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ABSTRACT

We constantly move our gaze to gather acute visual information from our environment. Conversely, as 
originally shown by Yarbus in his seminal work, the elicited gaze patterns hold information over our 
changing attentional focus while performing a task. Recently, the proliferation of machine learning 
algorithms has allowed the research community to test the idea of inferring, or even predicting action 
and intent from gaze behaviour. The on-going miniaturization of gaze tracking technologies toward 
pervasive wearable solutions allows studying inference also in everyday activities outside research 
laboratories. This paper scopes the emerging field and reviews studies focusing on the inference of 
intent and action in naturalistic behaviour. While the task-specific nature of gaze behavior, and the 
variability in naturalistic setups present challenges, gaze-based inference holds a clear promise for 
machine-based understanding of human intent and future interactive solutions.
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INTRODUCTION

Gaze tracking in psychological, cognitive, and user interaction studies has recently evolved toward 
mobile solutions, which enable direct assessment of users’ visual attention in natural environments. The 
capability for reliably tracking users’ locus of attention with wearable devices has developed quickly 
as the device manufacturers have miniaturized their technology to wearable eye-glass-like frames, 
with a number of open-source solutions adding their contribution to the variety1. Also, increases in 
signal processing power and recent developments in gaze tracking algorithms now enable complex 
tracking methods to operate in portable devices, even in real-time (Toivanen et al., 2017).

Human eye movements shift the focus of attention to gather visual information for action 
planning. Conversely, they can be used to provide information for inferring users’ intentions and 
next actions. However, gaze behavior in natural, unstructured tasks is markedly complex. Models 
created in controlled laboratory environments do not often satisfactorily explain such natural gaze 
behavior. While laboratory studies in gaze tracking typically aim for isolating single components of 
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behavior to accurately model and study some part of the human visual system or cognition, natural 
gaze behavior involves a complex interplay of these cognitive processes. The modeling of these 
processes computationally is difficult, not least because of the unknowns involved: it is a challenge 
to construct an experimental setup with a known “ground truth” for training, e.g., a machine learning 
model. In addition, the methods and implementations of machine learning applied to gaze data are 
still often customized and fine-tuned for each task at hand. This results in a set of isolated, individual 
contributions to gaze-based inference which are slowly converging to a more generic understanding 
on gaze-action behavior.

The issue of inferring user action with mobile gaze tracking is highly multidisciplinary, requiring 
deep understanding of a variety of research fields. These include the functioning of human visual 
system, mathematical modeling, computer vision, machine learning, cognitive processes, user 
interaction, and psychology. Here, we review current advances in attempting to infer the cognitive 
task of users based on their gaze behavior.

BACKGROUND

Motivation
Work toward this paper started from organizing the workshop2 on “Inferring user action with mobile 
gaze tracking” as part of the Mobile HCI 2016 conference in Florence, Italy (Toivanen et al., 2016). 
The objective of the workshop was to map out the developing field of task and intent recognition in 
natural gaze interaction. The round-up talk after the workshop forms the basis of this contribution.

Eye and Gaze
The human visual system constantly samples the environment through a spatial window, where – 
due to the distribution of photoreceptor cells on the retina – high acuity information can only be 
obtained from the central area of the fovea, spanning about 1.5 degrees of visual angle. While the 
percept we experience seems stable, we inspect the scene through a constant stream of rapid, ballistic 
eye movements, saccades, to acquire new features from within the visual field. The acquisition of 
information takes place in between saccades, when the eye stabilizes the retinal image during fixations 
and slow smooth pursuit movements.

Eye movements, and the resulting gaze paths are highly task and context-specific (Rothkopf et 
al., 2015): the duration of a fixation is correlated with the complexity of the task performed and the 
information observed, and the distribution and time-course of saccades across visual stimuli holds 
information on the task performed. The active nature of eye movements when performing a task 
makes gaze direction a good proxy of attentional focus and even the underlying internal cognitive 
and contextual state.

Vergence movements (convergent, independent movement of the eyes) can provide further 
evidence on the depth plane of visual focus in binocular viewing. Pupillometry – the study of changes 
in pupil size – has also proved to provide information on cognitive activity, but as these are masked by 
pupil reactivity to luminosity variations in the stimulus environment their application in naturalistic 
settings seems unlikely. Eyelid movements and blinks, however, provide a natural addition to the 
trackable features of visual activity, e.g., increasing concentration appears to reduce blink frequency 
(Wang et al., 2014). Sleepiness and shifts in vigilance have been shown to be reflected in blink 
duration, amplitude and eye closing times (Papadelis et al., 2007; Morris and Miller, 1996).

Tracking Methods
Tracking eye movements and gaze has grown to a rich methodology for tracking the oculomotor 
activity, attentional focus, and cognitive activity of a user or patient population. The two most 
firmly established eye tracking techniques at present are the electro-oculogram (EOG) and video-
oculography (VOG).
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EOG is generated from measurements of electrical activity associated with eye movements, 
quantified by recording from electrodes applied to the skin surface around the eye(s). EOG setups 
vary but are most often performed with four electrodes: a pair of horizontal electrodes at the outer 
canthi of the eyes, summing the movement of the electrical dipoles of the two eyes; and a pair of 
vertical electrodes, placed above and below one eye for tracking vertical eye movements and eyelid 
activity. EOG provides high temporal resolution (up to several kilohertz) and can even be used when 
the eyes are closed e.g., during sleep or at sleep onset. EOG however offers only a limited spatial 
resolution, has a drifting baseline, and exhibits high-frequency noise (Eggert, 2007). EOG is thus 
suitable for wearable devices to accurately track oculomotor parameters or contextual information, 
but less applicable for providing actual point-of-gaze.

Devices for VOG measurements are camera-based, tracking the movements of the eye via changes 
in visual features such as the pupil, iris, sclera, and reflections of light sources on the surface of the 
cornea. VOG naturally also provides pupillary measures and data on eyelid movement. In this review, 
we focus on mobile, natural settings, and thus concentrate on mobile eye tracking equipment. These 
vary in their capabilities, but provide better spatial resolution than EOG (around 0.5–2 degrees of 
visual angle), with frame rates, however, typically around 30–60 Hz depending on the system. Hence, 
VOG systems are better suited to tracking the point of gaze, examining gaze path and patterns, and 
utilizing event-based metrics, while some systems with higher frame rates can also deliver accurate 
oculomotor parameters.

Gaze Features
Eye trackers enable extraction of several parameters for each type of eye movement. For fixations, 
typical parameters are location, duration, frequency, and drift within fixations. For saccades, the 
usual parameters considered are frequency, duration, amplitude, average speed, and speed profiles. 
In addition to the eye, trackers can provide information on eyelid movement and blinks, and common 
parameters for these such as frequency, blink duration, and eyelid closing and opening times. More 
complex, derived parameters include dwell times (the sum of fixation times within a defined area 
of interest or object), gaze paths and patterns, the area covered, and the frequency, number of, and 
sequence of areas of interest visited in visual stimuli. Bulling et al. (2009) list 90 different parameters 
used for activity recognition demonstrating the breadth of possible information sources attainable.

Intent Modeling
In his formative work, Yarbus (see Tatler et al., 2010) examined gaze paths of subjects viewing a 
painting by Ilja Repin (“The unexpected visitor”, 1884) under seven different cognitive tasks ranging 
from free examination to memory tasks, and estimating the social status and activity of the people 
depicted in the painting. Yarbus was the first to show that gaze patterns varied considerably under 
different instructions while observing the same visual stimulus – that gaze patterns can be used to reveal 
the observer’s task. With the advent of machine learning approaches, there’s a recent renaissance in 
studying the inverse question: can we infer a person’s intentions, cognitive task, or attentional focus 
from observing their gaze behavior?

A considerable part of the inference work on gaze data has discussed the bottom-up approach: 
predicting fixation distributions based on the local saliency features of the presented (static) stimulus 
material. While saliency is likely to explain some of the attention-grabbing features of stimuli — 
especially in free-viewing conditions where task-related factors do not guide top-down processing of 
visual stimuli (Abolhassani & Clark, 2011) — it provides an overly simplistic answer to prediction 
of action and intent. Saliency models have recently been summarized by Borji & Itti (2014).

A step further from the bottom-up models, Oliva et al. (2003) integrate the overall “gist” of a 
scene for guiding visual search: contextual priming guides object search to the more probable location 
of a target object within the scene (tasked with looking for people in a street photograph, the attention 
is more likely to concentrate on the street-level, where people would be expected). More recently, 
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O’Connell and Walther (2014) suggest that salience-driven (exogenous) and content-driven, scene 
category based (endogenous) spatial attention can be dissociated and seem to influence attention in 
slightly different time frames. Image or scene salience has a stronger influence on gaze behavior 
in the initial cycles at around 600 ms of perception and in free-viewing situations without a task 
objective. Scene context and the “gist” kicks in at around 2000 ms, and after we have constructed a 
personal (3D) representation of the space around us through visual examination, salience becomes 
more likely to influence gaze at the very local level. Task and context related factors guide the gaze 
to different loci, or “prune the search tree” within the scene (e.g., Navalpakkam & Itti, 2002), and the 
salient features interact in fine-tuning the final location of fixations within narrow target windows.

Figure 1 presents a simple schematic of the propositions above. Here, we concentrate on 
studies inferring intent in active viewing circumstances in natural (and virtual) environments, and 
in approaches that include scene context — that is, approaching the objective of inference from the 
right-hand edge of the figure.

Machine Learning
Extracting useful information from gaze can be challenging, as the observed gaze pattern is the result 
of an extremely complicated process that includes the often-noisy measurement, the cognitive state, 
activity and current objectives of the user, and the (dynamic) features of the environment. While in 
addition the ground truth for any of these can almost never be perfectly known, gaze still contains 
useful information for modeling the task at hand. Unfortunately, no generally applicable methods 
that would work across conditions and circumstances are available.

The two main approaches to analyzing gaze are (1) making use of well-known statistics and models 
of cognitive processes, and (2) approaches based on machine learning. Simpler metrics, such as the 
(accumulated) gaze location can help, e.g., to distinguish whether a user has noticed a visual target, 
and statistics of gaze and stimulus features may be sufficient for some objectives. However, should 
the task require more complex understanding of user activity with difficult-to-model interactions, 
simple models cannot supply sufficient information, and we typically resort to machine learning to 
extract more intricate details of user behavior.

Successful application of machine learning requires knowledge about the underlying cognitive, 
physiological, and task-specific aspects. However, machine learning methods themselves are quite 
generic and independent of these details. Typically, the setup is that of supervised learning, in which 
the objective is to predict the class of eye movements, task type, or properties of target objects from 
gaze patterns and other contextual features. Machine learning methods often provide a “black box” 
solution, combining various sources of information, even in surprising and unintuitive ways, which 
may lead to unexpected results when applied outside their training context. The black box nature of 
the resulting solution impedes generalizability, and makes applying methods across real life conditions 
more difficult.

Figure 1. Modes of inference
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The machine learning methods typically used in modeling gaze can be roughly split into two main 
classes: First, general purpose high-performance classifiers such as support vector machines (SVM, 
Cristianini & Shawe-Taylor, 2000) or random forests (Breiman, 2001) can be used in the prediction 
task. Here, the choice of input features is critical: while the time series nature of the gaze need not to 
be directly modeled, this information is usually contained in the selected features. The second main 
approach is the direct application of time series methods such as Hidden Markov Models (HMM) or 
rule based algorithms. These may better capture the persistence of cognitive processing states, and 
therefore model human behavior more accurately. Literature on applying machine learning methods 
to gaze data ranges from pure natural/mobile context, e.g., in information retrieval (e.g., Granka, 
2004; Puolamäki, 2005) to screening clinical populations (e.g., Tseng et al., 2013).

MATERIAL AND METHODS

The area of intent modeling in natural gaze tracking requires contributions from two very different 
fields: eye movement research and the related cognitive aspects, and the field of machine learning 
and pattern classification. We opted to perform study whose execution is detailed in Table 1. Our 
approach is motivated by the process for a scoping study by Levac et al. (2010), although we relax 
some of the more rigorous process steps due to the open nature of the application field and the 
available resources. Scoping studies are more routinely applied in the field of healthcare, and that 
aims to answer a broader need for scoping an area of literature to map key concepts and types of 
evidence available (Arksey & O’Malley, 2005), summarize and disseminate research findings, and/
or identify gaps in the existing literature (Levac et al., 2010). We recognize that in a study like ours 
it is impossible to fit all relevant publications, alone due to limitations of the bibliographic databases 
and different terminologies used. Our purpose is instead to provide a representative sample of the 
contributions and thereby give an overview of the field.

Table 1. The procedure of our study, motivated by Levac et al. (2010)

1. Identify (broad) research 
question

We aim to answer the question: “How has gaze-based intent modelling been performed, 
in what (naturalistic) environments, and which approaches seem most promising?”

2. Identify and select 
relevant studies

The implemented search strategy aims for comprehensiveness and breadth while keeping 
the number of papers included within a controlled range.﻿
• We started off from with the papers presented in the workshop, and the work referenced 
in those papers﻿
• We then searched for additional sources from two databases: Scopus and Web of 
Science using Boolean permutations of keywords “(infer OR predict) AND (intent OR 
task) AND gaze”﻿
• We decided to exclude infant and animal research and medical and neurological 
conditions﻿
• As mobile tracking methods and machine learning methods have developed by leaps 
and bounds during the last decade, we limited the search further to the last ten years.

3. Study selection

This resulted in 181 (Scopus) + 255 (WoS) papers
Representative papers were then selected based on their titles and abstracts, and after 
removing duplicates this resulted in 27 (WoS) + 17 (Scopus) papers﻿
After the final round of reading, 29 papers were included from the search, added with 2 
from the workshop, and 4 papers known of by the authors outside the search result

4. Charting the data
The objectives and methods in the papers cover a large topic area, but the methods, 
success rates, equipment and features used were tabulated to the extent possible for a 
quick comparison chart.

5. Collate & summarize
Finally, an overview was provided. As the initial question does not have a definite 
answer, and the approach is exploratory, no numerical, or comparative analysis can be 
provided.
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Generally, the inference literature can be characterized by a four-fold Table 2. The models applied 
in the papers can roughly be divided to bottom-up approaches, evaluating and predicting gaze behavior 
based on low-level features of the stimuli, or inferring task-specific behaviors based on top-down 
control. On the other hand, the bulk of the research has been done in controlled laboratory conditions, 
with simplified 2D generated/projected stimulus material, while some more recent works aim toward 
studying naturalistic behavior in real-world, or simulated, three-dimensional virtual environments.

RESULTS: INFERRING INTENT IN NATURAL ENVIRONMENTS

We aim to report a breadth-first view of the available literature, delivering a broad review of the 
application areas. The results of the initial literature search revealed that even with targeted keywords, 
the bulk of the papers deal with bottom-up, salience driven approaches. A general overview of the 
reviewed papers shows that the stimulus environments vary considerably, and as naturality dictates, 
sometimes even within studies. Also evident is considerable inter-individual variation in (gaze) 
behavior and responses but also in basic gaze tracking performance. The studies included in the 
literature search are summarized later in Table 3 (see Appendix).

For inference of (cognitive) task factors or task identity based on gaze behavior, the most popular 
application areas include car driving in both natural and simulator environments, path navigation, and 
variations of the inverse Yarbus process. In line with our expectations, several studies were performed 
using virtual/augmented reality as the stimulus environment. These afford a better way to control 
the stimuli, and deliver ground truth on, e.g., gaze targets, albeit limiting the naturality to an extent. 
There seems to be surprisingly few papers addressing real-world working life tasks such as installation 
work, industrial work, or routine work such as customer service while these could provide research 
with structured operational environments and relevant research applications.

Part of the papers approach recognition offline, from summary statistics, while fewer works 
attempt at inferring intent online applying running diagnostics. A few studies (Kit et al., 2016; Peng 
et al., 2015; Vrzakova & Bednarik, 2015) study the effective length of the prediction window: how 
long of a sample of task-related behavior is needed for inference, and how long before actual action 
can the presented solution deliver reliable predictions.

Car driving offers a semi-controlled “moving laboratory environment”, where the subject stays 
relatively put in a well-controlled three-dimensional stimulus environment, while participating in 
a complex, dynamic task with continuous components (stay in lane), distractors, task objectives 
(navigation) etc. Peng et al. (2015) were able to predict online (accuracy 85.4% 1.5 s before initiation) 
when the driver was about to change lanes based on “visual search behavior” using a back-propagation 
neural network model. Another lane-changing study (Wen et al., 2015) used a hidden conditional 
random fields (HCRF) model combining gaze position and vehicle data, and showed that it was able 
to outperform SVM’s and HMM’s with a 99% recognition rate 0.5 s before lane change, and 85% 

Table 2. Four-fold classification of inference papers. The analysis here will focus on the upper right-hand square.

Context \ Model Bottom-Up Top-Down

Natural (like) environments Saliency in photographic stimuli (video, 
virtual reality)

Inferring user activity and intent 
through top-down understanding 
of gaze path activity in natural 
environments

Controlled 2D lab stimuli
Inference on probable fixation locations 
in free viewing or simple tasks for static 
stimuli based on feature salience etc.

Task-guided gaze activity with 
generated stimuli in static contexts
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performance level 2.0 s in advance. Lethaus et al. (2013b) were able to predict lane change up to five 
seconds before the actual event. Johnson et al. (2014) approached task modeling in a dual-task driving 
scenario (adhere to a given speed requiring frequent gazes at the speedometer, follow a lead car) by 
decomposing visual behavior into individual task modules in order to model the distribution of gaze 
on task-relevant objects. Their softmax barrier model outperforms Itti & Koch (2001) saliency and 
central bias models in predicting fixations to task-relevant items, and they claim that model should 
be generalizable to other realms outside driving. Lethaus et al. (2013a) compared different machine 
learning algorithms to predict driver’s intent and found out that artificial neural networks performed 
slightly better in their data than Bayesian networks and naive Bayesian classifier. Borji et al. (2012a) 
developed a Kernel Density Estimation method, combining both bottom-up and top-down influences 
in their modeling of driver’s intent in a video game, and report outperforming the compared “state-
of-the-art” methods by 15%.

The plethora of studies on different models of visual attention which can be roughly split into (1) 
bottom-up models such as saliency based approaches and (2) top-down models such as object-based 
theories. These have been studied e.g. in Borji et al. (2012b) and Borji & Tanner (2016). Mathe & 
Sminchisescu (2015) train saliency detectors based on actual fixation data and show that these can 
reliably predict human fixations in variable visual material.

In predicting user preference and attention allocation, Huang et al. (2015) succeeded in predicting 
which food ingredient a sandwich shop customer was about to ask for 1,8 s before the spoken request 
with a 76% accuracy by feeding simple gaze features to a SVM. Asteriadis et al. (2008) used gaze to 
infer user attentiveness reaching an 88% performance level, while Hamed et al. (2016) explored the 
problem of using Gaussian processes with gaze to assess users’ preference between different keyword 
clouds, reaching a 63% classification accuracy in a binary classification task. Ajanki et al. (2011) 
integrated relevance estimation based on gaze intensity to an augmented reality headset.

While path navigation offers a seemingly simple, overlearned task, the resulting gaze behavior 
differs considerably from static scenes because of the complexities of dynamic interaction with the 
environment. t’Hart et al. (2012) provide summary statistics for gaze allocation in naturalistic path 
navigation. Rothkopf (2016) developed a codebook of gaze locations and modeled HMMs with 
varying numbers of latent variables able to generate gaze sequences comparable to actual human data 
in navigating an environment with targets and obstacles. Zank & Kunz (2016) succeeded in improving 
the prediction of user locomotion in virtual reality by utilizing gaze information.

Eye-hand coordination is a central activity in all our natural interactions. Carrasco & Clady 
(2010) combine an eye tracker with a camera attached to the user’s hand, and report recognizing the 
reach to grab gesture with 80–90% probability. Vrzakova&Bednarik (2015) show that considering the 
“quiet eye” — the stable fixation just before action initiation, originally suggested by Vickers (1996) 
— can considerably increase predictive power, although within a considerably shortened time frame.

Information retrieval is another essential task within different contexts. Puolamäki et al. (2005), 
Puolamäki et al. (2008), Ajanki et al. (2009) are examples of using gaze trajectories in facilitating 
information retrieval by estimating the relevance of the text read by the user or of predicting the 
search terms relevant for the user. Liu et al. (2009) excelled in distinguishing novices and experts 
using HMMs while reading and manipulating concept maps. Voisin et al. (2013) were able to predict 
perceptual errors in reading mammography images using machine learning algorithms for fusing gaze 
and features from radiology images.

The (inverse) Yarbus process has recently received fair attention in the literature. This might 
be attributable to Greene et al. (2012) claiming that the task could not be performed, refuting 
Yarbus’ original assertion. This was followed up by a set of work proving the opposite: Kanan Haji-
Abolhassani & Clark (2013) successfully used HMMs to model the cognitive search process, Kanan 
et al. (2014) showed that with Greene’s original data, prediction is possible using better algorithms. 
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Boisvert&Bruce (2015) applied random forests, and Borji & Itti (2015) used kNN with Boosting for 
good classification results. Vincent, 2012 modeled the different mechanisms for utilizing the past 
observations in predicting target’s future location.

Work on general activity recognition was addressed in only a few works. Bulling et al. (2009) 
distilled 90 different features of eye movements measured using EOG, and used an SVM approach to 
obtain a 76% accuracy in recognizing user activity within five typical office activities with 70.5% recall 
over all subjects. Kit & Sullivan (2016) classified tasks between five different everyday activities from 
sandwich making to frisbee catching. Using HMMs for only time series data for saccadic direction 
and amplitude they reached an overall recognition performance of 36%, opposed to 20% chance level.

CONCLUSION AND FUTURE DIRECTIONS

Haji-Abolhassani and Clark (2014) labelled the extraction of intent from gaze pattern an “inverse 
Yarbus process”, as Yarbus’ original investigation was into the effect of instruction on gaze patterns. 
As confirmed by the current work as well as others, this presents a lucrative, yet demanding target 
for research offering numerous applications and considerable impact.

Simplified, the process of inferring intent from gaze walks through the following steps: 
record gaze data, identify and extract features, associate cognitive models and knowledge 
about human information processing (capacity, speed), train a machine learning model to 
recognize and classify states and behaviors, and apply this model in practice. Ultimately, 
the end product should do this in real time, without the wearer’s intrusion or guidance, and 
deliver a reliable metric of things attended or actions intended, preferably proactively before 
the wearer has even initiated the associated motor action. Another objective is to broaden the 
bandwidth between man and machine through supplying reliable context recognition while 
performing tasks, applicable in use cases where the (devices within the) environment would 
“know” what the user wants without explicit communication. Yet another evident application 
is safety associated with human intention and activity in traffic, and demanding operational 
environments. Also, to escape the uncanny valley (Mori et al., 2012), future humanoid robots 
may well need to match humans in their natural understanding of other people’s intentions, 
derived from minute behavioral hints.

Isolated gaze features or summary statistics of eye movements do not appear to elicit sufficient 
amounts of information to reliably identify the visual task performed (see also Haji-Abolhassani, 2014). 
However, this does not rule out the potential of other, more informative measures that consider the 
temporal dynamics of eye movements, or combine gaze-based information with other data regarding 
the target of operation or the operational environment. On the other hand, one of the pioneers of 
eye tracking research, Rayner (2009), warns that it might be hazardous to generalize eye movement 
metrics across even simple task types such as reading and visual search. As eye movement metrics are 
highly task- and subject-specific, movements in the real world can perhaps ultimately be understood 
only in the context of a particular task.

Often using some sort of persistent state models such as HMMs and Markov chains, fare better 
in deducing (sequences of) actions than time-agnostic classifiers (Griffiths et al., 2008). This is to 
be expected, as the human cognition shows similar persistence in performing a single task at a time, 
and it would seem that the strategy is to resort to rapid task-switching instead of “multitasking”, even 
under time pressure.

Until the field successfully constructs standardized approaches and toolboxes for consistently 
and successfully inferring intent from gaze — possibly in combination with other psychophysical or 
environmental signals — the contributions are likely to stay isolated, task-dependent, and appropriate 
only within narrow application areas. As a large proportion of the existing studies have looked at 
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eye tracking in laboratory conditions, studying and applying gaze interaction and gaze-based user 
modelling in natural environments presents a substantial opportunity. However, individual-to-
individual variability and the task-specific nature of eye movements should be carefully considered, 
if one is to deliver successful applications of eye-aware user interfaces and insights into the cognitive 
state of users.
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APPENDIX

Table 3. Review summary

Reference Application Area / 
Context Eye Tracker Tracked Features Approach Results / Performance

Ajanki et al., 2009

Information 
retrieval (e.g., 
search engine 
queries). Predict 
relevant keywords 
currently in the 
user’s mind.

Tobii 1750 
remote

Features based on 
fixation sequence Bayesian modeling

Gaze information helps to 
predict relevant keywords 
that are relevant for the user 
and that could be used in IR.

Ajanki et al., 2011

Mobile virtual 
assistant for 
Augmented Reality 
glasses with eye 
tracking.

Mobile 
experimental 
gaze tracker with 
AR display

Gaze intensity 
(proportion of total 
time on object)

Integrated system Virtual assistant is a feasible 
solution

Asteriadis et al., 2008
Attention prediction 
while reading on a 
display

Self-made 
remote tracker Raw gaze direction Fuzzy neural 

networks
88% success rate in 
predicting attentiveness

Bernhard et al., 2014

Identifying target 
objects for gaze in 
3D rendered static 
and dynamic stimuli 
on a monitor.

Tobii X50 
remote

Fixations, gaze-to-
object mapping

Bayesian inference, 
with six fixation-
object mapping 
methods

Variable success rates 
between 20-95% with 
considerable intersubject and 
interscene variation

Boisvert & Bruce, 2015

Task recognition 
(free-viewing, 
object-search, 
saliency-viewing, 
explicit saliency)

Data from 
Koehler et al. 
(2014)

Fixation structure, 
fixated image 
content and scene 
structure

Random forest 
classifier

Task detection rates clearly 
above chance (approx 
chance level +20% in 
accuracies)

Borji et al., 2012a

Combining 
bottom-up and top-
down models for 
predicting fixations 
in a real-world-like 
setup (playing video 
games)

IScan RK-464

Previous saccade 
locations, gist, and 
motor action related 
to the game (such as 
2D mouse position 
and joystick buttons)

Hidden Markov 
Model (HMM)

The approach is able to 
predict gaze and human 
attention better than chance.

Borji et al., 2012b

Predicting driver’s 
attention in 
computer driving 
games

IScan RK-464 Fixations, saccades

Integrated top-
down and bottom-
up influences into 
a linear model

Combining the features 
gives slightly better results 
than using individual 
features alone

Borji & Itti, 2015

Yarbus-like 
task prediction 
under differing 
instructions

SR Research 
Eyelink with 
chin rest

Smoothed fixation, 
image features (Itti 
model)

kNN with boosting
It is possible to detect task 
from the gaze tractory (+ 
image features)

Borji & Tanner, 2015

Comparing saliency 
and object-based 
(center-bias) visual 
attention.

SR Research 
Eyelink with 
chin rest

Distribution of 
fixations -

Both saliency and object 
center-bias contributes 
to gaze locations at free 
viewing task. Model 
combining both to obtain 
better estimates of gaze 
trajectories proposed.

Bulling et al., 2009

Activity recognition 
while performing a 
set of typical office 
activity

A self-made 
EOG system

90 different features 
of eye movements SVM 76.1% average precision, 

70.5% average recall

Carrasco & Clady, 2010

Predicting reach-
to-grasp intent and 
target object with 
real objects

ASL Eye-Trac 6
Saccade velocity 
(inverse of gaze 
stability)

Hidden Markov 
Models fusing eye 
tracker scene video 
and hand-mounted 
camera feed

Recognition performance 
between 80-90%

continued on following page
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Reference Application Area / 
Context Eye Tracker Tracked Features Approach Results / Performance

George & Routray, 
2015

Biometric 
identification using 
gaze trajectory

SR Research 
Eyelink

Fixation sequence 
based quantities 
such as fixation 
duration, its standard 
deviation, path 
length, skewness etc.

Radial Basis 
Function Network 
(RBF)

Claim that gaze could make 
a good biometric identifier, 
if trained over a long period 
of time

Greene et al., 2012

Yarbus-like 
task prediction 
under differing 
instructions

SR Research 
Eyelink 1000

Features derived 
from fixation 
sequence as well 
as dwell time on 
regions of interest

Negative result claiming 
that prediction cannot be 
performed

Hamed et al., 2016

User’s preference 
prediction while 
reading keyword 
clouds

SMI RED 500 
remote tracker

Fixation location 
and duration based 
features, pupil size

Gaussian processes
The accuracy of the best 
feature in the binary 
classification task is 63%.

Haji-Abolhassani & 
Clark, 2013

Yarbus-like task 
classification 
between hard and 
easy visual search

Iscan RK-
726PCI remote 
tracker

Gaze points

Hidden Markov 
Model (HMM); 
Different model 
for easy and hard 
tasks.

HMM outperforms simple 
top-down models

Huang et al., 2015

Predicting customer 
selected ingredients 
based on gaze 
in salesperson-
customer sandwich 
making scenarios

SMI Gaze 
tracking glasses

Fixations on food 
ingredients

Support vector 
machine (SVM)

76% accuracy in prediction 
1.8s in advance of spoken 
request

Johnson et al., 2014

Predicting gaze 
behavior while 
driving in a 
simulator in three 
tasks: controlling 
speed, following 
a lead car, and 
following a lane

Not reported, 
integrated to the 
HMD

Fixations per targets, 
dwell times

A softmax 
“barrier” model 
integrating task 
importance and 
noise estimates 
to allow for 
uncertainty

“Similar” performance 
comparing KL divergence 
between individual human to 
average human and model to 
average distributions

Kanan et al., 2014

Yarbus-like 
task prediction 
under differing 
instructions

Used data 
collected by 
Greene et al. 
(2012)

Preprocessed 
features of 
gaze trajectory, 
inluding temporal 
information

Many

Task can be inferred 
by using only motor 
information, i.e., no 
information of the image 
by using off-the-shelf state-
of-the-art classificiation 
algorithms. However, 
summary statistic alone 
(without time series 
information) may not be 
sufficient.

Kit & Sullivan, 2016
Everyday tasks 
in naturalistic 
environments

SMI Mobile Eye

Chronological list of 
discretized saccade 
directions and 
amplitudes

HMMs; maximum 
likelihood and 
maximum a 
posteriori for 
classification 
speed and 
robustness

overall performance of 36% 
across tasks with chance 
at 20%

Lethaus et al., 2011 Predicting driver’s 
intent in a simulator

SMI iView X 
HED (head-
mounted)

Gaze points, dwell 
times

Artificial Neural 
Networks

Left lane change is predicted 
better than right lane change

Lethaus et al., 2013

Predicting 
driver’s intent in a 
simulator; how early 
can intention be 
predicted?

SMI iView X 
HED (head-
mounted)

Gaze points, dwell 
times

Artificial Neural 
Networks

Above change prediction up 
to 5 seconds before event

Table 3. Continued
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Reference Application Area / 
Context Eye Tracker Tracked Features Approach Results / Performance

Lethaus et al., 2013 
(Neurocomputing)

Predicting 
driver’s intent in a 
simulator; Which 
model works best 
and how well?

SMI iView X 
HED (head-
mounted)

Gaze points, dwell 
times

Artificial Neural 
Networks, 
Bayesian 
Networks, and 
Naive Bayes 
Classifiers

ANN seems to be the best 
predictor but with a small 
difference

Liut et al. 2009

Predict differences 
in skill-level 
(novices vs. experts) 
while reading and 
building concept 
maps

Tobii 1750 Gaze location and 
fixation durations

Hidden Markov 
Models

96% accuracy in 
differentiating novices from 
experts

Marius t’Hart et al., 
2012

Path navigation 
in real-world city 
environments

EyeSeeCam
Eye-in-head and 
gaze-in-world 
coordinates

Rough 
classification of 
gaze location

comparisons of basic eye 
movement metrics, statistics 
and distributions between 
different conditions

Mathe & Sminchisescu, 
2015

Viewing short 
video clips from 
Hollywood movies 
and various sports

SMI iView X 
Hispeed, 500Hz Fixations

Dynamic saliency 
for video content 
using dynamic 
histogram-of-
gradient and 
motion boundary 
histograms

training saliency predictors 
based on gaze data; two 
annotated action recognition 
datasets for gaze data 
supplied

Oertel et al., 2011

Involvement in 
spontaneous 
conversation, how 
to predict using 
gaze, blinks, audio 
cues

None

Blinks and whether 
a person looked at 
the conversation 
partner or not

Use standard 
SVM (radial 
basis function) 
to estimate 
involvement using 
covariates such as 
case, blinks, audio 
cues.

Accuracy of prediction 68%, 
gaze seems to correlate with 
involvement.

Peng et al., 2015

Predicting lane 
changing while 
driving in real 
traffic

faceLAB 5

Gaze locations 
on predefined 
targets (windshield, 
dashboard, rearview 
mirror)

Back-propagation 
neural network 
model

Prediction accuracy was 
85,4% 1,5s before lane 
change

Puolamäki et al., 2005

Inferring (word) 
relevance in 
information 
retrieval

Tobii 1750
Features computed 
from fixation 
sequence

Hidden Markov 
Models

Information extracted from 
gaze can be used to aid 
in information retrieval 
task when combined with 
contextual information

Puolamäki et al., 2008

Gaze-based 
proactive 
information 
retrieval; supporting 
information finding 
while browsing 
hypertext

Tobii 1750

19 eye movement 
features: number of, 
duration, of fixations 
etc.

Applying term-
specific eye 
movement patterns 
to a SVM based 
document search

Gaze-enhanced method 
outperforms baseline BM25 
ranking method (p=.047), 
although performance is 
modulated by search task

Rothkopf, 2016 Walking in VR
Applied Science 
Laboratories 
501

Sequence of gaze 
locations converted 
to a codebook

Modeling 
codebook 
sequences of gaze 
with HMMs with 
variable number of 
latent variables

The presented models 
generate similar gaze 
sequences to human 
observers.

Vincent, 2012

Understanding 
mechanisms in 
visual search while 
searching for targets 
on a display

SR Research 
Eyelink 1000 
remote tracker

Gaze location
Different 
models of search 
mechanisms

Best accuracy with the 
model assuming learning 
2nd order statistics and that 
world is dynamic

Table 3. Continued
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Reference Application Area / 
Context Eye Tracker Tracked Features Approach Results / Performance

Voisin et al., 2013

Predicting 
diagnostic errors 
in mammography 
analysis based on 
radiologists’ gaze 
behavior on a laptop 
screen and image 
characteristics

Mirametrix S2
ROI-based eye 
movement and pupil 
dilation features

Genetically 
selecting best 
performing 
machine learning 
algorithms per 
subject/subject 
group and feature 
set

Initial results (limited 
by number of cases and 
participants) showing that 
machine learning methods 
can be applied to predicting 
human error in diagnostic 
scenarios

Vrzakova & Bednarik, 
2015

Organizing on-
screen content 
using a mouse in 
a problem-solving 
task

Tobii 1750 54 gaze features per 
gaze sequence

SVM with an 
radial-basis-
function kernel

While increasing fixation 
sequence length before 
action improves intent 
recognition, including the 
“quiet eye” fixation just 
before action initiation 
outperforms length 
optimization by approx. 15%

Wen et al., 2015
Predicting lane 
changing in 
simulator driving

SMI RED 500 Gaze x position, and 
it’s derivative

Hidden 
Conditional 
Random Fields 
(HCRF)

Prediction accuracy was 
99% 0.5s before lane change, 
85% 2.0s before.

Zank & Kunz, 2016

Predicting user 
locomotion to 
alleviate redirected 
walking in 3D 
virtual environment

SMI eye tracker 
integrated in 
an Oculus DK2 
HMD

Gaze points

Bayesian model for 
locomotion target 
and gaze point / 
location

Improves the prediction to 
some extent, as compared to 
approach without utilizing 
gaze

Table 3. Continued


