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Abstract—An unexpected increase in natural disasters has
prompted a large interest in governments and organisations to
utilise ICT for many different purposes such as preparation,
impact mitigation, loss reduction and relief efforts. This pa-
per presents initial work on studying disaster scenarios from
device level perspective to characterise network infrastructural
behaviour during extraordinary situations. We find connectivity
challenges during disasters and observe sharp decline of quality
metrics and loss of station quantity between ordinary and extraor-
dinary time periods. We also make distinctions between usual
and unusual behaviour seen during ordinary and extraordinary
situations.

I. INTRODUCTION

An unexpected sudden increase in natural disasters and
emergencies in the past decade or so has prompted large
interest among governments and private organisations [1] alike
to utilise information and communication technology to the
full. This includes - but is not limited to - managing risk,
mitigating impact, reducing losses, preparing and warning
populace, and facilitating relief and rescue efforts [2], [3], [4].

White papers by various organisations on disaster situa-
tions highlight the utility of information and communication
technology during the aftermath. For instance, GSMA’s 2005
report [5] on the role of mobile phones during disasters
and other emergencies reflects the need for governments and
mobile operators to work together in facilitating recovery from
disaster situations. One of the key findings suggest the ubiquity
of cellular network and the turn-around time for reinstalling
mobile infrastructure to provide baseline communication ser-
vices.

Network behaviour during natural disasters and emer-
gencies is somewhat reminiscent to usage surges observed
during the New Year Eves, for example [5]. Operators should
prioritise calls at such times and manage other demand on their
network or may be even allocating a larger part of the spectrum
for emergency service use. The report also highlights the role
of mobile phones as a low-cost but important supplementary
information dissemination medium. This is especially true in
developing countries where other infrastructure is vulnerable
and widely affected in the aftermath of a disaster. The most
important recommendation for the public are to ‘text not talk’
during emergencies as text messages are more likely to get
through as they use less network capacity or can be held in a
queue until there is free capacity to send.

Similarly, during the Great East Japan Earthquake of
2011, NTT suffered heavy losses [6] to its infrastructure.
After the earthquake, NTT [7] committed to securing reli-
ability in network design, monitoring and control technolo-
gies, and quake resistance enhancements for physical network
equipment. Moreover, NTT started construction of large-zone
scheme base stations at approximately 100 different locations
across Japan to secure communications over densely populated
areas in the event of widespread disaster or power outage. NTT
also proposed developing a service that carries voice messages
by transmitting voice files over packet network as voice calls
are difficult to connect over circuit-switched networks due to
congestion in the event of a disaster.

Studying affects of extraordinary situations can help in
strengthening reliability and resilience in communication net-
works. In this paper we study data collected from an Android
mobile phone application to understand how the network
responds during disasters. In particular we study two dis-
aster scenarios from device level measurements perspective
to characterise network infrastructural behaviour. We find
connectivity challenges during disasters and emergencies and
make two important inferences from the dataset: (1) ordinary
and extraordinary time periods are characteristic of usual and
unusual behaviour of the quality metrics, respectively; (2)
rapid and prolonged decrease of quality metrics and network
performance distinguish extraordinary situations from ordinary
ones.

The rest of the paper is organised as follows. Section II
covers the state of the art. Section III describes the datasets
and our methodology. We present our analysis in Section IV
and conclude in Section V.

II. RELATED WORK

The need to design methods for creating disaster resilient
and robust communication infrastructure has only been studied
sporadically. In [8] method for spatial design of physical net-
work is discussed to create robustness against earthquakes. The
paper discusses theoretical method for evaluating probability
of disconnection in a bounded area. The paper further discusses
physical design rules for robustness, and evaluates the validity
of the method and rules using earthquake intensity maps.

Some work has also focused on redefining existing net-
work standards and their implementations, such as the GSM-



network [9]. The paper proposes adjustment and implemen-
tation of a reimagined GSM-network necessary to enable
mobile device geo-localisation in disaster situations. Typically,
in cellular networks a mobile device transmits a signal only
sporadically without request, e.g. when changing a sector or a
cellular base station, making a call, sending an SMS or per-
forming a handover. The mobile device needs to be enforced
to send a signal without request to be successfully localised.
The paper envisions an auxiliary GSM-network that allows the
usage of a special handover procedure with frequency hopping
that increases the accuracy of applied localisation techniques.

Another work [3] focuses on deploying a wireless sensor
network protocol for disaster management to overcome com-
munication deficiencies during disasters. The authors use wide
area sensor node deployment and ad-hoc relay stations to send
data from collapsed base stations to functioning base stations.
Other works include [10], [11].

Research has also focused on using social media for real-
time event detection. For example in [12] an algorithm is
devised to monitor Twitter for particular tweets to detect a
target event. The algorithm classifies tweets and produces
a probabilistic model across space and time for the target
event that can locate the centre and trajectory of the event
location. Using Twitter dataset from Japan, the algorithm
is argued to detect an earthquake with 96% probability of
Japan Meteorological Agency (JMA). The system claims to
deliver earthquake notification e-mails much faster than those
broadcasted by the JMA. Similar work includes [13].

However, to the best of our knowledge this is the first
preliminary work that focuses on characterising network be-
havioural aspects from the mobile device perspective.

III. DATA AND METHODOLOGY

CrisisSignal1 is an Android smartphone application devel-
oped by OpenSignal team to collect data on cellular and WiFi
coverage in emergency situations. The application is free to
download and install. It comes with two modes2: foreground
and background. In the foreground mode the application sends
a message (called a ping) containing all the measurement data
to the central server once every 2 (intensive) or 5 (power
saver) seconds. In the background mode the application sends
the same ping once every 5 (intensive) or 30 (power saver)
minutes.

We had access to a novel CrisisSignal dataset containing
over 5.9 million data-points from all over the globe from
mid Dec 2014 to mid Feb 2015. We aggregated values of
the metrics described in Table I and grouped them on a
per-day basis. Data-points were bounded by relevant geo-
coordinate and timestamp ranges. Each metric was normalised
to a common scale for the purposes of comparison. Please
note that the accuracy of CrisisSignal measurements depends
on the device and its hardware and software platform (which
varies greatly). This is acceptable as the study is focused
on understanding the device level perspective of the network
during extraordinary situations.

1CrisisSignal - http://tinyurl.com/nam34np
2How to use CrisisSignal - http://tinyurl.com/prs78a5

TABLE II. T-TESTS FOR NUMBER OF DEVICES DURING AND AFTER

DISASTER

Technology t-value p-value mean (during disaster, after disaster)

Cell (floods) -3.055 0.008868 16.44444, 127.85714

WiFi (floods) 2.7583 0.009526 167.55556, 72.94118

Cell (typhoon) -0.3825 0.7075 88.66667, 111.81818

WiFi (typhoon) -1.4141 0.1837 249.1667, 371.0909

IV. ANALYSIS

We characterise two disasters for the purposes of this
study: (a) simultaneous floods of Dec 2014 in Malaysia and
Indonesia; and (b) Typhoon Jangmi in Philippines, also in Dec
2014. The reason for studying two very different disasters is to
characterise differences in network behaviour during and after
disaster periods. We use PSQL and R to analyse the data. Data
has been smoothed using cubic function. The horizontal axis
on each plot represents days and the vertical axis represents
normalised values. We apply Welch’s t-test to calculate t-
statistics for the null hypothesis i.e. the difference of two sets
is due to chance or activity spike (µ1 = µ2), or the alternative
hypothesis i.e. it is due to the damage caused by the disaster
(µ1 6= µ2). Whenever the p-value falls below 0.05 we reject
the null hypothesis in favour of the alternative hypothesis.

Malaysia/Indonesia Floods: Figures 1 and 2 show time
series plots for floods in Malaysia and Indonesia. The vertical
dotted lines enclose the time period when the disaster struck
(2014-12-14 to 2015-01-02). Fig. 1 shows time series for
cellular coverage from 2014-12-14 to 2015-02-13. The first
notable trend is how the CDMA EC/IO compares to the
number of cellular base stations. CDMA EC/IO is the ratio
of signal energy and broadband interference. As the traffic
load in the sector increases (shown by falling number of base
stations), the EC/IO worsens. There could be a number of
reasons for which the towers could go down including service
failures, power cuts, or shutdown evoked for hardware damage
control and mitigation. Another interesting trend is the number
of devices during and after the disaster period. The upward
trend during the disaster might be due to rising app popularity.
Table II shows t-value, p-value and the means. It confirms that
the floods cause the drop in the number of devices on the
network during the disaster.

BER is the number of received bits of a data stream that
have been altered due to factors affecting communications.
Since this is the receiver side BER, it may be affected by
transmission channel noise, interference, distortion, bit syn-
chronisation problems, attenuation, wireless multipath fading,
etc. Some of these factors become commonplace once devices
(or load) on the network increases, especially in situations
when the number of active serving cellular base stations
have decreased. The arbitrary strength unit (ASU) also points
towards the infrastructural behaviour during and after the
disaster. ASU is an integer value that is proportional to
received signal strength measured by the mobile phone. In
certain situations BER may be attempted for improvement by
choosing a strong signal strength, i.e. increasing the ASU of
remaining active and serving cellular base stations. However,
this can also cause cross-talk and more bit errors, as shown
by ASU and BER trend-lines.

Fig. 2 shows time series for WiFi connectivity from 2014-
12-01 to 2015-02-14. During the floods the number of devices



TABLE I. METRICS MEASURED BY CRISISSIGNAL

Metric Technology Description

Number of devices Cellular, WiFi The number of devices seen on the network, calculated on a daily basis.

Bit error rate (BER) Cellular In digital communication systems, it is the number of received bits of a data

stream over a communication channel that have been altered due to factors such

as noise, interference, distortion or bit synchronisation errors.

Arbitrary strength unit (ASU) Cellular ASU is an integer value that is proportional to the received signal strength as

measured by the mobile device. This is measured in dBm or Watts.

CDMA EC/IO Cellular The CDMA EC/IO is the ratio between signal energy (EC) and interference in

the broadband channel (IO) for the Code Division Multiple Access (CDMA)

channel access method.

Signal strength (RSSI) WiFi RSSI measures the power present in a received radio signal in dBm or Watts.

Number of cellular base stations Cellular Number of cellular base stations as seen by the mobile device.

Number of WiFi access points WiFi Number of WiFi access points as seen by the mobile device.

trying to find connectivity increases as cellular coverage is
getting widely disrupted (Table II confirms that the trend is due
to the flood). This might be driven by opportunistic search for
connectivity. However, the number of active WiFi access points
(APs) decrease. The received signal strength indication (RSSI)
depicts a drop due to floods (p-value of 0.01455 confirms
this finding). In IEEE 802.11 networks, RSSI is the relative
signal strength in arbitrary units. It is an indication of power
level being received by the antenna. Therefore, the higher the
number, the stronger the signal.

Typhoon Jangmi: Figures 3 and 4 show plots for Typhoon
Jangmi. The vertical dotted lines enclose the time period when
the disaster struck (2014-12-27 to 2015-01-01). Fig. 3 shows
time series for cellular coverage from 2014-12-21 to 2015-01-
06. Contrary to the floods, CDMA EC/IO drops sharply before,
during and after the typhoon. Multiple reasons could contribute
to such a trend: emergency rollback of equipment to avoid
damage, population migration, and damage caused during
typhoon. The number of devices on the network decrease
consistently during and after the typhoon. The t-test in Table II
proves the validity of the null hypothesis in this case. We can
find similarities of network behaviour during rapid events such
as a typhoon and a flash crowd.

There are two other very interesting trends. Firstly, the
number of cellular base stations increase consistently, regard-
less of the typhoon. Secondly, the signal strength (ASU)
decreases consistently even though cellular base stations re-
sume service. Two factors could contribute to such trends:
(1) cellular base stations resume basic services with partial
damage to hardware, or (2) temporary low capacity mobile
cellular base stations are erected after the disaster to provide
essential services, such as in [7] and [1].

Fig. 4 shows time series for WiFi connectivity from 2014-
12-21 to 2015-01-06. The decline in number of devices is
reminiscent of the trend in Fig. 3. The p-value in Table II
corroborates our statement earlier for Fig. 3 about possible
similarities of network behaviour during rapid events, such as
a typhoon and a flash crowd. This is further confirmed by p-
value (0.3513) derived for RSSI before, during and after the
typhoon. However, similarities with flood disaster also exist:
number of active WiFi APs decrease sharply, similar to what
we witnessed in Figures 1 and 2.

V. CONCLUSION

Reliable and resilient communication networks become
vital during extraordinary situations for early warning, dissem-
ination of critical information, mitigating losses, facilitating
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Fig. 1. Cellular connectivity during Malaysia/Indonesia Floods

relief and rescue efforts and saving lives. In this paper we
have studied data collected from an Android mobile phone
application to understand how the network responds during
disasters. In particular we study two disaster scenarios from
device level measurements perspective to characterise net-
work infrastructural behaviour. We find connectivity challenges
during disasters and emergencies and make two important
inferences. Firstly, certain distinctions segregate extraordinary
time period from ordinary time period. Secondly, repeated
region-wide failures such as loss of station quantity, rapid
and prolonged decrease of quality metrics as well as counter-
intuitive or unusual behaviour of signal strength (ASU, RSSI)
and error rate (BER), point towards extraordinary situations.
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