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Bayesian network modeling is a promising approach to define and evaluate gene expression circuits in
diverse tissues and cell types under different experimental conditions. The power and practicality of this
approach can be improved by restricting the number of potential interactions among genes and by defining
causal relations before evaluating posterior probabilities for billions of networks. A newly developed gene-
tical genomics method that combines transcriptome profiling with complex trait analysis now provides
strong constraints on network architecture. This method detects those chromosomal intervals responsible
for differences in mMRNA expression using quantitative trait locus (QTL) mapping. We have developed an
efficient Bayesian approach that exploits the genetical genomics method to focus computational effort on
the most plausible gene modulatory networks. We exploit a dense marker map for a genetic reference
population (GRP) that consists of 32 BXD strains of mice made by intercrossing two progenitor strains—
C57BL/6J and DBA/2J. These progenitors differ at ~1.3 million known single nucleotide polymorphisms
(SNPs), all of which can be exploited to estimate the probability that a gene contains functional polymorph-
isms that segregate within the GRP. We constructed 66 candidate networks that include all the candidate
modulator genes located in the 209 statistically significant trans-acting QTL regions. SNPs that distinguish
between the two progenitor strains were used to further winnow the list of candidate modulators. Bayesian
network was then used to identify the genetic modulatory relations that best explain the microarray data.

INTRODUCTION

Sequential and contingent changes in gene expression strongly
influence the development of organisms and responses to the
environment. These dynamic biological programs are exe-
cuted via complex and still poorly defined networks of inter-
actions among genes, transcripts, proteins and numerous
small molecules and cofactors. An adequate definition of
these flexible and complex molecular circuits is an essential
goal of functional genomics. High-throughput methods,
including transcriptome analysis and genome sequencing,
have generated huge amounts of data that can be exploited
to systematically identify gene modulatory networks.

A recent step forward in this direction involves merging
complex trait analysis with transcriptome analysis. This

genetical genomics (1) approach treats normal variation in
the expression of each gene as a quantitative trait. Quantitative
trait locus (QTL) mapping methods are then used to identify
the chromosomal intervals that harbor sequence variants
(polymorphisms) that produce downstream variations in
expression (2—13). This approach is called transcriptome
QTL mapping. The major limitation of transcriptome QTL
mapping is the difficulty in evaluating candidate genes
within QTL intervals that are the ultimate source of variation.
A QTL region may contain hundreds of potential polymor-
phic candidates. Although the strong correlation between
DNA variations and gene expression levels indicates that
the modulator is located in a particular chromosomal
interval, transcriptome QTL mapping cannot identify modu-
lator genes.
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Figure 1. A graphic view of transcriptome QTL mapping results. A total of 175 transcripts have been mapped to 209 trans-acting QTLs intervals with LOD
scores greater than 4. Mouse chromosomes are represented by vertical lines. The chromosomal locations of genes for all 175 transcripts and their 209 QTLs can
be read from the ruler at the leftmost side of the plot. Red/green lines connect a QTL region (represented by a marker) and its target gene. The green end points to
the location of the QTL and the red end points to the location of the target gene.

Bayesian network analysis is an effective method to infer
the structure of gene regulatory networks from microarray
data (4—28). However, constructing putative networks is diffi-
cult, because the number of possible networks is a super-expo-
nential function of the number of genes. The total number of
possible networks is 3™ ~DV2 \where N is the number of
genes. Structure learning of Bayesian networks is therefore
an NP-hard problem (29). Here, we show that transcriptome
QTL mapping combined with single nucleotide polymorphism
(SNP) analysis provides strong constraints on the set of poss-
ible upstream modulators of each transcript. Instead of starting
with unstructured expression data in which the expression of
each transcript can potentially be influenced by any and all
other transcripts, we now start from a highly refined set of
experimentally supported and directed relations. In this
paper, we propose an integrated computational framework
based on transcriptome QTL mapping, SNP analysis and
Bayesian network. Our method extends beyond mapping of
regulatory loci to a systematic evaluation of possible gene
modulatory relations using genome-wide genotype, SNP and
gene expression data.

The biological motivation of this work is to gain insight into
the structure of networks involved in the modulation of gene
expression in the mouse brain. All data were obtained from
a single genetic reference population (GRP) consisting of 32
BXD recombinant inbred strains. This GRP was generated
by crossing two inbred progenitor strains—C57BL/6J and
DBA/2J. The genome of each BXD strain is a near-random
recombination of chromosome intervals from the two progeni-
tor strains (30,31). Difference in gene expression among
members of the GRP can be mapped back to chromosomal
intervals using conventional QTL mapping methods. Further-
more, with nearly complete sequence data for both progenitor
strains, we can evaluate whether genes within a QTL interval
has the type of sequence variants likely to be responsible for a
QTL effect.

RESULTS

Transcriptome QTL mapping

The genotypes of the 32 BXD strains have been characterized
at several thousand markers, but we used a subset of 779
markers that have been carefully error-checked and that have
non-redundant strain distribution patterns. One-hundred Affy-
metrix U74Av2 arrays were hybridized with pools of mRNA
extracted from brain samples of 32 BXD strains, the two
parental strains (C57BL/6J and DBA/2J) and their Fl
hybrid. Each array was hybridized with mRNA from three
animals, and we typically generated three arrays for each
strain. For this analysis, we used the Affymetrix MAS 5 trans-
form. Details regarding the experimental conditions, sex
and age are available at http://www.genenetwork.org/dbdoc/
U74Av2MASS5_December03.html. All of the genotypes and
microarray data can be conveniently accessed using
WebQTL (9,32,33) (http://www.genenetwork.org). We iden-
tified 175 transcripts associated with one or more trans-
acting QTLs, with a likelihood of odds (LOD) ratio [the
relation between the LOD and the likelihood ratio statistics
(LRS) is LOD = LRS/4.61] greater than 4.0. These 175 tran-
scripts were mapped to 209 QTL intervals. Figure 1 shows the
chromosomal locations of the frams-acting QTLs and their
downstream target genes. Many significant cis-acting QTLs
have also been found, but in this work we focus only on the
trans-acting QTLs to identify the potential upstream modu-
lator genes that may be members of molecular circuits.

Construction of candidate networks

We constructed putative modulatory networks using transcrip-
tome QTL mapping results. Genes located within a QTL
region were considered to be candidate sources of variation
in downstream mRNA expression. Expression variation in
the upstream candidate genes may in turn be mapped to



Table 1. The statistics of the QTL-derived candidate networks

Network no. Number of Number of Number of
QTLs genes directed edges
1 72 1395 2397
2 29 387 599
3 6 125 136
4 2 112 210
5 5 91 168
6 8 71 109
7 6 50 106

other QTL intervals. Thus, the target genes and the candidate
modulator genes form a network. Each network is a directed
graph in which each node represents a gene and each directed
edge represents a candidate modulatory relation. We call these
networks QTL-derived candidate networks because they
contain all the candidate modulatory relations suggested by
transcriptome QTL results.

A total of 3123 genes [only the genes in the Affymetrix
genechip U74Av2 were counted] are located in the 209 QTL
intervals. The transcriptome QTL mapping generated 4815
candidate modulatory relations. We connected the genes of
the 175 transcripts with the 3123 genes in the QTL intervals
by directed edges representing 4815 candidate modulatory
relations. In this way, we constructed 66 QTL-derived candi-
date networks. Seven of these contained more than 50 genes
(Table 1). The largest QTL-derived network contained 1395
nodes (genes) and 2397 directed edges. The 1395 genes
were located in 72 QTL intervals scattered on 15 chromo-
somes (Fig. 2A).

Analysis of the between-strain SNPs

The QTL-derived candidate networks include all the genes in
the QTL regions as potential modulator genes. This may lead
to very large networks. The complexity of networks can be
reduced by eliminating from consideration those genes in
QTL intervals that are evidently identical by descent based
on the density and distribution of SNPs that distinguish the
two progenitor strains. Conversely, candidate genes within
QTL intervals that harbored missense and nonsense SNPs
were considered very strong candidates. The genomic posi-
tions for all RefSeq (34) mRNA transcripts were determined
by parsing the corresponding file downloaded from UCSC
Genome Browser site (http://genome.ucsc.edu). Curated
SNPs between the two mouse strains (~3 million) were also
retrieved from Celera SNP database (35). Of these SNPs,
~1.3 million differ between C57BL/6J and DBA/2J. Their
genomic positions were determined by BLAT analysis
against the mouse genome (36), and missense and nonsense
SNPs were screened for each RefSeq mRNA transcript.
Genes without missense or nonsense SNPs are less likely to
be responsible for effects of the frans-acting QTLs, because
their protein products are the same in the two progenitor
strains and all BXD strains. Such genes and the related edges
were removed from the candidate networks. Only 364 genes
and 445 candidate modulatory relations survived this process.
The resulting networks are called ‘QTL-SNP-derived
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candidate networks’. All 445 candidate modulatory relations
are listed in Supplementary Material, Table S1. The biggest
QTL-derived candidate network (Fig. 2A) was divided into
15 small networks (Fig. 2B) after filtering by the between-
strain missense and nonsense SNPs, with 159 genes and 236
candidate modulatory relations left for further consideration.

Bayesian network modeling

We then used Bayesian network methods to evaluate the sub-
networks of the QTL -SNP-derived candidate networks. Under
the assumption that there is only one gene in each QTL region
modulating the expression of the target gene, we were able
to search all the possible network structures exhaustively.
Because the Bayesian score is decomposable, we can calculate
a score for each target transcript and all candidates indepen-
dently and select the best scoring modulator(s) for each target
transcript. Thus, the total number of scores we need to
calculate is

N:

N = Znnik,

i=1 k=1

where M is the number of target genes in the candidate
network; N; is the number of QTLs associated with the target
gene i and n;;, is the number of candidate genes in the £ th QTL
interval of target gene i. We calculated all the possible modu-
latory relations and predicted 145 modulatory relations that
best explained the data (the first 145 modulatory relations in
Supplementary Material, Table S1).

Five known transcription factors are involved in six pre-
dicted modulatory relations. Three of the five transcription
factors have DNA binding matrixes in the TransFac database
(37). However, only two predicted target genes of the three
transcription factors have annotated 5’-UTRs in their RefSeq
(34) sequences, which are needed for retrieving upstream
sequences. The 1000 bp upstream regions of the two target
genes were extracted from the mouse genome annotation data-
base (http:/genome.ucsc.edu). The MATCH program (38) was
used to assess whether there was any putative binding site for
the predicted modulators in the upstream regions of target
genes. The core similarity and the matrix similarity cutoff
were set to 1.00 and 0.99, respectively to minimize false posi-
tives. The DNA binding motifs were retrieved from the Trans-
Fac database. For both target genes, we found DNA binding
sites for the predicted modulator in the 1000 bp upstream
sequence (Table 2). The core similarity scores (CSS) and
matrix similarity scores (MSS) that measure the quality of
the match are all equal or very close to 1.0, which denotes
perfect match (50).

DISCUSSION

The major challenge in constructing gene modulatory net-
works from microarray data is that data sets almost invariably
contain far fewer samples than needed to specify network
architecture. It has been shown that using various constraints
can greatly improve the power of Bayesian network (39-41).
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Figure 2. (A) A large QTL-derived candidate network that consists of 65 target genes and 1330 candidate modulator genes, all of which are located within 72
QTL intervals on a total of 15 chromosomes. The black nodes represent the target genes. The colored nodes represent potential modulator genes. Colors are used
to label chromosomes. The connecting lines (directed edges) represent candidate modulatory relations suggested by the transcriptome-QTL mapping result.
(B) After filtering by between-strain SNPs, the QTL-derived candidate network is greatly reduced in size and is divided into 15 QTL-SNP-derived candidate
networks. The candidate relations are represented by gray and black directed edges. Black edges represent 61 modulatory relations supported by the subsequent
Bayesian network analysis. Occasionally, one gene may be represented by more than one node, because it is associated with more than one probe sets on the

Affymetrix U74Av2 array.

We addressed this problem by providing a framework for
using transcriptome QTL mapping and SNP analysis to dra-
matically reduce the number of possible network structures
that need to be evaluated using subsequent Bayesian
network analysis (Fig. 3). Our results provide testable hypo-
theses on the structures of networks modulating gene
expression in the mouse forebrain. Naturally, predicted
networks of this type need to be validated or refuted using
independent methods and data sets.

Microarray data sets do not in themselves contain sufficient
information to reliably construct the whole gene modulatory
network. Integrating other data types and sources of infor-
mation is of crucial importance. In this work, we used
genotype data for the BXD GRP in combination with SNP
data to cut down the number of gene modulatory relations
that need to be evaluated. Other information can also be
easily integrated in this framework to provide additional con-
strains on network structures and to provide suitable prior



Table 2. Examples of predicted modulatory relations with validation from
promoter sequence analysis

Modulator gene Target gene

Symbol  Gene Symbol Gene Binding site for
description description the modulator”

Gata6 GATA Aldh9al  Aldehyde VS$SGATAG6_01
binding dehydrogenase 9, CSS = 1.000
protein 6 subfamily Al MSS = 0.997

Tcfl2 Transcription  Mela Melanoma antigen ~ VSHEB_Q6
factor 12 CSS = 1.000

MSS = 1.000

“The Match program (38) was used to search for the bind sites for tran-
scription factors. Binding site for the predicted modulator was found in
the 1000 bp upstream region of the corresponding target gene. Transfac
matrix identifiers of the binding sites, CSS and MSS for the matches
are shown in this column. The Gata6 binding site is located 374 bp
upstream from the transcription start of Aldh9al, and the Tcfl2 binding
site is located 177 bp upstream from the transcription start of Mela.

probabilities for the structure learning of the Bayesian
network. For example, knowledge encoded in gene function
classification systems such as gene ontology (42), MIPS
functional catalog (43) and KEGG ontology (44) could poten-
tially be exploited as prior knowledge in the Bayesian network
analysis. In principle, the use of multiple types of data enables
us to discover the modulatory relations that cannot be inferred
from microarray data alone.

In this work, we used the BXD GRP to illustrate the appli-
cation of a genetical genomics approach. The power of QTL
mapping with genetic reference panels will be greatly impro-
ved as much larger GRPs are generated (30). The higher the
mapping precision, the higher the likelihood that subsequent
analysis of candidate modulatory networks will be effective.
The framework we describe in this paper can be readily
applied to data obtained from Arabidopsis, maize, C aenor-
habditis elegans and Drosophila, species for which large RI
panels are readily available. The method can also be applied
to the whole-genome genotyping and gene expression data
obtained from segregating crosses such as F2 intercross and
backcross.

Most current molecular networks and pathways are still
relatively simple sketches in which many of the key consti-
tuents are still missing, misplaced and misdirected. This Baye-
sian genetic genomics approach allows us to formulate and
test larger networks without explicit data on molecular func-
tion. It is an efficient method with which to generate new
hypotheses that will clearly need to be refuted, verified and
refined using additional powerful genetic and molecular
methods.

MATERIALS AND METHODS
QTL mapping

The original MAS 5 microarray data were log 2-transformed
and normalized to a standard array-wide mean and standard
deviation. Values from replicate microarrays were averaged.
These values are then evaluated by regression against
marker genotypes, where alleles at marker loci were coded
as —1 or 1 for the BB and DD genotypes. The B allele is

Human Molecular Genetics, 2005, Vol. 14, No. 9 1123

Microarray data
100 arrays

~10* genes

~107 possible
modulatory relations

Genotype data
779 genetic markers
32 BXD strains

Transcriptome-
QTL mapping

QTL-derived candidate networks
3,251 genes
4,815 candidate modulatory relations

Between-strain
SNP analysis

QTL-SNP-derived candidate networks
364 genes
445 candidate modulatory relations

Bayesian
network

Results
213 genes
145 predicted modulatory relations

Figure 3. A flow chart of our approach. We begin with two primary data sets: a
large gene expression data set generated using 100 Affymetrix U74Av2 arrays
and dense marker genotype data for each of 32 members of the BXD GRP. If
networks were reconstructed exclusively from microarray data the number of
possible modulatory relations would be about 5 x 10 (there are approximately,
10 000 genes represented on the microarray). The transcriptome-QTL mapping
results dictate that potential modulator genes must be located within QTL
regions, and this reduces the number of relations to 4815. An analysis of
between-strain SNPs allows us to further reduce modulatory relations to 445.
Finally, the Bayesian network method predicted 145 modulatory relations.

derived from C57BL/6J and the D allele is from DBA/2J.
Unknown or rare heterozygous markers were coded as
0. The regression model that we used estimates the additive
effects of alleles:

Vi =bo+bix; + e,

where y;, x; and e; are the trait value, coded genotype and
random environmental effects, respectively, for the ith
member of the BXD GRP. This allows the regression coeffi-
cient to be estimated from sums of squares and sums of
products. The least-square estimators for the regression coeffi-
cients are
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The LRS was calculated for each regression (37):

va:1 i —7)
YV =)

where N is the number of inbred lines and y; = b, + b x;
is the predicted trait value.

This method is the simplest possible approach to QTL
mapping. It neglects the possibility of multiple QTLs, domi-
nance and epistatic interactions and it assumes equal variances
among GRP strains.

LRS = N log

Bayesian network

We applied a Bayesian network method to evaluate subnet-
works of the QTL-SNP-derived candidate networks. A Baye-
sian network (46,47) is a probabilistic graphical model of
multiple variables. Given the data set D, one wants to discover
the modulatory network that best matches D. The common
approach to this problem is to introduce a score to evaluate
the posterior probability of a network G given data D:

S(G : D) = log p(G|D),

where P is the posterior probability. The Bayesian score for
the entire network is decomposable under the assumption of
complete data. In the case of a discrete Bayesian network
with multinomial local conditional probability distributions,
the score can be computed using a closed form equation (39):

S(G:D) =

n_ 9
log Py + Z Z log

i=1 j=1

Mlay)
F(a[j+Mj) il

o Tage + Nye)
I'(ain) '

where r; is the number of states that gene i can assume, g;
denotes the number of joint states that the modulator genes of
gene i can have and ay; is the parameter of Dirichlet prior
distribution. (We use a non-informative parameter prior a;; =
1/(q; r;) because no prior information about parameters is
available (49).) Ny is the number of occurrences of gene i
in state k given parent configuration j, N; = D ¥~ ; Ny and
a; = Y k=; ags I'(-) is the gamma function and P is the
structure prior. A uniform structure prior was used.

We first normalized the gene expression data for each
sample to have the same mean and standard deviation. All
expression data were discretized into one of three levels. We
calculated the mean (w) and standard deviation (o) for each
transcripts expression values. If an expression value was less
than u — o and u—+ o, it was assigned to level 0; if an
expression value was between w — o and p+ o, it was

assigned to level 1 and if an expression value was larger
than u + o, it was assigned to level 2.

Network visualization

Kamada—Kawai algorithm (50), a graph layout algorithm
implemented in Pajek (51,52) was used to visualize gene net-
works. Pajek is a program for analyzing and visualizing
complex networks.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG Online.
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