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Abstract

Background: Populations of the Arabian Peninsula have a complex genetic structure that reflects waves of

migrations including the earliest human migrations from Africa and eastern Asia, migrations along ancient civilization

trading routes and colonization history of recent centuries.

Results: Here, we present a study of genome-wide admixture in this region, using 156 genotyped individuals from

Qatar, a country located at the crossroads of these migration patterns. Since haplotypes of these individuals could

have originated from many different populations across the world, we have developed a machine learning method

“SupportMix” to infer loci-specific genomic ancestry when simultaneously analyzing many possible ancestral

populations. Simulations show that SupportMix is not only more accurate than other popular admixture discovery

tools but is the first admixture inference method that can efficiently scale for simultaneous analysis of 50-100 putative

ancestral populations while being independent of prior demographic information.

Conclusions: By simultaneously using the 55 world populations from the Human Genome Diversity Panel,

SupportMix was able to extract the fine-scale ancestry of the Qatar population, providing many new observations

concerning the ancestry of the region. For example, as well as recapitulating the three major sub-populations in Qatar,

composed of mainly Arabic, Persian, and African ancestry, SupportMix additionally identifies the specific ancestry of

the Persian group to populations sampled in Greater Persia rather than from China and the ancestry of the African

group to sub-Saharan origin and not Southern African Bantu origin as previously thought.
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Background
The ancestry of people currently populating the Arabian

Peninsula is complex. Centrally located among three

continents, the geography of the region has contributed

to migration influx during different epochs of human

history. Qatar, located on the eastern edge of the Arabian

Peninsula, is at the center of these patterns [1]. The first

anatomically modern humans to leave Africa probably

entered the peninsula around 125,000 years ago, followed

by returning migration patterns of ancient humans from

eastern Asia [2]. Qatar experienced seasonal migrations
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of early Arab tribes as trade flourished with ancient

Mediterranean civilizations [1]. Before the start of the

20th century, the region was subjected to colonization

efforts by the Portuguese, Ottomans, and British, and

also saw an influx of Persian traders and African slaves

brought through trade routes in Oman [3].With increased

prosperity in the last century, there has been an influx of

traditionally nomadic populations into the cities and an

influx of temporary guest workers from West and South

Asia [3]. This rich migratory history has left traces in the

genomes of individuals in the current population of Qatar.

For example, a recent analysis of Qataris demonstrated

three genetic sub-populations showing similarities to Ara-

bic, Persian andAfrican ancestry respectively [4]. Here, we

perform a more detailed re-analysis of genetic structure

in the Arabian Peninsula by analyzing genome-wide

admixture in the modern population of Qatar.

© 2012 Omberg et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Admixture in modern humans can reveal individual and

population demographic histories and origins [5-7] and

holds promise for determining the genetic basis for dis-

eases [8-10]. The most basic historical scenario producing

admixture is interbreeding of two ancestrally isolated pop-

ulations over a small number of generations. For example,

African-Americans in North America where the major

ancestral populations are known because of the well-

documented demographic history through the African

diaspora and northern European migration in the 17th

through 19th century [5]. The history of Qatar in contrast

has produced a more complex pattern of admixture where

not all ancestral populations are known [4]. An additional

difficulty is there has not been extensive sampling in the

region, so there is limited genetic data for the few ances-

tral populations that are known with greater certainty.

Methods for analyzing broad-scale populations structure,

such as principal components analysis (PCA) [11] and

STRUCTURE [12,13] can be applied to such cases but

lack in accuracy for loci-specific analysis [14]. Analyzing

genome-wide admixture is a more significant challenge

because available admixture inference methods cannot

simultaneously analyze more than a few ancestral popula-

tions [5,15] or have poor performance on dense datasets,

requiring filtering of SNPs by linkage disequilibrium [16-

19]. Lack of complete knowledge of ancestral populations,

due to poor sampling or the possible complete lack of

well-defined ancestral populations [7], is therefore a road-

block to accurate genome-wide admixture analysis when

applying these methods.

To address the challenge of inferring admixture for

individuals from Qatar, we have developed “Support-

Mix,” a machine learning method for admixture analysis.

SupportMix is a two-level method where the first level

makes use of support vector machines (SVM), a class

of supervised machine learning algorithms known to be

among the most accurate techniques for general classifi-

cation problems, to identify the putative ancestral origin

of a genomic segment. The second level is a smoothing

application that makes use of a hidden Markov model

(HMM) to detect transitions between ancestral origins

in the admixed genomes (similar to [5,15,19]). Support-

Mix is an accurate approach for admixture analysis that

can efficiently scale to genome-wide analysis when con-

sidering more than 50 ancestral population. In addition,

because SupportMix is a data-driven learning approach,

it is robust to specific population genetic model assump-

tions. When applying the method, it is therefore not nec-

essary to make assumptions with regard to the underlying

demography that lead to admixture. The combination of

these properties means that SupportMix can be applied to

genome-wide admixture analysis using a strategy that is

impractical for other admixture methods. Instead of per-

forming admixture analysis by determining a few ancestral

populations and assuming specific demographic and pop-

ulation genetic parameters [5,15-19], with SupportMix,

we can perform admixture analysis by simultaneously

analyzing a large number of available world-wide popula-

tions as possible ancestors without being concerned with

the relationship of these to the focal population. Given

enough populations, SupportMix will return the genet-

ically closest population to the ancestral population at

each of the loci of the admixed genome. We also evaluate

the accuracy of SupportMix by comparing the ances-

try assignments to LAMP-ANC, a popular and accurate

admixture method, [17] for a series of in silico generated

admixed populations from the HGDP panel. By varying

population genetic parameters we are able to infer the

accuracy for many different admixture scenarios and show

that not only is SupportMix more accurate but is also

robust to perturbations in parameters.

We applied SupportMix to analyze admixture in 156

unrelated individuals from Qatar genotyped by microar-

ray [4]. Since we are lacking complete knowledge of ances-

try for the Qatar individuals, we used all 55 populations

from the Human Genome Diversity Panel (HGDP) as

possible ancestral populations [20]. SupportMix roughly

divides the Qatari population into three sub-populations

with different degrees of admixture, a result that corre-

sponds well with both migratory history [3] and previous

genetic studies [1,4]. One sub-population is of mainly

Bedouin and other Arabic ancestry, “Arab-Qataris,” one

sub-population consists of admixture between Arabic and

Greater Persian populations, “Persian-Qataris” and a third

sub-population is heavily admixed between Arabic and

African ancestry, “African-Qataris.” The African alleles

in the African-Qatari sub-population are most similar

to northern sub-Saharan populations such as Yoruban,

Mandinka and northern Bantu-speaking populations but

dissimilar from southern Bantu populations, a result con-

sistent with the historical slave trading routes. All three

sub-populations show very low levels of admixture or

similarity to European populations and some degree of

admixture with Middle East populations from North

Africa but levels of admixture below the error rate of

other world populations.We compare the ancestry assign-

ments of SupportMix to both principal component anal-

ysis (PCA) and STRUCTURE which both provide global

predictions of ancestry proportions.

Methods
We consider the problem of inferring the ancestral-

population origin of the two phased haploid genomes of

sampled individuals who can trace their recent ancestry

to k genetically distinct populations. This is accomplished

by training classifiers on k′ ≥ k putative ancestral popu-

lations where these k′ population must contain either the

true k ancestral populations or good proxy populations
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for them. For each population multiple individuals have

to be sampled at the same N polymorphic sites as the

admixed individuals. Every ancestral and admixed haploid

genome, i, we represent as a vector xi ∈ {−1, 1}N where

-1 indicates the minor allele and 1 the major allele for the

N sampled polymorphic sites. In addition every ances-

tral haploid genome is associated with a scalar yi ∈ 1..k′

identifying the population of the haploid genome.

To find region-, or locus-specific ancestry assignments

in admixed individuals, the vectors of genotypes, xi are

divided into windows, x
j
i, of w consecutive loci where j

indexes the N/w windows in individual haploid genome

i. The inference problem can therefore be formalized as

finding the appropriate label y
j
i, for each window x

j
i, in

an admixed individual i. We use support vector machines

(SVM) [21] for this classification problem and apply a hid-

den Markov model (HMM) to the output of the SVMs to

smooth the population assignment across windows.

Training for ancestry classification with support vector

machines

For each window of the genome we train a unique and

independent SVM to optimize the classification of the k′

ancestral populations. For an excellent tutorial to SVMs

we refer the reader to the article by Asa Ben-Hur [22].

Specifically a linear discriminant function is trained on

each window, j, consisting of wmarkers. For the case k′ =

2 (more on k′ > 2 below), the labels yi become -1 and

1 and the discriminant function is found by the following

constrained optimization problem:

min
w,b

1

2
‖w‖2 + C

w∑

i=1

ǫi

subject to : y
j
i(w · x

j
i + b) ≥ 1 − ǫi, ǫi ≥ 0

where w is a vector and b a scalar that together define a

w-1 dimensional hyperplane. This hyperplane optimally

separates the two populations, in the w dimensional geno-

type space, subject to a penalty of misclassified individual

samples proportional to the “slack” variable C and the dis-

tance, ǫi, on the wrong side of the plane of sample i. The

determined discriminant function f (x
j
i) = sign(w · x

j
i + b)

classifies an unknown genome window x
j
i by determining

y
j
i of the window. For k

′ > 2 the standard one-against-one

trick for binary classifiers is used, that is all k′(k′ − 1)/2

pairs of populations are trained against each other using

the above standard binary SVM [23]. Then the unknown

admixed window is tested using all the k′(k′ − 1)/2 classi-

fiers and the final ancestry is assigned the most common

ancestry assignment of all these classifiers.

In addition to training the SVMs on the ancestral data,

accuracy of the SVM classification is estimated with a

three-way cross-validation. This was accomplished by

subdividing the individuals in the ancestral populations

into three independent sets, where SVMs were trained on

two of the subsets and tested on the remaining third sub-

set three different times. The accuracies of these three

sub-samplings were averaged and taken as a measure of

the success rate for eachwindow across the k′ populations.

This success rate is used heuristically to determine w, the

size of the window necessary to discriminate the different

ancestral populations while keeping w as small as possi-

ble to preclude recombination in the admixed genomes

within each window and is also used as a parameter for

the HMM.

Application of SVMs for classification using hidden Markov

models

The output classification of each admixed individual is

used as the input to an HMM to extract the ancestral

origins of each window. Each SVM is independent from

every other SVM and as such, there is no assumed cor-

relation between ancestral states across window bound-

aries. Biologically this correlation generally exists within

genomic blocks as a consequence of linkage disequilib-

rium (LD). By introducing a Markov condition across

windows, we reintroduce this correlation. Specifically the

HMM has k′ hidden states and k′ output states. Assuming

recombination occurs at every generation, recombination

points are modeled along the chromosome as a Pois-

son process dependent on the recombination rate and

number of generations, g, since admixture [24]. The tran-

sition probabilities between the hidden states is therefore

modeled as (1 − e−gd)/(k′ − 1) where d is the genetic

distance between windows, measured in Morgans. The

emission probabilities are p for the corresponding hidden

state and (1 − p)/(k′ − 1) for the other possible states,

where p is the success rate of the SVM at the corre-

sponding window as determined by the cross-validation

(described in previous section). This HMM, in addition

to accounting for LD, has the advantage of smoothing out

the classifications returned by the SVM, so as to limit

the effect of regions with poor information content. The

posterior probability of the ancestry at each window loca-

tion is determined using the forward-backward algorithm

and the most probable ancestry is used as the estimated

ancestry.

The genetic distance d between neighboring win-

dows was estimated from the combined HapMap genetic

map[25]. To test whether variations in the genetic map

drastically affects the results a subset of simulations were

repeated with a fixed d across the entire genome, where d

was chosen to match the mean across the genetic map.

Genotype samples from Qatar and the HGDP-Ceph panel

The 156 unrelated Qataris were processed on the

Affymetrix 5.0 genotype array according to the
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protocols described by Hunter-Zinck et al. [4]. The

440,794 genotyped autosomal SNPs were pruned using

PLINK v1.06 [26] to 327,044 SNPs with a minor allele fre-

quency greater than 5%, a missing rate less than 5% and a

Hardy-Weinberg equilibrium (HWE) deviation p-value of

no less than 0.001.

The remaining SNPs were phased using Beagle [27]. For

the examination of the Qatari sample using STRUCTURE

the data was further pruned for pairwise linkage disequi-

librium with a threshold of 0.5 in any 100 SNP window

using PLINK’s –indep-pairwise command and thinned to

20% of SNPs using –thin, resulting in 28,457 SNPs.

To assign segments of the genomes of each Qatar indi-

vidual to possible ancestral populations, the HGDP sam-

ple data [20] was used. For these putative ancestral pop-

ulations, we filtered for a minor allele frequency of 5%

and removed related, unannotated and poor quality sam-

ples, retaining 886 individuals from 55 populations, all of

which were phased using Beagle [27]. As the sample sizes

of the different HGDP populations were very different the

analysis was also repeated by subsampling 9 individuals

from each HGDP population to verify that any results

were robust to sample size changes. As the HGDP and

the Qatar samples were run on different platforms only

71,982 SNPs remained for the analysis using SupportMix

and PCA.

Generation of in silico admixed population samples

A total of 651 unrelated individuals from 31 global popu-

lations in the HGDP-CEPH dataset that each have at least

10 sampled individuals (20 phased haploid genomes) were

used for in silico analysis. The other HGDP populations

were excluded as there were not enough individuals to

simulate admixture and also exclude the ancestral indi-

viudals when training SupportMix. Admixed populations

were generated by in silico mating of individuals from

the different populations using a method similar to the

one proposed by Price et al. [15] but extended to handle

more than two ancestral populations. Specifically admix-

ture between two ancestral populations in proportions

α : (1 − α) was achieved by sampling l haploid chro-

mosomes from each of the ancestral populations and

mating each chromosome i ∈ (1..l) with the correspond-

ing chromosome in the other ancestral population using a

recombination model. The origin of the admixed genomic

regions was determined using two steps: 1. the initial

origin was determined by probability α to be from popu-

lation one, 2. the recombination spots along the genome

were determined using a Poisson process such that the

expected run lengths follow 1− e−gd, where g is the num-

ber of generations since admixture and d is the distance

along the genome measured in Morgans as determined

by HapMap [25]. At each recombination site the originat-

ing genome was choosen with probabilities in the ratio

α to (1 − α). For three or more populations, the admix-

ture was determined by choosing the origin populations

in ratios of α1 : α2 : α3 : .... For each admixed population,

four haploid genomes were generated and the “ancestral”

haploid genomes were discarded before the training of

SupportMix and LAMP-ANC.

For admixture between two populations, 465 admixed

populations were generated using all 31 ancestral popu-

lations with α = 0.5, g = 5. To explore the effects of

α, g, window size and genetic map used, seven simulated

admixed populations were used that spanned the range of

population structure in these 465 populations. For three

way admixture, mixture between Yoruban, French, and

each of the other HGDP populations, as well as Yoruba,

Bedouin and each of the other HGDP populations were

simulated separately, with equal proportions for the pop-

ulations (i.e. equal values of α) and g = 5.

Comparison to other methods

SupportMix was compared to LAMP-ANC for in silico

data and to PCA and STRUCTURE for the Qatar sam-

ple. The PCA was carried out on the 71,982 genotype

SNPs common to both Qatar and HGDP using the sin-

gular value decomposition and STRUCTURE, using the

built in admixture model [12], was run on the thinned-

genotype dataset for k = 3 using 20,000 burn-in iterations

and 10,000 iterations after burn-in. LAMP is a very accu-

rate method for ancestral deconvolution of genotype data

that has consistently been shown to do better than most

previously published methods, while being able to handle

more than two ancestral populations [17]. We did a quick

comparison between LAMP-ANC and STRUCTURE run

in the Linkage mode on in-silico generated African Amer-

icans. LAMP-ANC assigned 5% more loci correctly with

the same number of loci used by both methods. LAMP

is over an order of magnitude slower than SupportMix

so to compare accuracy, a broad range of populations

with different degrees of population structure were cho-

sen. Specifically French-Bedouin, Bedouin-Yoruba, Han-

Bedouin, French-Yoruba, Han-Yoruba, Papuan-Yoruba

and Papuan-Karitiana admixture were examined with

LAMP and SupportMix. LAMP was run in LAMP-ANC

mode as described by Pasaniuc et al. [17].

Results

Accuracy of SupportMix assignments

To assess the accuracy of SupportMix assigned ancestries

in the Qataris, an analysis of in silico admixed popula-

tions was carried out where accuracy was measured by

percent of correctly assigned loci. The accuracy was very

high, especially for two populations with a high degree

of population structure (Figure 1). Yoruba-French, in sil-

ico admixed individuals, for example, had 99.5% of the

loci assigned correctly, which compares favorably with
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Figure 1 Accuracy of SupportMix. Accuracy of SupportMix ancestry assignments for in silico generated admixed populations. (A) Accuracy of

ancestry assignment for two-way admixture between all HGDP populations (with more than 10 sampled individuals) using SupportMix (blue dots)

and for a subset of 7 populations listed in legend using LAMP (red dots with the corresponding SupportMix results circled in red). Each in silico

admixed population is plotted on the x-axis by the level of populations structure between the two ancestral populations as measured by fixation

index, Fst . (B) The effects of time since admixture, measured in generations, on SupportMix accuracy for 7 populations. (C) Effect on accuracy of

uncertainty in generations since admixture, where g′ = 5 was the number of generations used to simulate the populations and gwas the parameter

used in SupportMix, which varied between .25 and 100 generations. (D) Effect of window size used on SupportMix accuracy of ancestry assignments .

previously published methods of ancestry deconvolution

using simulations between these same populations [15,17-

19]. The accuracy was lower for more closely related pop-

ulations but better than LAMP-ANC, a method that was

been shown to consistently outperform other ancestry

deconvolution methods by Pasaniuc et al. [17] (Figure 1).

For three ancestral populations (k = 3) the accuracy of

SupportMix was diminished slightly especially when two

of the three populations were very similar, as determined

by low Fst (Figure 2). To explore the effect of uncertainty

in the ancestral populations we examined admixture

between three populations using k′ = 31 in SupportMix.

Specifically, we looked at a population similar to the

Qataris, that is admixture between Yoruba, Bedouin and

Brahui (Figure 3). Fifty percent of the loci were assigned

to the exact correct population while simplifying the

Figure 2 Accuracy of SupportMix for three populations. Accuracy of SupportMix ancestry assignments for in silico generated admixed

populations. (A) Three way simulated admixture between Yoruba-French-other (green) and Yoruba-Bedouin-other (red) where “other” is one of the

remaining 29 HGDP populations with at least 10 sampled individuals. For each population the accuracy is plotted versus the lowest pairwise Fst for

the three ancestral populations. (B) Effects of different degrees of admixture proportions in two-way admixture, where α represents fraction of

ancestry originating from the first population .
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Figure 3 In silico Qatari ancestry. Ancestry assignments of two in silico generated Qatari individuals with equal proportions of Yoruba, Bedouin

and Brahui ancestry. (top) Reconstructed ancestry assignment based on SupportMix using 31 HGDP populations and (bottom) true ancestry where

colors represent the SupportMix assigned HGDP population as indicated by the legend on right side .

assignments into populations groups (Middle East,

Greater Persia, sub-Saharan Africa and others) increased

the accuracy to 87% (Figure 3).

For pairwise admixed populations, the effects of time

since the start of admixture, fraction of ancestry, and per-

turbations were explored. Accuracy was lower for longer

admixture periods with a significant drop in accuracy

for more than 100 generations but no effect on ancestry

fraction (Figures 1, 2). SupportMix has three free param-

eters: misclassification penalty, C, generations since start

of admixture, g, and the window size, w. The misclassifi-

cation penalty or “slack” parameter C which indicates the

proportional penalty to assign to misclassified individuals

during the training was varied from 1 to 1 × 105 with no

measurable change in accuracy. The HMM classification

uses g, the number of generations since start of admix-

ture, to determine the probability of recombination events

occurring between windows. Using populations generated

over 5 generations, g was varied between 0.025 and 100, a

difference between 2.5 and 2000 years, assuming a genera-

tion length of 20 years. This showed that underestimating

the time since admixture by 20-fold or overestimating by

up-to 10-fold had little effect on accuracy (Figure 1). The

optimal value for the third “window length” parameter is

itself dependent on many variables: the time since admix-

ture, the SNP density, and the population structure of

the ancestral populations. Changes in one order of mag-

nitude in w had little effect on the accuracy (Figure 1).

When we fixed the recombination rate across the genome

to 1.63cm/Mb instead of using the HapMap genetic map

the accuracy was barely reduced seeing a maximum

reduction of 0.9% for one of the 7 sampled populations

(additional file 1).

Ancestral origin of Qataris

The admixture analysis of Qataris was carried out on

unrelated individuals, all with four reported grandparents

of Qatari descent. Using all 55 populations in the Human

Genome Diversity Panel (HGDP) as putative ancestral

populations, SupportMix roughly divided the Qataris into

three sub-populations: Arab-Qataris, Persian-Qataris and

African-Qataris, named after the origin of the major-

ity of ancestral alleles. The sub-populations had different

degrees of admixture between Middle-Eastern, Greater

Persian and sub-Saharan African populations out of the

55 HGDP populations. This result was consistent, though

more detailed than both STRUCTURE and principal com-

ponent analysis (PCA) results (Figure 4 and additional

file 2) repeated here, as in Hunter-Zinck et al. [4]. PCA

and STRUCTUREwere only able to show affinities toward

either eastern Asian populations for the Persian-Qataris

or affinities toward Bantu-speaking African populations

for the African-Qataris but not the most similar ancestral

populations [4].

The Arab-Qataris showed very little admixture with

non-Middle Eastern populations. Summarizing the

assignments of loci by taking the mean number of loci per

individual and the standard deviation across individuals,

88.5±8.3% (expressed asmean±standard deviation) of the

loci were of Middle Eastern origin of which 63.2 ± 12.0%

were most similar to Bedouins, 12.4 ± 5.3% to Palestini-

ans and 10.2 ± 4.4% similar to Druze (Figure 5, additional

file 3). In addition a small percentage of the loci (2.7±2.5)

were classified as stemming from the Mozabites, a Berber

ethnic group in North Africa, also considered part of

the Middle-East while other African populations were

assigned less than 0.7% of the loci in the Arab-Qataris.

In contrast to the Arab-Qataris the two other sub-

populations showed a large degree of admixture and

variability in ancestral assignments, especially the

Persian-Qataris. These individuals showed affinities

toward eastern Asian populations in PCA space (Figure 4)

[4] and had, in addition to Middle Eastern assigned loci

(46.5 ± 18.1%), admixture with populations sampled in

Pakistan and Afghanistan (36.2 ± 18.4%). There was a

prevalence of alleles similar to the Balochi (8.5± 5.2%), an
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Figure 4 Population structure of Qataris in comparison to HGDP world populations. (A) Principal components 1 and 2 of all 55 HGDP

populations along with Qataris colored by sampling origin. The Qataris, in orange, can roughly be divided into three sub-populations by general

ancestry determined by PCA, STRUCTURE (see additional file 2) and SupportMix: squares, Arabic-Qataris; triangles, Persian-Qataris; diamonds,

African-Qataris. Three sample individuals, one from each sub-population, are identified by arrows; Q1 from Arab-Qataris, Q2 from Persian-Qataris and

Q3 from African-Qataris. (B) Sample locations of a subset of HGDP populations in region of world that showed significant similarity to the Qatari

samples. Several European, Asian and all populations from the Americas and Oceania are outside the ploted region. (C) Locus-specific ancestry

estimates of 156 Qatari individuals for chromosomes 1, 2 and 3 as determined by SupportMix. Each individual is shown as two vertical bars, one for

each haploid genome where regions (from start of the chromosomes at the top to the end of chromosomes at bottom) are colored by the most

similar ancestral HGDP population as indicated by color-legend and sample location in B. The three individuals in panel A are also indicated in panel

C by arrows. Results of the entire autosomal genome are presented in additional file 2 along with estimates from STRUCTURE.
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Figure 5 Average Qatari ancestry. Average proportion of loci assigned to each HGDP population by SupportMix in the three Qatari

sub-populations: Arab-Qatari, Persian-Qatari and African-Qatari. The sub-populations were defined as in Hunter-Zinck et al. [4] using STRUCTURE

and correspond to different degrees of admixture with (A) Arab-, (B) Persian- and (C) African-populations. Values are tabulated in additional file 3.

ethnic group that belongs to the Greater Persian peoples

as well as the Brahui (7.0 ± 3.8%) that have mixed with

the Greater Persian peoples and culturally resemble the

Persians (Figure 5 and additonal file 2). Taking the sam-

ple location of these HGDP populations in Afghanistan

and Pakistan, all within Greater Persia, and the lack of

samples from Iran, it is reasonable to assume that these

populations acted as proxies for Persian ancestry, as

expected from historical migrations [3]. This is further

strengthened by the fact that very few (< 1.5%) of the

loci were assigned to South and East Asian populations,

including Uygurs (<0.2%) that had previously been sug-

gested as showing affinity towards this sub-population

[4]. In addition to Persian and Middle-Eastern ancestry,

this sub-population had a few individuals with significant

European ancestry (up to 72%), and across all individuals

(12.9 ± 11.2%) of the loci were assigned to European

populations, of which 2.7± 2.3% were assigned to Adygei,

a European population located in the Caucasus at the

border of Greater Persia (Figure 5 and additional files 2

and 3). While this high European component in some

individuals could be due to recent European ancestry or

remnants of European colonization, it could also be due to

misclassification of a few individuals as not having Qatari

ancestry or possible confusion by SupportMix because of

genetic similarity of certain Persian populations with the

HGDP European populations.

The third sub-population, the African-Qataris, showed

strong admixture with African populations (60.8± 26.1%)

and little admixture with the Persian populations (6.8 ±

7.8%) as well as fewer Middle-Eastern alleles (30.5 ±

20.7%) compared to the other two sub-populations. The

African alleles were mainly assigned to populations in

sub-Saharan Africa in the equatorial region, specifically,

Mandenka (20.0 ± 9.0%), Yoruba (18.4 ± 10.5%) and Ban-

tus sampled in Tanzania (16.8 ± 9.0%). There were very

few (0.0±0.3%) loci assigned to southern African popula-

tions such as the Bantu, Pygmy and San sampled in South

Africa and Namibia (additional file 3). This is different

from the results that were achievable using PCA, which

could only show affinities toward Bantu populations but

not the specific ancestral populations [4].

Across all three sub-populations virtually no loci were

assigned to populations from the Americas, Oceania and

eastern Asia (additional file 3). When verifying that the

results were stable to variations sample sizes by only using

a subset of 9 sampled genomes from each ancestral popu-

lation the results changed very little; some of the African

segments assigned Yoruba and Mandinka ancestry were

reassigned to Tanzania Bantu ancestry while similarly

some Bedouin tracts were reassigned to the other Middle

Eastern populations, Palestinian and Druze.

Discussion
The region of themodern country of Qatar has been at the

crossroads of major migrations from the eras of ancient

humans, early civilization and recent centuries [1]. The

population of Qatar therefore provides a unique oppor-

tunity to study how the history of human migration is

reflected in modern genomes. Using the new method,

SupportMix, to study 156 Qatari individuals we have been

able to infer the region-specific origin of the genomic

segments of these individuals.

The SupportMix results are consistent with the migra-

tion patterns to Qatar prior to 1920 [3]. At a broad scale,

the ancestry analysis confirms the genetic importance of

three major populations who settled in the region and

currently define three sub-populations in Qatar: Arabs,
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Persian migrants and African slaves [3]. The analysis also

provides finer-scale resolution as to the specific ances-

try of each genomic segment, allowing further statements

concerning the origins of the Qatari people.

The Arab-Qatari ancestry was primarily assigned to

Middle Eastern populations with the majority ances-

try assigned Bedouin origins. Arab individuals in Qatar

personally identify very strongly with either Bedouin-

Arab ancestry or Hadar-Arab ancestry, where the latter

refers to settled populations as opposed to the migratory

nature of Bedouins [3]. This dichotomy of identification

was not represented in the data however. Given that

all three ancestral Middle Eastern populations included

in the analysis were sampled in a geographically con-

fined region, it is not necessarily surprising that it was

not possible to discern this Bedouin versus non-Bedouin

Arabic ancestry.

The Persian-Qatari sub-population likely traces back to

the migrants who arrived from Persia after the great Per-

sian famine in the late 1800’s as well as Persian migrants

with Arab roots, known as Huwala in Arabic [3]. This

sub-population also has the highest degree of admixture

in Qatar with other world populations, such as Euro-

pean and non Middle East Asian populations, as well as

admixture with sub-Saharan African populations yet no

evidence for strong admixture with eastern Asian popula-

tions such as the Uygurs. The European admixture seems

to be isolated to a few individuals and might be evidence

for very recent admixture and not representative of the

whole sub-population.

The African-Qatari appear to be at least partially

descended from African slaves brought to Qatar through

Zanzibar and Oman before the 20th century [3]. While

previous genetic analysis had shown a broad trend

towards Bantu speaking populations [4], the local ancestry

suggests amore western African population ancestry. This

could be an indication of relative recent influx of African

ancestry when the slave trade moved further inland from

the eastern African coast. Another possibility could be

the recent mixing with western African populations and

North African populations, leading to similarities with

other Middle Eastern populations of the most western

African populations.

Overall, of the world-wide populations, only 10 popu-

lations (Bedouin, Palestinian, Druze, Balochi, Mozabite,

Brahui, Madenka, Yoruba, Makrani and Bantu N.E.) con-

tribute at least 2% of the ancestry to the Qatari population

while the vast majority of the 55 world populations con-

tribute less than 0.1% of the ancestry. Several regions,

including those of African ancestry (Madenka, Yoruba,

Bantu N.E. and Mozabite) and Persian ancestry (Balochi,

Brahui, Makrani), are likely being assignedmultiple ances-

tral origins because each acts as a proxy for a true,

unsampled ancestral population.

Conclusion
The Arabian peninsula is at the intersection of the ancient

and historical migration patterns of three continents and

the genomes of the people in the modern country of Qatar

reflect this rich history. Our analysis of Qatari genomes

has allowed us to infer the fine details of these migra-

tions and to fill gaps in our understanding of the human

migration history of this region. This analysis was made

possible by SupportMix, which can make accurate assign-

ments where prior specification of ancestral populations

or a specific population genetic model is problematic to

formulate. In a broader view, SupportMix provides a tool

for accurate and robust ancestral assignment by simul-

taneous analysis of a worldwide selection of ancestral

populations. Such analyses will be critical for accurate

assignment in the many world-wide admixed populations

that are likely to have unexpected ancestry that reflects

a richer history than known from anthropological or

historical studies.

Additional files

Additional file 1: Table comparing accuracy of SupportMix using a

genetic map versus a fixed recombination rate.

Additional file 2: Additional Figure 1 - Ancestry assignment for

Qatari individuals for entire genome. Ancestry assignments for Qatari

individuals. (top) Locus-specific ancestry assignment from SupportMix

colored by most probable ancestral population as in Figure 4 (shades of

blue for Middle Eastern populations, reds for Asian populations and shades

of green for African populations). Each individual haploid genome is

represented by one column ordered top to bottom from the beginning of

chromosome 1 to the end of chromosome 22. (bottom) Corresponding

global ancestry assignment by STRUCTURE. Each individual (vertical bar) is

colored by the proportion to the estimated ancestry in the k = 3 clusters.

Additional file 3: Table of average ancestry assignments for the three

Qatari sub-populations.
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