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Inferring multimodal latent topics from electronic
health records
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Electronic health records (EHR) are rich heterogeneous collections of patient health infor-

mation, whose broad adoption provides clinicians and researchers unprecedented opportu-

nities for health informatics, disease-risk prediction, actionable clinical recommendations, and

precision medicine. However, EHRs present several modeling challenges, including highly

sparse data matrices, noisy irregular clinical notes, arbitrary biases in billing code assignment,

diagnosis-driven lab tests, and heterogeneous data types. To address these challenges, we

present MixEHR, a multi-view Bayesian topic model. We demonstrate MixEHR on MIMIC-III,

Mayo Clinic Bipolar Disorder, and Quebec Congenital Heart Disease EHR datasets. Quali-

tatively, MixEHR disease topics reveal meaningful combinations of clinical features across

heterogeneous data types. Quantitatively, we observe superior prediction accuracy of diag-

nostic codes and lab test imputations compared to the state-of-art methods. We leverage the

inferred patient topic mixtures to classify target diseases and predict mortality of patients in

critical conditions. In all comparison, MixEHR confers competitive performance and reveals

meaningful disease-related topics.
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T
he broad adoption of electronic health record (EHR) sys-
tems has created unprecedented resources and opportu-
nities for conducting health informatics research. Hospitals

routinely generate EHR data for millions of patients, which are
increasingly being standardized by using systematic codes, such
as Logical Observation Identifiers Names and Codes (LOINC) for
lab tests, RxNorm for prescriptions; and Systematized Nomen-
clature of Medicine (SNOMED), Diagnosis-Related Groups
(DRG), and International Classification of Diseases (ICD-9) for
diagnoses (albeit for billing purposes). In the USA, for example,
the number of nonfederal acute care hospitals with basic digital
systems increased from 9.4% to 96% over the 7-year period
between 2008 and 20151–3. Furthermore, the amount of com-
prehensive EHR data recording multiple data types, including
clinical notes, increased from only 1.6% in 2008 to 40% in 20153.
With the aid of effective computational methods, these EHR data
promise to define an encyclopedia of diseases, disorders, injuries,
and other related health conditions, uncovering a modular phe-
notypic network.

Distilling meaningful concepts from the raw EHR data presents
several challenges, and it is often unfeasible to directly model the
joint distribution over the entire EHR feature space. On the other
hand, it is possible to formulate a latent topic model over discrete
data, in analogy to automatic text categorization4, considering
each patient as a document and each disease meta-phenotype as a
topic (grouping recurrent combinations of individual pheno-
types). Our task then is to learn a set of meaningful disease topics,
and the probabilistic mixture memberships of patients for each
disease topic, representing the combination of meta-phenotypes
inferred for each patient.

In this paper, we formalize this analogy by introducing a latent
topic model, MixEHR, designed to meet the challenges intrinsic
to heterogeneous EHR data. The main objective of our approach
is twofold: (1) distill meaningful disease topics from otherwise
highly sparse, biased, and heterogeneous EHR data; and (2)
provide clinical recommendations by predicting undiagnosed
patient phenotypes based on their disease mixture membership.
Importantly, we aim for our model to be interpretable in that it
makes not only accurate predictions but also intuitive biological
sense. MixEHR can simultaneously model an arbitrary number of
EHR categories with separate discrete distributions. For efficient
Bayesian learning, we developed a variational inference algorithm
that scales to large-scale EHR data.

MixEHR builds on the concepts of collaborative filtering5–9

and latent topic modeling4,10–14. In particular, our method is
related to the widely popular text-mining method Latent Dirichlet
Allocation (LDA)4. However, LDA does not account for missing
data and NMAR mechanism8,15. Our method is also related to
several EHR phenotyping studies focusing on matrix factorization
and model interpretability16–23. Recently developed deep-
learning methods primarily focus on prediction performance of
target clinical outcomes24–31. Apart from these methods, Graph-
based Attention Model (GRAM)32 uses the existing knowledge
graph to embed ICD code and make prediction of diagnostic
codes at the next admission using the graph embedding. Deep
patient29 uses a stacked stochastic denoising autoencoder to
model the EHR code by its latent embedding, which are used as
features in a classifier for predicting a target disease. More
detailed review are described in Supplementary Discussion.

We apply MixEHR to three real-world EHR datasets: (1)
Medical Information Mart for Intensive Care (MIMIC)-III1: a
public dataset to date containing over 50,000 ICU admissions; (2)
Mayo Clinic EHR dataset containing 187 patients, including with
93 bipolar disorder and 94 controls; (3) The Régie de l’assurance
maladie du Québec Congenital Heart Disease Dataset (Quebec
CHD Database) on over 80,000 patients being followed for

congenital heart disease (CHD) for over 28 years (1983–2010) at
the McGill University Health Centre (MUHC) in Montreal. In
these applications, we find that the clinical features emerging
across EHR categories under common disease topics are biolo-
gically meaningful, revealing insights into disease co-morbidities.
The inferred topics reveal sub-categories of bipolar disorder,
despite the small sample size. The inferred patient topic mixtures
can be used to effectively predict diagnostic code in patient’s
future hospital visits from outpatient data, impute missing lab
results, and predict future next-admission patient mortality risk.

Results
MixEHR probabilistic model. We take a probabilistic joint
matrix factorization approach, by projecting each patient’s high-
dimensional and heterogeneous clinical record onto a low-
dimension probabilistic meta-phenotype signature, which reflects
the patient’s mixed memberships across diverse latent disease
topics. The key innovation that enables us to handle highly het-
erogeneous data types is that we carry out this factorization at two
levels. At the lower level, we use data-type-specific topic models,
learning a set of basis matrices for each data type. Using the
MIMIC-III data as an particular example, we learned seven basis
matrices corresponding to clinical notes, ICD-9 billing codes,
prescriptions, DRG billing codes, CPT procedural codes, lab tests,
and lab results from the MIMIC-III dataset. We link these seven
basis matrices at the higher level using a common loading matrix
that connects the multiple data types for each patient (Fig. 1a).

To model the lab data, we assign common latent topic to both
the lab test and lab test result such that they are conditionally
independent given their topic assignments (Fig. 1b). We then
updates the lab topic distributions using both the observed lab
test results and the missing/imputed lab test results weighted by
their topic assignment probabilities for each patient. This differs
from other latent topic models, which assume that data are either
completely observed or missing at random. To learn the model,
we use a variational Bayes to update each model parameters in a
coordinate ascent (Fig. 1c). The inference algorithms are detailed
in “Methods” and “Supplementary Methods”. After learning the
model, we can obtain three pieces of clinically relevant
information: (1) to impute missing EHR code for each patient,
we take average over the disease topics; (2) to infer patients’meta-
phenotypes as their mixed disease memberships, we average over
the phenotype dimension; and (3) to infer latent disease topic
distribution (i.e., distributions over all clinical variables), we
average over the patient dimension.

Multimodal disease topics from MIMIC-III. We applied Mix-
EHR to MIMIC-III data1, which contain ~39,000 patients each
with a single admission and ~7500 patients each with multiple
admissions (Supplementary Table 1). We used MixEHR to jointly
model six data categories, including unstructured text in clinical
notes, ICD-9, DRG, current procedural terminology (CPT), pre-
scriptions, and lab tests, together comprising of ~53,000 clinical
features and ~16 million total clinical observations (“Methods”).
The frequency of observed EHR code over all admissions is low
(Supplementary Fig. 27). Majority of the variables including the
lab tests were observed in less than 1% of the 58,903 admissions
(i.e., greater than 99% missing rates for most variables). There-
fore, the data are extremely sparse underscoring the importance
of integrating multimodal data information to aid the imputation.

To choose the optimal number of topics (K), we performed
fivefold cross-validation to evaluate models with different K by
the averaged predictive likelihood on the held-out patients
(Supplementary Fig. 1a). We set K= 75 for subsequent analyses
as it gave the highest predictive likelihood. We then examined the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16378-3

2 NATURE COMMUNICATIONS |         (2020) 11:2536 | https://doi.org/10.1038/s41467-020-16378-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


clinical relevance of our learned disease topics by qualitatively
assessing the coherence of the 5 most probable EHR codes for
each topic. Taking a column with common index k from the topic
distribution matrices for each of the six EHR data types (i.e.,
notes, ICD-9, CPT, DRG, lab tests, and prescription) gives us a
single disease topic distribution over clinical terms across those
data types. We annotated all of the 75 topics based on the top
EHR codes and found that majority of the inferred topics are
specific to distinct diseases (Supplementary Table 2).

For the purpose of demonstration, we paid special attention to
the disease topics exhibiting the highest likelihoods over the
broad set of ICD-9 codes with prefixes {250, 296, 331, 042, 205,

415, 571}, representing diabetes, psychoses, neurodegeneration,
HIV, myeloid leukemia, acute pulmonary heart disease, and
chronic liver disease and cirrhosis, respectively. The top terms are
displayed in alternative word cloud representations in Supple-
mentary Fig. 3. We observed salient intra-topic consistency and
inter-topic contrast with respect to each topic’s highest-scoring
EHR features across diverse EHR data categories (colored bars on
the right; Fig. 2a). Notably, if we were to use LDA and thereby
model observations across all data categories as draws from the
same multinomial distribution, the learned disease topics would
have been dominated by clinical notes, given that these contain
far more features (i.e., words) than the other categories. We
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c Collapsed variational Bayesian inference of the MixEHR model. The inference and learning can be visualized as marginalizing a three-dimensional tensor

that represents the expectations of the latent variables.
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illustrate this aspect in the application of mortality prediction
below.

Moreover, we observed interesting connections between
abnormal lab results and specific diseases (Supplementary Fig. 4).
For instance, topic M31 is enriched for alcoholic cirrhosis billing
codes and ascites-based lab tests typical for cirrhosis patients; in
M42, the code for HIV infection is grouped with abnormal counts
of immune cells, including CD4 lymphocytes; diabetes codes tend
to rank highly alongside high blood acetone in M48, and topic
M62 is enriched for opioid abuse along with valproic acid and
lithium prescriptions—common treatments for bipolar disorder.
Interestingly, topic M59—associated with neurodegenerative
diseases such as Alzheimer’s disease (AD)—is strongly associated
with vitamin B12, which was recently shown to exhibit
differential pattern in AD patients33. We also correlated the 75-
topic distributions with patients’ age. The results clearly show that
the top positively age-correlated topics are related to heart failure
(M20), cardiovascular (M44), and dementia (M59). In contrast,
the top three negatively age-correlated topics are all related with
newborn (Fig. 2b; Supplementary Fig. 5).

Disease comorbidity network in MIMIC-III data. We reasoned
that the similarity of the annotated disease (ICD-9 codes) dis-
tributions over topics might help uncover nontrivial associations
between diseases. In order to infer a disease comorbidity network,
we used the 75 learned disease topics and calculated the pairwise
correlations between ICD-9 diagnostic codes. We included 424
ICD-9 codes observed in at least 100 patients, and not in the
external injuries (ICD-9 code starting with V) or supplementary
classification (ICD-9 code starting with E) sections. For com-
parison, we calculated the correlations between the same 424
ICD-9 codes using their sparse distributions over patients in the
raw data. Despite focusing on the ICD-9 codes with at least 100
patients, on average each code is observed in only 0.8% of patients
(min: 0.3% and max 2%). Consequently, due to the high sparsity
of diseases among patients, we observed very weak correlations
based on the observed data ranging between −0.02 and 0.06
(Supplementary Fig. 6a). However, when we correlated the ICD-9
codes using our inferred topic embeddings, we observed much
stronger correlations. More importantly, diseases of similar
physiology form modules consistent with clinical intuition
(Supplementary Fig. 6b). Thus, the projection of multimodal data
to the inferred topic embeddings space enables the discovery of
strong disease association, not directly measurable from the raw
EHR data.

Using these topic embeddings, we can also obtain a
comorbidity network centering on a specific disease of interest
by correlating the disease’s diagnostic code with all other
diagnostic codes. In particular, we obtained such a comorbidity
network for schizophrenia, post traumatic stress disorder (PTSD),
Alzheimer’s disease, and bipolar disorder (Fig. 2c; Supplementary
Figs. 7–14). The size of the terms are proportional to their
Pearson correlation with the disease of interest. To control the
false discovery rate, we randomly shuffled the topic probabilities
for the target phenotype to calculate the background correlation.
Only phenotypes with permutation p-value < 0.01 are displayed.
We observed meaningful related phenotypes in all of the four
examples.

Patient risk prioritization using MIMIC-III data. Besides
gaining insights from the disease topics (i.e., basis matrices), we
can also exploit the disease topic mixture memberships along the
patients dimension. As an example, we took the 50 patients with
the highest proportions for topics M31, M35, and M50, which as
we noted above are associated with alcoholic cirrhosis,

pulmonary embolism, and leukemia, respectively (Fig. 3a). We
observed a clear enrichment for the expected ICD-9 codes—571,
415, and 205, corresponding to the diagnoses of chronic liver
disease and cirrhosis, acute pulmonary heart disease, and mye-
loid leukemia, respectively—among these patients (Fig. 3b).
However, not all of the patients were classified by their expected
diagnostic codes.

We then hypothesized that these unclassified patients perhaps
exhibit other markers of the relevant diseases. To further
investigate these high-risk patients, we examined the 10
highest-scoring EHR codes under these topics (Fig. 3c). We
highlighted some evidence as why the patients with the absence of
ICD-9 code were prioritized as high risk by our model. Most
patients under the leukemia topic M31, including those missing
ICD-9 code 205, received bone marrow biopsies (CPT code 4131)
and infusion of a cancer chemotherapeutic substance (CPT code
9925)—clear indicators of leukemia diagnosis and treatment.
Likewise, several patients under the pulmonary embolism topic
(M35) that are missing ICD-9 code 415 nevertheless have the
DRG billing code for pulmonary embolism, a prescription for
enoxaparin sodium (which is used to treat pulmonary embolism),
or the related ICD-9 code 453 for other venous embolism and
thrombosis. Moreover, all patients under the cirrhosis topic M50
have the key word cirrhosis mentioned in their clinical notes.
Notably, although the procedural code for esophageal variceal
banding is not particularly prevalent, MixEHR predicts reason-
ably high probability of undergoing this procedure among
cirrhosis-topic patients—a clinically reasonable prediction. This
suggests that our model is not only intuitively interpretable but
also potentially useful for suggesting patient’s future medical
interventions.

Classification of Mayo Clinic bipolar disorder patients. To
further demonstrate the utility of our approach in discovering
meaningful multimodal topics, we applied MixEHR to a separate
dataset containing 187 patients, including 93 bipolar disorder
cases and 94 age- and sex-matched controls from Mayo Clinic.
Despite the small sample size, the patients were deeply pheno-
typed: there are in total 7731 heterogeneous EHR features across
five different data categories, including ICD-9 codes, procedure
codes, patient provided information (PPI), lab tests, and pre-
scription codes. In total, there are 108,390 observations.

We evaluated our model by fivefold cross-validation. Here, we
trained MixEHR or the unsupervised baseline models and a
logistic regression (LR) classifier that uses the patient topic
mixture derived from MixEHR or embeddings derived from
other methods to predict the bipolar disorder label (Fig. 4a;
“Methods”). We observed superior performance of MixEHR+LR
compared with LDA+LR and RBM+LR in both the area under
the ROC and the area under the precision–recall curves (Fig. 4b).
We quantified the predictive information of the 20 topics based
on the linear coefficients of the LR classifer. We observed that
topics M19 and M7 have the highest positive coefficients for
bipolar disorder label (Fig. 4c). To confirm the finding, we
visualized the 187 patient topic mixtures side-by-side with their
BD diagnosis ICD-9 296 code (Fig. 4d). Indeed, we find that M19
and M7 are highly correlated with the BD diagnosis label, and
M19 and M7 may represent two distinct subgroups of BD
patients. To check whether these two topics were driven by
demographic information, we compared the topic mixture
membership with sex and age for each patient. We did not
observe significant difference between sexes for M19 mixture
probabilities or M7 mixture probabilities (Supplementary
Fig. 28). There is also no significant correlation between age
and M19 or M7 topic mixture (Supplementary Fig. 31).
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We further investigated the differences between the M19 and
M7 topics in terms of the underlying 7731 EHR codes. For each
EHR code, we grouped the patients based on the presence and
absence of that code. We then tested whether the two groups are
significantly different in terms of their topic mixture member-
ships under M19 or M7 using Wilcoxon signed-rank one-sided
tests. For the ease of interpretability, here we tested whether the
patients with the code exhibit significantly higher topic mixture
for M19 or M7, to assess positive enrichment for the topic. We
note that these phenome-wide association studies (PheWAS)
results were not corrected for multiple testing, and thus we used
the results as an exploratory purpose only.

While a large proportion of the significant EHR codes is
associated with both the M7 and M19 topics, we also find
interesting codes that are unique to each topic (Fig. 5). For
instance, ICD-9 codes for suicidal ideation (V62.84), family
history of psychiatric condition (V17.0), and bipolar type I
disorder with the most recent severe depressed episode without
psychotic behavior (296.53) are significantly associated with M19
but not M7, although both topics share 296.80 (bipolar disorder,
unspecified) and 296.52 (bipolar I disorder, most recent episode
(or current) depressed, moderate) codes for BD (Fig. 5). Certain
lab tests (e.g., SLC6A4, HTR2A, and cytochrome P450 enzymes)
are also associated with M19, but not M7. Lithium lab test is also
associated with high M19 mixture probabilities, but not M7. Thus
it is possible that M19 patients may have had more severe
symptoms and needed an increased use of pharmacogenomically
guided treatment. PheWAS for the PPI questions are displayed in
Supplementary Fig. 32. Interpretation on the PPI PheWAS must

be taken with caution (“Methods”). With these data, we are able
to demonstrate a potential utility of our MixEHR approach to
classify BD patients into potentially clinically meaningful
categories that require further investigation in larger dataset.

EHR code prediction in MIMIC-III data. Retrospective EHR
code prediction has its value in diagnosing the code entered in the
existing EHR patient records and making suggestions about the
potential missing code and incorrectly entered code based on the
expectation of those EHR codes. To predict EHR codes, we for-
mulated a k-nearest neighbor approach (Supplementary Fig. 16a;
“Methods”). We evaluated the prediction accuracy based on
fivefold cross-validation. The predicted EHR codes match con-
sistently with the observed frequency of the diagnostic codes
(Supplementary Fig. 15). Overall, the median prediction accuracy
of MixEHR (multimodal) is 88.9%, AUROC is 85%, and AUPRC
is 9.6%. In contrast, the baseline model that ignores distinct data
types (flattened; i.e., LDA) obtained only 83.3% accuracy, 77.1%
AUROC, and 6.7% AUPRC, respectively (Supplementary
Fig. 16b). The prediction performances vary among distinct data
types (Supplementary Fig. 17) and also among different ICD-9
disease groups (Supplementary Fig. 18), which are attributable to
the rareness of the diseases, complexity of the disease codes, and
the strength and limitations of our model-based assumption. One
caveat in this experiment is that we are potentially using highly
related code to predict the current target code. Therefore, we
should distinguish this experiment from predicting diagnostic
code in the future admissions of inpatient data or future visits in
the outpatient data.
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In the MIMIC-III data, there are 7541 patients who were
admitted to the hospital more than once. This allows us to evaluate
how well we can predict the diagnostic codes in the next admission
based on the information from the previous admission(s) for the
same patients. To this end, we developed a pipeline that combines
MixEHR topics with recurrent neural network (RNN) with Gated
Recurrent Unit (GRU) (Fig. 6a; “Methods”). By leveraging the
correlation structure information between rarely observed codes
and commonly observed codes via the latent topics, we hypothesize
that our approach can achieve comparable prediction accuracy as
GRAM, which relies on the accuracy of the existing ICD-9
knowledge graph or taxonomy.

We observe that MixEHR+RNN confers the highest overall
accuracy among the three methods, although the difference
between MixEHR+RNN and GRAM32 is small (Fig. 6b). We also
generated the prediction accuracy on the codes binned by their
frequencies as before (Supplementary Fig. 35). MixEHR+RNN
performs the best in four out of the five ranges and falls short by
only 2% in the last range (80–100) compared with GRAM. Both
MixEHR+RNN and GRAM outperform Doctor AI27 by a large
margin. Doctor AI did not do well in this application because of
the small sample size and short medical history of the MIMIC-III
data (11 years) (Fig. 6b).

Longitudinal EHR code prediction using Quebec CHD data.
We evaluated the code prediction accuracy on the 28-year long-
itudinal outpatient data from the CHD database using a MixEHR
+RNN architecture (Fig. 6c; “Methods”). Compared to our model
with the baseline RNN, we observed a significant improvement in
terms of both AUPRC (Wilcoxon signed-rank tests p-value <
0.0408) and AUROC (Wilcoxon signed-rank tests p-value <
5.35e-55) (Fig. 6d). Therefore, adding MixEHR significantly
improves the EHR code prediction over the baseline RNN model.
We also observed that the learned weights connected to the 50-
topic mixture exhibit higher magnitude than the learned weights
connected to the concatenated dense layer embedding

(Supplementary Fig. 19). This means that the network relies
heavily on the topic mixture to make accurate predictions.
Because our dataset is focused on the CHD patients, we checked
the prediction accuracy on ICD-9 code 428. Both models achieve
93% AUROC and 33% AUPRC for predicting 428 ICD-9 code.

We discovered two interesting topics namely M43 and M1 that
are highly related to heart-failure ICD-9 code 428 (Supplementary
Fig. 20). Specifically, M43 involves not only ICD-9 code 428.9 for
heart failure but also code 518.4 for acute lung edema, code 290.9
for senile psychotic condition, code 428.0 for congenital heart
failure, code 402.9 for hypertensive heart disease without HF, and
code 782.3 for edema. Indeed, edema is known to be the precursor
for heart failure among many patients. Interestingly, topic M1
characterizes a different set of heart-related diseases, such as
rheumatic aortic stenosis (code 395.0), secondary cardiomyopathy
(code 425.9), and left heart failure (code 428.1).

Procedural codes 1-71, 1-9115, 1-9112 all indicate billing for
more complex care either by a family doctor or specialists in
patients who have impaired mobility, prolonged hospitalization
beyond 15 days and/or admission to short-stay units for patients
unable to go home, typically requiring diuretics for pulmonary
edema. Therefore, most of the top EHR codes under topic M43
are clinically relevant predictors of heart-failure events in clinical
practice.

Lab results imputation using MIMIC-III data. We then eval-
uated the imputation accuracy of missing lab results. We first
performed an extensive simulation by subsampling from MIMIC-
III data to compare lab imputation accuracy between MixEHR
and MICE34 (Supplementary Note). Our approach demonstrated
superior performance compared with MICE and the model that
assumes missing-at-random (MAR) lab results (Supplementary
Fig. 25). We then demonstrated our approach on imputing the
real MIMIC-III lab results. Here, we took a similar approach as
the k-nearest neighbor approach in the EHR code prediction
(Fig. 7a; “Methods”). We observed that MixEHR achieves
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significantly higher accuracy compared to CF-RBM (Fig. 7b, c;
Wilcoxon test p-value < 0.00013, Kolmogorov–Smirnov (KS) test
p-value < 1.15 × 10−5). This is attributable to two facts: (1) Mix-
EHR accounts for NMAR by jointly modeling the distribution
both the lab missing indicators and lab results; (2) MixEHR is
able to leverage more information than CF-RBM: it models not
only the lab data but also other administrative data and clinical
notes. We also observed significantly higher accuracy for our
MixEHR imputation strategy compared to a simple averaging
approach (Supplementary Fig. 34; “Methods”).

Mortality-risk prediction using the MIMIC-III data. Predicting
patient’s mortality risk in the Intensive Care Unit (ICU) is vital to
assessing the severity of illness or trauma and facilitating sub-
sequent urgent care. Because we are able to distill meaningful
disease topics from heterogeneous EHR data, we sought to assess
the predictive capacity of these disease topics for mortality pre-
dictions in future admissions. Here, we predicted the mortality
outcome in the last admission based on the second-last admission
of the patient within 6 months. We obtained the highest 31.62%
AUPRC from MixEHR (50 topics) among all methods (Fig. 8a)
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and second highest AUROC of 65.69% (Supplementary Fig. 22).
We also experimented with two different classifiers namely
logistic regression with L2-norm (Supplementary Fig. 29) and
random forest (Supplementary Fig. 30). We observed overall best
performance using our MixEHR embedding with both classifiers
compared with the other methods.

Furthermore, we designed another experiment that used the
earliest/first admission to predict the mortality in the last
admission. The value of this application is to identify patients
who are discharged too early and therefore to provide a measure
on whether the patients should be discharged from the ICU based
on their current condition. Once again, MixEHR outperformed
other baseline methods (Supplementary Fig. 33). Here, we
focused our analysis on the mortality in the last admission based
on the information in the second-last admission.

Notably, LDA obtained similar performance to MixEHR, whereas
PCA, SiCNMF, and EN performed a lot worse on this task. This

suggests that the topic models (i.e., LDA and MixEHR) are generally
more suitable to modeling the discrete count data in the EHR. Based
on the elastic net linear coefficients, the three most positively
predictive mortality topics are enriched for renal failure (M60 with
the most positive coefficient), leukemia (M73), and dementia (M26),
respectively (Fig. 8c). Interestingly, the three most negatively
predictive mortality topics are normal newborn (topic M52 with
the most negative coefficient), aneurysm (M8), drug poisoning
(M73), respectively. We note that each MixEHR topic is represented
by the top EHR features from diverse data types. In contrast, all of
the predictive topics from LDA are represented by a single data type:
clinical notes (Fig. 8d). This is because clinical notes contain most
EHR features (i.e., words) among all of the data types. By
normalizing the EHR features across all of the data types, the
LDA topics are overwhelmed by the category that contains a lot
more features than the other categories. Qualitatively, this greatly
reduces the interpretability of the topics compared to our MixEHR.
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We also ran Deep Patient29 on the MIMIC-III data and did not
obtain good performance (“Methods”; Supplementary Fig. 23). This
is perhaps due to the small sample size and the lack of carefully
designed preprocessing pipeline29 as the authors demonstrated on
their own EHR data. In addition, previous work has shown the
benefits of using demographic information in representing EHR
codes and patient visits35. Our preliminary results show little benefit
of adding demographic information including sex, age, religion,
ethnicity, and marital status in the mortality prediction (Supple-
mentary Fig. 24). However, we acknowledge its importance and will
continue exploring this in our future work.

Discussion
We present MixEHR as an unsupervised Bayesian framework to
efficiently model the distribution of heterogeneous high-
dimensional EHR data. We envision MixEHR to be a step
toward several promising translational venues, such as (1) facil-
itating clinicians’ decision-making, (2) directing further/deeper
phenotyping, (3) enabling personalized medical recommenda-
tions, and (4) aiding biomarker discovery. Specifically, MixEHR
can infer the expected phenotypes of a patient conditioned only
on a subset of clinical variables that are perhaps easier and
cheaper to measure. Because new data are constantly entering the
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Fig. 8 Mortality prediction using MIMIC-III dataset. Each unsupervised embedding method was trained on the patients with only one admission in the

MIMIC-III data. The trained model was then applied to embed the second-last admission from patients with at least two admissions that are within

6 months apart. An elastic net (EN) classifier was trained to predict the mortality outcome in the last admission. This was performed in a fivefold cross-

validation setting. a Precision–recall curve (PRC) were generated, and the area under of the PRC (AUPRC) were displayed in the legend for each

embedding method. EN represents the performance of elastic net using the raw EHR features. b Linear coefficients for the topics from MixEHR and LDA.

The top three and bottom three topics are highlighted. c Topic clinical features for the top three most positively predictive topics and three most

negatively predictive topics based on the elastic net coefficients for the 75 latent disease topics from MixEHR. d Same as c, but for the top predictive

topics from LDA.
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EHR systems, our model needs to adapt to incoming data without
refitting to the entire dataset—in other words, to go online—a
topic for future development.

In the current framework, MixEHR assumes that the input
data are a set of two-dimensional matrices of patients by mea-
surements (lab tests, diagnoses, treatments, etc.), as delineated in
the structure of our datasets. However, one could envision EHR
data being represented as higher-dimensional data objects—for
instance, as a three-dimensional object of patients by lab tests by
diagnoses, patients by diagnoses by treatments, or patients by
diagnoses by time. To model such high-dimensional EHR data (as
it becomes available), we can extend MixEHR to a probabilistic
tensor-decomposition (TD) framework. Recently developed non-
Bayesian models such as Marble36, Rubik37, and non-negative
TD21 are TD-based methods that show great promise. MixEHR is
an ideal modeling core to serve as the basis for such upcoming
modeling high-dimensional challenges.

It is challenging to interpret associations with patient pro-
vided information (PPI), compared with the other data types
we used here. The presence of PPI data is confounded by
factors such as the point of care (e.g., primary care versus
psychiatric department), gender, demographics, and other social
determinants of health. We will revisit this challenge in our
future work.

Our basic MixEHR framework is cross-sectional. Nonetheless,
longitudinal EHR learning is an important research area as it
promises to forecast patients’ disease outcomes based on their
entire medical history records while taking into account the
temporal trajectory of patient states27,38,39. To this end, we pre-
sent a pipeline that provides the MixEHR-inferred topic mixture
at each admission as an input to a recurrent neural network in
order to model the longitudinal aspect of the EHR data. It is more
challenging to model irregularly sampled time points as com-
monly observed in the outpatient visits while modeling high-
dimensional variables. In addition, in our lab imputation analysis,
we did not model the sequential event of lab test results within the
same admission, which requires a more sophisticated model that
takes into account NMAR and the irregularly measured lab tests
during the patient’s stay. We leave these as future extensions to
MixEHR.

In the mortality prediction, we used the information at the
early admission to predict mortality in the last admission.
Meanwhile, we understand the value of using the first 24 or 48 h
data to predict in-hospital mortality within the same admission
(e.g. ref. 17). This is different from our application. We did not
carry out this experiment because not all of the EHR data in
MIMIC-III have a time stamp (i.e., CHARTTIME) within the
same admission. In particular, although clinical notes and lab
tests have chart time that records the time they were taken during
the in-hospital admission, all of the rest of the data including
ICD-9 diagnostic code, prescription, CPT, DRG code do not have
a chart time and are usually entered upon patient’s discharge.
This makes it difficult to design such an experiment that uses all
of the information. We acknowledge that one caveat in our
analysis is that some patients who are terminally ill (e.g., at the
metastatic cancer stage) may choose to die at home and therefore
our prediction may reflect not only the patients’ health states but
also their mental and social states.

In summary, our data-driven approach, using a large number
of heterogeneous topics over long observation periods, has the
potential of leading to clinically meaningful algorithms that will
help clinicians anticipate high disease-burden events in clinical
practice. Our findings can inform the growing emphasis on
proactive rather than reactive health management as we move
into an era of increasing precision medicine.

Methods
Mixture EHR topic model (MixEHR). We model EHR data using a generative
latent topic model (Fig. 1). Notations are summarized in Supplementary Table 3.
Suppose there are K latent disease topics, each topic k ∈ {1, …, K} under data type

t ∈ {1, …, T} prescribes a vector of unknown weights ϕ
ðtÞ
k ¼ ½ϕ

ðtÞ
wk�WðtÞ for W

(t) EHR

features, which follows a Dirichlet distribution with unknown hyperparameter βwt.
In addition, each topic is also characterized by a set of unknown Dirichlet-
distributed weights ηlk ¼ ½ηlkv�V l

with Vl distinct values (e.g., a lab test l with Vl

distinct lab result values). For each patient j ∈ {1, …, D}, the disease mixture
membership θj is generated from the K-dimensional Dirichlet distribution Dir(α)
with unknown asymmetric hyperparameters αk. To generate EHR observation i for

patient j, a latent topic z
ðtÞ
ij under data type t is first drawn from multinomial

distribution with rate θj. Given the latent topic z
ðtÞ
ij , a clinical feature x

ðtÞ
ij is drawn

from multinomial distribution with rate equal to ϕ
ðtÞ

z
ðtÞ
ij

.

For lab data, we use a generative process where each patient has a variable for
the result for every lab test regardless whether the results is observed. One
important assumption we make here is that the lab results ylj and lab observation rlj
for patient j are conditionally independent given the latent topic hlj, namely that the
probability of taking the test and the value of that test both depend on the latent
disease topic, but not on each other. In terms of the generative process, we first
sample the latent variable hlj from the multinomial distribution with rate θj.
Conditioned on the latent variable, we then concurrently sample (1) the lab result
ylj from Vl-dimensional Dirichlet distribution ηlhlj with hyperparameters ζl over Vl

values and (2) the lab observation indicator rlj from Binomial distribution1 with
rate ψlhij

, which follows a Beta distribution with unknown shape and scale

hyperparameters al and bl. The hyperparameters αk, βwt, ζlv, al, bl’s follow unknown
Gamma distributions.

Formally, we first generate global variables as the parameters for the disease
topic distribution:

ϕ
ðtÞ
k � DirðβtÞ :

Γ
P

wβwt
� �

Q

wΓðβwtÞ

Y

w
ϕ
ðtÞ
wk

h iβwt�1

ηlk � Dirðζ lÞ :
Γð
P

vζ lvÞ
Q

vΓðζ lvÞ

Y

v
η
ζ lv�1
lkv ; ψlk � Betðal; blÞ :

Γðal þ blÞ

ΓðalÞΓðblÞ
ψ
al�1
lk ð1� ψlkÞ

bl�1

We then generate local variables for the diagnostic codes including words from
clinical notes, ICD-9 diagnostic codes, prescription terms, Current Procedure
Terminology (CPT) codes of each patient:

θj � DirðαÞ :
Γð
P

kαkÞ
Q

kΓðαkÞ

Y

k
θ
αk�1
jk ; zij � MulðθjÞ :

Y

k
θ
½zij¼k�

jk ;

xij � Mulðϕ
ðtÞ
k Þ :

Y

w
ϕ
½xij¼w�

kw

and the local variables for the lab data, including latent topic, lab result, and
observation indicator:

hlj � MulðθjÞ :
Y

k
θ
½hlj¼k�

jk ; ylj � Mulðηlhlj Þ :
Y

v
η
yljv
lhljv

;

rlj � Binðψlhlj
Þ : ψ

rlj
lhlj
ð1� ψlhlj

Þ1�rlj

where Gam(. ), Dir(. ), Bet(. ), Mul(. ), and Bin(. ) denote gamma, Dirichlet, beta,
multinomial, and Binomial distributions, respectively.

Marginalized likelihood. Treating the latent variables as missing data, we can
express the complete joint likelihood based on our model as follows:

pðx; y; r; z; h; θ;ϕ;ψ; ηjΘÞ ¼ pðθjαÞpðz; hjθÞpðxjz;ϕÞpðϕjβÞpðrjh;ψÞpðyjh; ηÞpðηjζÞpðψja; bÞ

At this point, we could formulate a variational inference algorithm with mean-field
factorization by optimizing an evidence lower bound of the marginal likelihood
with respect to the model parameters40. However, that would be inaccurate and
computationally expensive for the following reasons. The mean-field variational
distribution assumes that all of the latent variables are independent. On the other
hand, we know from our model that these independence assumptions are unrea-
listic. In particular, the latent topic assignments depend on the patient mixtures,
and the disease latent topic distribution and topic assignment are dependent given
the observed lab tests or diagnostic code (i.e., the V shape structure in the prob-
abilistic graphical model41). In addition, the variational updates require extensive
usages of exponential function and digamma function for every latent topic
assignment of every patient, which are computationally expensive to compute for
larger number of patients.

We can achieve more accurate and efficient inference by first analytically
integrating out the patient mixtures and latent topic distributions13,42. To do so, we
exploit the respective conjugacy of Dirichlet variables ϕ, η, θ to the multinomial
likelihood variables x, y, {z, h}, and the conjugacy of Beta variable ψ to the binomial
lab observation indicator variable r. This way we can simplify the complete joint
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likelihood distribution of the data and the latent variables {z, h} as follows:

pðx; y; r; z; hjα; β; ζ; a; bÞ ¼

Z

pðz; hjθÞpðθjαÞdθ

Z

pðxjz;ϕÞpðϕjβÞdϕ

Z

pðyjh; ηÞpðηjζÞdη

Z

pðrjh;ψÞpðψja; bÞdψ

¼
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Γ
P
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� �

Q

kΓðαkÞ

Q

kΓ αk þ n
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:jk þm

:jk
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Γ
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:jk þm
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� �

Y
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Y
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Y

l

Γ
P

vζ lv
� �

Q

vΓ ζ lvð Þ

Q

vΓ ζ lv þml:kvð Þ

Γ
P

vζ lv þml:kv

� �

Y

k

Y

l

Γ al þ blð Þ

ΓðalÞΓðblÞ

Γðal þ plkÞΓðbl þ qlkÞ
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where the sufficient statistics are:

n
ð:Þ
:jk ¼

X

T

t¼1

X

M
ðtÞ
j

i¼1

½z
ðtÞ
ij ¼ k�; n

ðtÞ
w:k ¼

X

D

j¼1

X

M
ðtÞ
j

i¼1

½x
ðtÞ
ij ¼ w; z

ðtÞ
ij ¼ k� ð1Þ

m
:jk:

¼
X

L

l¼1

X

V l

v¼1

yljv½hlj ¼ k�; ml:kv ¼
X

D

j¼1

yljv ½hlj ¼ k� ð2Þ

plk ¼
X

j

½rlj ¼ 1�
Y

v
yljv½hlj ¼ k�; qlk ¼

X

j

½rlj ¼ 0�
X

v

½hlj ¼ k; ylj ¼ v� ð3Þ

Note that we use yljv to denote the frequency of observing the lab test l of outcome v
for patient j and [ylj= v] as binary indicator of a single test. Detailed derivations are
in Supplementary Methods.

Joint collapsed variational Bayesian inference. The marginal likelihood can be
approximated by evidence lower bound (ELBO):

log pðx; y; rjα; β; ζ ; a; bÞ ¼ log
X

z;h

pðx; y; r; z; hjα; β; ζ ; a; bÞ

qðz; hÞ
qðz; hÞ ð4Þ

≥

X

z;h

qðz; hÞlog pðx; y; r; z; hjα; β; ζ; a; bÞ �
X

z;h

qðz; hÞlog qðz; hÞ ð5Þ

¼ Eqðz;hÞ½log pðx; y; r; z; hjα; β; ζ ; a; bÞ� �Eqðz;hÞ½log qðz; hÞ� � LELBO ð6Þ

Eqs. (4) to (5) follows Jensen’s inequality. Maximizing LELBO is equivalent to
minimizing Kullback–Leibler (KL) divergence:

KL½qðz; hÞjjpðz; hjx; y; rÞ� ¼ Eqðz;hÞ½log qðz; hÞ� �Eqðz;hÞ½log pðz; h; x; y; rÞ�þ

log pðx; y; rÞ because log pðx; y; rÞ is constant and KL½qðz; hÞjjpðz; hjx; y; rÞ�þ
LELBO ¼ log pðx; y; rÞ.

Under mean-field factorization, the proposed distribution of latent variables z
and h are defined as:

log qðzjγÞ ¼
X

t;i;j;k

½z
ðtÞ
ij ¼ k�log γ

ðtÞ
ijk ; log qðhjλÞ ¼

X

l;j;k

½hlj ¼ k�log λljk ð7Þ

Maximizing (6) with respect to the variational parameter γ
ðtÞ
ijk and λljk is equivalent

to calculating the expectation of z
ðtÞ
ij ¼ k and hlj= k with respect to all of the other

latent variables13,41:

log qðz
ðtÞ
ij ¼ kÞ ¼ Eqðz�ði;jÞÞ½log pðx; zÞ�; log qðhlj ¼ kÞ ¼ Eqðh�ðl;jÞÞ½log pðy; r; hÞ�

ð8Þ

Exponentiating and normalizing the distribution of qðz
ðtÞ
ij ¼ kÞ and q(hlj= k) gives

γ
ðtÞ
ijk ¼

expðEqðz�ði;jÞÞ½log pðx; z�ði;jÞ; zij ¼ kÞ�Þ
P

k0 expðEqðz�ði;jÞÞ½log pðx; z�ði;jÞ; zij ¼ k0Þ�Þ
ð9Þ

λljk ¼
expðEqðh�ðl;jÞÞ½log pðy; r; h�ði;jÞ; hij ¼ kÞ�Þ

P

k0 expðEqðh�ðl;jÞÞ½log pðy; r; h�ði;jÞ; hij ¼ k0Þ�Þ
ð10Þ

We can approximate these expectations by first deriving the conditional

distribution for pðz
ðtÞ
ij ¼ kjx; y; rÞ and p(hlj = k∣x, y, r) (Supplementary Methods)

and then using Gaussian distributions to approximate the sufficient statistics by the
summation of the variational parameters in zero-order Taylor expansion13,14:

γ
ðtÞ
ijk / αk þ ~n

�ði;jÞ
:jk þ ~m

:jk

� �

β
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ðtÞ
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C

C

C

A

ð11Þ

To infer p(hlj= k∣x, y, r), we will need to separately consider whether the lab test
l is observed or missing. In particular, we can infer the topic distribution λljkv /

Eq½log pðhlj ¼ kjx; y; rÞ� of an observed lab test ylj at value v as:

λljkv / αk þ ~n
:jk þ ~m

�ðl;jÞ
:jk

� � ζ lv þ ~m
�ðl;j;vÞ
lkv

P
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 !
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 !

ð12Þ

For unobserved lab tests, we infer the joint distribution of latent topic and lab result
πljkv / Eq½log pðhlj ¼ k; ylj ¼ vjx; y; rÞ�:

πljkv / αk þ ~n
:jk þ ~m

�ðl;jÞ
:jk
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P
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�ðl;jÞ
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ð13Þ

where the notation n−(i, j) indicate the exclusion of variable index i, j. The sufficient
statistics in the above inference have closed-form expression conditioned on the
other latent variables:
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Furthermore, we update the hyperparameters by maximizing the marginal
likelihood under the variational expectations via empirical Bayes fixed-point
updates14,43). For example, the update for βwt is

β�wt  
aβ � 1þ βwt

P

kΨðβwt þ n
ðtÞ
w:kÞ � KWtΨðβwtÞ

� �

bβ þ
P

kΨðWtβwt þ
P

wn
ðtÞ
w:kÞ � KΨðWtβwtÞ

ð18Þ

Other hyperparameters updates are similar. The learning algorithm therefore

follows expectation–maximization: E-step infers γ
ðtÞ
ijk ; λljkv ; πljkv ’s; M-step updates

the above sufficient statistics of model parameters and hyperparameters. Details
and time complexity analysis are described in Supplementary Methods.

Stochastic joint collapsed variational Bayesian inference. To learn MixEHR
from massive-scale EHR data, we propose a stochastic collapsed variational
Bayesian (SCVB) algorithm44,45. The main objective of our SCVB algorithm is to

avoid keeping track of all of the latent topic assignments γ
ðtÞ
ijk and λljkv’s while

maintaining accurate model inference. Specifically, we first calculate the inter-
mediate variational updates from randomly sampled mini-batches of D0 patients:

n̂
ðtÞ
w:k ¼

X
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j0¼1

X

M
ðtÞ
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i¼1

½x
ðtÞ
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ð19Þ

m̂l:kv ¼
X
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j0¼1

X

L

l¼1

½rlj0 ¼ 1�ylj0vλlj0kv þ ½rlj0 ¼ 0�πlj0kv ð20Þ

We then update the latent disease topics using natural gradients, which are the
intermediate updates weighted by a fixed learning rate:

n̂
ðtÞ
w:k ¼ ð1� ρÞ~n

ðtÞ
w:k þ ρn̂

ðtÞ
w:k

ð21Þ

m̂l:kv ¼ ð1� ρÞ~m
ðtÞ
l:kv þ ρm̂

ðtÞ
l:kv

ð22Þ

Details are described in Supplementary Methods. We observed that the SJCVB0
algorithm achieves comparable performance as the full-batch learning with only a
fraction of time and constant memory (Supplementary Fig. 2).

Predictive likelihood. To evaluate model learning and monitor empirical con-
vergence, we performed fivefold cross-validation. For each patient in the validation
fold, we randomly selected 50% of their EHR features to infer their disease mixtures
and then used the other 50% of the features to evaluate the log predictive likelihood
—a common metric to evaluate topic models4,14,44:

X

j

X

t;i

log
X

k

θ̂jkϕ̂
ðtÞ

x
ðtÞ
ij
k
þ
X

l

½rlj ¼ 1�log
X

k

θ̂jkðψ̂lk þ η̂lkylj Þ ð23Þ

where we inferred the variational expectations of the disease mixture and disease
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topics as:

θ̂jk ¼
αk þ ~n

ð:Þ
jk

P

k0αk0 þ ~n
ð:Þ
jk0

; ϕ̂
ðtÞ

wk ¼
βwt þ ~n

ðtÞ
wk

P

w0βw0t þ ~n
ðtÞ
w0k

;

ψ̂lk ¼
al þ ~plk

al þ ~plk þ bl þ ~qlk
; η̂lkv ¼

ζ lv þ ~mlkv
PV l

v0¼1 ζ lv0 þ ~mlkv0

Sensible models should demonstrate improved predictive likelihood on held-out
patients. We evaluated the predictive log likelihood of models with
K ∈ {10, 25, 40, 50, 60, 75, 100, 125, 150} using the MIMIC-III data and ultimately
set K= 75 as it gave the highest predictive likelihood (Supplementary Fig. 1).
Nonetheless, models with K within the range between 50 and 100 have similar
performance.

Retrospectively predict EHR codes by a k-nearest neighbor approach. To
impute missing data in an individual-specific way, we here describe a k-nearest
neighbor approach. As illustrated in Supplementary Fig. 16a. the prediction can be
divided into three steps:

● Train MixEHR on training set to learn the EHR code by disease topic matrices
W across data types and infer the disease topic mixtures θtrain for each training
patient data point;

● To infer the probability of an unknown EHR code t for a test patient j0 , use
MixEHR and the learnt disease topic matrices W to infer the disease topic
mixture θj0 for the test patient;

● Compare the test patient disease topic mixture θj0 with the training patient
disease mixtures θtrain to find the kmost similar training patients Sj0 . Here, the
patient–patient similarity matrix is calculated based on the Euclidean distance
between their disease topic mixtures:

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XK

k¼1
θj0k � θjk

� �2
r

ð24Þ

where θj0k and θjk are the mixture memberships of the test patient j0 and
training patient j, respectively. Finally, we take the average of the EHR code t
over these k-nearest neighbor patients as the prediction for the target code t
for test patient j0:

xtj0 ¼
1

k

X

j2Sj0

xtj ð25Þ

We empirically determined the number of nearest neighbors k to be 100.

Evaluating retrospective EHR code prediction. To evaluate the prediction per-
formance, we chose a set of EHR codes from each data category based on the
following criteria. For clinical notes, we chose the key words that are recorded in
more than 10 patients but fewer than 500 patients to focus on disease-specific
words with sufficient number of patients. For other data categories, we chose target
codes that are observed in at least 100 patients but no more than 50% of the
training cohort (i.e., ~19,000 patients). We then further selected the top 100 codes
per data type in terms of the number of patients except for the ICD-9 diagnostic
code, for which we evaluated prediction on each of the 499 codes in order to assess
the performance differences by ICD-9 disease groups (Supplementary Fig. 18). In
total, we obtained 976 target EHR codes (Supplementary Table 4).

For unbiased evaluation, we performed a fivefold cross-validation. For training
fold n, we trained MixEHR to learn the disease topic matrices Wtraining fold n and
patient disease topic mixtures θtraining fold n. For the corresponding validation fold,
we evaluated the prediction of each target code t for each test patient j0 as follows.
We first removed the target code t from the test patient j0 if it is observed for the
test patient j0 . We then inferred the disease mixture for the test patient j0 and
inferred the probability of target code t for test patient j0 using the k-nearest
neighbor approach. We repeated this procedure for the five validation folds to
obtain the predictions of each target EHR code.

For comparison, we evaluated the performance of the baseline topic model
which ignores distinct data types in the EHR data. Notably, such model is
essentially equivalent to LDA. To this end, we modified the training and validation
datasets to have the same data type for all of the 53432 EHR codes and gave each
code a unique ID (i.e., 1 to 53,432). We then extracted the 976 target codes for
fivefold cross-validation predictions. We ran MixEHR on such data-type-flattened
data. We evaluated the predictions based on area under of the ROC curve
(AUROC) and precision–recall curve (AUPRC) as well as the overall accuracy by
thresholding the prediction probability by 1/k, where k= 100 is the empirically
determined number of nearest neighbors.

Implementations of the existing methods. For experiments comparing our
method with GRAM32 and Doctor AI27, we used the open source implementation
made available by the authors of the papers found at https://github.com/mp2893/
gram and https://github.com/mp2893/doctorai, respectively. GRAM and Doctor AI

were both set to predict the medical codes (as defined in their papers) in the next
admission for the MIMIC-III. This task is also known as sequential diagnosis
prediction. The same Clinical Classification Software (CCS) medical codes used in
the original implementation of both methods were used in the comparisons as well.
Note that Doctor AI can also be used to predict the time duration of next visit, but
we did not compare our method with it in this aspect. For both Doctor AI and
GRAM, we used the default recommended settings provided in their code bases.
Both these models were implemented in Theano. To compare with Doctor AI and
GRAM, we used Accuracy@20 as described in the GRAM paper for different
percentile of frequencies of the medical codes.

In our comparison with Deep Patient, since there was no published code
available, we implemented the stacked denoising autoencoder to the best of our
abilities. We closely followed the steps mentioned in the paper by the authors. We
did not follow the elaborate data preprocessing pipeline used in the paper as our
dataset (MIMIC-III) is different from the one used by29. Our implementation had
three layers of autoencoders with 500 hidden units (as in the original paper) and
was coded using Keras library. We used the Deep Patient representation as input to
a classifier (i.e., logistic regression) to predict mortality and compared the accuracy
with MixEHR in terms of the area under the precision–recall (AUPRC) and area
under the ROC (AUROC) (Supplementary Fig. 23).

Conditioned Factored Restricted Boltzmann Machine (CF-RBM) was
implemented by adapting the code from https://github.com/felipecruz/CFRBM.
CF-RBM was originally designed for Netflix movie recommendation. Each movie
has a five-star rating. We modified the code to make it work with two-state lab
results (i.e., normal and abnormal). We used 100 hidden units of CF-RBM to train
on the randomly sampled 80% of the admissions and tested the CF-RBM on the
remaining 20% of admissions. We ensured that the training and test sets were the
same for both CF-RBM and MixEHR. We evaluated the trained CF-RBM as
follows. We iterated over the admissions in the test set, and for every lab test in that
admission, we masked its test result and made a prediction based on the remaining
lab tests of the same admission. This procedure was repeated for every lab test in
every admission. We then recorded the predicted lab results and the true lab results
for evaluation purpose. The same evaluation procedure was also used for MixEHR.

SiCNMF was implemented using the Python code from author’s Github
repository https://github.com/sgunasekar/SiCNMF19. The model was trained on
the MIMIC-III dataset with six data types as the six collective matrices until
convergence.

Unless mentioned otherwise, all of the other unsupervised learning and
classification methods such as PCA, random forest, elastic net, logistic regression,
and LDA were implemented using the Scikit-Learn Python library.

MIMIC-III data description. The methods were performed in accordance with the
PhysioNet data user agreement. All of the MIMIC-III data received simple and
minimal preprocessing of the raw comma separated value (CSV) files provided
from MIMIC-III critical care database (mimic.physionet.org). For all data types, we
removed nonspecific EHR code that were commonly observed among admissions
based on their inflection points (Supplementary Fig. 26). No further processing was
performed unless mentioned otherwise. For clinical notes (NOTEEVENTS.csv), we
used the R library tm46 by following a simple pipeline. We filtered out common
stop words, punctuations, numbers, whitespace and converting all of the remaining
words to lowercase.

For lab test data, we used the FLAG column that indicates normal or abnormal
level for the lab results. We counted for each admission the number of times the lab
results were normal and abnormal. A patient at the same admission can exhibit
both normal and abnormal states zero or more times for the same lab test. In this
case, we recorded the frequency at each state for the same admission.

For prescription, we concatenated the DRUG, DRUG_NAME_GENERIC,
GSN, NDC column to form a compound ID for each prescription. For the
Diagnosis-related group (DRG) code (DRGCODES.csv), we concatenated several
IDs including DRG_TYPE, DRG_CODE, DESCRIPTION, DRG_SEVERITY, and
DRG_MORTALITY to form a compound ID for each DRG code. The identifiers
for ICD-9 code (ICD-9-CM) (DIAGNOSES_ICD.csv) and treatment procedure
code (PROCEDURES_ICD.csv) (ICD-9-CPT) were kept as their original forms.
The resulting data are summarized in Supplementary Table 1.

Mayo Clinic data description. The 187 patients (94 bipolar disorder cases and 93
controls) were selected from the Mayo Clinic Bipolar Disorder Biobank and the
Mayo Clinic Biobank, respectively. They had consented for research, including
research using their EHR data47,48. This study was reviewed and approved by Mayo
Clinic Institutional Review Board and by the access committees from both bio-
banks. The EHR information for each of the patients cover five categories,
including ICD-9 codes (2224 ICD-9-CM codes), procedure codes (2200 CPT
codes), patient provided information (955 text questions), lab tests (1742 lab test
codes), medication prescriptions (610 prescription order codes). In total, there are
7731 codes and 108,390 observations (Supplementary Table 5). For each case, one
subject from the Mayo Clinic Biobank was matched on age and sex, after excluding
subjects with psychiatric conditions in self-reports and/or EHR. Supplementary
Table 6 summarizes age-sex distribution by cases and controls.
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Quebec CHD data description. The dataset was derived from the EHR docu-
mented Quebec Congenital Heart Disease (CHD) database with 84,498 patients
and 28 years of follow-up from 1983 to 201049,50. The study uses administrative
databases as data sources. No participant is enrolled. The study was approved by
Research Ethics Board of McGill University Health Centre. For each patient, the
patient history can be traced back to the later of birth or 1983, and followed up to
the end of the study or death of the patient, whichever came earlier. The dataset
includes two data types: ICD-9 or ICD-10 billing code and intervention code. The
raw dataset consists of individual records of each patient’s medical visit. Each visit
lasted less than a day. Thus, they were not considered as admissions, and are
categorized as outpatient data. The informed consent was obtained from all
participants.

By using the time stamp of those visits, we aggregated the diagnoses and
intervention codes by the months into visit blocks. Thus, each visit block represents
the record of a patient in that time interval as a set of diagnoses and a set of
interventions. Since the patients’ visit history was recorded as sequential events
over the 28 years, we represented each patient’s complete medical history as a time
series of diagnoses and intervention sets. The length of the sequence depends on
the total number of months. We only kept the months in which a patient has
visited a medical institution at least once. The diagnoses given were represented as
a four or five-digit ICD-9 or ICD-10 code. All of the codes were converted to ICD-
9 using a board-approved conversion table. In order to generate the labels, we took
the first three digits of each code. The processed data are summarized in
Supplementary Table 3.

Bipolar disorder Mayo Clinic patients classification details. Among the five
data categories, lab tests and PPI have two separate data features unlike the other
three binary data categories. Specifically, they consist of (1) presence vs. absence of
the data in the EHR (e.g., whether a lab test was done or whether a patient
answered a particular PPI question) and (2) the actual value for the variable (i.e.,
test results for a lab test, or patient’s answer for a PPI question). Given the small
sample size, we chose to model the first data feature (whether the data exists in the
EHR) to mimic the data structure used in the rest of the data categories, recog-
nizing that we may miss important information by not analyzing the actual lab test
results and/or patients answers for particular PPI questions. We speculate that the
missing pattern may be related to the disease classification and disease subgroups,
especially for the lab codes. However, we note that the missing pattern for the PPI
data might be strongly confounded by other nonclinical characteristics such as age,
gender and social determinants of health.

We used a 20-topic MixEHR to model the distinct distribution of these six data
types. Our preliminary analysis showed that more than 20 topics produced
degenerate models. First, we sought to quantitatively examine whether the patient
topic mixtures provide useful information for accurate classification of bipolar
disorder. To this end, we divided the 187 patients into five folds (Fig. 4a). We
trained MixEHR on the four folds and then a logistic regression (LR) classifier that
uses the patient topic mixture in the four folds to predict the bipolar disorder label.
In this evaluation, we removed ICD-9 code category 296 from all patients as it
codes for bipolar disorder. We then applied the trained MixEHR and LR to predict
the BD labels of patients in the validation fold based on their MixEHR 20-topic
mixture. As a comparison, we also applied two other unsupervised learning
approaches, namely Latent Dirichlet Allocation (LDA) with 20 topics and
Restricted Boltzmann Machine (RBM) with 20 hidden units.

Longitudinal MIMIC-III EHR code prediction details. Because our current model
is not longitudinal, we developed a pipeline that combines MixEHR topics with
recurrent neural network (RNN) with Gated Recurrent Unit (GRU) (Fig. 6a). We
first trained MixEHR on the EHR data for ~39,000 patients with single admission
in MIMIC-III. We then used the trained MixEHR to infer topic mixture at each
admission for the 7541 patients with multiple admissions. Then we used as input
the inferred topic mixture at the current admission (say at time t) to the RNN to
auto-regressively predict the diagnostic codes at the next admission at time t+ 1.
Here, MixEHR uses all of the data types from MIMIC-III. Specifically, we used a
128-dense layer to embed the input topic mixture before passing it to the two 128-
GRU layers followed by a dense layer connected to the CCS medical code output
classes. We set the L2 weight penalty to 0.001 and dropout rate 0.5 based on
preliminary results and existing literature.

As a comparison, we ran one of the recently developed state-of-the-art deep-
learning frameworks called Graph-based Attention Model (GRAM)32. GRAM
requires a knowledge graph such as the CCS multi-level diagnosis hierarchy or
ICD-9 taxonomy and at least two admissions for each patient. Therefore, we only
trained GRAM on the 7541 patients’ admissions using only their ICD-9 codes. For
MixEHR+RNN and GRAM, we randomly split the multi-admission patients into
80% for training and 20% for testing. Same as the evaluation performed by Choi
et al., we prepared the true labels by grouping the ICD-9-CM codes into 283 groups
using the Clinical Classification Software (CCS)32.

In terms of evaluating prediction accuracy of specific medical codes, we found
that all of the models including GRAM and Doctor AI do not perform well on the
low-frequent medical codes (with median accuracies equal to 0 and mean
accuracies below 25% accuracy range), and the accuracy estimates are unstable for
the rare medical codes, depending on the training and testing split. Therefore, we

focused on evaluating the predictions of the 42 medical codes each observed in at
least 1000 training admissions. We then calculated the accuracy at the top 20
predictions for each CCS diagnosis code. For each medical code, we counted the
number of true positives among the top 20 predicted code for each admission and
then divided it by the number of total positives.

Quebec CHD EHR code prediction details. In this database, each patient had on
average 28 years medical follow-up history (1983–2010). The input data have two
data types namely, ICD-9 or ICD-10 code and procedure intervention code. We
designed an RNN that takes as input both the raw EHR data and the multimodal
topic mixture (over the two ICD and procedure data types) inferred by MixEHR at
each visit block t and predicts as outputs the first three digits of the diagnostic ICD
code at the next visit block t+ 1 (Fig. 6c). Similar to the design from Doctor AI27,
we defined a visit block as a 1-month interval that contains at least one visit from
the patient. For instance, suppose a patient visits multiple times in January and
does not visit since then until May. We pool the data over those visits in January.
We ignore the months where there is no visit by that patient (i.e., February to
April). We predict diagnostic code for the next visit block t+ 1 in the subsequent
month that contains at least one visit by that patient (i.e., May in the above
hypothetical example).

Here, we sought to assess whether there is additional information provided by
MixEHR that is not captured by the fully connected dense layer of the RNN in
terms of the code prediction improvement. For the ease of reference, we call this
approach as MixEHR+RNN to distinguish it from the baseline RNN that takes
only the raw EHR as input (i.e., Doctor AI). For the baseline RNN, we use 100-
dimensional hidden embedding (i.e., fully connected dense layer) to encode the
observed EHR code in the input. For the MixEHR+RNN model, we used 50-
dimensional hidden embedding to encode the observed EHR code augmented with
50-topic MixEHR for the topic mixture embedding (Supplementary Fig. 21).
Therefore, both models have 100-dimensional latent embeddings to encode the
input features. The rest of the architecture stays the same for both RNN models.
Details are described in Supplementary Note.

For evaluation, we randomly split the 80,000 patients into 80% of the patients
for training and 20% of the patients for testing. For MixEHR+RNN, we first
trained MixEHR on all of the visit blocks of the training patients. Then, we trained
an RNN that takes the raw input concatenated with the MixEHR-inferred 50-topic
mixture at each visit block of the training patients to predict the diagnostic code at
the next visit block. For testing, we applied the trained MixEHR+RNN and the
baseline RNN to predict the diagnostic code in the next visit block of the test
patients based on all of the previous visit block(s). For MixEHR+RNN and the
baseline RNN models, we recorded the prediction accuracy across all visit blocks
(excluding the first visit block) for each patient in terms of AUROC and AUPRC
for each diagnostic code.

MIMIC-III lab results imputation details. In total, there are 53,432 unique fea-
tures/variables over six data types in the MIMIC-III. Among these, 564 variables
are lab tests. We used all of the variables (notes, ICD, lab, prescriptions, DRG,
CPT) across all of the six data types to learn the topic distribution from the training
set and performed imputation of lab results on the testing set (Fig. 7a). For the
observed lab tests of each patient, we used the FLAG column that indicates normal
or abnormal level for the lab results. We counted for each admission the number of
times the lab results were normal and abnormal. A patient at the same admission
can exhibit both normal and abnormal states zero or more times for the same lab
test. In this case, we recorded the frequency at each state for the same admission.

The goal of our analysis is to impute missing lab test results based on all of the
other information of the patient’s admission. Therefore, we did not distinguish
whether the admissions came from the same patients and focused on imputing lab
results within the same admission. Most patients only have one admission in the
MIMIC-III dataset: among the 46,522 patients only 7541 patients (16%) have more
than one admission. Therefore, the conclusion will likely remain the same if we
were to aggregate information from multiple admissions for the same patient.

We randomly split the total 58,903 admissions into 80% for training and 20%
for testing. For the training set, we trained our MixEHR to learn the topic
distribution and the 50-topic mixture memberships for each training admission
(Fig. 7a, step 1). We then iterated over the admissions in the test set. For every lab
test observed in the test admission, we first masked its test result and imputed the
test result as follows. We first inferred the 50-topic mixture memberships for each
test admission using the topic distribution learned from the training set (Fig. 7a,
step 2). We then found the 25 most similar admissions to the test admission from
the training set based on the Euclidean distance of their topic mixture
memberships (Fig. 7a, step 3). These 25 admissions must have the target lab test
observed. We then took the average of the frequency over the 25 most similar
training admissions as our imputed lab result for the target lab test in the test
admission.

This procedure was repeated for every lab test in every test admission. We
recorded the predicted lab results and the true lab results for evaluation purposes.
The same way was used to evaluate the CF-RBM method. As a comparison, we
trained conditional factored Restricted Boltzmann Machine (CF-RBM)5 with 100
hidden units only on the lab tests. For MixEHR and CF-RBM, we used 80% of the
admissions for training and 20% of the admissions for testing. Here we did not
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distinguish whether the admissions came from the same patients but rather focused
on imputing lab results within the same admission.

To further compare our proposed approach, we took a simpler imputation
strategy by averaging. For each lab test, we took the average of the observed lab
results over the training admissions. We then used the average frequency as the
predictions for the lab results on the 20% testing admissions.

MIMIC-III mortality prediction details. We first trained MixEHR on the ~39 K
patients with single-admissions to learn the disease topics. We used the trained
MixEHR to infer topic mixture of each admission for the patients who had more
than one admission. We took the last two admissions that are within 6 months
apart, which gave us around 4000 multi-admission patients. We used the topic
mixture inferred for the second-last admission as an input to a classifier to predict
the mortality outcome at the discharge of the last admission (i.e., as indicated by
the EXPIRED flag in the Discharge location of the last admission). To realistically
evaluate our model, we filtered out Discharge Summary from the clinical notes in
all of the data (under CATEGORY of the notes) because they usually contain
conclusion about patients’ critical conditions. We then performed a 5-fold cross-
validation to evaluate the prediction accuracy. We experimented with K= 50 and
75 topics. As baseline models, we tested LDA on a flattened EHR matrix over all six
data types, Principal Component Analysis (PCA) with 50 Principal Components
(PCs), Sparsity-inducing Collected Non-negative Matrix Factorization (SiCNMF)
on the same input data19. We ran SiCNMF with the default settings with lower
rank set to 20. Lastly, we trained elastic net directly on the raw input data from the
~4000 patients’ second-last admission to predict the morality in their last admis-
sions upon discharge.

Moreover, we designed another experiment that used the earliest/first
admission to predict the mortality in the last admission. We removed patients if
their earliest admission lasted longer than 48 h based on the difference between the
admission time and discharge time within the same admission. This also gave us
4040 patients whose first in-hospital stay was shorter than 2 days. Same as the
above, we performed a fivefold CV on these patients as above using the pre-trained
unsupervised models on the single-admission patients’ data to generate topic
mixtures on the first admissions as input to a supervised classifier (i.e., elastic net),
which then predicts the mortality in the last admission upon discharge.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The MIMIC-III data analyzed in this paper are publicly available through PhysioNet

(http://mimic.physionet.org). Mayo Clinic and Quebec CHD data are not publicly

accessible due to restricted user agreement.

Code availability
We implemented MixEHR in C++ as a standalone Unix command-line software using

OpenMP for multi-threaded inference. It allows an arbitrary number of discrete data

types and discrete states per EHR feature. The software is available as Supplementary

Software 1 or at https://github.com/li-lab-mcgill/mixehr.
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