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Abstract 

In remote sensing applications "ground-truth" data is often used 
as the basis for training pattern recognition algorithms to gener­
ate thematic maps or to detect objects of interest. In practical 
situations, experts may visually examine the images and provide a 
subjective noisy estimate of the truth. Calibrating the reliability 
and bias of expert labellers is a non-trivial problem. In this paper 
we discuss some of our recent work on this topic in the context 
of detecting small volcanoes in Magellan SAR images of Venus. 
Empirical results (using the Expectation-Maximization procedure) 
suggest that accounting for subjective noise can be quite signifi­
cant in terms of quantifying both human and algorithm detection 
performance. 

1 Introduction 

In certain pattern recognition applications, particularly in remote-sensing and med­
ical diagnosis, the standard assumption that the labelling of the data has been 
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carried out in a reasonably objective and reliable manner may not be appropriate. 
Instead of "ground truth" one may only have the subjective opinion(s) of one or 
more experts. For example, medical data or image data may be collected off-line 
and some time later a set of experts analyze the data and produce a set of class 
labels. The central problem is that of trying to infer the "ground truth" given the 
noisy subjective estimates of the experts. When one wishes to apply a supervised 
learning algorithm to the data, the problem is primarily twofold: (i) how to evaluate 
the relative performance of experts and algorithms, and (ii) how to train a pattern 
recognition system in the absence of absolute ground truth. 

In this paper we focus on problem (i), namely the performance evaluation issue, and 
in particular we discuss the application of a particular modelling technique to the 
problem of counting volcanoes on the surface of Venus. For problem (ii), in previous 
work we have shown that when the inferred labels have a probabilistic interpretation, 
a simple mixture model argument leads to straightforward modifications of various 
learning algorithms [1]. 

It should be noted that the issue of inferring ground truth from subjective labels 
has appeared in the literature under various guises. French [2] provides a Bayesian 
perspective on the problem of combining multiple opinions. In the field of medical 
diagnosis there is a significant body of work on latent variable models for inferring 
hidden "truth" from subjective diagnoses (e.g., see Uebersax [3]). More abstract 
theoretical models have also been developed under assumptions of specific labelling 
patterns (e.g., Lugosi [4] and references therein). The contribution of this paper is 
twofold: (i) this is the first application of latent-variable subjective-rating models 
to a large-scale image analysis problem as far as we are aware, and (ii) the focus 
of our work is on the pattern recognition aspect of the problem, i.e., comparing 
human and algorithmic performance as opposed to simply comparing humans to 
each other. 

2 Background: Automated Detection of Volcanoes in 

Radar Images of Venus 

Although modern remote-sensing and sky-telescope technology has made rapid re­
cent advances in terms of data collection capabilities, image analysis often remains a 
strictly manual process and much investigative work is carried out using hardcopy 
photographs. The Magellan Venus data set is a typical example: between 1991 
and 1994 the Magellan spacecraft transmitted back to earth a data set consisting 
of over 30,000 high resolution (75m per pixel) synthetic aperture radar (SAR) im­
ages of the Venusian surface [5]. This data set is greater than that gathered by all 
previous planetary missions combined - planetary scientists are literally swamped 
by data. There are estimated to be on the order of 106 small (less than 15km 
in diameter) vl.sible volcanoes scattered throughout the 30,000 images [6]. It has 
been estimated that manually locating all of these volcanoes would require on the 
order of 10 man-years of a planetary geologist's time to carry out - our experience 
has been that even a few hours of image analysis severely taxes the concentration 
abilities of human labellers. 

From a scientific viewpoint the ability to accurately locate and characterize the 
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many volcanoes is a necessary requirement before more advanced planetary geology 
studies can be carried out: analysis of spatial clustering patterns, correlation with 
other geologic features, and so forth. From an engineering viewpoint, automation of 
the volcano detection task presents a significant challenge to current capabilities in 
computer vision and pattern recognition due to the variability of the volcanoes and 
the significant background "clutter" present in most of the images. Figure 1 shows 
a Magellan subimage of size 30km square containing at least 10 small volcanoes. 

Volcanoes on Venus 

Figure 1: A 30km x 30km region from the Magellan SAR data, which contains a 
number of small volcanoes. 

The purpose of this paper is not to describe pattern recognition methods for volcano 
detection but rather to discuss some of the issues involved in collecting and cali­
brating labelled training data from experts. Details of a volcano detection method 
using matched filtering, SVD projections and a Gaussian classifier are provided in 
[7]. 

3 Volcano Labelling 

Training examples are collected by having the planetary geologists examine an image 
on the computer screen and then using a mouse to indicate where they think the 
volcanoes (if any) are located. Typically it can take from 15 minutes to 1 hour to 
label an image (depending on how many volcanoes are present), where each image 
represents a 75km square patch on the surface of Venus. An image may contain on 
the order of 100 volcanoes, although a more typical number is between 30 and 40. 

There can be considerable ambiguity in volcano labelling: for the same image, 
different scientists can produce different label lists, and even the same scientist 
can produce different lists over time. To address this problem we introduced the 
notion of having the scientists label training examples into quantized probability 
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bins or "types", where the probability bins correspond to visually distinguishable 
sub-categories of volcanoes. In particular, we have used 5 types: (1) summit pits, 
bright-dark radar pair, and apparent topographic slope, all clearly visible, proba­
bility 0.98, (2) only 2 of the 3 criteria of type 1 are visible, probability 0.80, (3) no 
summit pit visible, evidence of flanks or circular outline, probability 0.60, (4) only 
a summit pit visible, probability 0.50, (5) no volcano-like features visible, probabil­
ity 0.0. These subjective probabilities correspond to the mean probability that a 
volcano exists at a particular location given that it belongs to a particular type and 
were elicited after considerable discussions with the planetary geologists. Thus, the 
observed data for each RDI consists of labels l, which are noisy estimates of true 
"type" t, which in turn is probabilistically related to the hidden event of interest, 
v, the presence of a volcano: 

T 

p(vlD = LP(vlt)p(tID (1) 

t=1 

where T is the number of types (and labels). The subjective probabilities described 
above correspond to p(vlt): to be able to infer the probability of a volcano given a 
set of labels l it remains to estimate the p(tlD terms. 

4 Inferring the Label-Type Parameters via the EM 

Procedure 

We follow a general model for subjective labelling originally proposed by Dawid 
and Skene [8] and apply it to the image labelling problem: more details on this 
overall approach are provided in [9]. Let N be the number of local regions of 
interest (RDl's) in the database (these are 15 pixel square image patches for the 
volcano application) . For simplicity we consider the case of just a single labeller who 
labels a given set of regions of interest (RDIs) a number of times - the extension 
to multiple labellers is straightforward assuming conditional independence of the 
labellings given the true type. Let nil be the number of times that RDI i is labelled 
with labell. Let lit denote a binary variable which takes value 1 if the true type of 
volcano i is t* , and is 0 otherwise. We assume that labels are assigned independently 
to a given RDI from one labelling to the next, given that the type is known. If the 
true type t* is known then 

T 

p(observed labelslt*, i) ex: II p(lltti!· 
1=1 

Thus, unconditionally, we have 

T (T )Yit 
p(observed labels, t*li) ex: g pet) gP(lltt il 

, 

(2) 

(3) 

where lit = 1 if t = t* and 0 otherwise. Assuming that each RDI is labelled 
independently of the others (no spatial correlation in terms of labels), 

N T (T )Yit 
p(observed labels, t;) ex: ~ g pet) gp(lltt'l (4) 
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Still assuming that the types t for each ROI are known (the Yit)' the maximum 
likelihood estimators of p(llt) and p(t) are 

and 

p(llt) = ~i Yitnil 

EI Ei Yitnil 
(5) 

(6) 

From Bayes' rule one can then show that 

1 T 
p(Yit = llobserved data) = C IIp(llt)nilp(t) 

I 

(7) 

where C is a normalization constant. Thus, given the observed data nil and the 
parameters p(llt) and p(t), one can infer the posterior probabilities of each type via 
Equation 7. 

However, without knowing the Yit values we can not infer the parameters p(llt) and 
p(t). One can treat the Yit as hidden and thus apply the well-known Expectation­
Maximization (EM) procedure to find a local maximum of the likelihood function: 

1. Obtain some initial estimates of the expected values of Yit, e.g., 

E[Yitl = ~ (8) 
Elnil 

2. M-step: choose the values of p(llt) and p(t) which maximize the likelihood 
function (according to Equations 5 and 6), using E[Yitl in place of Yit. 

3. E-step: calculate the conditional expectation of Yit, E[Yitldatal = p(Yit = 
Ildata) (Equation 7). 

4. Repeat Steps 2 and 3 until convergence. 

5 Experimental Results 

5.1 Combining Multiple Expert Opinions 

Labellings from 4 geologists on the 4 images resulted in 269 possible volcanoes 
(ROIs) being identified. Application of the EM procedure resulted in label-type 
probability matrices as shown in Table 1 for Labeller C. The diagonal elements 
provide an indication of the reliability of the labeller. There is significant miscal­
ibration for label 3's: according to the model, a label 3 from Labeller C is most 
likely to correspond to type 2. The label-type matrices of all 4 labellers (not shown) 
indicated that the model placed more weight on the conservative labellers (C and 
D) than the aggressive ones (A and B). 

The determination of posterior probabilities for each of the ROIs is a fundamental 

step in any quantitative analysis of the volcano data: p(vlD = E;=1 p(vlt)p(tID 
where the p(tlD terms are the posterior probabilities of type given labels provided 
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Table 1: Type-Label Probabilities for Individual Labellers as estimated via the EM 
Procedure 

Probability(typellabel), Labeller C 

Type 1 Type 2 Type 3 Type 4 Type 5 

Labell 1.000 0.000 0.000 0.000 0.000 
Label 2 0.019 0.977 0.004 0.000 0.000 
Label 3 0.000 0.667 0.175 0.065 0.094 
Label 4 0.000 0.000 0.042 0.725 0.233 
Label 5 0.000 0.000 0.389 0.000 0.611 

Table 2: 10 ROIs from the database: original scientist labels shown with posterior 
probabilities estimated via the EM procedure 

Scientist Labels JD Posterior Probabilities (EM), p(tlD 
ROI A B C D Type 1 Type 2 Type 3 Type 4 Type 5 p(vlO 

1 4 4 4 5 0.000 0.000 0.000 0.816 0.184 0.408 

2 1 4 4 2 0.000 0.000 0.000 0.991 0.009 0.496 

3 1 1 2 2 0.023 0.977 0.000 0.000 0.000 0.804 

4 3 1 5 3 0.000 0.000 1.000 0.000 0.000 0.600 

5 3 1 3 3 0.000 0.536 0.452 0.012 0.000 0.706 

6 2 2 2 4 0.000 1.000 0.000 0.000 0.000 0.800 

7 3 1 5 5 0.000 0.000 1.000 0.000 0.000 0.600 

8 2 1 4 4 0.000 0.000 0.000 0.999 0.000 0.500 

9 3 2 5 3 0.000 0.000 0.992 0.000 0.008 0.595 

10 4 4 4 4 0.000 0.000 0.000 0.996 0.004 0.498 

by the EM procedure, and the p(vlt) terms are the subjective volcano-type prob­
abilities discussed in Section 3.2. As shown in Table 2, posterior probabilities for 
the volcanoes generally are in agreement with intuition and often correspond to 
taking the majority vote or the "average" of the C and D labels (the conservative 
labellers). However some p(vlD estimates could not easily be derived by any simple 
averaging or voting scheme, e.g., see ROIs 3, 5 and 7 in the table. 

5.2 Experiment on Comparing Human and Algorithm Performance 

The standard receiver operating characteristic (ROC) plots detections versus false 
alarms [10] . The ROCs shown here differ in two significant ways [11] : (1) the false 
alarm axis is normalized relative to the number of true positives (necessary since 
the total number of possible false alarms is not well defined for object detection in 
images), and (2) the reference labels used in scoring are probabilistic: a detection 
"scores" p( v) on the detection axis and 1 - p( v) on the false alarm axis. 
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Figure 2: Modified ROCs for both scientists and algorithms: (a) without the la­
belling or type uncertainty, (b) with full uncertainty model factored in. 

As before, data came from 4 images, and there were 269 labelled local regions. 
The SVD-Gaussian algorithm was evaluated in cross-validation mode (train on 3 
images, test on the 4th) and the results combined. The first ROC (Figure 2(a)) 
does not take into account either label-type or type-volcano probabilities, i.e., the 
reference list (for algorithm training and overall evaluation) is a consensus list (2 
scientists working together) where labels 1 ,2,3,4 are ignored and all labelled items 
are counted equally as volcanoes. The individual labellers and algorithm are then 
scored in the standard "non-weighted" ROC fashion. This curve is optimistic in 
terms of depicting the accuracy of the detectors since it ignores the underlying 
probabilistic nature of the labels. Even with this optimistic curve, volcano labelling 
is relatively inaccurate by either man or machine. 

Figure 2(b) shows a weighted ROC: for each of 4 scientists the probabilistic "ref­
erence labels" were derived via the EM procedure as in Table 2 from the other 3 
scientists, and the detections of each scientist were scored according to each such 
reference set. Performance of the algorithm (the SVD-Gaussian method) was eval­
uated relative to the EM-derived label estimates of all 4 scientists. Accounting for 
all of the uncertainty in the data results in a more realistic, if less flattering, set of 
performance characteristics. The algorithm's performance degrades more than the 
scientist's performance (for low false alarms rates compared to Figure 2(a)) when 
the full noise model is used. The algorithm is estimating the posterior probabilities 
of volcanoes rather poorly and the complete uncertainty model is more sensitive to 
this fact. This is a function of the SVD feature space rather than the Gaussian 
classification model. 
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6 Conclusion 

Ignoring subjective uncertainty in image labelling can lead to significant over­
confidence in terms of performance estimation (for both humans and machines). 
For the volcano detection task a simple model for uncertainty in the class labels 
provided insight into the performance of both human and algorithmic detectors. An 
obvious extension of the maximum likelihood framework outlined here is a Bayesian 
approach [12]: accounting for parameter uncertainty in the model given the limited 
amount of training data available is worth investigating. 
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