
Inferring Locks for Atomic Sections

Sigmund Cherem ∗

Department of Computer Science
Cornell University
Ithaca, NY 14853

siggi@cs.cornell.edu

Trishul Chilimbi Sumit Gulwani
Microsoft Research
One Microsoft Way

Redmond, WA 98052
{trishulc, sumitg}@microsoft.com

Abstract
Atomic sections are a recent and popular idiom to support the
development of concurrent programs. Updates performed within
an atomic section should not be visible to other threads until the
atomic section has been executed entirely. Traditionally, atomic
sections are supported through the use of optimistic concurrency,
either using a transactional memory hardware, or an equivalent
software emulation (STM).

This paper explores automatically supporting atomic sections
using pessimistic concurrency. We present a system that combines
compiler and runtime techniques to automatically transform pro-
grams written with atomic sections into programs that only use
locking primitives. To minimize contention in the transformed pro-
grams, our compiler chooses from several lock granularities, using
fine-grain locks whenever it is possible.

This paper formally presents our framework, shows that our
compiler is sound (i.e., it protects all shared locations accessed
within atomic sections), and reports experimental results.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis; D.3.3 [Language Con-
structs and Features]: Concurrent programming structures; D.3.4
[Processors]: Compilers

General Terms Algorithms, Languages, Theory, Experimenta-
tion, Performance

Keywords Static lock inference, atomic sections, concurrency.

1. Introduction
One of the main problems when developing concurrent software is
to maintain a consistent view of the shared state among all the con-
current threads. For many years programmers have used pessimistic
concurrency to develop these applications. Pessimistic concurrency
consists of blocking the execution of some threads in order to avoid
generating an inconsistent shared state. For example, using locks
to prevent data races. However, developing reliable and efficient
applications with pessimistic concurrency is an arduous task. Pro-
grammers need to use fine-grain locks to minimize contention and

∗ This work was developed while the author was an intern at Microsoft
Research, Redmond.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’08, June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00

need to carefully acquire and release locks to eliminate the possibil-
ity of a harmful data race and deadlocks. This is especially difficult
to do in a modular way. Consider, for example, combining library
code and client code, the absence of deadlocks in the library code
and in the client code does not guarantee absence of deadlock in the
composition of the library and client code. Even after mastering all
these challenges, programmers do not always have a guarantee that
the written locks yield the intended program semantics.

Recently, programming languages’ researchers have adopted
the concept of atomic sections from the database community as a
possible alternative. Atomic sections allow programmers to give a
high level specification of the concurrency semantics. Without any
intervention from the programmer, the underlying system enforces
that atomic sections, i.e. sections of code protected by an atomic
keyword, appear to be executed atomically. Under strong atomicity
semantics these sections appear to be atomic with respect to any
other statement in the program. Whereas under weak atomicity
semantics atomic sections appear to be atomic with respect to other
atomic sections in the code [2]. That is, for any program execution
trace, there must exist an equivalent trace where all atomic sections
are executed in some serial order. For programmers this is a very
attractive alternative, since all the difficulties of manual pessimistic
concurrency are abstracted away.

A natural implementation of atomic sections is to use optimistic
concurrency via the use of specialized transactional memory hard-
ware (TM) [12, 11] or a software transactional memory (STM) that
emulates such hardware [21, 9, 17]. These systems treat atomic sec-
tions like transactions and allow them to run concurrently. When-
ever a conflict occurs, one of the conflicting transactions is rolled
back and re-executed. Some systems [20, 7] would prevent conflicts
using locks, but roll back transactions when a deadlock occurs. An
optimistic system is typically desired when conflicts are rare and
hence rollbacks seldom occur.

However, optimistic concurrency has some disadvantages. Cer-
tain applications do not perform well under an optimistic concur-
rency model as they incur a large number of transaction aborts
and rollbacks. Additionally, not all atomic sections can be rolled
back, for example after observable actions are performed. A well
designed pessimistic approach could provide an alternative that
avoids these disadvantages, by outperforming optimistic concur-
rency in applications that are not suited to transactions, and not
performing too much worse than transactions in programs where
transactions scale. In addition, a pessimistic approach allows ob-
servable actions inside atomic sections.

This paper presents an automated system to support atomic sec-
tions using pessimistic locking. Our system consists of a compiler
framework and a runtime library. The compiler reads programs
with atomic sections and produces equivalent programs that use
lock for concurrency-control. The inferred locks enforce the weak
atomicity semantics of the atomic sections. The transformed pro-

1: void move (list* from, list* to) {
2: atomic {
3: elem* x = to->head;
4:
5: elem* y = from->head;
6: from->head = null;
7: if (x == null) {
8: to->head = y;
9: } else {
10:
11: while(x->next != null)
12: x = x->next;
13:
14:
15: x->next = y;
16: }
17: }
18: } (a)

acquire(&(to->head));
elem* x = to->head;
acquire(&(from->head));
elem* y = from->head;
from->head = null;
if (x == null) {

to->head = y;
} else {

acquire(&(x->next));
while(x->next != null) {

x = x->next;
acquire(&(x->next));

}
x->next = y;

}
releaseAll();

(b)

acquireAll({&(to->head),
&(from->head), E});

elem* x = to->head;
elem* y = from->head;
from->head = null;
if (x == null) {

to->head = y;
} else {

while(x->next != null)
x = x->next;

x->next = y;
}
releaseAll();

(c)

Figure 1. Example program: moves list elements between from and to. (a) Original program with atomic section. (b) Fine-grain locking
scheme susceptible to deadlock. (c) Multi-grain locking scheme avoiding deadlock. E is a coarse lock protecting all elements in the to list.

grams can be run using a special lock runtime library. This ap-
proach allows users to write programs with atomic sections and
run them without the need of specialized hardware or an STM.

Our compiler provides several guarantees about the transformed
programs. The generated programs must: (a) satisfy the weak atom-
icity semantics originally specified by the atomic sections, (b) be
deadlock free, and (c) avoid unnecessary thread contention intro-
duced by locks. The last property is necessary to avoid using trivial
locking schemes that waste parallelism, for example, using a single
global lock to protect all atomic sections.

This paper discusses in detail how we generate programs satis-
fying these properties. First, to satisfy the atomic semantics we for-
mally show that locks introduced by the compiler protect all shared
locations accessed within an atomic section. Second, to avoid dead-
locks we borrow a locking protocol from the database community.
Third, to reduce contention we insert locks of multiple granulari-
ties, using fine-grained locks as much as possible.

The following summarizes our contributions:

• We present formal definitions to model locks. We define the
notion of abstract lock schemes that allows us to represent locks
and the relation between locks of different granularities.

• We present a formal analysis framework to infer locks for an
atomic section, given an input lock scheme specification.

• We show that our analysis is sound. That is, if at the entry of
an atomic section each thread acquires the locks inferred by
our analysis, then the execution of the program is guaranteed to
respect the weak atomicity semantics.

• We describe a library to support locks of multiple granularities.
• We show experimental results for an instance of our framework

indicating that the analysis scales well to medium size appli-
cations, yields better performance for benchmarks not suited to
transactions, and performs not too much worse than an STM in
some benchmarks where transactions scale.

The rest of this document is organized as follows. Section 2
illustrates the ideas behind our system using several examples.
Section 3 introduces our formal definitions for locks and abstract
lock schemes. Section 4 formalizes the analysis framework that in-
fers locks, and discusses how we implemented an instance of this
framework. Section 5 discusses a multi-grain locking runtime li-

brary used to support the transformations enabled by our analysis.
We present our experimental results in Section 6. Finally, we dis-
cuss related work in Section 7 and conclude in Section 8.

2. Example
This section presents two examples to illustrate the features of our
system. The examples use a list data-structure defined in terms of
two datatypes:

typedef struct elem_t {
struct elem_t* next; int* data; } elem;

typedef struct list_t { elem* head; } list;

Atomic sections with locks Figure 1(a) presents a program that
moves elements from one list to another. By the end of the function
move the list from is empty and the list to contains the concate-
nation of the input lists. The entire function should be executed
atomically, since it is wrapped in a block labeled with an atomic
keyword. The goal of our system is to introduce locks to enforce
the semantics of the atomic section.

A first attempt to write the code using locks would be to acquire
a global lock at the entry of the atomic section, and release it
by the end of the section. This approach could introduce a lot of
contention: the function move cannot be executed in one thread if
any other thread is inside an atomic section.

A second attempt would be to use fine-grain locks, one lock
for each location accessed within the function move. Figure 1(b)
shows the result of this approach. Before accessing a location v we
request a fine-grain lock to protect it using a call to acquire(e),
where e is an expression whose value is the location v. Then,
we release all locks by the end of the atomic section. Unfortu-
nately, this code is susceptible to deadlocks. For example, if we
call move(l1,l2) and move(l2,l1) concurrently, the first thread
could lock &(l1->head) on line 2, the second thread could lock
&(l2->head) on the same line, then both threads will be blocked
in line 4.

Our system uses a third approach, which consists in avoid-
ing deadlocks by using a locking protocol. The protocol is imple-
mented by acquiring all locks at the entry of the atomic section. To
use the protocol, our compiler needs to estimate what locations are

1: elem* y,x;
2: int* w;
3: ...
4: if (...) {
5: x = y;
6: }
7: atomic { {y->data, w}
8: x->data = w; {y->data, w}
9: int* z = y->data; {y->data}
10: *z = null; {z}
11: }

Figure 2. Analysis example: finding fine-grain protecting locks.

accessed within the atomic section, and then introduce locks at the
entry of the section to protect each accessed location.

Fine-grain locks can still be used to protect shared locations,
as long as the compiler can determine an expression that pro-
tects the desired location. However, when atomic sections access
an unbounded number of locations, or when there is no expres-
sion in scope to protect a shared location, our system introduces
coarse-grain locks. Figure 1(c) shows the transformation our sys-
tem generates for the function move. The acquireAll instruction
applies the locking protocol on the input set of locks. The locks
on &(to->head) and &(from->head) are fine-grain locks. The
lock E is a coarse-grain lock used to protect every element of the
to list.

Finding fine-grain locks Our compiler tries to use fine-grain
locks as much as possible. To achieve this goal, the compiler needs
to describe the locations accessed within an atomic section in terms
of expressions that are in scope by the entry of the atomic block.
We use the example in Figure 2 to illustrate this.

In Figure 2, the dereference of the variable z at line 10 could
be protected by acquiring a lock on &(*z) (or, equivalently, just z)
right before the access. Note that the variable z is not in scope at the
entry of the section, because it is defined later at line 9. The com-
piler performs a backward tracing to deduce what expressions are
equivalent to z at the entry of the section. At line 9 the compiler de-
termines that z is equivalent to y->data. The expression y->data
can be affected by the update of x->data at line 8 if x and y are
aliased. In fact, x will alias y if the true branch at line 4 is taken.
Since the compiler can’t decide whether this branch is taken or not,
it must consider both cases. When x and y are aliased, x->data
will replace the value of y->data, and hence the location pointed
by z at line 10 would be equivalent to w at the entry of the atomic
section. Otherwise, when x and y are not aliased, y->data is not
changed by the assignment in line 8, and thus y->data at line 7
would point to the location that z points to at line 10.

The compiler performs a similar backward tracing for every lo-
cation accessed within the atomic section. Then, it introduces calls
to acquire fine-grain locks for each expression derived at the entry
of the section. For instance, in our example the compiler will lock
both y->data and w ensuring that the access on line 10 is always
protected by one of these locks. Additionally, to ensure termina-
tion the compiler bounds the size of the expressions it collects. The
compiler introduces calls to acquire coarse-grain locks to protect
expressions whose size exceeds the established bound.

3. Formalizing Locks
This section introduces formal definitions about locks. These def-
initions will be useful to answer questions involving locks and
atomic sections. For example: What shared locations are protected
by a lock? Are two locks protecting a common location? Are all
shared accesses of an atomic section protected by a set of locks L?

st ∈ Stmt ::= x = e | ∗ x = e
| if(b) st else st | while(b) st
| st; st | atomic{st}

e ∈ E ::= x | ∗ x | &x | x + i | new(n) | null
| f(a0, . . . , an)

b ∈ B ::= x = y | b ∨ b | b ∧ b | ¬b

Figure 3. Input Language

After introducing our input language, we will proceed by giving
a definition of concrete locks semantics. We will show how this
formal semantics can be used to answer some of the questions
above. Then we will instantiate our general semantics definition
to give examples of commonly used locks.

In the last part of this section we will introduce the notion of
an abstract lock scheme. Abstract locks are essentially an approx-
imation of concrete locks that we use to formalize our inference
system. The formal definitions will allow us to show that our tool
produces programs that respect the atomic semantics.

3.1 Language
Figure 3 presents our input language. The language contains stan-
dard constructs such as heap allocation, assignments, and control-
flow constructs, but also includes atomic sections. Expressions in-
clude variables, dereferences, address-of variables, offsets, alloca-
tions, and null values. All values in this language are locations or
null, no pointer arithmetic is allowed. Array dereferences and struc-
ture dereferences are not distinguished, they are all modeled using
field offsets. We denote the domain of offsets by F . Return state-
ments return x are modeled by an assignment retf = x, where
retf is a special variable modeling the return value of f .

Our output language is the same as the input language, except
that atomic sections are replaced by two instructions: acquireAll(L),
that receives a set of locks L, and releaseAll, that releases all locks
held by a thread.

3.2 Concrete Lock Semantics
A lock is simply a name l in some domain LNames that implicitly
protects a set of locations. We introduce a lock semantics to make
this relation between locks and locations explicit. We write the
semantics of a lock l using the denotational function in the domain:

[[·]] : LNames → 2Loc × Eff

where Loc is the domain of memory locations and Eff = {ro, rw}
is the domain of access effects (reads and writes).

When [[l]] = (P, ε) we say that l is a lock that, when acquired,
protects all locations in the set P , but only to allow the accesses
described by ε. For example [[l]] = ({v}, ro) then l ensures that v
is protected for reads, but it is not protected to update its value.

With this definition, we can distinguish fine-grain and coarse-
grain locks. A fine-grain lock protects a single memory location at
all times, formally,

∃v . [[l]] = ({v},)

while a coarse-grain lock may protect more than one location.
The domain 2Loc and the subset relation ⊆ form a lattice. We

also define a simple two point lattice (Eff,v) for the set of effects,
where the read-write effect is the top element (ro v rw). The
domain used in the lock semantics (2Loc × Eff) forms a lattice as
well, which is defined as the product of the two lattices (2Loc,⊆)
and (Eff,v). We can use the lock lattice to reason about the relation
between locks, for example:

• Conflict: two locks conflict if they protect a common location,
and at least one of them allows write effects:

conflict(la, lb) ⇔
[[la]] u [[lb]] 6= (∅,) ∧ [[la]] t [[lb]] 6= (, ro)

• Coarser-than: a lock lb is coarser-than a lock la if it protects all
locations protected by la, allowing at least the same effects:

coarser(lb, la) ⇔ [[la]] v [[lb]]

3.2.1 Examples
We now give several example of locks, characterized using our
semantics definition.

Expression locks Program expressions can be used to define fine-
grain locks. Let σ denote a program state in our concrete seman-
tics, and consider a program expression e. Whenever the program
reaches the state σ, the runtime value of e is always a single lo-
cation v. This can be written formally using the following relation
〈σ, e〉 → v. To protect v for any read or write access, we can define
a fine-grain lock lσe with the following semantics:

[[lσe]] = ({v | 〈σ, e〉 → v}, rw)

Global lock A global lock lg protects all memory locations:

[[lg]] = (Loc, rw)

Type-based locks In a type-safe language, we could use types to
protect all values of such type:

[[lτ]] = ({v | typeOf (v) = τ ′ ∧ τ ′ <: τ}, rw)

where typeOf returns the runtime type of a value, and <: is a
subtyping relation. In the presence of subtyping, for example with
class inheritance in object oriented languages, the super-type is a
coarser lock than a sub-type, i.e. τ <: τ ′ ⇒ [[lτ]] v [[lτ ′]].

Pointer analysis locks Consider a flow-insensitive and context-
insensitive pointer analysis. The analysis abstraction is a set of
allocation sites, called points-to set. We can define a lock for each
points-to set p as follows:

[[lp]] = ({v | allocOf (v) ∈ p}, rw)

where allocOf is a function that returns the site where v was
allocated. The lock lp protects all memory locations allocated in
any of the allocation sites in p.

Read and write locks A global read lock lr and a global write
lock lw have the following semantics:

[[lr]] = (Loc, ro) [[lw]] = (Loc, rw)

Lock pairs We can also combine the power of two lock sets by
computing their Cartesian product. Let l1 and l2 be two lock names.
We define the concrete pair lock (l1, l2) as:

[[(l1, l2)]] = [[l1]] u [[l2]]

This means, the pair lock protects the intersection of the locations
protected by the individual locks. For example, we can combine
expression locks and global read and write locks to obtain a new
set of fine-grain locks that protect locations either for read-only or
read-write accesses.

3.3 Abstract Lock Schemes
The lock semantics allows us to understand the relation between
locks and locations. In this section we explore reasoning about
locks in abstract manner, but ensuring that our reasoning is a safe
approximation of the concrete locks semantics.

We define an abstract lock scheme Σ as a tuple

Σ = (L,≤,>, · ε
p, +ε

p, ∗ε
p)

where elements in L ⊆ LNames are lock names, (L,≤,>) is a
join-semilattice with top element >. Since (L,≤) is a join semi-
lattice, the relation ≤ is reflexive, transitive and anti-symmetric.
For any pair of elements of L, the join t, which returns their least
upper-bound, is defined. For convenience we write a < b to say
that a ≤ b ∧ a 6= b.

The operators’ domains are the following:

· ε
p : V → L +ε

p : L × F → L ∗ε
p : L → L

where p is a program point in the domain PP and ε is an effect
in Eff. The operator · ε

p takes a variable symbol and returns a lock
name l = xε

p; the operations +ε
p and ∗ε

p are used to relate different
locks in L. Together they can be used to express what locations are
protected by each abstract lock. We further discuss the semantic
meaning of these operators below.

Abstract lock schemes will be used by our lock inference algo-
rithm to compute locks that protect atomic sections. To guarantee
that our inference terminates, we require L to be bounded. Alterna-
tively, we could use widening operators in our inference algorithm.
We decided to make L bounded to simplify our presentation.

Relation with concrete locks We say that an abstract lock scheme
is a sound approximation of the concrete semantics if for any
program point p and effect ε, the following conditions are satisfied:

• The top element > represents a global lock,

[[>]] = (Loc, rw)

• If l1 ≤ l2, then the lock l2 must be coarser than l1:

∀l1, l2, . l1 ≤ l2 ⇒ [[l1]] v [[l2]]

• A lock xε
p protects the address of x to be used with the effect ε

at the program point p, formally:

∀σ, x . σ@p ∧ 〈σ, &x〉 → v ⇒ ({v}, ε) v [[xε
p]]

where σ@p denotes that σ is a state that reaches the program
point p, and 〈σ, &x〉 → v says that the address of x is the
location v in the state σ.

• If a location v is protected by l and v′ is a location pointed to
by the field i of v, then l +ε

p i must protect v′, formally

∀l ∈ L, σ, v, v′ = v +σ i .
({v}, ro) v [[l]] ⇒ ({v′}, ε) v [[l +ε

p i]]

where +σ performs an offset operation in the concrete seman-
tics of the state σ.

• The operation ∗ε
p satisfies a similar condition:

∀l ∈ L, σ, v, v′ = ∗σv .
({v}, ro) v [[l]] ⇒ ({v′}, ε) v [[∗ε

p l]]

where ∗σ performs a value dereference in the concrete state σ.

The combination of · ε
p, +ε

p and ∗ε
p allows us to inductively

construct a lock that protects the value of any expression e at a
program point p to perform an access ε. Let be ε

p be such lock, then:

cx ε
p = xε

p ê + i
ε

p = be ro
p +ε

p i d∗ e
ε
p = ∗ε

p be ro
p

Notice that all subexpressions of e only need to be protected for
read effects (ro).

3.3.1 Examples
The following are examples of abstract lock schemes, similar to the
examples of concrete locks that we gave in the previous section.

Expression locks with k-limiting Expression locks as presented
so far can’t be used in an abstract lock scheme because the set of

locks is not bounded. We introduce k-limiting to bound the set of
expression locks, and define a scheme Σk as follows:

L = {lpe | length(e) ≤ k ∧ p ∈ PP} ∪ {>}
≤ = {(lpe , lpe), (lpe ,>) | lpe ∈ L}

xε
p =

lp&x if k ≥ 1
> if k = 0

lp
′

e +ε
p i =

lpe+i length(e + i) ≤ k ∧ p = p′

> otherwise

∗ε
p lp

′
e =

lp∗e length(∗e) ≤ k ∧ p = p′

> otherwise

The scheme consists of locks le for any expression of length
equal or smaller than k. All longer expressions are represented by
the > element. Note that the effect ε is not used in the definitions,
hence all locks protect locations for read-write effects (rw).

Unification-based pointer analysis Consider a flow-insensitive
unification-based pointer analysis like Steensgard’s [22]. Let A be
the sets of points-to sets returned by the analysis, such that each
set s ∈ A is disjoint from the others; each program expression
is associated with a points-to set (which we write as e : s); and
points-to relations are denoted by edges s → s′. A sound abstract
lock scheme Σ≡ based on the result of this analysis would be:

L = {ls | s ∈ A} ∪ {>}
≤ = {(ls, ls), (ls,>) | ls ∈ L}
xε

p = s, where &x : s
ls +ε

p i = s
∗ε

p ls = s′, where s → s′

Read and write locks We can define a lock scheme Σε that
protects locations by the kind of accesses performed in them:

L = Eff xε
p = ε

≤ = v l +ε
p i = ε

> = rw ∗ε
p l = ε

Field based locks We can define a lock scheme Σi that protects
locations by the offset in which they are accessed, as follows:

L = {s | s ⊆ F} xε
p = >

≤ = ⊆ l +ε
p i = {i}

> = F ∗ε
p l = >

Cartesian product The Cartesian product Σ1×Σ2 of two abstract
schemes Σ1 and Σ2 can be constructed by taking the Cartesian
product of the domains and functions:

L = L1 × L2

≤ = {((a, b), (c, d)) | a ≤ b ∧ c ≤ d}
xε

p = (xε
p1, x

ε
p2)

(a, b) +ε
p i = (a +ε

p1 i, b +ε
p2 i)

∗ε
p (a, b) = (∗ε

p1a, ∗ε
p2b)

If two abstract lock schemes are sound approximations of the con-
crete semantics, so is their Cartesian product.

In the earlier example from Figure 1(c) we used a locking
scheme based on the Cartesian product of 3-limited expression
locks and points-to set locks (Σ3 × Σ≡). In the figure, we used
a syntactic simplification to represent each lock. We used to.head
and from.head to represent the fine-grain locks (lto.head, lL) and
(lfrom.head, lL), where L is the points-to set for the list contain-
ers. We also used the symbol E to represent the coarse-grain lock
(>, lE), where E is the points-to set for all list elements. Notice that
(>, lE) is not a global lock, it can be held concurrently with any
lock (, ls) that protects any other points-to set s 6= E.

4. Lock Inference Analysis
This section presents the analysis that deduces a set of locks to
protect an atomic section. We first present our formal framework
that will allow us to formally show that the analysis is sound. Then
we discuss how we implemented an instance of this framework.

4.1 Analysis Framework
The analysis receives two external inputs: an abstract lock scheme
(Σ) and the results of an alias analysis. The alias analysis is useful
to understand the effects of store assignments, as we saw in the
example from Figure 2 when updating x->data. The result of the
alias analysis is given by a relation mayAlias(e1, e2, p) that answers
whether two expressions e1 and e2 may point to the same location
at a program point p.

For each program point p inside an atomic section, we will
compute a set of lock names Np ⊆ L. The set of locks Np protects
all the locations used from the point p and forward until the thread
reaches the end of the atomic section. Additionally, no lock in Np

is redundant in the following ways: (a) For any lock l ∈ Np, there
is some location protected by the lock l that is referenced inside
the corresponding atomic section (during some run of the program)
under the assumption that all program paths are feasible (since our
analysis is path-insensitive). (b) For any pair of locks l1, l2 ∈ Np

neither l1 < l2 nor l2 < l1.
We formalize the analysis using a dataflow formulation. The

algorithm is a backward dataflow analysis that starting at the end of
an atomic section computes the locks for each point until it reaches
the entry of the atomic section.

Initialization The analysis starts at the end of the atomic section
with an empty set of locks: N0 = ∅.

Transfer functions Figure 4 presents the intra-procedural analy-
sis rules. Given a set N of lock names at the program point after a
statement st, the analysis computes a new set N ′ for the program
point before st. The new set N ′ must protect all locations protected
by N and all locations accessed directly by the statement. Note the
rules are formulated using closure operators which are not meant
to be used in an implementation. Section 4.3 discusses how this
analysis is implemented in practice.

The figure omits program point and effect annotations to sim-
plify the presentation. The reader should note that every operation
· , ∗ and + on the first component of a pair corresponds to the
program point a after the assignment, i.e., · a, ∗a and +a; and ev-
ery operation on the second component corresponds to the program
point b before the assignment. However, both use the same effects
ε. For example, the relation Sx=y must be read as:

Sx=y = {(∗ε1
a xε2

a , ∗ε1
b yε2

b)}
For any assignment e1 = e2 we describe the transfer function

as a combination of two basic relations Se1=e2 and Qe1 . The
relation Se1=e2 includes a minimal set of locks that are changed
by the statement. For example, in Sx=y any location protected by
∗x after the statement is protected by ∗y before the statement. We
express how other locks are transformed using the closure operator
closure(S). For instance, the transfer function maps ∗(∗x+i) after
the statement to ∗(∗y + i) before the statement.

The closure of Id allows us to express that any expression not
affected by the assignment will remain unchanged by the transfer
function. The closure of Qe1 are those expressions in closure(Id)
that are affected by the statement, and thus must be excluded from
the transfer function. For example, the transfer function of Tx=y

maps ∗(∗z) to ∗(∗z), but ∗(∗x) is not mapped to ∗(∗x) because
(∗(∗x), ∗(∗x)) ∈ closure(Qx). Finally, all transfer functions in-
clude a new set of locks G that protect the locations accessed di-
rectly by the assignment.

For any assignment e1 = e2, the transfer function is:

N ′ = transfer(e1 = e2, N)
= {l′ | (l, l′) ∈ Te1=e2 ∧ l ∈ N} ∪ Grw

e1 ∪ Gro
e2

T is the underlying transfer function relation:

Te1=e2 = closure(Se1=e2 ∪ Id)− closure(Qe1)

closure(S) = S
∪ ({(l + i, l′ + i) | (l, l′) ∈ closure(S)}
∪ ({(∗l, ∗l′) | (l, l′) ∈ closure(S)}

Id = {(z, z) | z ∈ V }
S is a set of core changes induced by the statement:

Sx=y = {(∗x, ∗y)} Sx=y+i = {(∗x, ∗y + i)}
Sx=&y = {(∗x, y)} Sx=∗y = {(∗x, ∗(∗y))}
Sx=new = Sx=null = {} S∗x=y = {(∗(l), ∗y) | l ∼ ∗x}

Q are trivial mappings violated by the statement:

Qx = {(∗x, ∗x)} Q∗x = {(∗(∗x), ∗(∗x))}
G are new locks to protect the accesses in the current statement:

Gε
∗x = {∗ε xro, xro} Gro

x+i = {xro} Gro
&x = {}

Gε
x = {xε} Gro

new = {} Gro
null = {}

Figure 4. Transfer functions. Annotations on operators are omitted
to simplify the presentation.

The transfer function of ∗x = y uses a may alias relation∼. We
construct ∼ from the results of the alias analysis that was given as
input to this algorithm. If two expressions e1 and e2 may alias at a
program point p, written mayAlias(e1, e2, p), the relation ∼ holds
on their abstract locks, i.e. be1

p ∼ be2
p.

To illustrate how the framework works, consider our earlier ex-
ample from Figure 2. The program’s atomic section can be rewrit-
ten in our simplified language as follows:

atomic {
t1 = x + data; *t1 = w;
t2 = y + data; z = *t2;
*z = null;

}
Initially, our analysis starts with an empty set of locks at the

end of the section. The transfer function of *z = null uses G to
introduce two new locks ∗z and z. Lets focus on what happens to
∗z only. The statement z = *t2 defines z in terms of t2, hence our
transfer function uses the relation Sz=∗t2 to transform ∗z into ∗∗t2.
Notice that the pair (∗z, ∗z) is mentioned in the set Q, and thus
∗z is no longer included in the set of locks. Similarly, the transfer
function for t2 = y + data transforms ∗ ∗ t2 into ∗(∗y + data),
which we wrote as y->data in Figure 2. The assignment *t1 =
w requires us to look at the may alias information. Assume that
the alias analysis indicates that mayAlias(t1, y + data, ·) holds at
that point, then the relation ∗t1 ∼ ∗y + data also holds. This
enables the transformer S∗t1=w to introduce ∗w in the set of locks.
Additionally, ∗(∗y + data) remains in the set of locks because it is
in closure(Id) and it is not listed in closure(Q). Finally, the first
assignment t1 = x + data doesn’t remove any of our locks and
we conclude that to protect the access in the last line, we need both
∗(∗y + data) and ∗w.

Merge operation At merge points we compute the join of two set
of locks N1 and N2 as follows:

N1 tN2 = {l ∈ N1 ∪N2 | @l′ ∈ N1 ∪N2 . l < l′}
all locks are combined together, but we exclude locks protecting
locations that are already protected by other locks in the set.

We define the transfer of x = f(a0, ..., an) as follows:

transfer(x = f(a0, ..., an), N) =
trans∗(p0 = a0; ...; pn = an; stf−body; x = retf , N)

where stf−body is the body of f , and trans∗ is defined as the least
solution to the following recursive formulation:

trans∗(st, N) =8><>:
trans∗(st1, N) t trans∗(st2, N) st ≡ if(b) st1 else st2
trans∗(st1, trans∗(st2, N)) st ≡ st1; st2
N t trans∗(st; while(b) st, N) st ≡ while(b) st, N
transfer(st, N) otherwise

Figure 5. Inter-procedural equations

Function calls Figure 5 formulates how to reason about function
calls. Essentially we model function calls as a composition of three
groups of statements: the first group assigns actual arguments to the
formal arguments used in the callee, the second group is the body of
the callee, and the final group consist of assigning the return value
of the callee to the left hand side of the call. The formulation uses
trans∗ to define the transfer function for compound statements.
These are essentially summaries of the transfer functions of several
statements. As mentioned earlier, these rules are meant as a formal
declaration of our system, not as an implementation.

Transformation From the analysis solution we retrieve the set
of locks N inferred for the entry point of each atomic section.
We replace each atomic section with two statements: a statement
acquireAll(N) at the entry point of the atomic section, and a state-
ment releaseAll at the end of the atomic section.

4.2 Soundness
To ensure that our algorithm is correct, we need to connect our ab-
stract domain with the program semantics. Our operational seman-
tics consist of states σ. States contain a shared heap and a set of
locks Li held by each thread i. Additionally, our semantics keeps
track of the state of each thread, whether it is inside or outside an
atomic section. Using our concrete locks semantics [[·]], our opera-
tional semantics check that any shared location accessed inside an
atomic section is protected by a lock in Li. In particular, a step in
the semantics 〈σ, st〉 → σ′ will get stuck if the check doesn’t hold.

THEOREM 1. Let σ be a reachable state, where thread i is about to
execute a statement st within an atomic section. Let N be the result
of our analysis for such atomic section. If at the entry of the atomic
section, the thread i acquired all locks in N , then there exists some
σ′ such that 〈σ, st〉 → σ′, i.e. the program doesn’t get stuck.

Proof. Our proof is based on the assumption that both the ab-
stract lock scheme and the mayAlias query are sound. The theorem
proof is based on induction on the program structure, and it uses
the lemmas below to show each step of the proof.

LEMMA 1. The locks before any assignment protect the locations
accessed directly by the statement. Formally,

∀st = (∗e1 = e2), σ@(•st), v, N ′ = transfer(st, N) .
(〈σ, e1〉 → v ⇒ ∃l ∈ N ′ . ({v}, rw) v [[l]]) ∧
(∀(∗e) ∈ subs(ei) . 〈σ, e〉 → v ⇒ ∃l ∈ N ′ . ({v}, ro) v [[l]])

where σ@(•st) is any state that reaches the program point before
st, subs(ei) returns all dereference subexpressions of e1 and e2,
e1 ranges over {&x, ∗&x}.

LEMMA 2. Assume N is a set of locks protecting all locations
accessed after a statement st. Except for unreachable locations,

the locks inferred by transfer(st, N) protect all the locations that
were protected by N after the statement:

∀st, l ∈ N, σ, v ∈ Loc .
σ@(•st) ∧ reach(σ, v) ∧ ({v}, ε) v [[l]] ⇒

∃l′ ∈ transfer(st, N) . ({v}, ε) v [[l′]]

where reach(σ, v) holds if the location v is reachable from some
program variable in state σ.

Due to lack of space our semantic rules and proofs are omitted
here; they can be found in a companion technical report [6].

4.3 Implementation
We have developed an instance of this analysis framework for a
fixed locking scheme and alias analysis. The formal presentation of
our inference algorithm uses constructs, such as the closure opera-
tor and the trans∗ function, that can’t be implemented in practice.
This section describes how we implemented our framework and
discusses optimizations that we performed for our chosen instance
of the framework. We also discuss possible extensions to deal with
pre-compiled libraries.

Implementing the framework Our implementation keeps a set
of locks for each program point, and uses a standard worklist
algorithm to compute solutions to the dataflow equations. The
algorithm operates at the level of individual locks, not at the level
of set of locks that is used in the equations. The worklist contains
pairs of locks and program points (l, p).

The worklist is initialized using the information in the sets G
presented in Figure 4. That is, for each assignment e1 = e2 within
the atomic section, we add (l, p) if l ∈ Grw

e1 ∪ Gro
e2 and p is the

program point before e1 = e2. We only omit a lock l = x if we can
tell that x is a thread local variable whose address is never stored.

The algorithm takes a pair (l, p) from the worklist, and for
each predecessor statement st of the point p, we apply its transfer
function and add the resulting locks l′1, ..., l

′
n to the abstraction

at the point p′ before the statement. If the abstraction changed at
p′, we add (l′i, p

′) to the worklist, and repeat the process until the
worklist is empty.

We do not explicitly compute the closure operations used in the
transfer functions and procedure calls. For transfer functions, our
implementation is based on recursive substitutions of expressions.
For function calls, we use a standard technique based on function
summaries [19]. A function summary fs essentially caches the
analysis results for the body of a function f . Given a lock l at the
end of the function f , fs(l) is the set of locks that protect the same
locations as l at the beginning of the function f .

More precisely, when analyzing a lock l after a function call
x = f(a1, .., an), we perform the following steps:

• We map the lock to the callee’s context by analyzing the as-
signment x = retf . The assignment simulates returning from
the call to f and setting the return value to x. Let l1 be a lock
resulting of analyzing such assignment.

• If no summary exists for l1 in fs, we add (l1, exitf) to the
worklist, where exitf is the program point by the end of f .

• If a summary for l1 is found, then let l2 be a lock in the result
of the summary (l2 ∈ fs(l1)).

• We unmap the lock l2 back to the caller by modeling how actual
arguments are passed as formals to the callee, i.e. pi = ai. The
resulting locks are merged at the point p before the call, and
added to the worklist if the abstraction changed.

Additionally, when the algorithm reaches the entry point of the
function (l, entryf) the analysis updates the function summary by

adding l to fs(src(l)), where src(l) records the origin of a lock
by the end of the function. We initialize src(l) = l at the exit
point of a function and we preserve it in the transfer functions, i.e,
when l′ ∈ transfer(st, l) then src(l) = src(l′). After updating
the summary, the analysis also unmaps the lock l to all callers of
the current function.

Instantiating the framework We chose an abstract lock scheme
based on k-limited expressions, points-to sets and read/write effects
(Σk×Σ≡×Σε). We use Steensgard’s analysis [22] to compute both
the points-to sets in Σ≡ and the mayAlias relation.

Our compiler implementation is specialized to take advantage of
this scheme. In particular, from all possible pairs of expressions and
points-to set locks, only few combinations need to be manipulated
by the analysis. If an expression e belongs to a points-to set P ,
then the analysis will never consider a pair of e with P ′ 6= P .
This is because e and P ′ protect disjoint sets of locations, and
thus their combination protects no memory location. In fact, the
relevant pairs of expressions and points-to sets implicitly define a
tree hierarchy instead of a general lattice. This tree has a root node
(>,>) that protects all locations. The root’s immediate children are
points-to set locks (>, P) that protect a partition of the memory.
Finally, each points-to set has k-limited expression locks (e, P)
as children. These children protect a location within the memory
partition protected by (>, P).

In practice, for a lock (e, P) the transfer functions will al-
ways conclude that P remains unchanged, because P is a flow-
insensitive lock, and thus it protects the same set of locations be-
fore and after each statement. Once an expression reaches the k-
limit and becomes> the analysis will never update this component
either. Therefore, we exploit these observations in our implementa-
tion: our tool only tracks k-limited expressions until they become
>, at which point the tracing is stopped, and the corresponding
points-to set lock is added to the analysis solution.

Supporting pre-compiled libraries Our compiler implementation
assumes that the whole source code is available for analysis. How-
ever, pre-compiled libraries could be supported using specifica-
tions that summarize function effects. For instance, for our locking
scheme based on Σk ×Σ≡ ×Σε, we can use a list of coarse-grain
locks as function specifications. Since our coarse-grain locks are
flow-insensitive locks, they can essentially be used to protect all ac-
cesses done inside a pre-compiled function. When reasoning about
calls to pre-compiled functions, the analysis needs to inspect the
fine-grain locks inferred at the point after the call, evaluate if the
expressions and subexpressions used in fine-grain locks could be
changed by the call, and if so, replace the affected fine-grain locks
by coarser locks. By specifying coarse-grain locks and effects in
function specifications, our compiler would be able to do this.

5. Runtime System
The lock inference algorithm introduces locks of multiple granular-
ities. This section presents a runtime library necessary to support
this kind of locks.

5.1 Multi-Granularity Locking Library
Unlike traditional locks, with multi-grain locks there are pairs of
locks that cannot be held concurrently. Hence, acquiring multi-
grain locks in any linear order does not guarantee that locking is
deadlock free.

To support multi-grain locks, we implemented a library based
on ideas introduced by Gray et al. [16, 15] from the database com-
munity. To illustrate the key ideas of a multi-grain locking protocol,
consider the following example. Suppose we have a simple lock
structure of three locks la, lb, and >, where la ≤ > and lb ≤ >.

X S
X
S X

(a)

X Is SIx S Ix

X
Is X X X X

SIx X
S X X
Ix X X

(b)

Figure 6. Compatibility of access modes: (a) traditional modes,
(b) with intention modes.

We would like to allow la and lb to be held concurrently. But if a
thread acquires >, no other thread can get la or lb. Suppose a first
thread wants to acquire la. The protocol must ensure that before re-
questing la, > is not taken by any other thread. One way to do this
is to acquire > and then la, but this will not allow another thread
to request lb. Instead, a multi-grain protocol marks > with an in-
tention. This intention says that somewhere lower in the structure,
the current thread holds a lock. When some other thread wishes to
acquire >, it must wait until the intention mark is removed. How-
ever, intention marks are compatible, hence a second thread can
also mark> with his intention, and acquire lb concurrently with la.

More generally, a protocol for multi-grain locks operates based
on three basic ideas: (a) lock relationships are structured, (b) locks
are requested in a top-down fashion, and (c) dependencies between
locks are made explicit during the protocol using intention modes.

Traditionally, locks can be acquired in two modes: read-only
or shared (S), and read-write or exclusive (X). Adding intentions
introduces three new modes: intention to read (Is), intention to
write (Ix), and read-only with the intention to write some child
nodes (SIx). Figure 6 shows the compatibility between these ac-
cess modes. A pair of access modes marked with X can be held
concurrently.

If the lock structure is a tree the following deadlock free proto-
col guarantees that no conflicting locks are held concurrently:

• Before acquiring l for reads (S) or intention to read (Is), each
ancestor l′ (l ≤ l′) must be held by this thread in Ix or Is.

• Before acquiring l for X , SIx or Ix each ancestor l′ (l ≤ l′)
must be held by this thread in SIx or Ix mode.

• Siblings are acquired in the same order by all threads.
• Locks are released bottom up or at the end of the transaction.

This protocol can be extended to deal with general lattice struc-
tures (not only trees), but we omit this for simplicity. Since our im-
plementation uses a locking scheme that has a tree-like structure,
the protocol presented here is sufficient.

5.2 Lock Runtime API
We implemented the multi-grain protocol for our locking scheme
(Σk × Σ≡ × Σε) in a runtime library. The library’s API consists
of three functions: to-acquire, acquire-all, release-all. The function
to-acquire takes a lock descriptor (see below) and adds it to a list
of pending locks. The function acquire-all proceeds to request all
pending locks using the protocol presented above. The function
release-all unlocks every lock in the list and clears the list.

In order to acquire locks using the protocol, our library requires
partial knowledge of the lock structure: for every lock l the protocol
accesses all locks in the path from the root > to the lock l. We
do not store the entire lock structure in the library, we provide the
library with the relevant portion of the locking structure using lock
descriptors instead. For our locking scheme, the lock descriptor
is just a triple consisting of a memory address (describing the
Σk component), a number (describing the Σ≡ component), and

a boolean (indicating the effect ro or rw). Internally, the library
maintains a map associating lock descriptors with actual locks.

The transformation we presented in Section 4 inserts state-
ments acquireAll(N) for a set of locks N = {l1, ..., ln}, and
releaseAll to release all locks. Our implementation translates
releaseAll into release-all, and acquireAll(N) to the sequence
to-acquire(p1); ...; to-acquire(pn); acquire-all(); where pi is the
lock descriptor of a lock li.

5.3 Supporting nested atomic sections
Our inference algorithm and transformation do not need to reason
about nesting of atomic sections. When atomic sections are nested,
the outer section protects the locations included in the inner section,
hence it is unnecessary to acquire locks when entering the inner
section. However, sections could be nested in one thread, but not
nested in another thread, more precisely, an inner section in one
thread can be the outer-most section of some other thread. Such
other thread must acquire locks when entering that section.

Nested sections can be supported via an additional form of con-
text sensitivity in the program: whether the current thread is inside
an atomic section. This can be implemented with a small extension
to our runtime library by adding an integer variable nlevel for
each thread. We can track the nesting level of each thread by incre-
menting (decrementing) nlevel whenever acquireAll (releaseAll)
is called. However, we would only append, acquire, and release
locks when the value of nlevel is 0.

6. Results
This section describes our experimental setup and presents both
compile-time and run-time statistics.

6.1 Experiment Setup
We used the Phoenix infrastructure [1] as a front end to implement
our analysis. A first phase reads C/C++ programs and outputs each
function in a simplified intermediate representation (IR). A second
phase reads the IR and performs the whole program analysis as de-
scribed in Section 4.3. Finally, a third phase performs the program
transformations based on the analysis results. All phases are imple-
mented in C#. We manually replicate the transformation phase in
order to generate the transformed programs using a different com-
piler (see further below).

We used several values for k, between 0 and 9, to build the k-
limited expressions. Programs were compiled on a 1.66Ghz Dual
Core, 2 GB RAM machine, running Windows XP SP2. Runtime
experiments were performed on a 1.86Ghz Intel Xeon dual-quad
core, 16 GB RAM, server system running Windows Server 2003
SP2 x64 edition.

Benchmarks We analyzed several of the SPECint2000 bench-
marks [23], the STAMP benchmarks (v0.9.6) [4] and a set of micro-
benchmarks using traditional data-structures. These sets of pro-
grams correspond to the top, middle and bottom portion of Ta-
ble 1, respectively. The STAMP and micro-benchmarks are con-
current applications that contain atomic sections protecting shared
memory accesses. The first three micro-benchmarks are implemen-
tations distributed with the STAMP benchmarks. The hashtable-2
is a different implementation of hashtable. The difference between
hashtable and hashtable-2 is how put operations are implemented.
Given a list in a bucket, hashtable-2 inserts a new entry at the begin-
ning of the list, hashtable traverses the list to perform the insertion.
Additionally, hashtable-2 never changes the size of the table or re-
hashes values. On the other hand a put in hashtable might rehash
and access all elements in the table during this process. These four
micro-benchmarks are run with the same harness that performs sev-
eral operations (put or insert, get or lookup, and remove). Each op-

Program Size Atomic Analysis Time (s)
(Kloc) sections k = 0 k = 9

gzip 10.3 1 1.6 3.4
parser 14.2 1 4.2 11.0
vpr 20.4 1 5.0 32.6
crafty 21.2 1 5.3 111.3
twolf 23.1 1 6.2 15.4
gap 71.4 1 3.0 76.6
vortex 71.5 1 10.6 193.7
vacation 10.1 3 2.4 3.3
genome 9.8 5 1.7 2.0
kmeans 4.2 3 1.4 1.4
bayes 11.6 7 1.8 2.4
labyrinth 8.0 3 1.2 1.3
hashtable 3.4 4 0.7 0.8
rbtree 1.9 4 0.8 0.8
list 1.5 4 0.7 0.8
hashtable-2 0.4 4 0.7 0.7
TH 5.1 7 1.0 1.0

Table 1. Program size and analysis time in seconds.

eration is enclosed in an atomic section. Each atomic section con-
tains a loop with additional nop instructions to make the program
spend more time inside the atomic sections. The program TH ac-
cesses two data-structures instead of one. It essentially combines
rbtree and hashtable. Like all other micro-benchmarks, this pro-
gram is run with a harness that performs several put, get and re-
move operations. However, each operation randomly selects to use
one or the other data-structure, hence half of the accesses are on
each structure.

The SPECint2000 programs are not concurrent, but they were
used to measure the scalability of the analysis. We wrapped the
main function of these programs inside an atomic section, and
analyzed them in the same fashion as the concurrent programs.

We used the TL2 (v0.9.3) STM [7], distributed with the STAMP
benchmarks, to compare the runtime performance of our approach
against an optimistic alternative. The TL2 STM can be compiled
under Windows using Cygwin and gcc-3.4.4.

Manual transformations To make comparisons fair, we use the
same compiler (gcc) to build both the programs with TL2 and the
transformed programs with our multi-grain locking library. Be-
cause the Phoenix infrastructure doesn’t support source-to-source
transformations, we manually performed our transformations at the
source level in order to compile the programs with gcc. Notice, our
manual intervention is minimal and mimics the same changes done
by our compiler in Phoenix. With the appropriate infrastructure,
these changes could be done completely automatically.

6.2 Compiler Statistics
Table 1 shows the size of each program and the analysis time. The
analysis time corresponds to the second phase of our compilation
process. This includes the time for the unification-based points-to
analysis and the backward dataflow analysis, but doesn’t include
time spent parsing or generating code. As mentioned earlier in
Section 4.3, the dataflow analysis is only performed for expression
locks until they become >. Thus, the analysis with k = 0 doesn’t
perform any dataflow computation, so this column can be used as a
rough estimate of the time spent in the pointer analysis.

The time spent by the dataflow analysis depends on the size of
the atomic sections, and the number of shared memory accesses
within the atomic sections. Only in the SPEC benchmarks the size
of the atomic sections, and therefore the analysis time, is correlated
with the program size. For this reason, the SPEC benchmarks use

Fine−grain ro
Fine−grain rw
Coarse−grain ro
Coarse−grain rw

 0

 100

 200

 300

 400

 500

 600

 700

k=6k=5k=4k=3k=2k=1k=0

to
ta

l n
um

be
r

of
 lo

ck
s

Figure 7. Combined total number of fine-grain and coarse-grain
locks from all programs. Increasing the analysis precision reduces
the number of coarse locks and possibly reduces contention.

more analysis time than the other programs. The STAMP bench-
marks and the micro-benchmarks contain small atomic sections;
thus the analysis cost is fairly low. The numbers observed are quite
promising; they show that our technique can scale to analyze large
atomic sections of up to 80 KLOC. On average, the analysis is an
order of magnitude faster than parsing the programs using Phoenix.

Lock Distribution For each value of k we counted the number
of locks chosen by our analysis to protect each atomic section. We
divide the locks into four categories: (a) fine-grain read-only locks
(read-only expressions), (b) fine-grain read-write locks, (c) coarse-
grain read-only locks (read-only points-to sets), (d) and coarse-
grain read-write locks. Figure 7 shows the overall results. Each
column shows the combined total number of locks in each category
from all atomic sections of every program.

As expected, all locks chosen by the analysis with k = 0 are
coarse-grain locks. As we increase the value of k we observe that
coarse-grain locks can be replaced by one or more fine-grain locks,
and sometimes coarse-grain locks can be removed altogether. The
former is illustrated in the column of k = 1, where individual
coarse-grain locks are replaced by several fine-grain locks (thus
the increase in the number of locks). The latter is illustrated when
k = 3, where the total number of locks is reduced. We expect
this decrease is due to objects allocated within atomic sections:
these objects are not reachable by the entry of their atomic section,
and thus, they are not shared unless they become explicitly stored
in another location. Locks protecting the other location implicitly
protect the allocated cells. The dataflow analysis deduces this when
tracing fine-grain locks up to their allocation site.

Beyond k = 6 there is no apparent benefit of increasing the
value of k. This is because our k-limited locks are used to pro-
tect locations in non-recursive structures, for example in global
variables, structure fields, or array entries. Non-recursive structures
have a bounded depth, and typically programmers use a depth of
2 or 3 heap dereferences. Both offset operations and heap derefer-
ences contribute to the length of an expression, thus many expres-
sions with 3 heap dereferences may have length k = 6.

6.3 Runtime Statistics
We evaluate the runtime performance only on the concurrent ap-
plications (STAMP and micro-benchmarks). We ran the STAMP
benchmarks using the low contention parameters suggested in
the documentation distributed with the programs. For the micro-
benchmarks we used two parameter configurations: low and high.
The low setting reduces contention by performing more read-only
operations, in particular, gets are four times more common. Con-
versely, the high setting uses puts four times more often. Except
for hashtable-2, the high setting introduces more contention than
the low setting. In hashtable-2, a put operation updates a single
shared memory location, hence the high setting does not increase
the contention as much as in the other applications.

Execution time (s)
Global Coarse Fine + STM

Coarse
Program (k = 0) (k = 9)
genome 8.6 9.0 14.5 15.2
vacation 0.8 0.8 0.8 263.3
kmeans 49.3 52.7 76.9 111.2
bayes 49.8 49.9 49.6 82.9
labyrinth 7.8 7.9 7.8 4.1
hashtable-high 51.7 51.3 51.4 75.8
hashtable-low 44.8 23.1 23.1 11.1
rbtree-high 41.1 40.3 40.3 5.3
rbtree-low 40.2 20.9 20.9 5.0
list-high 49.5 48.6 48.6 19.2
list-low 43.4 22.3 22.3 8.8
hashtable-2-high 41.2 40.3 20.6 5.1
hashtable-2-low 40.1 21.1 20.6 5.0
TH-high 45.4 24.5 24.5 53.0
TH-low 41.3 11.4 11.3 7.3

Table 2. Execution times using 8 threads.

Table 2 shows the running time of the evaluated benchmarks
using 8 threads. The first column shows the running time using
a single global lock to protect each atomic section. The next two
columns show the time consumed by the transformed applications
when using the locks chosen by the analysis with k = 0 (Only
Coarse) and with k = 9 (Coarse + Fine). The last column shows
the running time when using TL2. Figure 8 shows some scalability
tests for selected applications.

Runtime impact of multi-granularity locks. The benefits of our
transformation considerably vary between applications. In particu-
lar, our transformation has a negative effect on the STAMP bench-
marks. These programs have no opportunity of increasing paral-
lelism by distinguishing read and write effects or by introducing
our multi-grain locks. Compared to global locks, our transforma-
tion will increase the execution times due to the overhead in the
multi-grain locking protocol. This negative effect is illustrated in
genome, shown in Figure 8. In this program, the Coarse+Fine con-
figuration protects 4 atomic sections using a single coarse-grain
lock with write effects, which enables the same parallelism than a
global-lock. Only one section is protected by fine-grain locks. We
do not see these locks improving parallelism either, but instead we
see an increase in overhead: the program acquires more locks and
the multi-grain locking protocol performs more operations.

The opposite effect was observed in the micro-benchmarks.
In rbtree, for example, we can see the benefits of tracking read
and write effects. The analysis determined that get operations per-
form only memory reads. This allows our system to run multi-
ple get operations concurrently by protecting them using read-only
locks. Since the low configuration performs more get operations,
the transformation with coarse-grain locks runs almost twice as fast
than using global locks. For the same reason, coarse-grain locks are
twice as fast in the low setting than in the high setting. The analysis
with k = 9 didn’t introduce any fine-grain locks, hence the results
are the same as with k = 0.

The benefit of fine-grain locks over coarse-grain locks is re-
vealed in hashtable-2 (Figure 8). As mentioned earlier, the put op-
eration in this program only updates a single shared memory loca-
tion (one bucket entry). The analysis with k = 9 assigns a single
fine-grain lock to protect that location. When put operations are
four times more common than other operations (high setting), fine-
grain locks halve the execution time of coarse-grain locks.

Our technique enabled parallelism between pairs of puts (using
fine-grain locks) and between pairs of gets (using read-only locks),

but put and get still have contention with each other when using
locks. We believe this is the reason why the performance of multi-
grain locks did not improve in hashtable-2 when moving from 4
to 8 threads. Since four out of five operations are puts, it is highly
likely (with more than an 80% chance) that one of the 8 threads
is performing a put while another thread is performing a get or a
remove, and hence some threads are likely to become blocked and
waste parallelism.

Our system’s performance improves when transactions access
disjoint portions in memory that are protected by independent
locks. Two accesses to disjoint data-structures can always run con-
currently. This effect is illustrated in TH, also shown in Figure 8.
Since this program uses two data-structures, coarse-grain locks can
always exploit more parallelism than a global lock. When using 8
threads, our inferred locks are 1.9 times better than a global lock in
the high setting, and 3.6 times better in the low setting.

Comparison with TL2 Except for labyrinth, the TL2 system per-
forms worse in the STAMP benchmarks than using either a global
lock or our inferred multi-grain locks. This is because a lot of time
is spent in rolling back and re-executing atomic sections with con-
flicts. This is clearly illustrated in vacation, which runs only 1,000
successful transactions, while it aborts a total of 1.7 million transac-
tions. In genome, the overhead of acquiring fine-grain locks makes
our system only 5% faster TL2, in contrast, coarse-grain locks are
41% faster. In kmeans, our programs also run about 29% faster than
TL2, even with the overhead introduced by fine-grain locks.

The TL2 system performs better on the micro-benchmarks
when using the low setting. It also performs well on for rbtree,
hashtable-2 and list with the high setting. On average, when con-
sidering all micro-benchmarks together, TL2 ran 14% faster than
the multi-grain locks generated with k = 9 in the high setting,
and 60% faster in the low setting. This is expected, as locks can-
not model as much parallelism as an optimistic system. TL2 scales
better than our inferred locks in hashtable-2, even when our com-
piler uses fine-grain locks. We believe that the additional speed in
TL2 comes from parallelism between pairs of operations that are
disallowed by our locks, such as pairs of put and get operations.

In hashtable, a put operation might resize the table and re-hash
values, in which case the operation will access the entire table. For
this reason TL2 spends lots of time rolling back transactions in
hashtable-high. We see a similar effect in TH-high, since one of
the data-structures in TH is hashtable. Interestingly, when reaching
8 threads in TH-high, our multi-grain locks scales well, but TL2
becomes slower than using a global lock.

Final comments We have seen that our compiler can scale to an-
alyze large atomic sections. While the results vary across bench-
marks, we have also seen that our transformation can effectively
exploit more parallelism than a global lock. We believe our re-
sults can be improved by proposing new locking schemes to select
locks. For example, in kmeans an array-range analysis could detect
when atomic sections only access a portion of a matrix. The anal-
ysis framework introduced in this paper provides a good starting
point to explore more sophisticated schemes and to deduce good
optimizations that minimize the set of locks used to protect atomic
sections (like in [8]).

Overall, our system is preferable to global locks when applica-
tions have low contention (e.g. in rbtree-low) or have several sec-
tions accessing disjoint data-structures (e.g. in TH). Optimistic ap-
proaches are likely to be more efficient when contention is low.
Our system would be preferable to STMs in three scenarios: when
applications have non-reversible operations within atomic sections,
have high contention, or have long atomic sections. In the last two
scenarios, an optimistic approach might introduce large overhead
in detecting conflicts and rolling back transactions (e.g. vacation,

 10

 20

 30

 40

 50

 8 7 6 5 4 3 2 1

E
xe

cu
tio

n
tim

e
(s

ec
)

of threads

rbtree (low - 80% gets)

Global
Coarse

Fine
STM

 10

 20

 30

 40

 50

 8 7 6 5 4 3 2 1

E
xe

cu
tio

n
tim

e
(s

ec
)

of threads

hashtable-2 (high - 80% puts)

Global
Coarse

Fine
STM

 0

 5

 10

 15

 20

 25

 30

 8 7 6 5 4 3 2 1

E
xe

cu
tio

n
tim

e
(s

ec
)

of threads

genome

Global
Coarse

Fine
STM

 10

 20

 30

 40

 50

 8 7 6 5 4 3 2 1

E
xe

cu
tio

n
tim

e
(s

ec
)

of threads

TH (low - 80% gets)

Global
Coarse

Fine
STM

 10

 20

 30

 40

 50

 60

 70

 8 7 6 5 4 3 2 1

E
xe

cu
tio

n
tim

e
(s

ec
)

of threads

TH (high - 80% puts)

Global
Coarse

Fine
STM

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 8 7 6 5 4 3 2 1

E
xe

cu
tio

n
tim

e
(s

ec
)

of threads

kmeans (high)

Global
Coarse

Fine
STM

Figure 8. Execution times for rbtree, hashtable-2, TH, genome, and kmeans using 1, 2, 4 and 8 threads.

hashtable-high). Our system is preferable to both global-locks and
STM in applications with low contention and non-reversible opera-
tions, but also in applications where several atomic sections access
disjoint data-structures with very high contention (e.g. TH-high).

7. Related Work
Multi-granularity locking The problem of multi-granularity
locking and its related trade-off between concurrency and overhead
was first considered in the context of database systems [16]. The
choice of locking granularity considered in the context of databases
was based on the hierarchical structure of the data storage, e.g.,
fields, records, files, indices, areas, and the entire database. The
choice of locking granularity in our case is more challenging be-
cause of lack of any natural hierarchical scheme over the (possibly
unbounded number of) memory locations accessed by a program.
This requires creation of more complex locking abstractions. Multi-
grain locking requires sophisticated locking protocols, as opposed
to simply locking entities according to some total order. Such pro-
tocols have been discussed in the context of database systems [15].
In our work, we adapt these protocols for deadlock avoidance.

Lock inference for atomic sections There has been some recent
work on compiler based lock inference from atomic specifications.
Some of these approaches either require user annotations or operate
over a fixed (and finite) granularity of locks. On the contrary, our
approach is automatic and supports multi-granularity locks.

The granularity of locks considered in Autolocker [18] is one
that is specified by programmer annotations. Our approach is com-
pletely automatic requiring no annotations from the programmer
other than atomic sections. The granularity considered by Hicks
et al. [13] is based on the (finite number of) abstract locations in
a points-to graph. The lock associated with each abstraction loca-
tion locks all memory locations that are represented by that abstract
location. Our more general locking scheme framework can be in-
stantiated using this lock abstraction. However, we also allow more
fine-grained locking abstractions like expression locks.

The granularity of locks considered by Emmi et al. [8] is based
on path expressions (a variable followed by a finite sequence of
fields). The lock associated with each path expression locks all lo-

cations that the expression can ever evaluate to in any run and at
any program point. Such a scheme is too coarse-grained compared
to our seemingly similar, but quite different, expression locks. Our
expression locks at a given program point p and in a given program
run r, lock only the memory location to which the corresponding
expression evaluates to at the program point p in the run r. More-
over, our expression locks are just an instance of our general multi-
granularity locking scheme. However, the issue addressed by Emmi
et al. [8] is more about optimizing the set of locks that need to be
acquired (since the cost of acquiring a lock is non-trivial) by phras-
ing it as an optimization problem. For example, if whenever x is
accessed, y is also accessed, then we only need to acquire lock on
y. This is an orthogonal issue and our work can also leverage such
an optimization.

The granularity of locks considered by Halpert et al. [10] is
based on components of interfering atomic sections. They reduce
contention by detecting when sections do not interfere. They can
use a fine-grain lock to protect a component. However, all sections
in a component must use the same lock, thus their support for fine-
grain locking is restricted. For example, in hashtable-2 this would
require using the same lock to protect both get and put, hence not
allowing the fine-grain locking of put.

Hindman and Grossman [14] present a source to source transla-
tion to implement atomic sections in Java using locks. They delay
acquiring locks until the first time an access is encountered. This al-
lows them to use fine-grain locking more freely, but unlike our ap-
proach, it doesn’t prevent deadlocks ahead of time. Instead they log
write operations and support rolling back transactions when dead-
locks are detected. Our system prevents aborting transactions, and
hence supports transactions with non-reversible operations.

Other approaches for concurrency specifications Besides using
atomic sections, several researchers have looked at other models to
specify constraints on concurrent applications.

Vaziri et al. [24] present a data centric synchronization ap-
proach. Programmers only label data that must be accessed together
in order to maintain data consistency, then a static analysis infers
critical sections to enforce these consistency requirements. Col-
orama [5] introduces a hardware alternative to infer these sections.

Both Vaziri et al. and Colorama use transactions to implement crit-
ical sections. This paper addresses a complementary issue: how to
implement efficiently these critical sections using locks. Specifica-
tions like those required by Varizi et al. could help our compiler
minimize the set of locks used to protect an atomic section, be-
cause only a few memory accesses must be protected to maintain
consistency. This is an interesting direction for future work.

Flux [3] presents a different mechanism for writing concurrent
applications based on high-level data flow between computation
nodes (commonly C/C++ functions). Programmers declare mutual
exclusion between these nodes by specifying lock names and their
effects (read or write). The Flux programming model is more man-
ageable for programmers than traditional lock APIs, in particular,
the language provides a type system that can detect and prevent
deadlocks. However, the programmer is still responsible for associ-
ating locks with data, choosing an appropriate granularity level for
their locks, and ensuring that all shared accesses are protected. In
contrast, all these tasks are done automatically by our compiler.

8. Conclusions
We have presented a general framework that infers locks to pro-
tect atomic sections. This framework is attractive for three main
reasons. First, it provides an automatic implementation of atomic
sections based on locking primitives, avoiding the disadvantages of
optimistic concurrency. Second, it guarantees that the transformed
programs respect the atomic semantics. And third, it is parameter-
ized. It can be instantiated with different abstract lock schemes to
fit user needs. We presented an implementation of our framework
for a fixed lock scheme and reported our experimental experience.

Acknowledgments
We would like to thank Krishnaprasad Vikram for his helpful re-
marks about multi-grain locking protocols. We would also like to
thank the anonymous reviewers for their useful comments.

References
[1] Phoenix compiler infrastructure. http://research.microsoft.com/phoenix/.

[2] Colin Blundell, E. Lewis, and Milo Martin. Subtleties of transactional
memory atomicity semantics. IEEE Computer Architecture Letters,
5(2), 2006.

[3] Brendan Burns, Kevin Grimaldi, Alexander Kostadinov, Emery D.
Berger, and Mark D. Corner. Flux: a language for programming
high-performance servers. In Proceedings of the annual conference
on USENIX ’06 Annual Technical Conference, pages 13–13, 2006.

[4] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen
McDonald, Nathan Bronson, Jared Casper, Christos Kozyrakis, and
Kunle Olukotun. An effective hybrid transactional memory system
with strong isolation guarantees. In Proceedings of the International
Symposium on Computer Architecture, Jun 2007.

[5] Luis Ceze, Pablo Montesinos, Christoph von Praun, and Josep Torrel-
las. Colorama: Architectural support for data-centric synchronization.
In Proceedings of the International Symposium on High Performance
Computer Architecture, pages 133–144, 2007.

[6] Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring
locks for atomic sections. Technical Report MSR-TR-2007-111,
MSR, August 2007.

[7] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii.
In Proceedings of the 20th International Symposium on Distributed
Computing (DISC), Stockholm, Sweeden, September 2006.

[8] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majumdar.
Lock allocation. In Proceedings of the ACM Symposium on the
Principles of Programming Languages, 2007.

[9] Keir Fraser and Tim Harris. Concurrent programming without locks.
ACM Transactions on Computer Systems, 25(2), 2007.

[10] Richard L. Halpert, Christopher J. F. Pickett, and Clark Verbrugge.
Component-based lock allocation. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques,
September 2007.

[11] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom,
John D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya,
Christos Kozyrakis, and Kunle Olukotun. Transactional memory
coherence and consistency. In Proceedings of the International
Symposium on Computer Architecture, 2004.

[12] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
architectural support for lock-free data structures. In Proceedings of
the International Symposium on Computer Architecture, San Diego,
CA, 1993.

[13] Michael Hicks, Jeffrey S. Foster, and Polyvios Prattikakis. Lock
inference for atomic sections. In ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for Transactional
Computing, June 2006.

[14] Benjamin Hindman and Dan Grossman. Atomicity via source-to-
source translation. In ACM SIGPLAN Workshop on Memory Systems
Performance and Correctness, October 2006.

[15] R. Lorie J. Gray and G.F. Putzolu. Granularity of locks in a shared
database. In Proceedings of International Conference on Very Large
Databases, 1975.

[16] R. Lorie J. Gray, G.F. Putzolu, and I.L. Traiger. Granularity of locks
and degrees of consistency. In Modeling in Data Base Management
Systems, G.M. Nijssen ed., North Holland Pub., 1976.

[17] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.
Scherer III, and M. L. Scott. Lowering the overhead of software
transactional memory. In ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing, Jun
2006.

[18] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker:
synchronization inference for atomic sections. In Proceedings of the
ACM Symposium on the Principles of Programming Languages,
pages 346–358, 2006.

[19] T. Reps, S. Horowitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the ACM
Symposium on the Principles of Programming Languages. ACM,
January 1995.

[20] B. Saha, A. Adl-Tabatabai, R. L. Hudson, C. Cao Minh, and
B. Hertzberg. Mcrt-stm: a high performance software transactional
memory system for a multi-core runtime. In Proceedings of the
ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 187–197, 2006.

[21] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the ACM symposium on Principles of Distributed
Computing, 1995.

[22] Bjarne Steensgaard. Points-to analysis in almost linear time.
In Proceedings of the ACM Symposium on the Principles of
Programming Languages, St. Petersburg Beach, FL, Jan 1996.

[23] Joseph Uniejewski. SPEC Benchmark Suite: Designed for today’s
advanced systems. SPEC Newsletter Vol 1, Issue 1, SPEC, Fall 1989.

[24] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchro-
nization constraints with data in an object-oriented language. In
Proceedings of the ACM Symposium on the Principles of Program-
ming Languages, January 2006.

