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Abstract

Gene expression (GE) levels have important biological and clinical implications. They are 

regulated by copy number alterations (CNAs). Modeling the regulatory relationships between GEs 

and CNAs facilitates understanding disease biology and can also have value in translational 

medicine. The expression level of a gene can be regulated by its cis-acting as well as trans-acting 

CNAs, and the set of trans-acting CNAs is usually not known, which poses a high-dimensional 

selection and estimation problem. Most of the existing studies share a common limitation in that 

they cannot accommodate long-tailed distributions or contamination of GE data. In this study, we 

develop a high-dimensional robust regression approach to infer the regulatory relationships 

between GEs and CNAs. A high-dimensional regression model is used to accommodate the effects 

of both cis-acting and trans-acting CNAs. A DPD (density power divergence) loss function is used 

to accommodate long-tailed GE distributions and contamination. Penalization is adopted for 

regularized estimation and selection of relevant CNAs. The proposed approach is effectively 

realized using a coordinate descent algorithm. Simulation shows that it has competitive 

performance compared to the nonrobust benchmark and the robust LAD (least absolute deviation) 

approach. We analyze TCGA (The Cancer Genome Atlas) data on cutaneous melanoma and study 

GE-CNA regulations in the RAP (regulation of apoptosis) pathway, which further demonstrates 

satisfactory performance of the proposed approach.
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1 Introduction

Gene expressions (GEs) have important biological implications, and the analysis of GE data 

has led to important findings with basic, translational, and clinical value for many complex 

diseases (Sparano et al., 2015; Deng et al., 2006). GE levels are regulated by copy number 

alterations (CNAs), possibly along with other mechanisms. Modeling the regulatory 
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relationships between GEs and CNAs has important implications: it can lead to a better 

understanding of disease etiology, assist building disease outcome models with translational 

value (Marbach et al., 2016), and play an important role in drug discovery.

Identifying which CNAs regulate the levels of GEs and in what way has been studied but 

remains a challenging problem (Wang et al., 2011; Yuan et al., 2012). For the expression 

level of a specific gene, some studies focus on the “local” effect and analyze only the cis-

acting CNA. Such studies are limited as GE levels are regulated by both cis-acting and trans-

acting CNAs. Some studies analyze the cis-acting CNA as well as a small number of pre-

selected trans-acting CNAs (Blackburn et al., 2015). However, they may not be broadly 

applicable, as for many genes, the sets of relevant trans-acting CNAs are not accurately 

known (Henrichsen et al., 2009). In recent studies, more effective approaches have been 

developed (Shi et al., 2015), which adopt high-dimensional regression techniques to 

accommodate the effects of a large number of CNAs and data-dependently identify the 

relevant ones.

A common limitation shared by most of the existing studies is that they adopt nonrobust 

estimation. For example, in regression analysis, the ordinary least squared loss function has 

been commonly adopted (Yuan et al., 2012). GE data may have long-tailed distributions or 

be contaminated. In Figure 1, we show examples of GE distributions from the data analyzed 

in this article. The long-tails and deviation from normality are clearly seen. The long tails 

(especially extremely high GE levels) may happen for multiple biological reasons. 

Contamination may happen because of technical reasons, as has been noted in published 

studies (Osborne and Overbay, 2004; Shieh and Hung, 2009). In addition, complex diseases 

may have multiple subtypes, which have distinct underlying biological processes. In data 

analysis, the small subtypes can be viewed as “contamination” for the largest subtype. In 

statistical analysis with low-dimensional data, it has been shown that with long-tailed 

distributions and contamination, nonrobust estimation, for example the ordinary least 

squares, can lead to severely biased estimation and wrong conclusions on the importance of 

effects. In the literature, one way of accommodating long-tailed distributions is 

transformation. However, it may not be suitable in the current context: it may not be possible 

to find a transformation that fits all GEs, and applying different transformations to different 

GEs leads to a lack of comparability and interpretability. With high-dimensional genetic 

data, our literature review suggests that robust approaches are still limited. This is especially 

true for the analysis of GE-CNA relationship, possibly because of the additional complexity 

as both sides of the relationship are high-dimensional.

In this article, we study the regulatory relationships between GEs and CNAs. This study has 

the following notable features, making it warranted beyond the existing studies. First, a 

high-dimensional regression model is adopted to accommodate the effects of both cis-acting 

CNAs as well as a large number of candidate trans-acting CNAs. Second, a DPD (density 

power divergence) loss function is adopted to accommodate long-tailed distributions and 

contamination. A robust loss can be more appropriate than the nonrobust ones for data 

shown in Figure 1 and those alike. Compared to some alternative robust approaches, the 

DPD has several notable advantages but has been much less investigated, especially under 

high-dimensional settings. It is thus of interest to develop it for the present problem. Third, 
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penalization is adopted in estimation and can easily accommodate high data dimensionality 

and select relevant CNAs. Fourth, numerical studies, including simulation and data analysis, 

provide convincing evidences to the practical advantage of the proposed approach. Overall, 

this study provides a practically useful tool for inferring the GE-CNA regulatory 

relationships.

2 Methods

2.1 Data and model settings

Consider a dataset with n independent subject. For each subject, data are available for q GEs 

and p CNAs. For subject i (= 1, …, n), let Yi = (Yi1, ⋯, Yiq)⊤ denote the vector of GEs and 

Xi = (Xi1, ⋯, Xip)⊤ denote the vector of CNAs. Further denote Y = (Y1, ⋯, Yn)⊤ ∈ ℝn×q 

and X = (X1, ⋯, Xn)⊤ ∈ ℝn×p as the data matrices for GEs and CNAs, respectively. With Y,j 

= (Y1j, ⋯, Ynj)
⊤ and X,j = (X1j, ⋯, Xnj)

⊤, we can also rewrite as X = (X,1, ⋯, X,p) and Y = 

(Y,1, ⋯, Y,q).

For accommodating long-tailed distributions and contamination, we adopt a mixture model 

framework, which has been a popular choice in low-dimensional data analysis. The 

underlying structure is that the majority of the subjects are “normal” and satisfy a certain 

regression model/distribution. Denote this set of subjects as A0 (note that this set is not 

known prior to analysis). In addition, a small subset of the subjects are “abnormal” with 

contaminated measurements or corresponding to different subtypes that satisfy a different 

model/distribution. Denote this set of subjects as A1. In this study, the analysis goal is to 

infer the regulatory relationships between GEs and CNAs for the majority of the subjects 

(A0), while properly accommodating the “abnormal” ones (A1).

For a subject, say subject i, in A0, consider the model

(1)

Assume that {εij : j = 1, …, q} are independent and distributed as . Denote β,j = 

(β1j, ⋯, βpj)
⊤ and β = (β,1, ⋯, β,q) ∈ ℝp×q. Inferring the regulatory relationships amounts to 

estimating the coefficient matrix β. Assume that the data have been properly centralized (so 

that the intercepts are zero) and standardized. Linear regression has been adopted for 

modeling the GE-CNA relationship in quite a few recent studies and shown to be effective. 

See for example Shi et al. (2015) and references therein. Although nonlinear CNA effects 

are possible, extensive nonlinear modeling is computationally prohibitive and may lead to 

unreliable estimation.

The proposed modeling framework has notable advantages. A significant one is that the 

regression model/distribution for subjects in A1 does not need to be specified. This 

flexibility is much desired – as in practice one does not know the mechanism of abnormality 

or contamination – but not shared by many of the existing approaches. For example, the 

popular Gaussian mixture model techniques assume that all distribution components are 
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normal. In addition, the proposed approach does not need to specify the percentage (or even 

existence) of abnormality or contamination. The high-dimensional model can accommodate 

a large number of candidate CNA effects and allow for data-dependently identifying the 

relevant ones. Overall, the proposed approach can be more data-driven and flexible.

2.2 The DPD-Lasso estimation

The DPD method is first proposed in Basu et al. (1998) for the robust estimation of a single 

distribution parameter. It is later extended to robust regression analysis with low-

dimensional data (Durio and Isaia, 2011; Ghosh et al., 2013; Fujisawa and Eguchi, 2006). 

These studies have shown that the DPD approach has multiple statistical and numerical 

advantages over the nonrobust and robust alternatives. For the integrity of this article, below 

we briefly describe the general DPD strategy and refer to published studies for more details.

For two density functions g and f, the DPD measure dα(g, f) is defined as

(2)

(3)

Note that d0 is the limit of dα as α → 0 and also a version of the Kullback-Leibler 

divergence. The parameter α balances between efficiency and robustness, with a smaller α 
value corresponding to more efficient but less robust estimation (Basu et al., 1998).

For subjects in A0, denote the true unknown density function of the jth GE as gj. In 

estimation, our goal is to estimate (or “approximate”) gj with fθj, where fθj represents a 

family of density functions indexed by parameter θj. Under the DPD framework, θj is 

estimated by minimizing

(4)

In practice, gj is unknown and replaced with the empirical density function 

, where δ(x) is the Dirac delta function. Note that the third term in 

equation (2) does not depend on θj and can be ignored. Therefore, the DPD loss function is

(5)
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Note that, when α = 0, the DPD loss becomes , which leads to 

the maximum likelihood estimate.

Under the assumed high-dimensional linear regression model, for subject i which belongs to 

A0, . With , we have

(6)

For data analyzed in this article and those alike, the dimensionality of covariates (CNAs) can 

be high compared to sample size. With a limited sample size and potential long-tailed 

distributions/contamination, regularized estimation is desired. In addition, out of a large 

number of CNAs measured, only a few are expected to regulate the expression level of a 

specific gene. With such considerations, we propose to apply penalization, which has also 

been adopted in recent studies (Shi et al., 2015) and can be preferred over other 

regularization techniques because of better statistical and numerical properties.

Denote . We propose the DPD-Lasso loss function as

(7)

where , and λ > 0 is the data-dependent tuning parameter. The DPD-

Lasso estimate is defined as the minimizer of L(θ). A nonzero component of this estimate 

represents a regulatory relationship between the corresponding CNA and GE. In (7), the 

Lasso penalty is adopted for its computational simplicity and satisfactory numerical 

performance and can be replaced with other penalties such as SCAD or MCP. Note that the 

proposed approach is different from analyzing each GE separately. Specifically, it applies 

the same λ to all GEs to ensure the same level of penalty and comparability, which is 

desired as no gene is “preferred” over the others. If each GE is analyzed separately, the 

tuning parameters are likely to differ across genes, resulting in a lack of comparability.

Although the DPD loss has been previously adopted in regression analysis, the existing 

studies are limited to low-dimensional settings. This study is the first to adopt it under high-

dimensional settings. The analysis is further challenged by the high dimensionality of the 

response variable and application of penalized estimation. In addition, to the best of our 

knowledge, the DPD approach has never been applied in the context of GE-CNA analysis.
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2.3 Computation

For optimizing the penalized loss function (7), we propose an iterative coordinate descent 

(CD) algorithm. Consider optimization with rest to βkj, with the rest of the regression 

parameters fixed. Let Δkj represent the partial derivative with respect to βkj. We have

and the partial derivative with respect to  is

Set the partial derivatives equal to zero, and we get the estimating equations

(8)

(9)

where . We propose solving (8) and (9) iteratively to obtain the estimates 

of β,j and . More specifically, with  fixed, solving for a single βkj poses a weighted 

Lasso-type problem. With β,j fixed, we estimate  using a bisection method.

Denote β,j
(s) and  as the estimates of β,j and  in the sth step. With fixed λ and α, the 

overall algorithm is described in Algorithm 1.

Algorithm 1

Initialize s = 0. For j = 1, ⋯, q, compute the initial estimate  (which is the ridge estimate in our numerical study). 

With β,j fixed as , estimate  by solving equation (9).

  repeat

    s = s + 1;
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    for j = 1, ⋯, q do

      Compute weights .

      Calculate , where the component  can be obtained by solving

β
kj
(s) = arg min

β
kj

∑
i = 1

n

w
ij
(s)(Y

ij
− X

i
⊤

β, j
)
2

+ λ | β
kj

| .

      Calculate  by solving the following equation with the bisection method

∑
i = 1

n

1 −
(Y

ij
− X

i
⊤

β, j
(s))

2

σ
j
2

e

−
α(Y

ij
− X

i
⊤

β, j
(s))

2

2σ
j
2

=
α

(1 + α)

3
2

.

    end for

  until the Frobenius norm of the difference between two consecutive β estimates is less than a predefined threshold 
(10−3 in our numerical study).

  return the estimate of β at convergence.

The proposed penalized loss function has a complex form. Our literature search does not 

lead to any simple technique that can be directly applied to establish the convergence 

property. For all of our simulated and real datasets, convergence is successfully achieved 

within 30 overall iterations (mostly within 10 iterations). We defer theoretical investigation 

on convergence to future study. The proposed approach involves α and λ. λ has the same 

implications as with other penalization methods. The definition of DPD and published 

studies under low-dimensional settings suggest that α balances between robustness and 

efficiency. To better comprehend its impact, in our simulation, we consider a sequence of α 
values as well as data-dependently selected α. To facilitate future data analysis, we have 

developed an R program which is available at https://github.com/shuanggema/mdpd.

2.4 Ad hoc identification of set A1

After applying the approach described above and conducting parameter estimation for the 

“normal” subjects, one possible followup analysis is to discriminate subjects in A0 from 

those in A1. This analysis may potentially provide useful information. If A1 is not empty, 

then it may suggest that there exist distinct biological processes that may define clinically 

meaningful subgroups and demand further investigation (Gosh, 2013). Comparing A1 

against A0 may reveal the unique features of these subgroups. In addition, analysis can be 

re-done on A0, which is composed of more homogeneous subjects.
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Identifying A1 can be more complicated than that in the existing studies, as the response 

variable (GEs) is high-dimensional. We propose the following calculation of p-value for 

subject i (= 1, …, n) to belong to A0:

Note that the estimate of β needs to be used in calculating pij. Subject i is then classified as 

in A1 if pi ≤ 0.05. In this calculation, pij, the p-value for subject i and GE j, is calculated 

using a nonparametric method. The q p-values for subject i are then combined into one using 

the Fisher’s method. Note that this analysis, although may be informative, is not necessary. 

In the literature, there are several methods that can detect outliers, and they can be 

potentially extended to the present analysis. We adopt the above ad hoc approach because of 

its simplicity and satisfactory performance in simulation.

3 Simulation

Simulation is conducted to evaluate performance of the proposed approach and compare 

against alternatives. Motivated by the TCGA (The Cancer Genome Atlas) data (analyzed in 

the next section) and those alike, we generate CNA measurements from a multivariate 

normal distribution with marginal means zero and variances one. Similar procedures have 

been adopted in Shi et al. (2015) and references therein. Use ρjk to denote the correlation 

coefficient between CNAs j and k. Consider the following correlation structures: (i) 

independent, where ρjk = 0 if j ≠ k, (ii) AR (auto-regressive), where ρjk = 0.4|j−k|, and (iii) 

banded, where ρjk = 0.4 if |j − k| = 1 and ρjk = 0 otherwise. The AR and banded correlations 

have been popular in high-dimensional simulations. The considered correlation levels are 

reasonable, as in for example the TCGA data, the (absolute values of) observed correlations 

are mostly below 0.4 (summary available from the authors). Set n = 200, q = 100, and p = 

100, which mimics the analysis of data of a pathway as in the next section. Note that 

although p and q may not seem “dramatic”, the number of unknown parameters is actually 

much larger than n. In addition, consider the following settings.

Simulation I

First consider subjects in A0. For each GE, the following CNAs have nonzero effects: the 

cis-acting CNA, the first four trans-acting CNAs, and then fifteen randomly selected ones. 

Thus, a total of twenty CNAs are associated with each GE. Note that the number of nonzero 

CNA effects may be larger than that in practical data analysis, making the analysis more 

challenging. The nonzero regression coefficients are randomly generated from Unif(0.4, 

1.2). The random errors have a standard normal distribution. The GE levels are computed 

from the linear regression models.
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Denote |A1| as the size of A1. Consider the following scenarios for subjects in A1:

(S1) |A1|=0. That is, there is no long-tailed distribution/contamination. This scenario 

favors nonrobust analysis.

(S2) |A1| = 0.15 × n. For each GE, the following CNAs have nonzero effects: the cis-

acting CNA, trans-acting CNAs #6–#10, and then fifteen randomly selected 

ones. The rest of the settings are the same as for subjects in A0.

(S3) The same as (S2), with the exception that |A1| = 0.3 × n.

(S4) |A1| = 0.15 × n. The random errors have a N (0, 49) distribution. The rest of the 

settings are the same as for subjects in A0.

(S5) The same as (S4), with the exception that |A1| = 0.3 × n.

(S6) The same as (S4), with the random errors having a Cauchy distribution.

(S7) The same as (S6), with the exception that |A1| = 0.3 × n.

Under (S2) and (S3), there exists a subset in which subjects have a different GE regression 

model. That is, the mean structures for subjects in A0 and A1 are different. Under (S4)–(S7), 

all subjects have the same GE regression model, with those in A1 having larger variances. 

That is, all subjects have the same mean structure but different variance structures. This 

corresponds to the “classic” setting of contamination. To test the effectiveness in robustness, 

we intentionally set the percentages of contamination to be higher than those in many of the 

existing studies.

Simulation II

For subjects in A0, the regression coefficient matrix β has a block-diagonal structure. This is 

motivated by the consideration that genes close to each other on the chromosome are often 

coordinated. A similar structure has been considered in Shi et al. (2015) and others. For 

subjects in A1, the settings are mostly the same as under Simulation I. The difference is that, 

under (S2) and (S3), twenty randomly selected CNAs have nonzero effects, which can test 

performance of the proposed approach under different correlations of CNA signals.

Lower signal levels

We also test performance of the proposed approach under lower signal levels. Specifically, 

for both Simulation I and II and the AR correlation structure, we keep the other settings 

unchanged and generate the nonzero regression coefficients from Unif[0.1, 0.5].

Different signal signs

Under the above simulation settings, all nonzero coefficients are positive. For both 

Simulation I and II and the AR correlation structure, we generate half of the nonzero 

regression coefficients from Unif[0.1, 0.5] and the other half from Unif[−0.5, −0.1]. The 

other settings are kept the same.

Performance of the proposed approach is evaluated in multiple aspects. (a) We first examine 

performance in identifying important CNA effects. The tuning parameter λ directly affects 
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identification. Performance of a tuning parameter selection method can differ for different 

analysis approaches (the proposed and alternatives described below). To have a fair 

comparison of different approaches, following the literature, we consider a sequence of λ 
values, evaluate identification performance at each value, and use the area under the ROC 

curve (AUC) as the overall identification accuracy measure. For each fixed λ value, we 

consider a set of α values, including 0.01, 0.1, 0.3, 0.5, 0.8, and 1, as well as the α value 

selected using V-fold cross validation (V =5 in our numerical study). (b) We next evaluate 

estimation performance. When α is fixed, λ is chosen using V-fold cross validation. We also 

consider that both λ and α are cross validation-selected. Estimation accuracy is evaluated 

using the SSE (sum of squared errors). (c) We also evaluate whether the proposed ad hoc 

approach can effectively separate subjects in A0 and A1. As this is an identification problem, 

we evaluate using the TPR (true positive rate) and FPR (false positive rate).

To better gauge performance of the proposed approach, we consider two alternatives, which 

have penalized objective functions as

Here the LS approach adopts the nonrobust least squared loss function, which has been a 

popular choice in quite a few studies. See for example Shi et al. (2015) and references 

therein. The LAD approach adopts the robust least absolute deviation loss function, which is 

a special case of the popular quantile regression. To ensure comparability, the LS and LAD 

approaches are applied and evaluated in the same manner as the proposed approach. 

Summary statistics are computed based on 200 replicates. Results for Simulation I with 

independent correlation are presented in Table 1, and those for the other simulation settings 

are presented in Tables 3–11 (Appendix).

With a more complex loss function, inevitably, the proposed approach is computationally 

more expensive. However, simulation shows that it is still affordable. For one replicate, with 

a fixed α and a sequence of twenty λ values, the proposed approach takes about 850 seconds 

on a regular desktop, compared to about 120 seconds and 520 seconds for the LS and LAD 

approaches. Simulation suggests that it is preferred to have the α value small but not too 

small – similar observations have been made in the literature for low-dimensional problems. 

For our simulated data, comprehensively considered, α = 0.3 seems to have the most 

competitive performance. The α values selected using CV mostly fall in the range of (0.2, 

0.4). In practical data analysis, to be prudent, other α values still should be examined. When 

A1 is empty (scenario S1), the proposed approach has performance very similar or slightly 

inferior to the LS. For example, in Table 1 under (S1), all three approaches are very 

successful in identifying important CNA effects, while having SSEs 22 (LS), 31 (LAD), 25 

(proposed with α = 0.3), and 23 (proposed with CV-selected α), respectively. It is noted that 
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similar observations are made when the signal levels are lower (and hence the AUC values 

are also smaller). With long-tailed distributions/contamination, the proposed approach 

significantly outperforms the LS. Specifically, the LS approach has inferior identification. 

For example in Table 1 under (S7), it has AUC 0.79, compared to 0.99 of the proposed 

approach (both α = 0.3 and CV-selected α). The most prominent problem of LS is its biased 

estimation. For example in Table 1 under (S7), its mean SSE is as large as 107. The LAD has 

identification performance comparable or slightly inferior to the proposed approach. 

However, the proposed approach outperforms LAD with more accurate estimation (smaller 

SSEs). For example in Table 1 under (S2), the proposed approach and LAD have SSEs 47 

(both α = 0.3 and CV-selected α) and 82, respectively. Under most of the simulation 

scenarios, the proposed approach can perfectly identify the subjects in A1.

The observed superiority of the proposed approach may seem unfair, as it has an additional 

parameter α. However, we note that the three approaches have been compared in a relatively 

fair way. Beyond using the CV-selected α, setting α = 0.3 also seems to provide competitive 

performance for all of our simulation settings. This fits the suggestion made in low-

dimensional studies that α should be small but not too small.

4 Data Analysis

Many recent studies have collected data on both GE and CNA. Here we analyze TCGA data, 

which have a high quality and are publicly available. Specifically, we analyze data on 

cutaneous melanoma, which poses a serious public health concern, and extensive profiling 

studies have been conducted on it. As in many published studies, we analyze the processed 

level 3 data which were downloaded from cbioportal using the CGDS-R package. Detailed 

information on data processing is available in the literature (The Cancer Genome Atlas 

Network, 2015). Briefly, mRNA gene expressions were initially measured using the Illumina 

Hiseq RNAseq V2 platform. The downloaded data are the robust Z-scores which have been 

lowess-normalized, log-transformed, and median-centered and represent the gene expression 

status (up or down regulated) in tumor samples relative to normal tissues. CNA 

measurements were first obtained using the Affymetrix Genome-wide Human SNP array 6.0 

platform. The loss and gain levels of copy number changes of tumors compared to normal 

tissues were identified using segmentation analysis and expressed in the log2 transformed 

form. Thus, what is analyzed is a relative CNA measure. Standard data processing is 

conducted following published studies. The analyzed dataset contains records on 208 

subjects.

Here we analyze the GE-CNA regulatory relationships for genes in one pathway. With 

different pathways having different biological functions, across-pathway trans-acting CNA 

effects, although may exist, are expected to be small. In addition, with a limited sample size, 

regressing a GE level on all available CNA measurements may lead to unreliable results. 

Pathway information is obtained from Gene Ontology (GO) using the annotation package in 

GSEA (www.broadinstitute.org/gsea). The pathway of special interest is the regulation of 

apoptosis (RAP) pathway. A well-known hypothesis supported by genetic, functional, and 

biomedical studies is that melanoma cells are “born to survive” (Soengas et al., 2003). The 

aggressive behavior of melanoma cells stems from intrinsic resistance to apoptosis from 

Zang et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.broadinstitute.org/gsea


their paternal melanocytes nourished by additional alterations acquired during tumor 

progression. It is of interest to study the GE-CNA regulation for this pathway, which may 

contribute to the understanding of the underlying biological mechanisms that are related to 

such survival mechanisms. A total of 333 GEs and 229 CNAs belong to this pathway.

In Figure 1, we show examples of GE distributions. The long tails and deviation from 

normality are clearly seen, suggesting that it is reasonable to conduct robust analysis. We 

apply the proposed as well as LS and LAD approaches, as in simulation. All tuning 

parameters are selected using cross validation. Different approaches lead to significantly 

different findings. Specifically, for the 333 × 229 regression coefficient matrix β, 794 (LS), 

6,641 (LAD), and 5,338 (proposed) nonzero elements are identified. Compared to the LS, 

the robust LAD and proposed approaches identify many more regulations. The LS approach 

shares 436 and 443 common nonzero elements with the LAD and proposed approaches, 

respectively. The LAD and proposed approaches share 2,732 nonzero elements. Unlike in 

simulation, there is a lack of objective measure on identification accuracy. To get an indirect 

support, we conduct a five-fold cross validation-based prediction evaluation. The prediction 

MSEs are 1.47 (LS), 1.39 (LAD), and 1.18 (proposed), respectively.

To be comprehensive, we further conduct analysis and identify subjects that may belong to 

A1. It is noted again that this analysis, although may be informative, is not necessary. With 

the proposed ad hoc approach, a total of 68 (LS), 80 (LAD), and 74 (proposed) subjects are 

identified as in A1. Different approaches identify different sets of A1 (details available from 

the authors). We also remove A1 and re-analyze data. In this “after” analysis, for the 

regression coefficient matrix β, a total of 1,010 (LS), 5,215 (LAD), and 3,408 (proposed) 

nonzero elements are identified. The LS approach shares 512 and 573 common nonzero 

elements with the LAD and proposed approaches, respectively. The LAD and proposed 

approaches share 1,846 nonzero elements. The prediction MSEs are 0.92 (LS), 0.98 (LAD), 

and 0.86 (proposed), respectively. All approaches have improved prediction by removing the 

long-tailed/contaminated subjects. Here we note that the analysis results before and after 

removing A1 are considerably different. In theory, the proposed approach conducts 

estimation and inference for A0 no matter A1 is present or not. However for this specific 

dataset, as a considerable number of subjects are identified as in A1, in the analysis with all 

subjects, the results can be “pulled” to “balance” between the two sets of subjects. This 

problem may get more prominent with the high dimensionality and shrinkage estimation. In 

addition, a closer examination of the “before” analysis shows that some of the estimates are 

very small, which contribute to the difference between the “before” and “after” identification 

results but can be practically ignored.

We take a closer look at the subjects in A0 and A1. In Figure 2, we show the heatmaps of the 

GE correlation matrices for the two sets. The difference is clearly seen. We further apply the 

approach developed in Jennrich (1970), which is realized using the R package psych, and 

test the equivalence of the two correlation matrices. The resulting p-value is < 10−6, 

suggesting a highly significant difference. The clear difference between A0 and A1 provides 

a strong support to the necessity of robust analysis as well as effectiveness of the proposed 

approach. In Figure 3, we plot the positions of the nonzero elements of β from analyzing A0 

and A1 separately. The difference is again obvious.
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Examining the analysis results for individual genes suggests that the identified CNA effects 

can be biologically meaningful. As a representative example, we examine the analysis 

results for gene PTEN, which is a known tumor suppressor and frequently inactivated in a 

variety of cancers including melanoma (Stahl et al., 2003). The identified CNA effects are 

presented in Table 2 for all three approaches. For each approach, we present the results for 

before (denoted using the subscript “b”) and after removing A1 (denoted using the subscript 

“a”). Note that the LSb analysis fails to identify the cis-acting CNA effect, which is likely to 

be unreasonable, while the other five analyses do. This also suggests that the nonrobust 

analysis with all subjects may be inappropriate. Beyond the cis-acting CNA effect, the 

proposed approach also identifies a few meaningful trans-acting CNA effects. For example, 

it identifies regulatory effects of the apoptosis-related regulators such as Bcl-2 family 

members, BTK, Fas, RUNX3, and Sh3glb1. In addition, we also identify CNA effects from 

tumor-related genes such as Ras effector B-Raf, pro-apoptotic protein Bid, high penetrance 

susceptibility gene CDKN2A, and Notch signaling gene Notch2.

In summary, for this dataset, the proposed approach identifies GE-CNA regulations different 

from those using the alternatives. Its validity is supported by the smaller prediction MSEs, 

significant difference between A0 and A1, and important biological implications of many of 

the identified regulations. We have also examined other TCGA data/pathways and made 

similar observations (results omitted).

5 Discussion

Many studies have been conducted, identifying which cis- and trans-acting CNAs regulate 

gene expression levels and in what ways. This study examines the same scientific problem 

but advances from the existing studies by developing a novel new analysis approach. The 

most prominent advancement is the adoption of the DPD loss to accommodate long-tailed 

GE distributions and contamination, which have been well acknowledged in the literature 

but insufficiently investigated. Compared to some alternative robust techniques for example 

quantile regression, the DPD is less popular but may have several notable advantages, as 

have been noted in low-dimensional studies. Our study is the first to apply the DPD 

approach to the high-dimensional analysis of GE-CNA regulations. Robust methods are very 

limited in the context of GE-CNA regulation. In low-dimensional data analysis, no robust 

method dominates the others. It is thus of interest to develop new robust methods in addition 

to the existing ones. Other notable features of the proposed approach include adopting high-

dimensional regression models (to accommodate a large number of candidate trans-acting 

CNAs) and penalized estimation and selection. The development of an effective 

computational algorithm and R code makes the proposed approach ready to be used in 

practice. Our simulation and data analysis suggest that the proposed approach can 

outperform the nonrobust approach and the robust LAD approach. In data analysis, we have 

implemented a two-step procedure (with the “before” and “after” analysis). We have also 

experimented applying it to simulated data and found that the identification results are 

almost identical and there is a small improvement in estimation (for example, for the 

simulation settings in Table 3, the “after” analysis has 2–7% improvement in terms of SSE). 

Overall, this study provides a practically useful tool for an important biological problem.

Zang et al. Page 13

Genet Epidemiol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Multiple analyses can be conducted following the proposed estimation and identification. In 

this study, we consider an ad hoc approach and identify the long-tailed/contaminated 

subjects. Other “post-analysis” can also be conducted, as in published robust analyses. This 

study can be extended in multiple aspects, including for example coupling the DPD loss 

with other regularization techniques, establishment of statistical properties, and others. In 

low-dimensional studies, the statistical efficiency of estimates has also been examined. 

Under the present high-dimensional settings, we have focused on identification and 

estimation. It may also be of interest to study efficiency. In data analysis, we analyze one 

pathway, which may generate more reliable results than conducting a whole-genome 

analysis. For datasets with larger sample sizes, in principle, the proposed approach can be 

directly applied to whole-genome analysis. The proposed approach is developed for CNAs. 

GE levels may also be regulated by other mechanisms (microRNAs, methylation, etc.). 

Conceptually, the proposed approach can be directly applied to the model “GE~CNA + other 

mechanisms”.
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Appendix

Table 3

Simulation I with AR correlation: mean (sd) based on 200 replicates (the values of AUC, 

TPR, and FPR are multiplied by 100).

DPD (α =)

Scenario LS LAD 0.01 0.1 0.3 0.5 0.8 1 CV

S1 AUC LS 99(0) 100(0) 100(0) 100(0) 100(0) 99(0) 99(0) 100(0)

SSE 19(1) 28(1) 20(1) 19(1) 22(1) 26(2) 44(3) 53(4) 20(1)

S2 AUC 88(1) 97(0) 98(1) 99(0) 99(0) 99(0) 98(0) 98(0) 99(0)

SSE 115(16) 64(5) 118(16) 70(7) 39(4) 41(4) 62(6) 73(6) 38(4)

TPR 100(1) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 4(2) 1(1) 5(2) 1(1) 0(0) 0(0) 0(0) 0(0) 0(0)

S3 AUC 84(1) 94(1) 94(1) 94(2) 96(1) 95(1) 95(1) 94(1) 96(1)

SSE 253(23) 168(22) 252(26) 222(30) 125(17) 113(20) 136(21) 155(26) 120(18)

TPR 64(5) 83(6) 63(7) 73(7) 91(6) 93(5) 93(4) 93(4) 92(5)

FPR 9(2) 3(2) 9(2) 7(2) 2(1) 1(1) 1(2) 1(1) 2(1)

S4 AUC 92(1) 96(0) 96(1) 99(0) 99(0) 99(0) 99(0) 99(0) 99(0)

SSE 154(6) 50(3) 138(8) 54(3) 33(2) 44(2) 59(4) 68(5) 33(2)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S5 AUC 87(1) 94(0) 92(1) 94(1) 98(0) 98(0) 98(0) 98(0) 98(0)
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DPD (α =)

Scenario LS LAD 0.01 0.1 0.3 0.5 0.8 1 CV

SSE 258(14) 185(16) 256(10) 177(10) 128(5) 63(4) 80(8) 92(7) 87(5)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S6 AUC 91(2) 99(0) 99(0) 100(0) 100(0) 99(0) 99(0) 99(0) 100(0)

SSE 104(105) 72(11) 84(11) 44(9) 62(9) 72(11) 82(14) 93(15) 53(9)

TPR 100(0) 100(1) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 8(2) 0(0) 1(1) 1(1) 1(1) 1(1) 0(1) 1(1) 1(1)

S7 AUC 83(2) 99(0) 96(1) 99(0) 100(0) 100(0) 99(0) 99(0) 100(0)

SSE 108(108) 193(23) 196(31) 79(11) 99(15) 112(21) 126(20) 132(25) 80(13)

TPR 96(3) 99(1) 99(1) 99(1) 99(1) 99(1) 99(1) 99(1) 99(1)

FPR 8(2) 0(0) 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Table 4

Simulation I with banded correlation: mean (sd) based on 200 replicates (the values of AUC, 

TPR, and FPR are multiplied by 100).

DPD (α =)

Scenario LS LAD 0.01 0.1 0.3 0.5 0.8 1 CV

S1 AUC 100(0) 99(0) 100(0) 100(0) 100(0) 100(0) 99(0) 99(0) 100(0)

SSE 21(1) 30(1) 21(1) 20(1) 23(2) 28(2) 46(3) 57(4) 22(2)

S2 AUC 93(1) 97(0) 98(1) 99(0) 99(0) 99(0) 98(0) 98(0) 99(0)

SSE 121(15) 69(7) 113(18) 74(7) 43(4) 45(4) 63(6) 78(7) 43(4)

TPR 100(1) 100(0) 100(1) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 5(2) 1(1) 4(2) 2(1) 0(0) 0(0) 0(1) 0(0) 0(0)

S3 AUC 88(1) 93(1) 94(1) 94(1) 95(1) 95(1) 95(1) 94(1) 95(1)

SSE 263(27) 178(27) 251(23) 233(26) 139(23) 127(17) 138(20) 169(20) 131(20)

TPR 66(7) 74(6) 68(6) 73(6) 88(8) 92(4) 93(5) 90(5) 90(7)

FPR 10(23) 3(2) 9(2) 7(2) 2(1) 1(1) 1(1) 1(1) 2(1)

S4 AUC 91(1) 97(0) 96(1) 99(0) 99(0) 99(0) 99(0) 99(0) 99(0)

SSE 160(10) 54(4) 147(9) 59(5) 36(3) 45(4) 61(4) 74(6) 36(3)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S5 AUC 86(1) 93(0) 91(1) 93(1) 98(0) 98(0) 98(0) 97(0) 98(0)

SSE 274(16) 93(7) 266(13) 192(13) 64(8) 65(5) 88(10) 103(8) 63(7)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S6 AUC 90(2) 97(2) 99(0) 100(0) 100(0) 100(0) 99(0) 99(0) 100(0)

SSE 104(105) 78(11) 93(15) 48(9) 60(7) 76(10) 84(10) 94(11) 53(7)

TPR 100(0) 100(1) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 8(2) 1(1) 2(1) 0(0) 1(1) 1(1) 1(1) 1(1) 1(1)
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DPD (α =)

Scenario LS LAD 0.01 0.1 0.3 0.5 0.8 1 CV

S7 AUC 81(2) 98(0) 96(1) 99(0) 99(0) 99(0) 99(0) 99(0) 99(0)

SSE 108(108) 197(26) 208(31) 84(13) 108(20) 112(19) 131(20) 142(22) 97(16)

TPR 95(3) 99(1) 99(2) 99(1) 99(2) 100(1) 99(2) 99(1) 99(1)

FPR 9(2) 0(0) 2(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Table 5

Simulation II with independent correlation: mean (sd) based on 200 replicates (the values of 

AUC, TPR, and FPR are multiplied by 100).

DPD (α =)

Scenario LS LAD 0.01 0.1 0.3 0.5 0.8 1 CV

S1 AUC 100(0) 99(0) 100(0) 100(0) 100(0) 100(0) 100(0) 99(0) 100(0)

SSE 21(1) 31(1) 21(1) 21(1) 23(1) 29(2) 45(2) 57(3) 23(1)

S2 AUC 92(0) 98(0) 98(0) 99(0) 99(0) 99(0) 98(0) 98(0) 99(0)

SSE 110(5) 71(4) 106(5) 74(5) 46(1) 48(4) 67(4) 84(6) 46(1)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 1(1) 0(0) 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S3 AUC 89(1) 94(1) 95(1) 95(1) 95(1) 96(0) 94(1) 93(1) 96(1)

SSE 232(10) 181(22) 232(11) 208(15) 145(15) 117(10) 149(15) 174(13) 128(12)

TPR 98(2) 100(1) 98(2) 98(0) 100(0) 100(0) 100(1) 100(1) 100(0)

FPR 4(2) 1(1) 4(1) 2(1) 1(1) 0(0) 1(1) 1(1) 1(1)

S4 AUC 92(1) 97(0) 95(1) 98(0) 99(0) 99(0) 99(1) 99(0) 98(0)

SSE 165(8) 54(4) 157(10) 60(4) 36(2) 44(2) 58(3) 69(4) 36(2)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S5 AUC 86(1) 96(0) 90(1) 93(1) 97(0) 98(0) 98(0) 97(0) 97(0)

SSE 291(14) 92(6) 281(11) 200(10) 63(3) 62(4) 84(6) 90(7) 61(3)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S6 AUC 88(2) 99(0) 98(0) 100(0) 100(0) 100(0) 99(0) 99(0) 100(0)

SSE 105(105) 65(10) 91(11) 49(8) 56(7) 65(10) 78(7) 89(13) 52(7)

TPR 100(1) 100(0) 100(0) 100(0) 100(0) 100(0) 100(1) 100(0) 100(0)

FPR 2(1) 0(0) 1(1) 0(0) 0(0) 0(0) 0(0) 0(1) 0(0)

S7 AUC 80(2) 98(0) 95(1) 99(0) 100(0) 99(0) 99(0) 99(0) 100(0)

SSE 106(107) 190(21) 210(25) 78(12) 90(12) 122(43) 112(20) 131(30) 83(11)

TPR 97(2) 100(1) 99(1) 100(1) 100(1) 99(1) 99(1) 100(0) 100(0)

FPR 2(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
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Table 6

Simulation II with AR correlation: mean (sd) based on 200 replicates (the values of AUC, 

TPR, and FPR are multiplied by 100).

DPD (α =)

Scenario LS LAD 0.01 0.1 0.3 0.5 0.8 1 CV

S1 AUC 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

SSE 14(1) 20(1) 14(1) 14(1) 16(1) 18(1) 25(1) 35(2) 15(1)

S2 AUC 93(1) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

SSE 88(6) 57(3) 86(6) 53(4) 30(2) 31(2) 37(2) 43(2) 30(2)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(1) 0(0) 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S3 AUC 90(1) 98(0) 97(1) 98(0) 98(0) 98(0) 98(0) 97(1) 98(0)

SSE 197(9) 125(10) 197(12) 170(9) 103(6) 76(9) 78(10) 89(14) 83(6)

TPR 96(0) 100(1) 96(3) 98(2) 100(1) 100(0) 100(0) 100(1) 100(0)

FPR 3(1) 0(0) 3(1) 1(1) 0(0) 0(0) 0(0) 0(0) 0(0)

S4 AUC 93(1) 100(0) 98(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

SSE 112(6) 36(3) 104(7) 40(3) 24(2) 31(3) 40(4) 47(3) 24(2)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S5 AUC 90(1) 99(0) 95(1) 97(0) 100(0) 100(0) 100(0) 100(0) 100(0)

SSE 192(9) 59(3) 184(8) 128(6) 44(3) 43(4) 56(6) 61(5) 42(3)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S6 AUC 92(1) 98(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

SSE 105(105) 69(10) 66(10) 38(8) 52(11) 57(9) 65(8) 72(14) 41(3)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 2(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S7 AUC 84(2) 99(0) 98(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

SSE 106(107) 95(17) 161(33) 67(12) 80(20) 102(25) 118(35) 123(24) 75(13)

TPR 97(2) 100(1) 99(1) 100(1) 100(1) 99(1) 99(1) 100(1) 100(1)

FPR 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Table 7

Simulation II with banded correlation: mean (sd) based on 200 replicates (the values of 

AUC, TPR, and FPR are multiplied by 100).

DPD (α =)

Scenario LS LAD 0.01 0.1 0.3 0.5 0.8 1 CV

S1 AUC 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

SSE 17(1) 24(1) 17(1) 17(1) 19(1) 21(1) 33(3) 44(3) 18(1)

S2 AUC 92(1) 99(0) 99(0) 100(0) 100(0) 100(0) 100(0) 99(0) 100(0)
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DPD (α =)

Scenario LS LAD 0.01 0.1 0.3 0.5 0.8 1 CV

SSE 96(6) 53(4) 192(7) 60(5) 26(2) 36(2) 43(3) 54(4) 26(2)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 1(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S3 AUC 90(2) 97(0) 96(1) 97(1) 98(0) 98(0) 97(1) 97(1) 98(0)

SSE 209(9) 139(13) 208(10) 185(12) 101(8) 90(9) 89(11) 102(10) 96(9)

TPR 97(2) 99(1) 95(3) 97(2) 100(1) 100(1) 100(0) 100(0) 100(0)

FPR 3(1) 0(0) 3(1) 2(1) 0(0) 0(0) 0(0) 0(0) 0(0)

S4 AUC 94(1) 100(0) 98(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

SSE 129(5) 43(3) 118(6) 47(3) 30(3) 36(3) 48(3) 55(4) 30(3)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S5 AUC 90(1) 99(0) 94(1) 96(1) 99(0) 99(0) 99(0) 99(0) 99(0)

SSE 220(9) 72(3) 213(9) 151(8) 50(3) 50(4) 66(8) 72(7) 49(3)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S6 AUC 90(1) 100(0) 99(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

SSE 106(107) 66(11) 77(14) 45(8) 56(12) 72(12) 74(10) 83(9) 49(10)

TPR 100(1) 100(0) 100(0) 100(0) 100(0) 100(0) 100(1) 100(0) 100(0)

FPR 2(1) 0(0) 0(1) 0(0) 0(1) 0(0) 0(0) 0(0) 0(0)

S7 AUC 82(2) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

SSE 107(108) 156(18) 73(11) 71(14) 87(10) 93(18) 97(17) 127(20) 82(11)

TPR 97(2) 100(0) 100(0) 100(1) 100(1) 100(1) 100(0) 100(1) 100(1)

FPR 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Table 8

Simulation I with AR correlation and a lower signal level: mean (sd) based on 200 replicates 

(the values of AUC, TPR, and FPR are multiplied by 100).

Scenario LS LAD
DPD (α =)

0.01 0.1 0.3 0.5 0.8 1 CV

S1 AUC 94(0) 93(1) 94(0) 94(0) 93(1) 92(2) 88(1) 87(1) 94(1)

SSE 34(1) 46(1) 34(1) 34(1) 39(1) 40(2) 86(4) 88(2) 37(2)

S2 AUC 89(1) 88(1) 89(1) 89(0) 89(0) 87(1) 85(1) 83(1) 89(0)

SSE 78(4) 76(3) 77(4) 70(3) 62(2) 75(4) 112(7) 120(5) 62(2)

TPR 99(1) 100(0) 99(1) 100(1) 100(0) 99(1) 99(1) 100(0) 100(0)

FPR 6(2) 6(2) 6(3) 5(2) 4(1) 6(1) 7(3) 7(2) 4(1)

S3 AUC 83(1) 82(1) 83(1) 84(1) 85(1) 81(1) 78(1) 77(1) 85(1)

SSE 130(7) 126(6) 127(4) 121(6) 114(7) 127(6) 165(10) 172(7) 113(7)

TPR 80(3) 78(5) 77(4) 78(5) 83(6) 82(4) 80(5) 85(4) 83(6)

FPR 11(3) 10(2) 12(3) 10(3) 7(2) 11(4) 10(1) 8(2) 7(2)
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Scenario LS LAD
DPD (α =)

0.01 0.1 0.3 0.5 0.8 1 CV

S4 AUC 77(1) 87(0) 77(1) 86(1) 90(1) 88(1) 87(0) 85(0) 91(1)

SSE 172(7) 79(3) 163(5) 85(3) 56(4) 84(6) 109(4) 117(5) 55(4)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S5 AUC 68(1) 79(1) 69(1) 73(1) 84(1) 85(1) 83(1) 82(1) 85(1)

SSE 237(7) 120(5) 232(5) 193(4) 94(6) 110(9) 138(14) 153(7) 93(7)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S6 AUC 75(1) 89(1) 87(1) 93(0) 92(0) 91(0) 88(1) 86(1) 93(1)

SSE 104(104) 77(5) 105(13) 58(6) 78(20) 98(17) 113(15) 125(15) 63(10)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 99(1) 100(0)

FPR 7(2) 1(1) 2(1) 0(0) 0(0) 0(0) 1(1) 0(0) 0(0)

S7 AUC 65(2) 89(0) 79(1) 91(1) 91(1) 90(1) 88(1) 86(1) 92(1)

SSE 106(106) 102(8) 199(1) 87(8) 104(12) 43(33) 162(14) 169(20) 84(9)

TPR 96(2) 100(1) 99(1) 99(1) 99(0) 99(1) 99(1) 99(1) 99(1)

FPR 7(2) 0(0) 1(0) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0)

Table 9

Simulation II with AR correlation and a lower signal level: mean(sd) based on 200 replicates 

(the values of AUC, TPR, and FPR are multiplied by 100).

Scenario LS LAD
DPD (α =)

0.01 0.1 0.3 0.5 0.8 1 CV

S1 AUC 97(0) 97(0) 98(0) 98(0) 92(0) 96(0) 96(0) 96(0) 98(0)

SSE 14(1) 19(1) 14(1) 14(1) 15(1) 17(1) 23(1) 30(1) 14(1)

S2 AUC 95(1) 95(1) 95(1) 95(1) 96(0) 95(0) 94(1) 93(1) 96(0)

SSE 33(2) 29(1) 31(2) 28(2) 23(1) 24(1) 30(2) 37(3) 23(1)

TPR 100(0) 100(1) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 2(1) 2(1) 3(1) 2(1) 1(1) 1(1) 2(1) 2(1) 1(1)

S3 AUC 90(1) 91(0) 90(1) 91(1) 91(1) 90(1) 90(1) 88(1) 91(1)

SSE 60(4) 51(1) 58(2) 54(2) 45(2) 44(4) 51(3) 59(3) 45(2)

TPR 96(2) 97(3) 95(3) 96(2) 98(1) 99(2) 98(1) 98(2) 99(1)

FPR 2(2) 2(1) 3(2) 2(1) 1(1) 1(1) 1(1) 2(1) 1(1)

S4 AUC 84(1) 95(1) 85(1) 93(1) 96(1) 95(0) 94(0) 92(0) 96(1)

SSE 78(2) 32(2) 71(3) 35(1) 24(2) 31(3) 40(3) 48(3) 22(2)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S5 AUC 76(1) 85(1) 77(1) 82(1) 92(1) 93(0) 92(1) 92(1) 92(1)

SSE 112(4) 48(3) 107(5) 87(4) 43(4) 48(5) 58(9) 69(13) 44(5)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)
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Scenario LS LAD
DPD (α =)

0.01 0.1 0.3 0.5 0.8 1 CV

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S6 AUC 83(1) 91(0) 93(1) 97(1) 97(0) 96(1) 95(1) 94(1) 97(0)

SSE 77(3) 39(3) 49(7) 30(4) 43(5) 46(5) 64(13) 70(15) 33(4)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 1(1) 0(0) 0(0) 0(1) 0(0) 1(1) 0(0) 0(0) 0(0)

S7 AUC 71(1) 90(0) 86(0) 96(0) 96(1) 96(1) 95(1) 94(1) 96(1)

SSE 106(107) 60(8) 112(24) 50(8) 65(12) 95(22) 95(14) 98(15) 52(9)

TPR 98(2) 99(0) 100(1) 99(2) 100(1) 100(1) 100(1) 100(1) 100(1)

FPR 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Table 10

Simulation I with AR correlation and half positive/negative signals: mean (sd) based on 200 

replicates (the values of AUC, TPR, and FPR are multiplied by 100).

Scenario LS LAD
DPD (α =)

0.01 0.1 0.3 0.5 0.8 1 CV

S1 AUC 93(0) 92(0) 93(0) 93(0) 92(1) 90(1) 87(1) 86(1) 92(0)

SSE 37(2) 50(2) 38(1) 38(1) 42(2) 56(3) 88(2) 90(2) 38(1)

S2 AUC 86(1) 86(1) 86(1) 86(1) 87(1) 85(1) 82(1) 81(1) 87(1)

SSE 93(3) 90(4) 92(3) 82(3) 72(3) 86(2) 120(3) 128(5) 73(3)

TPR 98(2) 99(1) 99(2) 100(0) 99(1) 99(1) 99(1) 100(0) 100(0)

FPR 5(1) 4(1) 4(2) 4(2) 2(1) 4(1) 6(3) 7(3) 2(1)

S3 AUC 77(2) 77(2) 77(1) 80(1) 78(1) 77(1) 75(1) 74(1) 80(1)

SSE 155(8) 155(10) 152(5) 149(5) 139(6) 148(8) 175(10) 182(12) 138(6)

TPR 73(4) 76(5) 77(6) 77(5) 78(5) 80(5) 75(4) 81(4) 80(5)

FPR 12(3) 10(3) 13(2) 10(2) 8(3) 8(3) 8(2) 8(2) 8(3)

S4 AUC 75(1) 84(1) 75(1) 85(0) 89(1) 87(1) 85(1) 85(1) 90(1)

SSE 186(7) 84(4) 175(5) 92(3) 64(5) 85(4) 114(4) 120(4) 66(5)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S5 AUC 67(1) 79(1) 67(1) 72(1) 83(1) 83(1) 82(1) 81(1) 83(1)

SSE 245(7) 131(5) 239(6) 204(3) 102(7) 115(10) 148(6) 157(8) 105(8)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S6 AUC 74(2) 87(0) 86(1) 91(1) 91(0) 89(0) 86(1) 85(1) 91(1)

SSE 108(108) 180(5) 111(10) 64(5) 74(8) 95(9) 123(8) 135(14) 67(6)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 3(1) 0(0) 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S7 AUC 64(1) 87(0) 77(1) 90(1) 90(0) 88(1) 86(1) 84(1) 91(1)

SSE 109(109) 111(7) 202(33) 92(6) 109(12) 142(13) 173(13) 183(17) 94(8)
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Scenario LS LAD
DPD (α =)

0.01 0.1 0.3 0.5 0.8 1 CV

TPR 98(2) 99(1) 99(1) 99(1) 100(1) 99(1) 98(1) 99(1) 99(1)

FPR 4(2) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Table 11

Simulation II with AR correlation and half positive/negative signals: mean (sd) based on 200 

replicates (the values of AUC, TPR, and FPR are multiplied by 100).

Scenario LS LAD
DPD (α =)

0.01 0.1 0.3 0.5 0.8 1 CV

S1 AUC 98(1) 97(0) 98(0) 98(0) 97(1) 97(0) 95(0) 95(1) 97(0)

SSE 14(1) 19(5) 13(1) 14(2) 15(1) 17(1) 22(1) 30(1) 15(1)

S2 AUC 94(1) 95(1) 94(0) 95(1) 95(1) 94(1) 93(1) 92(1) 95(1)

SSE 34(2) 32(2) 35(2) 30(1) 25(1) 25(1) 30(1) 36(3) 25(1)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 2(1) 2(1) 2(1) 2(1) 1(1) 1(1) 1(1) 2(1) 1(1)

S3 AUC 88(1) 89(1) 88(1) 89(1) 90(1) 89(1) 88(1) 87(1) 90(1)

SSE 66(3) 57(3) 63(2) 59(2) 48(3) 46(2) 52(2) 8(5) 47(3)

TPR 95(3) 97(2) 96(1) 97(2) 98(2) 99(1) 99(1) 98(2) 99(1)

FPR 5(2) 3(2) 5(1) 4(2) 3(2) 1(1) 2(1) 3(2) 3(2)

S4 AUC 84(1) 92(1) 85(1) 93(1) 96(0) 95(0) 94(0) 94(1) 96(0)

SSE 76(3) 33(2) 73(2) 35(2) 24(2) 32(3) 37(2) 46(4) 23(3)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S5 AUC 76(1) 88(1) 76(1) 81(1) 92(1) 93(1) 92(1) 92(1) 93(1)

SSE 110(4) 48(2) 110(6) 86(3) 40(3) 43(3) 54(7) 60(10) 39(3)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S6 AUC 81(2) 93(0) 93(1) 97(1) 97(0) 96(0) 95(0) 95(1) 97(0)

SSE 85(16) 39(5) 53(6) 30(4) 39(6) 47(7) 65(20) 60(9) 33(5)

TPR 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

FPR 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

S7 AUC 70(2) 90(1) 87(1) 96(1) 96(0) 96(0) 95(0) 94(1) 96(1)

SSE 106(107) 62(7) 94(13) 47(8) 70(11) 95(27) 110(28) 98(14) 49(9)

TPR 99(1) 100(1) 100(1) 100(0) 99(1) 99(1) 100(0) 100(0) 100(0)

FPR 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
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Figure 1. 
Data analysis: histograms of GE distributions with long-tails (x-axis: GE levels).
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Figure 2. 
Data analysis: heatmaps of the GE correlation matrices for A0 (left) and A1 (right). Both x-

axis and y-axis are gene numbers.
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Figure 3. 
Data analysis: positions of the nonzero components of β for A0 (left) and A1 (right). x-axis 

and y-axis are GE and CNA numbers, respectively.
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