but additional evaluation and scores can be
found in the Supplementary Material (part 4).

Table 1. DREAM5 and M3D datasets used in this study

Dataset |TF| |Genes| |TF| |Genes| |Chips|
pert. pert.

ArtificialD5 195 1643 38 38 805
E. coliD5 334 4511 20 43 805
E. coliM3D 167 4297 17 67 907
S. cerevisiaeD5 333 5950 5 14 536
S. cerevisiaeM3D 156 6572 11 37 904

Shown is the size of the examined datasets as well as the number of measurements
subject to gene specific perturbations (gene over-expressions and deletions).

Expression compendia. In this study, we used three datasets provided by
DREAM5 and two additional datasets from M3D [Faith et al. (2008)]. All
datasets consisted of several thousand genes and several hundred microarray
measurements (Table 1). In comparison to data repositories such as GEO
[Barrett et al. (2010)], DREAM5 and M3D provide fewer but uniformly
preprocessed and normalized datasets. Measurements as well as annotations
are rendered comparable across different experiments and are thus suited to
automated network inference.

In case of the real DREAM5 datasets, organism, experiment and gene
names are replaced by random IDs to enable the evaluation of the inferred
networks against experimentally confirmed interactions unknown to the
participants. Thus, no prior knowledge could be utilized for the inference.

Datasets in the expression compendia are subdivided into experiments
that consist of all microarrays described in a single publication or conducted
by the same experimenter. Besides wild-type measurements, experimental
conditions represent (combinations of) drug, environmental and gene
perturbations. Some of the drug or environmental perturbations are provided
as time course measurements. We considered each time point as a separate
condition. A condition may contain multiple replicates. In case of gene
perturbations (deletion or over-expression), the annotations provide the IDs
of the perturbed genes. The artificial dataset was generated by the tool
GeneNetWeaver [Marbach et al. (2009), see Section 6 of the challenge
description at http://wiki.c2b2.columbia.edu/dream/index.php/D5c4] and
mimicked the E. coli dataset in the composition of the perturbations and
time courses.

For additional validation, we obtained E. coli and S. cerevisiae expression
data from the M3D database [see Table 1 and Faith et al. (2008)]. Similar to
the chip annotations provided in DREAM5, M3D provided manually curated
metadata for their chip measurements.

Gold standard networks. Predicted E. coli interactions were validated
based on RegulonDB [Gama-Castro et al. (2011); Huerta et al. (1998)],
a database of gene regulatory relationships that are both experimentally
validated and manually curated. The S. cerevisiae gold standard [MacIsaac
et al. (2006)] was automatically derived by large-scale chromatin
immunoprecipitation (ChIP) binding assays. Physical binding is not a
sufficient evidence, as noted by Hu et al. (2007) and Boulesteix and Strimmer
(2005). Thus, ChIP will lead to many false positive interactions. MacIsaac
et al. (2006) aimed to overcome this problem by complementing ChIP assays
with conservation-based motif discovery algorithms. Due to the more reliable
small-scale assays and the manual curation, the E. coli gold standard should
be regarded as more reliable than the one for S. cerevisiae. This is supported
by a recent review by Narendra et al. (2011) where even otherwise accurate
methods fail to predict this gold standard. The true network topology is
known for the artificial dataset and was used for evaluation.

Combined with the above mentioned M3D datasets, these gold standard
networks have been used for evaluating inference methods by DREAM5 as
well as Faith et al. (2007) and Narendra et al. (2011). Because the same
gold standards are used and because the majority of the experiments in the
DREAM5 datasets on E. coli were taken from the M3D database (Daniel
Marbach, personal communication) results of DREAM5 and Narendra et al.
(2011) are approximately comparable. This also applies to assessments based
on artificial datasets that have been generated by the tool GeneNetWeaver
[Marbach et al. (2009)] in both studies.

2.2 Network inference
Fold changes. Basal gene levels can be very different between experiments.
To compensate for this, we transformed the absolute expression values into
expression fold changes (see also Supplementary Material, part 1). Fold
changes are computed by mapping the measurements mi,i=1...|m| of each
condition m onto one or more valid control conditions (Fig. 1). Each m is
subject to a combination of gene, drug or environmental perturbations P.
A condition mc measured at time t(mc) under the set of perturbations Pc

is called a valid control condition for m if Pc ⊂P and t(m)= t(mc), where
P−Pc represents the differential treatment between two conditions.
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Fig. 1. Transformation of absolute expression values into fold changes.
We compute log-fold changes by mapping each measured condition m to
one or more control conditions (replicated measurements) from the same
experiment. A control may have fewer drug or gene perturbations than the
corresponding measurements, but not more. In the example shown, both
conditions a and b have fewer perturbations than m and are valid control
conditions. Then, the replicates of the controls are averaged and (here: a total
of 6) fold changes are computed for the replicates in m against the means
of the selected controls. Log-fold changes are computed as differences as
measurements are already log-transformed. For the given application, the
resulting geometric mean performs similar to an average (not shown).

For instance, the DREAM5 E. coli dataset consisted of 805 chip
measurements of 487 different experimental conditions. Among the 805
chips we selected controls for 599 chips (corresponding to 379 conditions).
Due to the multiplicity of measurement-control combinations, 935-fold
changes were computed from the 599 chips.

Relevance networks. Our network inference approach is based on the
estimation of the relevance of candidate interactions [Butte and Kohane
(1999); Butte and Kohane (2000)]. Candidate interactions, i.e. pairs of a
TF and a TG, are ranked by a score s. The score s can be any measure of
dependency between the expression of the TF and its TG. Frequently used
measures of dependency are based on Pearson’s or Spearman’s correlation
coefficients or mutual information. In this article, we propose to use the
score η2 that is introduced below. The application of η2 in the relevance
network framework will be referred to as the η2 approach. In addition
to relevance networks, we also evaluate η2 in the context of the C3NET
[Altay and Emmert-Streib (2010a)] and CLR [Faith et al. (2007)] frameworks
(Supplementary Material, part 4).

A measure of association derived from two-way ANOVA. Our inference
approach is based on a two-way ANOVA. A two-way ANOVA can be used
to model experimental observations Yijk as responses to two factors C and
G as well as the measurement error,

Yijk =μ+τi +βj +γij +εijk (1)

where μ is the average response, τi is the effect from the i-th level of the
factor C, βj is the effect from the j-th level of factor G, γij is the joint
effect from the interaction between factors C and G and εijk represents the
remaining unexplained error in replicate k. In our application of ANOVA,
C models the effect of differential expression across i∈[1...c] different
experimental conditions and G models whether the expression profiles of
the genes j∈[g,t] (as we consider exactly one TF t and one TG g) differ.
Thus, we apply ANOVA to a matrix of conditions, genes and replicates as
depicted in Figure 2A. A two-way ANOVA tests three null hypotheses: (i) no
differences in means of factor C; (ii) no differences in means of factor G;
and (iii) no interaction between C and G, by partitioning the total sum of
squares SST into four components (Fig. 2):

SST =SSC +SSG +SSCG +SSerr (2)

A sum of squares (SS) is a sum of squared deviations from a mean
[Miller (1997)] and can be regarded as an unadjusted measure of dispersion.

Fig. 2. Sum of squares and the two-way ANOVA. A two-way ANOVA
analyzes two dimensions or effects (here: C for conditions and G for genes)
by partitioning the SS into four components: SST =SSC +SSG +SSCG +
SSerr. The first example (panel B) exhibits strong associations between TF
and TG. Here, SSC is high as there is strong differential expression between
the conditions. In panel C, the genes exhibit strong differences so SSG will
be high. If the two effects are linked (panel D), i.e. differential expression
across conditions occurs only if strong differences are exhibited between
both genes, SSCG will be high. A high replicate variance leads to a high
SSerr (panel E).

A variance Vx is computed by adjusting the SSx for the degree of freedom
dfx , where dfx is the number of data points under consideration minus 1,
and x∈[C,G,CG,err,T ]. An F-value is computed by weighting the effect
variance against the error variance [Equation (3)]. F-values follow the
F-statistic, which can be used to derive the statistical significance of the
involved factors as p-values. For instance, to estimate the significance of
differential expression across conditions we compute FC by:

Vx = SSx

dfx
,FC = VC

Verr
(3)

Effects so far describe differences, but ANOVA can also be used to detect
specific similarities or associations between TF and TG. Phrased in terms of
the two-way ANOVA, the strength of an association is proportional to the
fraction of SSC in the total sum of squares SST:

η2+ = SSC

SST
,Fη+ = VC

VT
(4)

Thus, η2+ ∈[0...1] measures association as the fraction of the total
variance that is explained by the differential expression across experimental
conditions. Cohen (1973) refers to η2+ as the non-parametric non-linear
correlation coefficient. Its statistical significance can be estimated via Fη+.
A more detailed description of the algorithm including pseudo code can be
found in the Supplementary Material (parts 2 and 3).

Adjusting for negative correlation. In contrast to Pearson’s ρ2, η2 does not
directly test for negative correlations. We therefore propose to reverse the
signs of the TF-fold changes to compute an additional η2−. The final ranking
of candidate interactions is performed using η2 =max(η2+,η2−).

1378

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/10/1376/212009 by guest on 21 August 2022



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[15:31 7/5/2012 Bioinformatics-bts143.tex] Page: 1379 1376–1382

GRN Inference

Incorporation of gene perturbation experiments. We extend the basic
approach to incorporate measurements on gene specific perturbations.
A candidate interaction between a TF and a putative TG should be considered
more likely if the TG shows a response to the knock-out or over-expression
of the TF. In the calculation of η2 for such an interaction this is taken
into account by increasing the weight of conditions that involve gene
perturbations affecting the TF by a user specified weight parameter wgp.
Values may range between 10 and 1000 (see Supplementary Material, part 4)
and have been estimated based on M3D data [Faith et al. (2008)] prior to
our participation in DREAM. The weight of such a condition is increased
by inserting wgp −1 additional copies into the ANOVA matrix (Fig. 2A).
Conditions where non-TFs or TFs other than the currently tested TF are
perturbed receive the default weight of 1.

3 RESULTS
Differences between datasets. Prokaryotes organize the regulation
of expression by operons. A promotor region controls several
structural genes which show similar expression patterns. We
analyzed expression patterns by Markov clustering [mcl; Enright
et al. (2002)]. Figure 3 shows the resulting expression patterns from
the largest clusters of the E. coli and the artificial data. Co-regulation
patterns are easy to detect in all real datasets but are virtually absent
in the artificial data. We also noticed that ∼50% of the regulation
in the artificial data is due to inhibition. Inhibition, i.e. negative
correlations between TF and TG is comparatively rare in the real
datasets (Fig. 4). Real networks are more complex than the artificial
networks created by Marbach et al. (2009) as they do not account
for interactions involving proteins or other molecules.

The real E. coli and S. cerevisiae datasets were also markedly
different. While correlation between TF and TG is a good predictor
of a gene regulatory relationship in artificial and E. coli data, this
is not the case in S. cerevisiae (Fig. 4). This finding is reproducible
across different yeast datasets, gold standards and measures of
dependency (not shown). That network inference is more difficult
in S.cerevisiae as compared with E. coli is consistent with the work
of Hu et al. (2007) and Narendra et al. (2011).

Run time complexity. The run time complexity of our
network inference approach is O(|TF|×|genes|×|chips|) (see
Supplementary Material, part 3), i.e. the complexity of the ANOVA
estimator is linear in the number of chips. The datasets (Table 1)
required between 280 k and 2 M evaluations of η2 across 160 to 907
chips. The largest datasets required a run time of 2 min on a single
processor core. The complexity of other inference approaches has
been discussed previously [Narendra et al. (2011)].

Performance evaluation. Table 2 and Figure 5 show the
performance of our η2 method in comparison to other approaches.
For a broad comparison of methods we combined our own evaluation
results for some of the publicly available methods (for additional
evaluation and scores see Supplementary Material, part 4) with the
results of the DREAM5 network inference challenge as well as
the large comparative assessment study of Narendra et al. (2011).
We selected methods that performed best on one of the three
DREAM5 datasets (methods 1–3) and the best performing methods
(with respect to AUROC) as determined by Narendra et al. (2011)
(methods 6–9). For comparison, we also applied the methods 2 as
well as 5–7 as end-user ready tools were available.

Fig. 3. Co-regulation patterns in artificial and real datasets. In contrast to the
artificial data (panel A), all real datasets (panel B) show strong co-regulation
patterns. In E. coli, clustered patterns largely overlap with operons. Shown
are subsets of 20 genes selected from the largest clusters derived by Markov
clustering.

In order to render the DREAM evaluation (that considered
only the top 100 k predictions) comparable to the evaluation by
Narendra et al. (2011), we re-computed the performance based on
all predictions (i.e. not only the top 100 k) and re-applied publicly
available methods. Considering all predictions usually increases the
resulting AUROC by up to a few percentage points, which usually
has only little effect on the performance ranking of the methods.

Interestingly, some of the participants in the DREAM5 challenge
outperformed existing inference methods significantly, particularly
in case of the artificial and E. coli datasets (Fig. 5). For the inference
of yeast interactions such a clear statement was not possible as all
methods performed rather poorly.

The presented η2 method was the best performer for inferring
E. coli interactions and was also competitive for the artificial dataset,
outperforming the previously published methods analyzed in this
article or by Narendra et al. (2011). The performance on artificial
and E. coli interactions is depicted in Figure 5 for all methods that
participated in the DREAM5 network inference challenge.

The prediction performance apparently also depends on the
number of chip experiments. All methods yielded a better prediction
performance for the M3D E. coli dataset (Table 2), which contains
more measurements than the DREAM5 E. coli dataset. The same
reasons also contribute to the lower performance observed in the
S. cerevisiae dataset.

Properties of η2 exemplified via selected interactions. We analyzed
properties of η2 on the E. coli dataset from M3D. A strong linear
correlation is exhibited for instance by the fis:dusB interaction (fis:
organization and maintenance of nucleoid structure; dusB: tRNA-
dihydrouridine synthase B, Fig. 6A). The observed linear correlation
might be due to the fact that both genes are part of the same operon.
Non-linear correlations such as gadE:hdeA are also detected by η2

(gadE: acid-induced positive regulator of glutamate-dependent acid
resistance; hdeA: stress response acid resistance protein). hdeA is
already activated by low gadE concentrations (Fig. 6B). In contrast,
mdtE (multidrug transporter component) is activated only at high
concentrations of gadX (regulator of acid resistance) resulting in an
upwardly-curved scatterplot (not shown).

η2 also enables the detection of correlations that are only
apparent in a subset of the measured conditions, i.e. it detects
local correlations. This increased sensitivity is due to the
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Fig. 4. Differences between artificial and real datasets. The correlation distributions of artificial, E. coli and S. cerevisiae data expression data are quite
different. Shown are histrograms of the correlation of non-interacting and interacting gene pairs as well as gene pairs regulated by the same set of TFs. In
contrast to artificial and E. coli data, correlation between a TF and a TG is not a good indicator of a true regulatory relationship in S. cerevisiae.

Table 2. Performance of selected methods on the DREAM5 and M3D datasets.

Artificial E. coli S. cerevisiae

Methods References (abbrev.) D5:100k D5 Nar2011 D5:100k D5 M3D Nar2011 D5:100k D5 M3D Nar2011

ANOVA η2 This article 78.0a 81.6c 67.1a 74.6c 79.8d 51.8a 57.8c 55.0d

Genie3 Huynh-Thu et al. (2010) 81.5a 83.4c 61.7a 69.0c 67.3d 51.8a 54.5c 51.3d

Team 395 unpublished 69.5a 60.2a 53.9a

Pearson’s ρ2 Butte and Kohane (1999) 75.7b 76.5c 57.2b 61.2c 64.6d 51.0b 56.9c 53.8d

MRNet Meyer et al. (2007) 71.5b 73.0c 58.1b 66.2c 64.5d 50.9b 52.2c 52.3d

CLR Faith et al. (2007) 76.2b 77.4c 76.2e 59.1b 66.1c 64.2d 64.0e 51.6b 52.6c 52.4d 50.9e

ARACNe Margolin et al. (2006) 76.3b 77.5c 76.7e 57.2b 64.2c 63.5d 64.4e 50.4b 51.3c 49.9d 49.1e

qp graphs Castelo and Roverato (2009) 69.6e 63.5e 54.5e

GeneNet Opgen-Rhein and Strimmer (2007) 52.4e 59.9e 55.2e

The area under the ROC curve (AUROC) curve is used for the evaluation of inference methods performed by the DREAM5 organizersa, by the authors of the present articleb,c,d

and from the paper of Narendra et al. (2011)e. To render the DREAM5 protocola,b (gray background, considering the top 100 k predictions only) comparable to other studies, the
performance on the DREAM datasets has been re-calculatedc with all predictions. Also, publicly available methods have been re-appliedd to M3D datasets. Methods show similar
performance between the DREAM5c and M3Dd,e real (because of their large overlaps) as well as artificial datasets (because they were generated by the same tool, GeneNetWeaver).
The best predictions are shown in bold. See Supplementary Material (part 4) for additional scores. All methods were invoked with the designated options to utilize the preselected
lists of TFs.

effective utilization of the replicated measurements to quantify
the measurement error. The expression profiles of an interaction
between the multiple antibiotic resistance (mar, GeneOntology
GO:0046677—response to antibiotic) genes marA and marB are a
good example of a local correlation between TF and TG. While
Pearson’s ρ2 would argue against this edge, it is considered as
relevant by η2 (Fig. 6, panels C and E). The interaction between
marA and marB is active in E. coli treated with the antibiotic
norfloxacin (a gyrase inhibitor). The co-regulation across various
gene over-expression experiments in the presence of norfloxacin is
depicted in Figure 6E (left side). The treatment with other antibiotics
such as ampicillin and kanamycin also triggers the co-regulation of
the two mar genes (not shown). The interaction is not active in the
experiments on biofilm formation and growth phases as marA and
marB exhibit virtually no co-regulation here (Fig. 6E, right side).

In vivo confirmation of novel interactions. Novel candidate
interactions in E. coli were preselected by applying a 50% precision
cutoff to the predictions, i.e. we stop iterating over the list
of predictions from most to least confident when the precision
evaluated against RegulonDB drops <50%.

Predicted TF:TG interactions were tested by quantifying the
presence of the TG mRNA through qPCR amplification in E. coli
gene knockouts of the corresponding TF. The mRNA levels for the
same TG were quantified in non-mutant, wild-type E. coli to measure
gene expression differences. Expression differences >2-fold for TGs
are considered evidence for a true regulatory relationship between
the predicted TF:TG pair.

In total, 5 TFs were sampled and 53 interactions not contained
in the gold standard were tested. Here, 21 TF:TG pairs showed
greater than a 2-fold change corresponding to a confirmation rate
of 39.6%. Relaxing the fold change cutoff to 1.8, 26 pairs are
reported (precision of 49.1%). This approximately confirms the 50%
precision cutoff from the computational analysis. At a precision
cutoff of 50% we predict 1995 novel interactions thus expecting
∼1000 (1995×49.1%=979) additional true interactions not
contained in RegulonDB. The qPCR experiments were performed
by the lab of James J. Collins at the Boston University in the context
of the DREAM5 challenge. The full description and analysis of these
interactions as well as the participating inference approaches will be
the subject of a future paper (Marbach,D., Costello,J. and Küffner,R.
et al., The wisdom of crowds for gene network inference, submitted).
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4 DISCUSSION
To infer gene regulatory networks (GRNs), we rank the relevance of
candidate relationships consisting of a TF and a TG by measuring
the dependency between their respective expression profiles.

For the detection of dependencies we proposed the measure
η2 that is derived from an analysis of variance (ANOVA). To
our knowledge, η2 has not been applied to network inference or
to other problems in bioinformatics although it has a number of
interesting features (Fig. 6). Like Pearson’s ρ2, but in contrast
to Bayes conditional probability tables or mutual information, η2

does not require the discretization of the input data. This increases
the robustness of our method as inappropriate discretization might
lead to loss of signal. In contrast to Pearson’s linear correlation
coefficient, η2 is a non-parametric, non-linear correlation coefficient.
It also detects local correlations that are only apparent in a subset
of the measured conditions. This increased sensitivity is due to
the effective utilization of replicated measurements to model the
measurement error.

The recent DREAM5 blind assessment solicited the prediction of
GRNs with thousands of genes from two real datasets (E. coli and
S. cerevisiae) and one artificial dataset. The 29 participating teams
employed a variety of methods based on regression (Lasso, random
forests), Bayesian networks, mutual information and correlation.
In DREAM5, our approach was rated the best performer on the
inference of real networks and the second best performer on real
and artificial networks combined. Especially for the inference of
E. coli interactions, our approach performed significantly better than
the methods evaluated in DREAM5 (Fig. 5) as well as in the large
assessment of Narendra et al. (2011) (Table 2).

Fig. 5. Comparative prediction performance: artificial versus E. coli.
DREAM5 participants applied a range of network inference approaches
including meta predictors (=combining different approaches) and others
(=methods eluding categorization). Some of the participants, particularly
η2 (denoted as 1) and Genie3 (=2) significantly outperformed previously
published inference approaches (=4–7, compare Table 2, first two gray
columns). The pareto cover of the remaining DREAM5 participants is
depicted as dashed line.

Fig. 6. Correlations between TFs and TGs in E. coli. As only mRNA
expression data is available, inference depends on the accurate detection
of correlations. The plots in panels (A)–(D) (expression of TF/abscissa
scattered against TG/ordinate, data obtained from M3D) depict a series of
interactions from RegulonDB that are increasingly difficult to detect. Global
linear correlations (A) are easier to detect than non-linear correlations (B).
The expression profiles of the multiple antibiotic resistance (mar) genes marA
and marB are a good example of a local correlation that is detected by η2 but
not by ρ2 (C). The correlation becomes visible if E. coli is treated with the
antibiotic norfloxacin (C: blue dots, E: left side) but not in the experiments
on growth phases (C: orange dots, E: right side). No correlation (panel D)
might result if the TF itself is not regulated at the level of transcription.

In contrast to E. coli, predictions for S. cerevisiae received
significantly lower scores because the yeast gold standard network is
less reliable. Compared with E. coli and artifical networks, inference
is substantially more difficult in S. cerevisiae as here the expression
of TF and their regulated genes is hardly correlated (Fig. 4). Indeed,
with an AUC between 0.49 and 0.54, predictions were hardly better
than guessing. The difficulty of network inference in S.cerevisiae
has also been recognized by Hu et al. (2007) and Narendra et al.
(2011). Many publications on network inference approaches solely
focus on E. coli [Faith et al. (2007); Mordelet and Vert (2008)].

Some of the known E. coli interactions identified by our approach
were quite interesting biologically. For instance, an interaction
between multiple antibiotic resistance genes was active after
antibiotic treatment (local correlation) but not in growth phase
experiments. According to qPCR experiments that were performed
as part of the DREAM5 conference >50% of our novel predictions
represent true interactions. At a precision of 50% we thus expect
that our predictions contain 1000 previously unobserved true
interactions.

1381

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/10/1376/212009 by guest on 21 August 2022



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[15:31 7/5/2012 Bioinformatics-bts143.tex] Page: 1382 1376–1382

R.Küffner et al.

Funding: P.T. and T.P. are partially funded by the DFG (IRTG 1563/1
RECESS and Z.I. 616/3 CLA, respectively). L.W. is partially funded
by the Helmholtz Alliance on Systems Biology, Project CoReNe.

Conflict of Interest: none declared.

REFERENCES
Altay,G. and Emmert-Streib,F. (2010a) Inferring the conservative causal core of gene

regulatory networks. BMC Syst. Biol., 4, 132.
Altay,G. and Emmert-Streib,F. (2010b) Revealing differences in gene network inference

algorithms on the network level by ensemble methods. Bioinformatics, 26, 1738.
Barrett,T. et al. (2010) NCBI GEO: archive for functional genomics data sets—10 years

on. Nucleic Acids Res., 39, D1005–D1010.
Boulesteix,A.-L. and Strimmer,K. (2005) Predicting transcription factor activities from

combined analysis of microarray and ChIP data: a partial least squares approach.
Theor. Biol. Med. Model, 2.

Butte,A.J. and Kohane,I.S. (2000) Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput.,
5, 418–429.

Butte,A. and Kohane,I. (1999) Unsupervised knowledge discovery in medical databases
using relevance networks. In Proceedings of the AMIA Symposium. American
Medical Informatics Association, 7, 11–15

Castelo,R. and Roverato,A. (2009) Reverse engineering molecular regulatory networks
from microarray data with qp-graphs. J. Comput. Biol., 16, 213–227.

Cohen,J. (1973) Eta-squared and partial eta-squared in fixed factor ANOVA designs.
Educ. Psychol. Meas., 33, 107.

Ding,C. and Peng,H. (2005) Minimum redundancy feature selection from microarray
gene expression data. J Bioinform Comput Biol., 3: 185–205.

Enright,A.J. et al. (2002) An efficient algorithm for large-scale detection of protein
families. Nucleic Acids Res., 30, 1575–1584.

Faith,J.J. et al. (2007) Large-scale mapping and validation of Escherichia coli
transcriptional regulation from a compendium of expression profiles. PLoS Biol.,
5, e8.

Faith,J.J. et al. (2008) Many Microbe Microarrays Database: uniformly normalized
Affymetrix compendia with structured experimental metadata. Nucleic Acids Res.,
36, D866–D870.

Friedman,J. et al. (2008) Sparse inverse covariance estimation with the graphical lasso.
Biostatistics, 9, 432–441.

Gama-Castro,S. et al. (2011) RegulonDB version 7.0: transcriptional regulation of
Escherichia coli K-12 integrated within genetic sensory response units (Gensor
Units). Nucleic Acids Res., 39, D98–D105.

Guthke,R. et al. (2005) Dynamic network reconstruction from gene expression
data applied to immune response during bacterial infection. Bioinformatics, 21,
1626–1634.

Hache,H. et al. (2009) Reverse engineering of gene regulatory networks: a comparative
study. EURASIP J. Bioinform. Syst. Biol., 2009, 1–12.

Huerta,A.M. et al. (1998) RegulonDB: a database on transcriptional regulation in
Escherichia coli. Nucleic Acids Res., 26, 55–59.

Huynh-Thu,V.A. et al. (2010) Inferring regulatory networks from expression data using
tree-based methods. PLoS One, 5, e12776.

Hu,Z. et al. (2007) Genetic reconstruction of a functional transcriptional regulatory
network. Nat. Genet., 39, 683–687.

Kabir,M. et al. (2010) Reverse engineering gene regulatory network from microarray
data using linear time-variant model. BMC Bioinformatics, 11 (Suppl. 1), S56.

Küffner,R. et al. (2010) Petri Nets with Fuzzy Logic (PNFL): reverse engineering and
parametrization. PLoS One, 5, e12807.

Kwon,A.T. et al. (2003) Inference of transcriptional regulation relationships from gene
expression data. Bioinformatics, 19, 905–912.

Lee,W.-P. and Tzou,W.-S. (2009) Computational methods for discovering gene
networks from expression data. Brief. Bioinform., 10, 408–423.

MacIsaac,K.D. et al. (2006) An improved map of conserved regulatory sites for
Saccharomyces cerevisiae. BMC Bioinformatics, 7, 113.

Marbach,D. et al. (2009) Generating realistic in silico gene networks for
performance assessment of reverse engineering methods. J. Comput. Biol., 16,
229–239.

Marbach,D. et al. (2010) Revealing strengths and weaknesses of methods for gene
network inference. Proc. Natl Acad. Sci. USA, 107, 6286–6291.

Margolin,A.A. et al. (2006) ARACNE: an algorithm for the reconstruction of gene
regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7
(Suppl. 1), S7.

Markowetz,F. and Spang,R. (2007) Inferring cellular networks–a review. BMC
Bioinformatics, 8 (Suppl. 6), S5.

Meyer,P.E. et al. (2007) Information-theoretic inference of large transcriptional
regulatory networks. EURASIP J. Bioinform. Syst. Biol., 2007, 79879.

Michoel,T. et al. (2009) Comparative analysis of module-based versus direct methods
for reverse-engineering transcriptional regulatory networks. BMC Syst. Biol.,
3, 49.

Miller,R. (1997) Beyond ANOVA: Basics of Applied Statistics. Chapman & Hall/CRC.
Mordelet,F. and Vert,J.-P. (2008) SIRENE: supervised inference of regulatory networks.

Bioinformatics, 24, i76–i82.
Mukherjee,S. and Speed,T.P. (2008) Network inference using informative priors. Proc.

Natl Acad. Sci. USA, 105, 14313–14318.
Narendra,V. et al. (2011) A comprehensive assessment of methods for de-novo reverse-

engineering of genome-scale regulatory networks. Genomics, 97, 7–18.
Opgen-Rhein,R. and Strimmer,K. (2007) From correlation to causation networks: a

simple approximate learning algorithm and its application to high-dimensional plant
gene expression data. BMC Syst. Biol., 1, 37.

Prill,R.J. et al. (2010) Towards a rigorous assessment of systems biology models: the
DREAM3 challenges. PLoS One, 5, e9202.

Soranzo,N. et al. (2007) Comparing association network algorithms for reverse
engineering of large-scale gene regulatory networks: synthetic versus real data.
Bioinformatics, 23, 1640–1647.

Wang,Y. et al. (2006) Inferring gene regulatory networks from multiple microarray
datasets. Bioinformatics, 22, 2413–2420.

Wang,Z. et al. (2009) An extended Kalman filtering approach to modeling nonlinear
dynamic gene regulatory networks via short gene expression time series. IEEE/ACM
Trans. Comput. Biol. Bioinform., 6, 410–419.

Zhao,W. et al. (2006) Inferring gene regulatory networks from time series data using
the minimum description length principle. Bioinformatics, 22, 2129–2135.

Zhu,J. et al. (2008) Integrating large-scale functional genomic data to dissect the
complexity of yeast regulatory networks. Nat. Genet., 40, 854–861.

Zou,C. and Feng,J. (2009) Granger causality vs. dynamic Bayesian network inference:
a comparative study. BMC Bioinformatics, 10, 122.

1382

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/10/1376/212009 by guest on 21 August 2022


	R.Küffner, T.Petri, P.Tavakkolkhah, L.Windhager and R.Zimmer
	1 Introduction
	2 Methods
	3 Results
	4 Discussion

