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Abstract. Spurred by advances in cDNA microarray technology, gene
expression data are increasingly becoming available. In time-ordered
data, the expression levels are measured at several points in time fol-
lowing some experimental manipulation. A gene regulatory network can
be inferred by fitting a linear system of differential equations to the gene
expression data. As biologically the gene regulatory network is known to
be sparse, we expect most coefficients in such a linear system of differen-
tial equations to be zero. In previously proposed methods to infer such
a linear system, ad hoc assumptions were made to limit the number of
nonzero coefficients in the system. Instead, we propose to infer the de-
gree of sparseness of the gene regulatory network from the data, where we
determine which coefficients are nonzero by using Akaike’s Information
Criterion.

1 Introduction

The recently developed cDNA microarray technology allows gene expression lev-
els to be measured for the whole genome at the same time. While the amount of
available gene expression data has been increasing rapidly, the required math-
ematical techniques to analyze such data is still in development. Particularly,
deriving a gene regulatory network from gene expression data has proven to be
a difficult task.

In time-ordered gene expression measurements, the temporal pattern of gene
expression is investigated by measuring the gene expression levels at a small num-
ber of points in time. Periodically varying gene expression levels have for instance
been measured during the cell cycle of the yeast Saccharomyces cerevisiae [1].
The gene response to a slowly changing environment has been measured during
the diauxic shift in the yeast metabolism from anaerobic fermentation to aerobic
respiration due to glucose depletion [2]. In other experiments, the temporal gene
expression pattern due to an abrupt change in the environment of the organism
is measured. As an example, the gene expression response was measured of the
cyanobacterium Synechocystis sp. PCC 6803 after a sudden shift in the intensity
of external light [3,4].



A number of methods have been proposed to infer gene interactions from gene
expression data. In cluster analysis [2, 5, 6], genes are grouped together based on
the similarity between their gene expression profiles. Several measures of simi-
larity can be used, such as the Euclidean distance, correlation, or angle between
two gene expression data vectors. Inferring Boolean or Bayesian networks from
measured gene expression data has been proposed previously [7-11], as well as
modeling gene expression data using an arbitrary system of differential equa-
tions [12]. However, a long series of time-ordered gene expression data would be
needed to reliably infer such an arbitrary system of differential equations. This
is currently often not yet available.

Instead, we will consider inferring a linear system of differential equations
from gene expression data. This approach maintains the advantages of quan-
titativeness and causality inherent in differential equations, while being simple
enough to be computationally tractable.

Previously, modeling biological data with linear differential equations was
considered theoretically by Chen [13]. In this model, both the mRNA and the
protein concentrations were described by a system of linear differential equations.
Such a system can be described as
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in which M is a constant matrix with units of [second] ", and the vector z (¢)
contains the mRNA and protein concentrations as a function of time. A matrix
element M;; represents the effect of the concentration of mRNA or protein j on
the concentration of mRNA or protein i, where [M;;]~" (with units of [second])
corresponds to the typical time it takes for the concentration of j to significantly
respond to changes in the concentration of 3.

To infer the coefficients in the system of differential equations from mea-
sured data, Chen suggested to replace the system of differential equations with
a system of difference equations, substitute the measured mRNA and protein
concentrations, and solve the resulting linear system of equations in order to
find the coefficients M;; in the system of linear differential equations. The sys-
tem is simplified by making the following assumptions:

— mRNA concentrations can only affect the protein concentrations directly;
— protein concentrations can only affect the mRNA concentrations directly;
— one type of mRNA is involved in the production of one type of protein only.

The resulting system of equations is still underdetermined. Using the addi-
tional requirement that the gene regulatory network should be sparse, it is shown
that the model can be constructed in O (m"*1) time, where m is the number of
genes and h is the number of non-zero coefficients allowed for each differential
equation in the system [13]. The parameter h is chosen ad hoc.

Although describing a gene regulatory network with differential equations is
appealing, there is one drawback to this method. For a given parameter h, each
column in the matrix M will have exactly h nonzero elements. This means that



every gene or protein in the system affects h other genes or proteins. This has
two consequences:

— no genes or proteins can exist at the bottom of a network, as every gene or
protein is the parent of h other genes or proteins in the network;
— the inferred network inevitably contains loops.

While feedback loops are likely to exist in gene regulatory networks, this method
artificially produces loops instead of determining their existence from the data.

In Bayesian networks, on the other hand, no loops are allowed. Bayesian
networks rely on the joint probability distribution of the estimated network
being decomposable in a product of conditional probability distributions. This
decomposition is possible only in the absence of loops. In addition, Bayesian
networks tend to contain many parameters, and therefore a large amount of
data is needed to estimate such a model.

We therefore aim to find a method that allows the existence of loops in
the network, but does not dictate their presence. Using equation (1), we also
construct a sparse matrix by limiting the number of non-zero coefficients that
may appear in the system. However, we do not choose this number ad hoc;
instead, we estimate the number of nonzero parameters from the data by using
Akaike’s Information Criterion (AIC). This enables us to obtain the sparseness
of the gene regulatory network from the gene expression data. In contrast to
previous methods, the number of gene regulatory pathways is allowed to be
different for each gene.

Usually, in cDNA microarray experiments only the gene expression levels are
found by measuring the corresponding mRNA concentrations, whereas the pro-
tein concentrations are unknown. To analyze the results from such experiments,
we therefore construct a system of differential equations in which genes are al-
lowed to affect each other directly, since proteins are no longer available in the
model to act as an intermediary. The vector z then only contains the mRNA
concentrations, and matrix M describes gene-gene interactions.

2 Method

Consider the gene expression ratios of m genes as a function of time. At a given
time ¢, the expression ratios can be written as a vector z (¢) with m entries. The
interactions between these genes can be described quantitatively in terms of a
system of differential equations. Several forms can be chosen for the differential
equations. We have chosen a system of linear differential equations (1), which is
the simplest possible model. This equation can be solved as

z(t) = exp (Mt) -z, , (2)

in which z; is the gene expression ratio at time zero. In this equation, the matrix
exponential is defined by the Taylor expansion of the exponential function [14]:

exp (4) = Z %éz ) (3)
i=0



This definition can be found from the usual Taylor expansion of the exponential

of a real number a:
oo

exp (a) = Z %ai ) (4)
i=0

by replacing the multiplication by a matrix dot product. For a 1 x 1 matrix A,
equation (3) reduces to equation (4). Notice that in general, exp (4) is not the
element-wise exponential of A.

Equation (2) frequently occurs in the natural sciences, in particular to de-
scribe radioactive decay. In that context, £ contains the activity of the radioactive
elements, while the matrix M effectively describes the radioactive half-lives of
the elements. o

Since equation (2) is nonlinear in M, it will still be very difficult to solve for M
using experimental data. We therefore approximate the differential equation (1)
by a difference equation:

Az
z(t+At)—z(t)=At-M-z(t) , (6)

similarly to Chen [13]. To this equation, we now add an error g (¢), which will
invariably be present in the data:

z(t+At)—z(t)=At-M-z(t)+e(t) . (7)

By using this equation, we effectively describe a gene expression network in terms
of a multidimensional linear Markov model, in which the state of the system at
time t + At depends linearly on the state at time ¢, plus a noise term.

We assume that the error has a normal distribution independent of time:
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with a standard deviation ¢ equal for all genes at all times. The log-likelihood
function for a series of time-ordered measurements z; at times t;, ¢ € {1,...,n}
at m time points is then

;F & ’ (9)
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in which we use equation (6) to estimate the error at time t; from the measured
data:
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The maximum likelihood estimate of the variance o2 can be found by max-

imizing the log-likelihood function with respect to 2. By taking the partial
derivative with respect to o2 and setting the result equal to zero, we find

n
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Substituting this into the log-likelihood function (9) yields
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The maximum likelihood estimate g of the matrix M can now be found by
minimizing 62. By taking the derivative of equation (11) with respect to M, we
find that &2 is minimized for

i-poA, (13
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In the absence of errors, the estimated matrix M is equal to the true matrix
M. We know from biology that the gene regulatory network and therefore M is
sparse. However, the presence of noise in experiments would cause most or all of
the elements in the estimated matrix M to be nonzero, even if the corresponding
element in the true matrix M is zero. We can determine if a matrix element is
nonzero due to noise by setting it equal to zero and recalculating the total
squared error as given in equation (11). If the increase in the total squared error
is small, we conclude that the previously calculated value of the matrix element
is due to noise.

Formally, we can decide if matrix elements should be set to zero using
Akaike’s Information Criterion [15, 16]

AIC = -2

_ [log-likelihood of the} 9. {number of estimated 7 (16)

estimated model parameters

in which the estimated parameters are 62 and the elements of the matrix M that
we allow to be nonzero. The AIC avoids overfitting of a model to data by com-
paring the total error in the estimated model to the number of parameters that
was used in the model. The model which has the lowest AIC' is then considered
to be optimal. The AIC is based on information theory and is widely used for
statistical model identification, especially for time series model fitting [17].



Substituting the estimated log-likelihood function from equation (12) into
equation (16), we find

number of nonzero
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(17)

From this equation, we see that while the squared error decreases, the AIC may
increase as the number of nonzero elements increases.

A gene regulatory network can now be estimated using the following proce-
dure. Starting from the measured gene expression levels z; at time points ¢;, we
calculate the matrices A and B as defined in equations (14) and (15). We find

the maximum likelihood estimate g of the matrix M from equation (13). The
corresponding squared error is found from equations (10) and (11). Equation
(17) gives us the AIC for the maximum likelihood estimate of M. We then gen-

~ ! ~
erate a new matrix M by forcing a set of matrix elements of M equal to zero.

The remaining matrix elements of M " are recalculated by minimizing 62 using
the Lagrangian multiplier technique. We calculate the squared error 62 and the
AIC for this modified matrix M ' The matrix M /, and its corresponding set of
zeroed matrix elements, that yields the lowest value for the AIC is then the final
estimated gene regulatory network.

In typical cDNA microarray experiments, the number of genes is several
thousands, of which several tens to hundreds are affected by the experimental
manipulation. Due to the size of matrix M, the number of sets of zeroed matrix
elements is extremely large and an exhaustive search to find the optimal com-
bination of zeroed matrix elements is not feasible. Instead, we propose a greedy
search. First, we randomly choose an initial set of matrix elements that we set
equal to zero. For every matrix element, we determine if the AIC is reduced if
we change the state of the matrix element between zeroed and not zeroed. If
the AIC is reduced, we change the state of the matrix element and continue
with the next matrix element. This process is stopped if the AIC' can no further
be reduced. We repeat then this algorithm many times starting from different
initial sets of zeroed matrix elements. If the algorithm described above yields
the same set of zeroed elements several times, we can assume that no other sets
of zeroed elements with a lower AIC' exist.

3 Discussion

We have shown a method to infer a gene regulatory network in the form of a
linear system of differential equations from measured gene expression data. Due
to the limited number of time points at which measurements are typically made,
finding a gene regulatory network is usually an underdetermined problem, as
more than one network can be found that is consistent with the measured data.
Since in biology the resulting gene regulatory network is expected to be sparse,
we set most of the matrix elements equal to zero, and infer a network using only



the nonzero elements. The number of nonzero elements, and thus the sparseness
of the network, is inferred from the data using Akaike’s Information Criterion.

Describing a gene network in terms of differential equations has three advan-
tages. First, the set of differential equations describes causal relations between
genes: a coefficient M;; of the coefficient matrix represents the effect of gene j
on gene i. Second, it describes gene interactions in an explicitly numerical form.
Third, because of the large amount of information present in a system of differ-
ential equations, other network forms can easily be derived from it. We can also
link the inferred network to other analysis or visualization tools, for instance
Genomic Object Net [18].

‘While the method proposed here allows loops to be present in the network, it
does not dictate their existence. Loops are only found if the measured data war-
rant them. Previously described methods to infer gene regulatory networks from
gene expression data, either artificially generate loops, or, in case of Bayesian
network models, do not allow the presence of loops.

It should be noted that recently, Dynamic Bayesian Networks have been
applied to represent feedback loops [19,20]. In a Dynamic Bayesian Network,
nodes in the Bayesian network at time ¢ + At are connected to nodes at the
Bayesian network at time ¢, thereby effectively creating one network for time-
independent behavior and another network for time-dependent behavior.

A practical example of our method applied to measured gene expression data
will appear in the Proceedings of the Pacific Symposium on Biocomputing (PSB
2003).
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