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1 rue Jussieu, 75238 Paris cedex 5, France

Received: 28 June 2011 – Revised: 23 September 2011 – Accepted: 3 October 2011 – Published: 12 October 2011

Abstract. Over the past decades, direct three-dimensional

numerical modelling has been successfully used to reproduce

the main features of the geodynamo. Here we report on ef-

forts to solve the associated inverse problem, aiming at in-

ferring the underlying properties of the system from the sole

knowledge of surface observations and the first principle dy-

namical equations describing the convective dynamo. To this

end we rely on twin experiments. A reference model time se-

quence is first produced and used to generate synthetic data,

restricted here to the large-scale component of the magnetic

field and its rate of change at the outer boundary. Starting

from a different initial condition, a second sequence is next

run and attempts are made to recover the internal magnetic,

velocity and buoyancy anomaly fields from the sparse surfi-

cial data. In order to reduce the vast underdetermination of

this problem, we use stochastic inversion, a linear estimation

method determining the most likely internal state compatible

with the observations and some prior knowledge, and we also

implement a sequential evolution algorithm in order to invert

time-dependent surface observations. The prior is the multi-

variate statistics of the numerical model, which are directly

computed from a large number of snapshots stored during a

preliminary direct run. The statistics display strong correla-

tion between different harmonic degrees of the surface obser-

vations and internal fields, provided they share the same har-

monic order, a natural consequence of the linear coupling of

the governing dynamical equations and of the leading influ-

ence of the Coriolis force. Synthetic experiments performed

with a weakly nonlinear model yield an excellent quantita-

tive retrieval of the internal structure. In contrast, the use

of a strongly nonlinear (and more realistic) model results in

less accurate static estimations, which in turn fail to constrain

the unobserved small scales in the time integration of the
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evolution scheme. Evaluating the quality of forecasts of the

system evolution against the reference solution, we show that

our scheme can improve predictions based on linear extrapo-

lations on forecast horizons shorter than the system e-folding

time. Still, in the perspective of forthcoming data assimila-

tion activities, our study underlines the need of advanced es-

timation techniques able to cope with the moderate to strong

nonlinearities present in the geodynamo.

1 Introduction

The Earth’s fluid core is a dynamic, yet sparsely observed

system. Direct or indirect measurements of the planet mag-

netic field are the main source of data used to probe the dy-

namical state of the core, giving access only to the large-

scale image of the magnetic field poloidal component over

the external surface of the system. Integral constraints based

on geodetic data also provide a useful secondary source of

data. Under the assumption that the large-scale field tem-

poral variations are dominated by a diffusionless induction

process (Roberts and Scott, 1965), the radial magnetic field

and its rate of change (called the secular variation) have been

used over the past decades to estimate the fluid flow be-

low the core surface, at the origin of the temporal variations

(see e.g. Finlay et al., 2010a, for a review). In conjunction

with length-of-day data and dynamical models of torsional

waves, the knowledge of these core flows can be used to

probe the magnetic field strength deep in the core (most re-

cently Buffett et al., 2009; Gillet et al., 2010). Other dis-

sipative constraints on the magnetic field strength can also

be derived from short timescale (daily) measurements of the

Earth’s nutations, as recently done by Buffett (2010). Strate-

gies aiming at inferring the properties of Earth’s core dynam-

ics from surface observations commonly encounter problems

of non-uniqueness, and spatial resolution problems. The er-

rors induced by these problems now tend to exceed by far
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the measurement errors, which have become very small at

the age of satellite magnetic observation. As an illustration

of a non-uniqueness problem, closure constraints are needed

in order to perform core flow inversions (most recently the

quasi-geostrophic assumption, Pais and Jault, 2008). The

nonlinearity involved in the core flow problem is an instance

of a spatial resolution problem, in the sense that the unre-

solved small scales of the magnetic field are responsible for

part of the observed secular variation at large scale, in a way

which is difficult to predict. This, in turn, complicates the

evaluation of the flow large scales (Eymin and Hulot, 2005;

Gillet et al., 2009). One elegant, yet not much explored way

to handle both problems is through enforcing dynamical con-

sistency of the solutions, that is, solving for a velocity field

with a time evolution consistent with first principle evolu-

tion equations. The problem of determining core flow then

becomes an inverse problem where an initial condition is

sought, the evolution of which will subsequently explain and

predict the observations at various points in time, hereby all

dynamically connected together. Along these lines, the now

expanding field of geomagnetic data assimilation aims at op-

timally combining physical laws and observations of Earth’s

core dynamics (see Fournier et al., 2010, for a recent review).

This expansion capitalizes on the progress made over the last

twenty years by data assimilation techniques in other fields

of research, most importantly (from the viewpoint of core

dynamics), atmospheric dynamics and physical oceanogra-

phy. Regarding the specific three-dimensional Kalman filter

which is central to the following, the interested reader is re-

ferred to the authoritative monograph by Evensen (2009) for

a detailed description of its theoretical foundations, and its

extension to nonlinear problems in the form of the so-called

ensemble Kalman filter. For further reading, Kalnay (2010),

Brasseur (2006), Elbern et al. (2010) and Houser et al. (2010)

review recent applications of the Kalman filter to the analy-

sis of the atmosphere, of the ocean, of air quality and of land

surfaces, respectively.

First principle equations suitable for the direct modelling

of core dynamics (Braginsky and Roberts, 1995) are now

routinely solved numerically, and have had considerable suc-

cess in reproducing the first-order features of the geomag-

netic field: morphology and dipole dominance of the field,

secular variation and reversals (main advances recently re-

viewed by Christensen, 2011). These equations include the

induction equation, Navier-Stokes equation with convection

described in the Boussinesq approximation, and an equation

for the transport of a buoyancy field (which, in the Earth’s

core, is of both thermal and chemical origin). The main

difficulty faced by these three-dimensional, self-consistent

simulations is the current impossibility to reach numerically

the physical parameters of natural dynamos. This is related

to the great disparity between the diffusion coefficients of

the thermal, chemical, magnetic and velocity fields. As the

situation is not likely to improve in the foreseeable future,

progress in the field has been achieved over the recent years

by identifying and scaling phenomena where some or all of

these diffusivities play only a secondary role. For instance, a

large set of numerical models has revealed that the magnetic

field strength does not depend on any diffusion coefficient,

only on the available power to drive the dynamo (Christensen

and Aubert, 2006; Aubert et al., 2009). A connected study

(Christensen et al., 2010) showed that a morphological simi-

larity can be obtained between the geomagnetic field and the

output of numerical dynamos if only three time scales are in

reasonable proportion when compared to their Earth counter-

parts: the rotation period of the planet, the characteristic time

scale of advection of the magnetic field by the fluid flow, and

the characteristic time for the diffusion of the magnetic field.

Here we wish to use the information and dynamically con-

sistent solutions provided by numerical geodynamo models

in order to carry out inverse modelling. Our long-term aims

are (i) to estimate the dynamical state of Earth’s core from

surface observations, (ii) to assess the extent to which such

estimations are affected by (or immune to) non-uniqueness

and spatial resolution problems, and (iii) to determine the

magnitude of the associated errors. Linear estimation of the

system state invisible parts (also called Kalman filtering or

stochastic inversion) is a method of choice for this type of

problem. Its efficiency is classically tested through the pro-

cedure of synthetic (twin) experiments: a reference solution

is first computed, and used to generate a catalog of surface

data, which are in turn used to recover the solution, start-

ing from a wrong initial guess. Previous attempts (Liu et al.,

2007) used parameterised, ad-hoc covariance properties to

perform such estimations, and focused mostly on the evolu-

tion of the observed, surficial part of the system. The nov-

elty of our approach stands in a preliminary numerical com-

putation of the system multivariate covariance properties.

This approach has already been used in a companion paper

(Fournier et al., 2011), addressing the two-dimensional core

flow problem described above. Here we proceed to the deter-

mination of the three-dimensional internal structure, which

can then be used as an initial condition for time evolution,

opening the way to data assimilation practice. In the fol-

lowing, Sect. 2 presents the numerical model and inversion

technique. Section 3 presents the results of the numerical

experiments, which are then discussed in Sect. 4.

2 Model and methods

2.1 Numerical geodynamo model

Our numerical model is formulated as in Aubert et al. (2009).

We solve for the velocity field u, magnetic field B, and co-

density (or density anomaly) field C in a spherical fluid shell

between radii ri and ro, of aspect ratio ri/ro = 0.35 rotating

about an axis ez, using the equations
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∂u

∂t
= −u ·∇u−2 ez ×u−∇P

+RaQ

r

ro
C +(∇ ×B)×B+E∇2u, (1)

∂B

∂t
= ∇ ×(u×B)+Eλ∇

2B, (2)

∂C

∂t
= −u ·∇C +Eκ∇2C +ST/ξ , (3)

∇ ·u = 0, (4)

∇ ·B = 0. (5)

Here r is the radius vector. The fundamental scales under-

lying the dimensionless scheme are the inverse shell rotation

rate �−1 for time, the shell gap D for length, (ρµ)1/2�D

for magnetic induction, where ρ is the fluid density and µ

the magnetic permeability of the fluid. The kinematic, mag-

netic and thermal Ekman numbers are defined as

E =
ν

�D2
, (6)

Eλ =
λ

�D2
, (7)

Eκ =
κ

�D2
. (8)

Here ν, λ, κ are respectively the viscous, magnetic, and ther-

mochemical diffusivities of the fluid. As detailed in Aubert

et al. (2009), the distribution of boundary mass anomaly

fluxes can be determined from a parameterised thermody-

namical model of Earth’s core evolution. Here we choose

an idealised situation which is thought to be representative

of Earth at present (Lister, 2003), where the mass anomaly

flux F originates entirely from the inner boundary, and the

outer boundary has null mass anomaly flux. The Rayleigh

number RaQ is thus

RaQ =
goF

4πρ�3D4
, (9)

where go is gravity at radius r = ro. As shown in Aubert et al.

(2009) the dimensionless volume sink term for mass anomaly

corresponding to this situation is ST/ξ = −3/(r3
o − r3

i ). The

other boundary conditions at both boundaries are no-slip for

velocity, and insulating for the magnetic field. The numerical

implementation PARODY-JA is used in this study (Dormy

et al., 1998; Aubert et al., 2008). The fields u, B are expanded

into toroidal and poloidal scalars, which, together with the

scalar C, are described using a finite-difference scheme in

the radial direction with up to 160 grid points, and a spherical

harmonic decomposition in the lateral directions up to degree

and order 133.

Table 1 summarizes the properties of the two models

which have been integrated for this study. The models have

been chosen so as to provide end-members in physical com-

plexity and semblance to the geomagnetic field. Model

Table 1. Properties of the numerical models used for the study. First

row: input parameters (see main text for definitions). Second row:

output parameters. Earth’s core values are estimated in Christensen

and Aubert (2006). The mean harmonic degrees lu,B in the velocity

and magnetic field are as defined in Christensen and Aubert (2006).

The median harmonic orders mmed
u,B

are the orders which, on aver-

age, separate the velocity and magnetic power spectra in two do-

mains of equal energy. The e-folding time τe and secular variation

time τsec are as defined in Lhuillier et al. (2011a,b). The morpho-

logical semblance to the geomagnetic field χ2 is defined according

to Christensen et al. (2010). Bottom two rows: parameters rele-

vant to the determination of the model covariance matrix P. Unless

otherwise noted, the numerical experiments use a covariance ma-

trix which is determined from the number n of free run samples

reported in the table. Also reported are the number of radial nodes

used for the determination of the matrix, the degree and order lPmax
up to which this matrix is determined, the size of the state vector

(complex coefficients) and the number of coefficients involved in

the determination of P (or reduced state vector size).

Model RaQ E Eλ Eκ

1 5.8 10−3 10−3 2.5 10−4 10−3

2 2.7 10−5 3 10−5 1.2 10−5 3 10−5

Earth O(10−13) 3 10−15 3 10−9 O(10−15)

Model Re, Rm lu,B mmed
u,B

τe/τsec χ2

1 25,100 6,6 4,2 0.6 6

2 343,858 20,28 8,9 0.04 1

Earth O(109),O(103)

Model n radial nodes for P lPmax

1 4098 41 out of 90 15

2 978 81 out of 160 30

Model full state vector size reduced state vector size

1 (2145 ·90 ·5) = 965 250 (136 ·41 ·5) = 27 880

2 (9045 ·160 ·5) = 7 236 000 (496 ·81 ·5) = 200 880

1 is a weakly nonlinear model, as can be seen from the

quoted values of the Reynolds and magnetic Reynolds num-

bers Re = UD/ν and Rm = UD/λ, where U is the root-

mean-squared velocity in the shell. The model has a simple

magnetic structure (Fig. 1) with apparently strong correla-

tion between the surface and deep magnetic field. Model 1 is

however morphologically quite different from the geomag-

netic field, as measured by the misfit quantity χ2 defined in

www.nonlin-processes-geophys.net/18/657/2011/ Nonlin. Processes Geophys., 18, 657–674, 2011
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Model 1

Model 2

Fig. 1. Dynamical magnetic fieldline imaging (DMFI) representa-

tion of the numerical models magnetic field line structure. The mag-

netic field lines are rendered as grey tubes, with thicknesses propor-

tional to the local magnetic energy density. The inner core surface

is color-coded according to the radial magnetic field strength. The

outer surface is color coded similarly, and made transparent with

an opacity proportional to the radial magnetic field strength (see

Aubert et al., 2008, for further details).

Christensen et al. (2010). The main morphological differ-

ence arises from the high concentration of magnetic flux into

a small number of patches, and also in the lack of equatorial

field features (which was not taken into account in the rat-

ings of Christensen et al., 2010). Model 2 fares much better

with respect to semblance to the geomagnetic field. It can

also be considered a physically more suitable model because

the three time scales mentioned in the introduction (magnetic

advection, magnetic diffusion, rotation period) are in better

proportion when compared to the Earth than for model 1.

The ratio of the magnetic diffusion and magnetic advection

time scale is the magnetic Reynolds number Rm, which is

very close to the value of about 800 which can be expected

in the Earth’s core if surface velocity estimations are rep-

resentative of the deep flow (Christensen and Tilgner, 2004).

The ratio of the length of day and the magnetic diffusion time

scale is the magnetic Ekman number Eλ, which in model 2

is one order of magnitude closer to the value Eλ ≈ 10−9 ex-

pected in the core (e.g. Christensen and Aubert, 2006). As a

consequence of the higher Reynolds numbers, model 2 also

has stronger nonlinearities than model 1, and the effect of a

stronger magnetic advection results in an apparent decorrela-

tion between the surface and internal magnetic structures (see

Aubert et al., 2008, and also Fig. 1). The increased temporal

complexity of model 2 can be quantified using the ratio of the

e-folding time of the system τe, or time constant for the expo-

nential divergence of two infinitesimally close solutions (Hu-

lot et al., 2010b; Lhuillier et al., 2011a), to the characteristic

time scale for secular variation τsec (Christensen and Tilgner,

2004; Lhuillier et al., 2011b). The increased spatial complex-

ity can be evaluated through the mean harmonic degrees lu,B ,

as defined in Christensen and Aubert (2006), and median har-

monic orders mmed
u,B in the power spectrum of the velocity and

magnetic field. It is important to mention that although they

are quite different, both models have more than half of their

energy within the harmonic order range m = 0−13, which

means that there is reasonable hope that surface observations

supplied within the same spectral range could constrain well

the internal structure.

2.2 Rescaling the model output

Although this is not fundamental when only synthetic data

are used, any attempt to integrate time-dependent geomag-

netic data into a numerical model will require the dimension-

less model output to be rescaled to the geophysical world.

If the model operated at the same parameter values as the

Earth’s core, it would be enough to use the canonical scales

presented in the last section. However, as the model operates

far from Earth’s core conditions, we have to resort to units

underlain by scaling principles known (or thought) to hold

both in the model and in the Earth’s core, so that the various

quantities, once presented in these new units, should have

similar values in the model and in the core.

Following previous work on the secular variation time

scale (Christensen and Tilgner, 2004; Lhuillier et al., 2011b;

Fournier et al., 2011), time will be presented in units of

τsec, which is roughly 500 yr in the Earth’s core. Veloc-

ity will be presented in units of D/τsec, which is roughly

4.4 km yr−1 in the core. Following the Christensen and

Aubert (2006) scaling, magnetic field will be presented in

units of f
1/2
ohm(ρµ3p2D2)1/6, where p is the convective power

density in the shell and fohm the fraction of this power which

is dissipated through Ohmic effects. Using the high-power

Nonlin. Processes Geophys., 18, 657–674, 2011 www.nonlin-processes-geophys.net/18/657/2011/
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scenario presented in Aubert et al. (2009), one magnetic

field unit then amounts to 1.7 mT for the present Earth. Fi-

nally, the relationship between the convective power, co-

density and velocity (Eq. A1 in Christensen and Aubert,

2006) prompts to present the co-density field in units of

pτsec/goD. Using again the high-power scenario, one co-

density unit amounts to 10−5 kg m−3.

2.3 Best linear unbiased estimate of the internal

structure from surface data

For a given discrete instant ti in a numerical dynamo simula-

tion, we define a (column) state vector (superscript T denotes

the transpose)

x(ti) =[u
p

lm(rj ,ti),u
t
lm(rj ,ti),B

p

lm(rj ,ti),

B t
lm(rj ,ti),Clm(rj ,ti)]

T ,
(10)

which contains the complex values of the poloidal (super-

script p), toroidal (superscript t) harmonic scalars of the

fields u,B and the co-density C, for each harmonic degree

and order l,m on the nodes j of the radial grid. The full

size of x is on the order of one to ten million elements (see

Table 1). Covariance matrix calculations presented in this

study however use a version of x which is decimated by tak-

ing a subset of radial nodes and harmonic coefficients (see

Sect. 3.1 and Table 1), yielding a typical size on the order of

ten to a hundred thousand elements. The state vector is cen-

tered and normalised for the time series to have zero mean

and unit variance.

We assume that the various elements in x have a Gaussian

distribution, with probability density function (pdf) P(x) ∝

exp(−x′P−1x/2), where P is called the covariance matrix of

the model and the prime symbol denotes the transpose com-

plex conjugate. The validity of the Gaussian assumption is

explored in Fournier et al. (2011). Some deviations from a

Gaussian behavior can be expected, in which case the best

linear estimate about to be derived is not optimal anymore in

the sense of maximum a-posteriori pdf, but still remains the

estimate of minimum variance.

The state vector has an observable part and a hidden part.

Our goal is to provide an estimate of the hidden part from the

observable part. We define an observation operator H which

extracts its observable part from x. The observation opera-

tor is thus a rectangular matrix with a number of rows equal

to the size of the observations y and a number of columns

equal to the size of the state vector x. Because we are dealing

with the equivalent of global field models at the core-mantle

boundary, and given their current resolution limits (e.g. Olsen

et al., 2010), we define the observable part of the state vector

as the poloidal magnetic field B
p

lm(ro) at the outer boundary

up to degree and order 13. The corresponding observation

operator contains ones in the entries corresponding to an ob-

served quantity and zeros otherwise. The operator contains

an additional sub-block when the rate of change of B
p

lm(ro)

is observed as well (up to degree 13). Considering the ra-

dial part of the induction Eq. (2) on the fluid side of the outer

boundary, where the velocity field vanishes, we obtain

∂B
p

lm

∂t
(ro) = Eλ∇

2B
p

lm(ro). (11)

Prescribing the time derivative of the outer boundary poloidal

magnetic field is thus equivalent to prescribing the ra-

dial component of ∇2B
p

lm. The sub-block dedicated to

∂B
p

lm(ro,ti)/∂t thus contains a discrete Laplacian operator

written on the fluid side of the outer boundary. The vector

Hx comprises up to 210 elements.

Our inverse problem seeks a state vector x such that

Hx+ǫ
o = y, (12)

where y is a set of observations, statistically centered and

normalised using the same means and variances as those used

for x. In a general context, the observations bear some error

ǫ
o, with a covariance matrix R = E(ǫo

ǫ
o′), where E stands

for the expected value. In other words, the likelihood of y

if x is realised is P(y|x) ∝ exp(−(y−Hx)′R−1(y−Hx)/2).

Given the above mentioned sizes of x and y, the problem

posed by Eq. (12) is vastly underdetermined. Our preferred

estimate of x is the best linear unbiased estimate, which min-

imizes the functional

J (x) = (y−Hx)′R−1(y−Hx)+x′P−1x. (13)

This estimate is the most likely given the data and model co-

variance properties (see Fournier et al., 2011, for details).

Looking for the extrema of J (x) one finds the best linear in-

verse solution, which takes a simple form when x is centered:

x = Ky, (14)

with the Kalman gain matrix

K = PH′
(

HPH′ +R
)−1

. (15)

Equation (15) is ubiquitous in geomagnetic field modelling

(Gubbins, 1983) and core flow modelling (review in Fin-

lay et al., 2010a). In both cases it is usually referred to as

stochastic inversion, but we also note that it is formally iden-

tical to one of the Kalman filter equations (e.g. Fournier et al.,

2010). The stochastic inversion will be more efficient when

P contains strong correlations between the observed and un-

observed parts of the state vector. Our primary goal being to

test the accuracy and prediction power of the inversion with

synthetic data, we consider the data error-free i.e. ǫ
o = 0 and

R = 0, in an attempt to isolate errors resulting from the inver-

sion from all other error sources which can arise in a realistic

context.

www.nonlin-processes-geophys.net/18/657/2011/ Nonlin. Processes Geophys., 18, 657–674, 2011
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In a time-dependent context, the stochastic inverse can be

used to initialise the numerical model and perform forecasts

of the system evolution. This forms the backbone of se-

quential data assimilation. At a given later time where the

numerical model has updated the state vector to a value xf

(the forecast), an analysis of the system can be performed by

comparing the observed part of the forecast Hxf to the ob-

servations y available at the analysis time. The state vector is

then corrected to the new value xa such that

xa = xf +K
(

y−Hxf
)

, (16)

The analysed state vector is then used as a new starting condi-

tion, completing an assimilation cycle. Each time the system

is corrected, P should be updated according to a correspond-

ing evolution equation (the set of equations updating P and

the state vector and describing their time evolution is called

the Kalman filter, Kalman, 1960). As this is a computation-

ally very intensive task, P is often assumed to be time inde-

pendent, which amounts to assuming that although the anal-

ysis tends to reduce the error on the system state knowledge,

the nonlinear dynamics operating between two analyses re-

stores this error back to its natural (free run) value. When

using such a frozen covariance matrix, the assimilation tech-

nique is referred to as optimal interpolation (or OI, see e.g.

Kalnay, 2003, for a review).

Atmospheric and oceanic data assimilation usually resort

to matrices operating in physical space (Kalnay, 2003, §5.4).

There, the choice of an a-priori defined correlation length re-

sults in sparse banded structures which are easy to process,

even with state vectors with sizes comparable to what is re-

ported in Table 1. The accuracy of such an approach depends

on whether in-situ measurements are available with sufficient

quantity. The geomagnetic assimilation case is completely

different because of the lack of in-situ measurements. In that

context, the information cannot be efficiently and accurately

propagated radially downward past the correlation length if

the above approach is employed. We thus need to process a

covariance matrix with a full structure, obtained in spectral

space, in order to perform an accurate and efficient propa-

gation of this information. It can then be understood that

practical computational considerations set a limit on the size

of such a matrix, which can thus update only a subset of the

state vector. This limitation was not present in our previ-

ous study (Fournier et al., 2011), where the two-dimensional

character of the problem permitted high-resolution inver-

sions. When used with this limitation, scheme (16) can be

unstable due to the deleterious influence of the uncorrected

variables. Here we control these instabilities using a slightly

modified version of the OI scheme, where only a fraction β

(0 ≤ β ≤ 1) of the forecast is re-injected at analysis stage

xa = βxf +K
(

y−βHxf
)

, (17)

If β = 0 then at each analysis time, the system is set to x = 0

(time average of the dynamo simulation) before the analysis

Table 2. Summary of the time-dependent assimilation scheme used

in this study (noise-free data).

Preliminary

computations

Covariance matrix P determined from a free

run (Sect. 3.1), frozen for the entire duration

of the assimilation run,

Observation operator H (Sect. 2.3),

Kalman gain matrix K = PH′
(

HPH′
)−1

.

Initialisation

step
xf (t0) = 0 (time average of the simulation).

Analysis step

xa(ti) = βxf (ti)+K
[

y(ti)−βHxf (ti)
]

,

0 ≤ β < 1.

The first analysis (i = 0, xf = 0) reduces to

xa(t0) = Ky(t0).

Forecast step
xf (ti+1) = M(xa(ti)),

M is the nonlinear dynamo model.

is performed; each analysis is thus an inverse of the cor-

responding data with no memory from previously inversed

data. If β = 1 the analysis corrects the full forecast resulting

from the previous time integration; the whole forecast is thus

re-injected for the next analysis cycle. A value of β between

0 and 1 will help mitigate the two possibilities. There is no

theoretical justification for the introduction of β in the analy-

sis. The justification is practical, as we observed that the use

of the regular Kalman filter analysis (β = 1) resulted in over-

energetic estimates of those variables not directly impacted

by the observations and the truncated covariance matrix P.

3 Results

3.1 Computation and structure of the model covariance

matrix

A correct determination of P is central to the quality of the

inversion (14)–(15). Here we approximate P using the mul-

tivariate statistics of the numerical model. This matrix is

thus computed during a preliminary “free run” of the model,

where a numerical integration is performed and a large num-

ber n (see Table 1) of state vector snapshots x(ti) are ex-

tracted, with a typical time lag between the snapshots on the

order of the e-folding time of the system to ensure decorre-

lation between snapshots. In terms of classical dynamo time

scales, the duration of the free run is 17.5 magnetic diffu-

sion times D2/λ. In terms of the advective time rescaling

used in this study, the duration is about 580τsec, amounting

to 290 000 yr if τsec = 500 yr. Once each time series of the

state vector components is centered and normalised to unit

variance, if the vectors x(ti) are stored as columns into a ma-

trix X, then P can be estimated through
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Fig. 2. Representation of the coefficients of the covariance matrix P involved in the determination of the stochastic inverse matrix K. At

five different radial levels (vertical axis), the colored squares map the modulus of the correlation coefficients between the surface poloidal

magnetic field harmonic coefficients (first horizontal axis) and the poloidal velocity field coefficients (second horizontal axis). Harmonic

coefficients are ordered according to a one-dimensional scheme where all admissible values of l are grouped together for each given value of

m. These correlation coefficients are computed from a free model run (here from model 1) where n = 4098 instantaneous state vectors spaced

by 0.3τsec (half an e-folding time) each are extracted. The coefficients are computed up to degree and order lPmax = 15, which corresponds to

the one-dimensional parameter lm = 120. Two vertical tracks are drawn, representing the evolution of the correlation coefficients with depth

for m = 4, between harmonics lobs = 5 of the observed field and ldeep = 4 of the deep field (track 1), and between harmonics lobs = 5 and

ldeep = 12 (track 2).

P =
1

n−1
XX′. (18)

For reasons of storage and cpu time limitations, about half

of the numerical grid radial nodes are used to determine P,

the remaining nodes (see Table 1) being computed by linear

interpolation. We have checked that this has no impact on

the quality of the inversion. Likewise, only harmonic coef-

ficients up to degree and order lPmax are retained. In order

to capture the correlations involving the dominant scales of

the system, we set lPmax so that it exceeds both mmed
u,B and lu,B

(see Table 1). The convergence of the coefficients defining P

is checked by monitoring the effect of doubling and decimat-

ing the number of samples used to build the matrix (see also

Fig. 8a).

According to Eq. (15), not all coefficients of P are actu-

ally needed to compute the matrix K: only the correlations

involving one observed quantity have an effect on the result.

We thus represent on Fig. 2 sub-blocks of P displaying the

correlations between B
p

lm(ro) and one of the fields (here u
p

lm

at various radii; the structure is similar for other fields, with

some differences detailed below). Harmonic coefficients lm

have been ordered along a one-dimensional lexicographic

scheme gathering all possible degrees (up to lPmax = 15 in this

case) for each given order.

In the case of model 1, Fig. 2 shows that the internal

structure is linearly coupled with the surface observations, as

could be expected from the visualisation presented in Fig. 1.

Correlation coefficients are indeed up to 0.9 when correla-

tions between B
p

lm(ro) (or its time derivative) with another

field at depth are considered. Correlations between harmonic

coefficients of same order m result from the linear coupling

terms present in Eqs. (1)–(3). In particular, the Coriolis force

(which is a dominant force acting on the fluid) produces cor-

relations between harmonic coefficients which have different

degrees l, provided again that they share the same harmonic

order. Correlations between harmonic coefficients of differ-

ent orders are almost non-existent, an indication of weak
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nonlinear couplings. The dominant azimuthal wavenumber

of the surface magnetic field thus reflects that of the internal

convection flow, as expected from a dynamo mechanism (e.g

Olson et al., 1999; Aubert et al., 2008) where the magnetic

energy is sustained through stretching, twisting and folding

of the magnetic field lines by a columnar convection flow.

The correlations tend to peak at or around the dominant az-

imuthal wavenumber of the dynamo, as measured by mmed
u,B

in Table 1. The influence of the leading equatorial sym-

metry properties of the flow and magnetic field is seen in

the checkerboard pattern of the correlations: if lobs and ldeep

are respectively the harmonic degree of B
p

lm(ro) (or its time

derivative) and the internal field, then lobs + ldeep needs to

have odd parity if the internal field is u
p

lm, Clm or B t
lm, and

even parity if the internal field is B
p

lm and ut
lm. As the ra-

dius decreases towards the inner-core boundary, the correla-

tion matrix displayed in Fig. 2 exhibits an upper triangular

structure: coefficients with lobs > ldeep tend to preserve their

correlation with depth (track 1 of Fig. 2) while coefficients

with lobs < ldeep tend to lose their correlation as depth in-

creases (track 2). We ascribe this effect to the dominance

of the Coriolis force, leading to a strong correlation between

magnetic field patches at the surface (large lobs) and convec-

tion columns at depth (lower ldeep).

The covariance matrix of model 2 (not shown) has a simi-

lar visual structure, with less marked correlations peaking at

about 0.7 for the magnetic field and 0.3 for its secular varia-

tion. The increased nonlinear dynamics indeed tends to blur

the linear relationships between the surface and deep fields.

One could expect to see increased correlations between har-

monic coefficients of different order m as a result of the same

nonlinear dynamics. This is indeed the case but the signal re-

mains small, with cross correlations peaking at less than 0.1.

In general, nonlinear dynamics is thus not beneficial to the

correlation between the surface and deep fields, but a rea-

sonable predictive power of the deep structure from surface

observations can still be expected.

3.2 Synthetic inversion tests, model 1

Once the matrices P and K are computed (see Table 2), we

then proceed to the computation of a reference time series

of the model which will be used to benchmark the efficiency

of the inversion. About one hundred to a few hundreds of

snapshots spaced by 0.01, 0.05, 0.1 and 0.2 time units (re-

spectively equivalent to 5, 25, 50 and 100 Earth years if

τsec ≈ 500 yr) are extracted (in selected cases, a spacing of

0.02 time units or 10 yr is also used). The surface poloidal

magnetic field and secular variation harmonic coefficients in

this reference time series will be subsequently referred to as

the “data”. A twin run is next initialized from a wrong initial

guess (the time average of the free run, see Table 2). The

data are then injected in the assimilation algorithm and the

quality of the reference trajectory recovery is evaluated. In

addition to being started from different initial conditions, the

reference run and its twin may have different physical pa-

rameters, in order to simulate the effects of modelling errors

arising from an imperfect physical description of the system

(Liu et al., 2007). Here, however, we wish to isolate the er-

rors associated with the inversion for the deep structure from

all other sources of errors, and we thus use the same set of

physical parameters for the free run determining P, the refer-

ence and the assimilation runs.

A first qualitative evaluation of the static and time-

dependent inversions is presented in Fig. 3. The first col-

umn represents the reference state at an arbitrary time t of

the reference time series. The quality of the internal struc-

ture retrieval depends on the stage that the assimilation has

reached at time t (see Table 2). If the assimilation is ini-

tialised exactly at that time, its state (second column) is the

time average of the model, the best guess one can make in

the absence of data. If the assimilation is initialised and anal-

ysed at that time, the resulting static inversion (third column)

considerably improves the estimation. The knowledge of P

allows for instantaneous propagation of the information to all

fields throughout the whole shell, giving very reasonable (but

visibly underpowered) estimates of the internal fields. The

low strength of the estimated fields is a general property of

the linear estimation based on correlations (see for instance

Fournier et al., 2011). The detailed agreement between the

reference and the recovery is further improved if the assim-

ilation has already performed several cycles when time t is

attained (fourth column): this shows that the dynamics has

a beneficial effect in determining the amplitude of the scales

which are neither observed, nor correlated to the surface ob-

servations. A quantitative assessment of the recovery quality

is presented in Fig. 4, where we compute the energetic mis-

fit Mu and correlation coefficient Cu between the estimated

(est) and reference (ref) velocity fields,

Mu =

∫

V

(uest −uref)
2 dV

/

∫

V

u2
ref dV, (19)

Cu =

∫

V

uest ·uref dV
/

√

∫

V

u2
ref dV

√

∫

V

u2
est dV . (20)

Here V is the shell volume. The corresponding quantities

MB and CB are also presented for the magnetic field. For the

sequence shown in Fig. 3, misfits are moderately low, with

the energy of the difference between estimated and reference

amounting to about 20 % to 50 % of the reference energy.

Correlation coefficients are very high, on the order of 0.7 to

0.9. The recovery is better for the velocity field than for the

magnetic field, because of the richer small-scale content of

the latter (due to a magnetic Prandl number larger than one).

It is worth noticing that the recovery quality undergoes size-

able fluctuations and does not monotonically increase with

the number of analyses. In the present case, strong fluctua-

tions are experienced as the reference time series happens to

pass through a state of abnormally low kinetic energy (lowest

energy at time 1.97), only experienced a few times in the free
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Fig. 3. Results of a twin experiment with model 1, where the surface radial magnetic field (first line) and its secular variation (not shown),

both given up to degree and order 13, are used to retrieve the internal structure (second to fourth line). Column 1 is the state of the reference

at time t = 1.3τsec. Column 2 is the assimilation state if only the initialisation step has been performed at time t (it thus represents the time

average of the simulation, see Table 2). Column 3 is the assimilation state if only the initialisation step and the first analysis step as been

performed at time t . Column 4 is the assimilation state if it has been initialised at time t = 0, and if 14 analyses and forecast steps have been

subsequently performed with a time lag 0.1τsec (about 50 yr in Earth time) until time t = 1.3τsec (note that this column then represents the

forecast, not the analysis). For this run we used β = 0.75. All fields are presented in the units proposed in Sect. 2.2, with their tentative

rescaling to Earth’s core values in parentheses.

run computation used to build P. The internal structure esti-

mates are thus worse in the vicinity of this statistical outlier.

The fact that the recovery quality fluctuates stands in con-

trast with the ideal Kalman filter which, when used in con-

junction with a linear model and when updating a properly

initialized error covariance matrix of the model, statistically

reduces the misfit between the recovery and the reference

(see e.g. Fournier et al., 2010). Our assimilation scheme

loses this property because of its imperfections: a time-

independent covariance matrix is used and a part of the so-

lution length scales spectrum (for l and m above l
p
max) is left

untouched at analysis time and remains only determined by

the dynamics. These uncorrected, dynamically determined

scales tend to backreact on the other scales through the non-

linear couplings present in the dynamical equations, thus di-

verting the system trajectory away from the reference. The

fluctuating recovery quality is then the result of a balance

between the error decrease due to the introduction of new

information and the error increase due to the scheme imper-

fections. Using a factor β (Eq. 17) smaller than 1, we can

increase the correction brought by the data, while decreas-

ing the part of dynamically determined scales which is re-

injected at analysis time. Comparing assimilation sequences

performed with β = 0.75 and β = 1 in Fig. 4, we see that

the recovery quality remains similar at the first few analyses

and subsequently becomes better, with smaller fluctuations

if β = 0.75. Note that this does not result from the removal

of the energy contained in the dynamically determined scales

(this represents a small part of the total energy), but reflects

a better determination of the whole state vector. As we shall

see later, there exists an optimum value for β (which is close

to 0.75 for model 1), meaning that it is important to main-

tain dynamically determined scales, although not at the level

they tend to freely reach. It should be noted that additional
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Fig. 4. Correlation and misfit coefficients after analysis, for the

same series of twin experiments as in Fig. 3, for which β = 0.75

(black), and for a similar series where β = 1 (grey). Time is in

units of τsec, as detailed in Sect. 2.2, with a tentative rescaling in

real time in parentheses. The assimilation is initialised and first

analysed at time t = 0, the values of M and C reported at negative

times are those obtained between the first reference sample and the

model time average (which is the initialisation step estimate, second

column of Fig. 3). The vertical dashed line is the time at which the

fourth column of Fig. 3 has been obtained.

experiments with variable noise levels added to the obser-

vations (not shown here) show that the benefits of setting

β = 0.75 are preserved when observations are imperfect.

To illustrate the issue of observed, estimated and dynami-

cally determined scales, we next focus on energy spectra of

the surface magnetic field (Fig. 5). Since the data are con-

sidered perfect, performing an analysis always results in a

perfect match between the observed part of the system and

the observations, as illustrated by the vanishing residual be-

tween the spectra of the analyses and the reference up to de-

gree 13. The first analysis (red curve in Fig. 5) uses the cor-

relations contained in P to additionally estimate the unob-

served surface field coefficients between degree 14 and de-

gree l
p
max = 15. Coefficients with degrees larger than l

p
max are

not estimated by the first analysis. In contrast, the 15th anal-

ysis (green curve, performed immediately after the forecast

presented in the fourth column of Fig. 3) benefits from a dy-

namical determination of these coefficients, and reduces the

misfit to the reference by a factor of 2 for harmonic degrees

between 15 and 30.

An important aspect of data assimilation is the evaluation

of the forecast quality. When dealing with a real system, it

is indeed impossible to evaluate the recovery quality of the

internal structure as it was done in Fig. 4. It is however pos-

sible to use surface data in order to evaluate a-posteriori how

well the system has predicted a given time evolution. This
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Fig. 5. Top: energy spectra of the magnetic field at the model sur-

face for the reference solution (black), the first analysis (red) and

the 15th analysis (green). The procedure through which these anal-

yses are obtained is described in Fig. 3. Bottom: energy spectra of

the differences between the reference, the first and the 15th analy-

ses. Units as described in Sect. 2.2, with their tentative rescaling in

parentheses.

provides a combined assessment of the performance of the

assimilation scheme, of its possible biases and of the suit-

ability of the model for describing the real system (dealing

with synthetic data, our study does not cover this last as-

pect). The quality of the i-th forecast x
f

i can only be assessed

from the standpoint of the observer and its limited access to

the system. It is thus evaluated on the observed part of the

system only, using the instantaneous innovation (or instan-

taneous forecast error) vector di = yi −Hx
f

i (which indeed

represents the difference between the observable part of the

forecast and the data), or more precisely through its norm

di = ||di ||. (21)

Here our norm definition is adapted such that each harmonic

coefficient is multiplied with l(l +1)/ro prior to the evalu-

ation of the norm, such that the result is a rms value of the

radial magnetic field at the outer boundary (or its time deriva-

tive). One important property of the innovation vector di is

that its statistical expected value should be zero for an unbi-

ased assimilation scheme (e.g. Talagrand, 2003). Computing

the cumulative mean innovation

dk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

k

k
∑

i=1

di

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(22)

provides a quantitative way to test this prediction. Figure 6

presents both quantities for various assimilation sequences.

We recall that in our case, the observed part of the system
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Fig. 6. Instantaneous innovation (or instantaneous forecast error)

di and cumulative mean innovation dk as a function of assimilation

time, for the sequence presented in Fig. 3 and other sequences with

same access to observable quantities and assimilation parameters

but varying forecast horizon (which is the same as the time lag be-

tween analyses), from 0.01τsec to 0.2τsec (solid black lines, each

circle represents an analysis, forecast horizon increases vertically).

The innovation is computed only with the magnetic field (not the

secular variation). Also plotted are an assimilation sequence with

β = 1 (solid grey line, forecast horizon 0.1τsec) and the root-mean

squared radial magnetic field amplitude at the outer boundary for

the reference sequence (dashed line). Units as in previous figures.

comprises the poloidal magnetic field up to degree and or-

der 13 and its secular variation up to a variable degree and

order (13 in the case of Figs. 3 to 6). However, to facili-

tate comparison between sequences where secular variation

is assimilated to a variable degree (see Fig. 7 below), we will

evaluate the forecast quality only on the observed magnetic

field poloidal coefficients up to degree 13. As expected from

the discussion of Fig. 4, di does not decrease with the number

of assimilation cycles, but oscillates about a slowly increas-

ing baseline. This long-term trend does not mean that the

assimilation gets worse over time, but is simply the conse-

quence of an increase of the reference sequence magnetic en-

ergy through time (dashed line in Fig. 6). In line with Fig. 4,

di is significantly reduced when β is decreased from 1 to

0.75. Regardless of the forecast horizon (which is the same

as the time lag between analyses), dk decreases sharply af-

ter one system overturn time (which is about 0.3 in units of

τsec, a value which is quite independent of the chosen model,

Christensen and Tilgner, 2004; Lhuillier et al., 2011a). At

very long assimilation times, dk ceases to decrease, revealing

the existence of a forecast bias in our scheme. The bias sig-

nificantly decreases when β is decreased from 1 to 0.75. This

shows that it is connected to the influence of the uncorrected

variables of the state vector on the corrected variables. Al-

though it would certainly be desirable to implement a bias re-

moval strategy in the assimilation scheme, the present bias is

not likely to be a limiting factor in practical applications, its

level being typically one order of magnitude lower than the

intrinsic forecast error introduced by the assimilation. Fur-

thermore, long assimilation times (here 8500 yr) are needed

to reveal the presence of this bias. Our synthetic experi-

ments, where high-quality data are assimilated in such long

sequences, obviously do not represent a practical situation,

given the presently available record of Earth’s magnetism on

centennial to millenial timescales (e.g. Hulot et al., 2010a).

To really become meaningful, the absolute forecast quality

should be compared to that obtained with other prediction

strategies, the simplest of which is the “no-cast”, or use of the

present magnetic field as a forecast for the future. Another

still simple strategy is the linear extrapolation of the existing

surface magnetic field, making use of the secular variation

data. The results of series of no-casts, linear extrapolations

and assimilations are reported in Fig. 7, for various forecasts

horizons never exceeding the system e-folding time 0.6τsec.

The average forecast error is defined as

d =
1

na

na
∑

1

di, (23)

where na is the total number of assimilation cycles. The aver-

age forecast error d should not be confused with the cumula-

tive mean innovation, dk . It can be first noted that d approxi-

mately follows a power-law of the forecast horizon, for all the

prediction strategies which we have studied. The left panel of

Fig. 7 shows that regardless of the forecast horizon, an assim-

ilation of surface magnetic field coefficients always makes a

better forecast of these coefficients (by about a factor of 2)

than a no-cast performed with the same amount of data. This

is also true (middle panel) if the linear forecast is refined us-

ing the secular variation data up to degree 8 (the correspond-

ing assimilation then also uses this additional data). Finally,

if secular variation coefficients up to degree 13 are used, lin-

ear extrapolations will perform better than the assimilation

for forecast horizons shorter than 0.03τsec (to confirm the ro-

bustness of this result, an additional assimilation sequence

has been carried out with spacing 0.02τsec). Here, the errors

introduced in the retrieval of the internal structure are too

large to provide a forecast which can match the high accu-

racy of the linear extrapolation. In this latter case, the typical

forecast bias of our scheme (5 10−4 mT for an 0.01 τsec hori-

zon) is less than a third of the gap separating the assimilation

and the linear forecast (about 1.7 10−3 mT). Removing the

forecast bias would thus not entirely bring the assimilation in

line with the linear forecast.
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Fig. 7. Average forecast error d of surface poloidal magnetic field coefficients up to degree and order 13, for various prediction strategies

and variable forecast horizon. From left to right: the no-cast (poloidal magnetic field coefficients up to degree 13 at a given time are used to
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as in Fig. 3. Units as in previous figures. The averaging time interval for all sequences presented in this figure is from 0 to 6τsec.

In a final series of experiments (Fig. 8), we use the fore-

cast quality as an indicator to perform a number of checks

on our data assimilation framework. The first of these is an

evaluation of the adequate number n of free run snapshots

needed for building a robust estimate of P, as well as their

spacing. Figure 8a shows that more than 1000 samples with

a spacing at least equal to the e-folding time of the system

are needed for a reasonable determination of the covariance

matrix. Conversely, using a too small set of samples leads

to forecast errors which may exceed the error made with a

no-cast strategy. The next test evaluates the impact of the

factor β which controls the amount of correction brought by

the data at analysis time. Figure 8b shows that an optimum in

the forecast quality is reached for β = 0.75, which underlines

again the potentially deleterious effect of re-injecting all the

dynamically determined scales into the system after analysis.

Re-injecting some of these dynamically determined scales is

however beneficial to the forecast quality, as seen from the

regular decrease of the average error from β = 0 to β = 0.75.

Finally, we have performed experiments (Fig. 8c) where the

correction at analysis time has been turned off for one or sev-

eral fields. Obviously, correcting only the magnetic field har-

monic potentials results in a better forecast than not assimi-

lating anything, but the forecast quality will outperform that

of a no-cast strategy only if the flow and buoyancy harmonic

potentials are also corrected. Note that the best improvement

comes from updating the buoyancy potential, presumably be-

cause the flow driven by the buoyancy anomaly is then also

well estimated. This last test emphasizes the benefit of using

multivariate statistics for the estimation, and also illustrates

the difficulties encountered by monovariate, modelled co-

variances (Kuang et al., 2009) in forecasting the field with

better accuracy than that of a linear extrapolation.

3.3 Synthetic inversion tests, model 2

The satisfying results obtained with model 1 can be under-

stood through the strong linear couplings existing between

the observed and unobserved part of the system. To eval-

uate the impact of stronger nonlinearities, we now turn to

synthetic experiments performed with model 2. Following

the prescriptions obtained through the analysis of model 1,

the co-variance matrix for model 2 was built using n = 978

samples in the free run, with a spacing between samples of

0.125τsec, which is about three times longer than the sys-

tem e-folding time τe = 0.04τsec. The duration of the free

run is 0.65 magnetic diffusion times or 122τsec, amounting

to 61 000 yr if τsec = 500 yr. It should be noted from Fig. 8

that if we were to use n = 978 also in model 1, this would

not substantially degrade the quality of the inversions. The

differences present in the following results should thus not be

ascribed to the size of the error space (which is the rank of the

covariance matrix and is equal to n). The matrix coefficients

were computed up to degree and order lPmax = 30. All assim-

ilation experiments have been performed using β = 0.75.

Figure 9 presents an equivalent to Fig. 3 for model 2, with

an additional line presenting the observable part of the sur-

face radial magnetic field, which is now clearly different

from the complete magnetic field (for model 1 most of the
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Fig. 8. Average forecast error d for series of experiments where

the surface magnetic field is assimilated up to degree 13 (the sec-

ular variation is not assimilated here), and the forecast horizon is

0.1τsec. (a) the factor β is set to 0.75 and the number n of sam-

ples used to build P is varied by decimating an ensemble of 8155

snapshots obtained during the model free run, the spacing between

each snapshot being 0.13τsec. Two vertical dashed lines indicate

the values of n for which the spacing between snapshots is equal

to the e-folding and overturn times of the system. (b) The number

n of samples is set to 4098 and the factor β is varied from 0 (the

system is reset to its time average state prior to each analysis) to 1

(the analysis is performed on the forecast resulting from the previ-

ous time integration). (c) The correction at analysis time has been

turned off for some, or all fields (n = 4098, β = 0.75). Same time

averaging interval as in previous figure.

surface magnetic field was observable). With the exception

of this additional line, all other lines have the same color

bars as the corresponding lines of Fig. 3, in order to high-

light the relevance (and possible shortcomings) of the scaling

procedure which we have adopted (see Sect. 2.2). From an

order-of-magnitude standpoint, the rescaling is indeed satis-

factory, but there are variations within the order of magni-

tude which the scaling theory fails to describe. For instance,

model 2 has a slightly larger internal magnetic energy than

model 1 (third line of Fig. 9) but less magnetic flux escapes

at the surface (second line). The large-scale velocity and

buoyancy anomaly fields have roughly the same amplitude as

in model 1, but more powerful small-scales, located mostly

within the strong plumes emerging from the inner boundary.

When compared to model 1, the static stochastic inversion

of one data sample (second column of Fig. 9) captures less

of the internal structure of the dynamo. The system is in-

deed less observable, in the sense that a reduced state vector

which is now ten times larger (see Table 1) needs to be con-

strained by the same amount of observation. Furthermore,

the stronger nonlinearities present in model 2 tend to even

out correlation peaks resulting from the linear couplings in

the covariance matrix of model 2, resulting in less accurate

estimations. Still, at the exception of the deep magnetic field

(third line), which is too small-scaled to be well constrained

by the surface observations (first line), a number of gross de-

tails of the internal solution are retrieved. The first estimate

is underpowered as it was for model 1. If more data samples

have been previously assimilated through integration of the

time evolution scheme (third column), the estimate reaches

the same power as the reference. After a time of 0.7τsec

(corresponding to about two overturns), the deep fields are

only qualitatively recovered in a morphological sense. The

gross details of the convection flow and thermal plumes are

roughly into place. However, small scale details created by

the nonlinear dynamics, which are especially prominent in

the deep magnetic field map, are clearly not constrained by

the surface observations and the scheme. The frozen co-

variance matrix which we have obtained for model 2 lacks

the ability to reliably estimate small-scale details from the

large-scale observations. Indeed we have seen in Sect. 3.1

that couplings between different harmonic orders are non-

existent, and that couplings between harmonic degrees are

prominent under the condition that the solution is rather well

controlled by the linear part of the equations (including the

Coriolis force). The strong nonlinear dynamics is thus left

free to populate these small-scales in a rather unconstrained

way. This deleterious effect is also enhanced by the fact that

the size of the uncorrected part of the state vector is ten times

larger in model 2 when compared to model 1 (Table 1).

Although the deep structure of model 2 is not well re-

trieved, the assimilation seems to make (at least visually, see

the first line of Fig. 9) decent forecasts of the system evolu-

tion. On Fig. 10 we again compare the quality of these fore-

casts with that of other prediction strategies. In contrast to
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Fig. 9. Results of a twin experiment with model 2, where the surface radial magnetic field (first line) and its secular variation (not shown),

both given up to degree and order 13, are used to retrieve the internal structure (second to fifth line). The first column is the reference.

Similarly to Fig. 3, column 2 is the estimate if only the initialisation and the first analysis steps have been performed, and column 3 is the

estimate obtained after performing a full data assimilation sequence where 7 data samples spaced 0.1τsec time units each are injected in the

model. Note that for this last column, the state of the system is represented after the forecast (not after the analysis). For this run we used

β = 0.75. For comparison purposes, units and color bars for lines 2 to 5 are the same as in Fig. 3.

Fig. 7, the error for the various strategies no longer follow a

power-law of the forecast horizon as this horizon approaches

the system e-folding time τe = 0.04τsec. Indeed it is expected

(Hulot et al., 2010b; Lhuillier et al., 2011a) that the error

starts to become of macroscopic (same order of magnitude

as the reference) amplitude beyond this point, as confirmed

by our experiments. The left panel of Fig. 10 shows that the

assimilation never performs significantly better than the no-

cast. Moreover, when secular variation data up to degree 13

are also used, the linear extrapolations are shown to be much

better than the assimilation forecasts, for all horizons below

the e-folding time where both strategies again yield the same

error. Given that Re = 858 for model 2, the secular variation

at the outer boundary is now mostly controlled by flow ad-

vection underneath the outer boundary. The flow responsible

for the secular variation is nonlinearly coupled to the obser-

vations, and thus not well grasped by our linear estimation

technique. This explains the worse results obtained by the

assimilation.

Here, our assimilation scheme faces a problem of rele-

vance: it is less efficient than the linear forecast for horizons

below the system e-folding time, and for longer horizons,

prediction strategies can only be envisioned if the analysis

done before the time integration has very low errors in the

determination of the internal structure. As, for the Earth, we

may not be able to observe enough of the system to perform
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Fig. 10. Average forecast error d of surface poloidal magnetic field

coefficients, for model 2, various prediction strategies and various

forecasts horizons, computed as in Fig. 7.

such low error analyses, this reduces the prospect of im-

plementing a reasonably complex and realistic geomagnetic

data assimilation framework in an operational context. How-

ever, assuming that the errors of the assimilation and linear

extrapolation strategies are decorrelated, and if their statistics

are known, the predictions from both strategies can be com-

bined in order to provide a third prediction which is better

than the two original ones. Such an additivity of accuracies

is a concept at the root of the linear estimation theory. Here

again, a Kalman filter is the adequate tool to perform this

task. If we assume that we can estimate the error covariance

matrix R of linear extrapolations, and if, for a given forecast

horizon, we have both the linear extrapolation forecast xf l

and the assimilation forecast xf , then the combined forecast

xf c is such that

xf c = xf +K(Hxf l −Hxf ). (24)

In a more readable presentation which involves the observ-

able parts yf l = Hxf l , yf = Hxf and yf c = Hxf c, and the

model covariance matrix reduced to the observable part O =

HPH′, the combined forecast writes:

(O+R)yf c = Oyf l +Ryf . (25)

The combined forecast is thus simply an optimal interpola-

tion of the two other forecasts. Figure 11 illustrates this con-

cept on a forecast horizon 0.05τsec, roughly equal to the sys-

tem e-folding time. Diagonal coefficients of the matrix R

(Fig. 11a) are estimated following the same procedure as in

Sect. 3.1, using 100 linear forecasts performed in a prelimi-

nary run of the model. Cross-correlations in the error statis-

tics are neglected (non diagonal coefficients are set to 0). Er-

rors are naturally statistically centered, and according to the

formalism outlined in Sect. 2.3, they are normalised with the

corresponding diagonal variances used for P. An error equal

a
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Fig. 11. (a): empirically-estimated diagonal coefficients Rlm,lm of

the error covariance matrix R for linear forecasts of model 2 at the

horizon 0.05τsec. Coefficients are normalised with the correspond-

ing variances of the free run, and are ordered according to the same

one-parameter lm ordering scheme as in Fig. 2. Non-diagonal coef-

ficients are set to 0. (b): instantaneous innovation (or instantaneous

forecast error) di (circles) for the assimilation sequence shown in

Fig. 9 with forecast horizon 0.05τsec. Also represented are the re-

sults of a linear extrapolation using the exact same amount of data,

i.e. the surface magnetic field and secular variation coefficients up

to degree 13 (squares), and the results of a combined forecast (dia-

monds) as defined in Eq. (25), using the empirically-estimated ma-

trix R.

to one thus means that the linearly forecast harmonic coeffi-

cient varies as much as what was observed for the coefficient

itself during the model free run. From Fig. 11.a it appears

that the linear forecast performs better on large scales than

on small scales. The optimal interpolation outlined above

has the effect to mitigate this error by injecting more of the

assimilation forecast when the linear forecast error is large.

The overall root-mean-squared forecast error thus decreases

(Fig. 11b). The quality of the combined forecast outperforms

that of the linear extrapolation by about 10 %, and that of the

assimilation by about 40 %. More importantly, the combined

forecast is shown to be always better than the best of the

two strategies. This clearly underlines the interest of hav-

ing several independent prediction strategies at hand when

attempting to perform forecasts, especially if each strategy is

far from perfect.

4 Discussion

In this study, we have explored how a linear estimation tech-

nique, the stochastic inverse (or Kalman filter), together with
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a sequential assimilation scheme, can provide inferences on

the internal structure of numerical dynamos from surface ob-

servations only. The way the stochastic inverse handles the

non-uniqueness problem is through the use of prior informa-

tion, obtained by directly computing the multivariate statis-

tics of the numerical models from a suitably large set of snap-

shots with enough spacing between each other. Strong corre-

lations were found between the surface observations and the

internal fields, which arise from the linear part of the dynam-

ical equations and the leading influence of the Coriolis force

in the dynamics. This led to excellent synthetic recovery

results with a weakly nonlinear model (model 1). Stronger

nonlinearities (model 2) however defeat the linear estimation

technique to some extent, even though nonlinearity itself can

be used with some success in estimating the part of the under-

lying field spectrum which is neither observed nor correlated

to surface observations (Fig. 5). This could provide a possi-

ble path towards improving spatial resolution problems of the

existing inversion strategies mentioned in the introduction.

With kinematic Reynolds numbers of order 109 and mag-

netic Reynolds number of order 103 (e.g. Christensen and

Tilgner, 2004; Aubert et al., 2009) it is certain that nonlinear-

ities are important in Earth’s core dynamics. Our results are

encouraging but highlight the need for estimation techniques

specifically designed to handle a large amount of nonlinear-

ity. When dealing with such magnetic Reynolds number (as

is the case in model 2), advection by the flow underneath

the outer boundary is responsible of most of the secular vari-

ation in the observed range. The linear estimation of core

flow performed in this study is clearly insufficient and could

be replaced by a classical inversion of the radial induction

equation (see for instance Finlay et al., 2010a), which han-

dles the nonlinear nature of core flow advection correctly.

Another important point is to implement a time evolution al-

gorithm for the model covariance matrix, in order to have an

instantaneous matrix which, for each analysis time, should

be more adapted to the evaluation of nonlinear correlations

than the generic, frozen covariance matrix in which, as we

have seen, only the correlations subsequent to the linear part

of the system arise. A promising method is for instance the

ensemble Kalman filter (Evensen, 1994), where the model er-

ror statistics are evolved through the use of an ensemble of

models states created around the actual model trajectory with

the help of a Monte-Carlo method. Such a method is how-

ever much more costly in terms of computer power than the

method which we have presented here, which had require-

ments on disk space (400 GB for model 2) and random ac-

cess memory (30 GB) only at the time of the computation of

the frozen model covariance matrix.

Geomagnetic data assimilation is however still in its in-

fancy, and more acute problems need to be solved before

geomagnetism can integrate the advanced data assimilation

techniques routinely used in atmospheric and ocean sciences.

One of these issues is the choice of a numerical model for

performing an operational inversion for the internal structure

of the geodynamo. As discussed in the introduction, the

Earth’s core has an extraordinary disparity in the diffusivi-

ties of the involved fields, as measured for instance by the

magnetic Prandtl number Pm ≈ 10−6 of liquid iron. Nu-

merical models are not able to handle such diffusivity con-

trasts and operate at Prandtl numbers close to unity. Even

if we can reach an acceptable level of magnetic turbulence

(Rm = O(1000)), current computer power limitations make

it impossible to reach a level of hydrodynamic turbulence

which approaches that of the Earth’s core. As a result, even

if the magnetic induction phenomenon is correctly simulated,

we should be cautious about the relevance of the large-scale

velocity output of our simulations and inversions. In the ab-

sence of a clear path towards improving this situation, our

understanding of the physical grounds underlying the mor-

phological semblance between numerical dynamos and the

geomagnetic field (Christensen et al., 2010) suggests that we

should select a model which has the lowest possible ratio

between the length of the day and the magnetic dissipation

time scale (the magnetic Ekman number) and a ratio between

the magnetic advection and diffusion time scale approaching

1000 (the magnetic Reynolds number). In that sense model 2

should be much better suited than model 1 for the task of

inverting real geomagnetic data, but here a trade-off should

be made between the physical relevance of the model and

the ability to linearly estimate hidden state variables, which,

as we have seen, is precisely hampered by the fact that the

magnetic Reynolds number is large.

It is interesting to briefly review how geomagnetic data as-

similation strategies currently in development deal with the

issue of this improper rendering of the real physics. Kuang

et al. (2010) propose that these modelling errors evolve

on a time scale longer than that at which observation data

can be made. In that case they can be mitigated by per-

forming two closely spaced assimilation sequences. The

method is promising and already resulted in a secular vari-

ation model for the latest generation of the IGRF (Finlay

et al., 2010b). It is however limited to surface field forecast-

ing activities. Progress in determining the internal dynamical

structure could be achieved through combining data assimi-

lation with asymptotic assumptions on core dynamics, for in-

stance the quasi-geostrophic assumption (Canet et al., 2009),

or building Taylor states (Livermore et al., 2010) compatible

with surface observations. In any case, using several inter-

nal structure modelling approaches within their spatial and

temporal range of validity could help overcome the intrinsic

limitations of each strategy. For instance, a quasi-geostrophic

framework is more appropriate for rapid (decadal) flow vari-

ations (Jault, 2008) while a three-dimensional numerical dy-

namo is suitable for describing long-term, ageostrophic flows

such as thermal winds (Aubert et al., 2010).

With the help of the scaling procedure presented in

Sect. 2.2, it is useful to recast the time axis of our mod-

els to the dimensional world, using the secular variation

timescale τsec ≈ 500 yr, in order to set some bounds on what
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could be expected from an operational implementation of our

method for short-term geomagnetic data assimilation. Given

the macroscopic errors obtained when inverting for the in-

ternal structure, our scheme cannot provide reasonable fore-

casts at horizons longer than the system e-folding time. For

the Earth’s core, this time was evaluated (Hulot et al., 2010b;

Lhuillier et al., 2011a) at about τe = 0.04τsec ≈ 25 yr (similar

to model 2). At very short horizons such as 0.01τsec = 5 yr,

we have also seen that linear extrapolations of the magnetic

field evolution usually perform better than the assimilation.

Still, as the two prediction strategies have complementary

strengths and weaknesses, we have applied the principle of

“additivity of accuracies” in order to show how the two pre-

diction strategies can re-inforce each other to provide a bet-

ter third forecast, provided the error statistics of each strat-

egy is known (or can be estimated). Here again it should

be stressed that the current generation of numerical dynamo

models lacks the short timescale dynamics of Earth’s core,

such as the 6-yr oscillation studied by Gillet et al. (2010).

The extent to which data assimilation based on these numer-

ical models could improve our knowledge of this fast dy-

namics needs to be clarified. Still, it should not be forgotten

that beyond the classical exercise of forecasting the surface

magnetic field evolution, data assimilation could bring esti-

mates and forecasts for other hidden and internal geodynam-

ical properties for which we currently do not have any other

estimation and forecasting strategy at hand.

Evaluating the typical forecast error of our assimilation

scheme at the surface of the Earth, we find errors on the or-

der of a microtesla for a 50 yr forecast, and of a few tenths of

nanoteslas for a 5 yr forecast. These should be put in perspec-

tive with the typical observation errors present in geomag-

netic field modelling, which amount for instance to tens to

hundreds of nanoteslas in the historical period (Bloxham and

Jackson, 1989) and a few nanoteslas in the satellite observa-

tion period (Olsen et al., 2010). An assimilation performed

on real data will thus need to include a proper estimation of

the observation error for the assimilated quantities. It might

then be impractical to work with the harmonic coefficients

supplied by geomagnetic field models such as gufm1 (Jack-

son et al., 2000), as the evaluation of the observation error

covariance matrix is intricate. To tackle this issue, future data

assimilation frameworks should be able to directly integrate

pointwise direct or indirect measurements, along with their

corresponding observation errors, or progress should be en-

couraged towards better evaluating the error associated with

each harmonic coefficient in geomagnetic field models, as

done most recently in the archeomagnetic context by Korte

and Constable (2011).
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Fournier, A., Aubert, J., and Thébault, E.: Inference on core surface

flow from observations and 3-D dynamo modelling, Geophys.

J. Int., 186, 118–136, doi:10.1111/j.1365-246X.2011.05037.x,

2011.

Gillet, N., Pais, M. A., and Jault, D.: Ensemble inversion of time-

dependent core flow models, Geochem. Geophy. Geosyst., 10,

Q06004, doi:10.1029/2008GC002290, 2009.

Gillet, N., Jault, D., Canet, E., and Fournier, A.: Fast torsional

waves and strong magnetic field within the Earth’s core, Nature,

465, 74–77, doi:10.1038/nature09010, 2010.

Gubbins, D.: Geomagnetic field analysis – I. Stochastic inversion,

Geophys. J. R. Astr. Soc., 73, 641–652, 1983.

Houser, P. R., De Lannoy, G. J. M., and Walker, J. P.: Land Surface

Data Assimilation, in: Data Assimilation, edited by: Lahoz, W.,

Khattatov, B., and Ménard, R., Springer, Berlin Heidelberg, 549–

597, doi:10.1007/978-3-540-74703-121, 2010.

Hulot, G., Finlay, C. C., Constable, C. G., Olsen, N., and Mandea,

M.: The Magnetic Field of Planet Earth, Space. Sci. Rev., 152,

159–222, doi:10.1007/s11214-010-9644-0, 2010a.

Hulot, G., Lhuillier, F., and Aubert, J.: Earth’s dynamo

limit of predictability, Geophys. Res. Lett., 37, L06305,

doi:10.1029/2009GL041869, 2010b.

Jackson, A., Jonkers, A. R. T., and Walkers, M. R.: Four centuries

of geomagnetic secular variation from historical records, Phil.

Trans. Roy. Soc. A, 358, 957–990, 2000.

Jault, D.: Axial invariance of rapidly varying diffusionless motions

in the Earth’s core interior, Phys. Earth Planet. Int., 166, 67–76,

doi:10.1016/j.pepi.2007.11.001, 2008.

Kalman, R. E.: A New Approach to Linear Filtering and Prediction

Problems, Trans. J. Basic Eng., 82, 35–45, 1960.

Kalnay, E.: Atmospheric modeling, data assimilation, and pre-

dictability, Cambridge University Press, Cambridge, 2003.

Kalnay, E.: Ensemble Kalman Filter: Current Status and Po-

tential, in: Data Assimilation, edited by: Lahoz, W., Khatta-

tov, B., and Ménard, R., Springer, Berlin Heidelberg, 69–92,

doi:10.1007/978-3-540-74703-14, 2010.

Korte, M. and Constable, C. G.: Improving geomagnetic

field reconstructions for 0–3 ka, Phys. Earth Planet. Int.,

doi:10.1016/j.pepi.2011.06.017, in press, 2011.

Kuang, W., Wei, Z., Holme, R., and Tangborn, A.: Prediction of ge-

omagnetic field with data assimilation: a candidate secular varia-

tion model for IGRF-11, Earth Planet. Space, 62, 775–785, 2010.

Kuang, W., Tangborn, A., Wei, Z., and Sabaka, T.: Constraining

a numerical geodynamo model with 100 years of surface obser-

vations, Geophys. J. Int., 179, 1458–1468, doi:10.1111/j.1365-

246X.2009.04376.x, 2009.

Lhuillier, F., Aubert, J., and Hulot, G.: Earth’s dynamo limit of pre-

dictability controlled by magnetic dissipation, Geophys. J. Int.,

186, 492–508, doi:10.1111/j.1365-246X.2011.05081.x, 2011a.

Lhuillier, F., Fournier, A., Hulot, G., and Aubert, J.: The ge-

omagnetic secular-variation timescale in observations and nu-

merical dynamo models, Geophys. Res. Lett., 38, L09306,

doi:10.1029/2011GL047356, 2011b.

Lister, J. R.: Expressions for the dissipation driven by convec-

tion in the Earth’s core, Phys. Earth Planet. Int., 140, 145–158,

doi:10.1016/j.pepi.2003.07.007, 2003.

Liu, D., Tangborn, A., and Kuang, W.: Observing system simula-

tion experiments in geomagnetic data assimilation, J. Geophys.

Res., 112, B08103, doi:10.1029/2006JB004691, 2007.

Livermore, P. W., Ierley, G. R., and Jackson, A.: The construction

of exact Taylor states, II: The influence of an inner core, Phys.

Earth Planet. Int., 178, 16–26, doi:10.1016/j.pepi.2009.07.015,

2010.

Olsen, N., Hulot, G., and Sabaka, T. J.: Measuring the Earth’s Mag-

netic Field from Space: Concepts of Past, Present and Future

Missions, Space. Sci. Rev., 155, 65–93, doi:10.1007/s11214-

010-9676-5, 2010.

Olson, P., Christensen, U., and Glatzmaier, G. A.: Numerical mod-

elling of the geodynamo: mechanisms of field generation and

equilibration, J. Geophys. Res., 104, 10383–10404, 1999.

Pais, M. A. and Jault, D.: Quasi-geostrophic flows responsible

for the secular variation of the Earth’s magnetic field, Geophys.

J. Int., 173, 421–443, doi:10.1111/j.1365-246X.2008.03741.x,

2008.

Roberts, P. H. and Scott, S.: On the analysis of the secular variation,

I. A hydromagnetic constraint: theory., J. Geomag. Geoelectr.,

17, 137–151, 1965.

Talagrand, O.: A posteriori validation of assimilation algorithms,

in: Data Assimilation for the Earth system, edited by: Swinbank,

R., Shutyaev, V., and Lahoz, W., vol. 26 of NATO Science Series

IV Earth and Environmental Sciences, Springer, Dordrecht, the

Netherlands, 85–95, 2003.

Nonlin. Processes Geophys., 18, 657–674, 2011 www.nonlin-processes-geophys.net/18/657/2011/

http://dx.doi.org/10.1016/j.epsl.2010.06.009
http://dx.doi.org/10.1007/978-3-540-74703-1_19
http://dx.doi.org/10.1007/978-3-642-03711-5
http://dx.doi.org/10.1007/s11214-010-9691-6
http://dx.doi.org/10.1007/s11214-010-9691-6
http://dx.doi.org/10.5047/eps.2010.11.005
http://dx.doi.org/10.1007/s11214-010-9669-4
http://dx.doi.org/10.1111/j.1365-246X.2011.05037.x
http://dx.doi.org/10.1029/2008GC002290
http://dx.doi.org/10.1038/nature09010
http://dx.doi.org/10.1007/978-3-540-74703-1_21
http://dx.doi.org/10.1007/s11214-010-9644-0
http://dx.doi.org/10.1029/2009GL041869
http://dx.doi.org/10.1016/j.pepi.2007.11.001
http://dx.doi.org/10.1007/978-3-540-74703-1_4
http://dx.doi.org/10.1016/j.pepi.2011.06.017
http://dx.doi.org/10.1111/j.1365-246X.2009.04376.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04376.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05081.x
http://dx.doi.org/10.1029/2011GL047356
http://dx.doi.org/10.1016/j.pepi.2003.07.007
http://dx.doi.org/10.1029/2006JB004691
http://dx.doi.org/10.1016/j.pepi.2009.07.015
http://dx.doi.org/10.1007/s11214-010-9676-5
http://dx.doi.org/10.1007/s11214-010-9676-5
http://dx.doi.org/10.1111/j.1365-246X.2008.03741.x

