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Abstract 

 
Neural communication networks form the fundamental basis for brain function. These 

communication networks are enabled by emitted ligands such as neurotransmitters, which 

activate receptor complexes to facilitate communication. Thus, neural communication is 

fundamentally dependent on the transcriptome. Here we develop NeuronChat, a method and 

package for the inference, visualization and analysis of neural-specific communication networks 

among pre-defined cell groups using single-cell expression data. We incorporate a manually 

curated molecular interaction database of neural signaling for both human and mouse, and 

benchmark NeuronChat on several published datasets to validate its ability in predicting neural 

connectivity. Then, we apply NeuronChat to three different neural tissue datasets to illustrate its 

functionalities in identifying interneural communication networks, revealing conserved or context-

specific interactions across different biological contexts, and predicting communication pattern 
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changes in diseased brains with autism spectrum disorder. Finally, we demonstrate NeuronChat 

can utilize spatial transcriptomics data to infer and visualize neural-specific cell-cell 

communication.  

 
Introduction 
 
Brain function relies on signal transmission among numerous neuronal and non-neuronal cells. 

The connectome—wiring organization of neural connectivity—is subject to transcriptional 

regulation1, 2. Recent single-cell RNA-seq (scRNA-seq) datasets show heterogeneity for cell 

transcriptomic states3, raising the possibility that differences in gene expression profiles within 

and across regions reflect neural signal processing states. The emerging methods of spatial 

transcriptomics4, 5, which measure the spatial locations of neural cells in addition to gene 

expressions in cells, also provide abundant resources for dissecting neuron heterogeneity.  While 

most current analysis approaches for scRNA-seq and spatial data allow the classification of cell 

types, the capability to probe the intercellular communications which determine the underlying 

anatomical and functional connectivity is still limited. Yet, these transcriptomics data inherently 

contain the expression of genes required for neural signal transmission, making it possible to infer 

such intercellular communications. 

 

Recently, computational methods have been developed for inferring cell-cell communication 

networks from coordinated expressions of ligand-receptor interaction pairs6-12 such as CellChat9, 

CellPhoneDB10 and NicheNet11. However, these methods are based on short-range 

autocrine/paracrine signaling which only acts through ligand diffusion or physical contact of cells6 .  

Such approaches are not suitable for characterization of neuron-neuron communications because 

neurons can extend axons and dendrites over long distances to form synapses and communicate 

mainly through neurotransmitter signaling13-15. Neurotransmitters, typically non-peptide small 

molecules such as glutamate and gamma-aminobutyric acid (GABA), are excluded from current 
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protein-based ligand-receptor databases ligand-receptor databases6-12, 16. For example, Smith et 

al. predicted 37 neuropeptide networks among cortical neuron types by taking the interaction 

score as the product of transcript levels of neuropeptide precursor and the cognate G-protein-

coupled receptor16-18, but didn’t include neurotransmitter signaling. Additionally, as small-molecule 

neurotransmitters are synthesized and transported into synaptic vesicles for fast release from the 

presynaptic neuron in response to stimulation, the abundance of small-molecule 

neurotransmitters used for synaptic transmission depends on the coordination of multiple genes 

such as synthesizing enzymes and vesicular transporters19. Overall, there is a lack of methods 

considering neurotransmitter signaling and system-level neural-specific cell-cell communications.  

 

Here we present NeuronChat, a method that utilizes scRNA-seq data and/or spatially resolved 

transcriptomics to infer, visualize and analyze neural-specific cell-cell communication. 

Development of NeuronChat required manual curation of a new neural-specific database 

containing 373 entries of intercellular molecular interactions for both human (190) and mouse 

(183). By incorporating this database to model the coordinate expressions of cognate interacting 

molecules, NeuronChat infers the neural-specific communication networks among pre-defined 

cell groups from single-cell expression data. Through benchmark and applications to neural tissue 

datasets, we show NeuronChat’s capability in revealing neuron-neuron interactions in several 

biological systems.  

 
Results 
 
Overview of NeuronChat 
 

First, we curate a neural-specific database of intercellular molecular interactions for both mouse 

and human, named NeuronChatDB (Figure 1a). Each interaction contains one ligand and a 

cognate target as well as the protein-coding genes related to their synthesis and vesicular 
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transport. The ligands include small-molecule neurotransmitters, neuropeptides, gap junction 

proteins, gasotransmitters20 and synaptic adhesion molecules, while the targets are typically but 

not limited to receptors. For example, the target proteins for neurotransmitters can also be uptake 

transporters or deactivating enzymes; the target proteins for gap junction proteins are other 

compatible gap junction proteins. For non-peptide neurotransmitters, corresponding synthesizing 

enzymes and/or vesicular transporters are included in the entry; for heteromeric receptors that 

contain multiple different subunits, corresponding subunits are curated into different entries with 

the same ligand. Among a total of 373 entries of ligand-target interaction pairs, there are 221, 73, 

39, 16 and 24 entries related to small-molecule neurotransmitters, neuropeptides, gap junction 

proteins, gasotransmitters and synaptic adhesion molecules, respectively. 

 

Second, we construct a computational model to link the expression data to cell-cell 

communication probability, based on coordinate expressions of interacting molecules of 

predefined cell groups (Figure 1b). The input data for NeuronChat is a normalized cell-by-gene 

count matrix, with group annotations for cells. For each intercellular interaction pair in 

NeuronChatDB, we first average the expression level by cell group for all related genes, based 

on which we estimate the abundance of the ligand and the target for each cell group. For the non-

peptide neurotransmitters, the genes contributing to ligand emission are first categorized into 

different biological function groups (e.g., synthesis and vesicular transport), and then the 

abundance is modeled by applying AND logic (i.e., geometric mean) among different groups of 

genes while applying OR logic (i.e., arithmetic mean) among redundant genes within the same 

group (see Methods); for other ligands and for all targets, the abundance is calculated as the 

average expression. Then, the cell-cell communication strength between two groups is set to be 

the product of the ligand abundance of one cell group and the target abundance of another cell 

group. Significant communications can be determined by a permutation test where group labels 

of cells are randomly permuted and the communications strength is recalculated (see Methods). 
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Thus, for each interaction, an intercellular communication network, i.e., a weighted directed graph 

composed of significant links between interacting cell groups, can be constructed. An aggregated 

communication network can be further obtained by summarizing all communication networks for 

individual interactions with four different aggregation methods (see Methods).  

 

Third, we provide different methods for visualization and analysis of the inferred intercellular 

communication networks (Figure 1c). Circle plot, chord diagram and heatmap can be used to 

visualize the communication strength among cell groups. NeuronChat can also perform 

quantitative analysis of the inferred communication networks to identify signaling patterns and 

categorize interactions. For multiple datasets from different biological contexts, NeuronChat can 

make systematic comparisons and identify conserved and context-specific ligand-target 

interaction pairs. For spatial transcriptomics data, NeuronChat can incorporate cellular spatial 

positioning into the inference of cell-cell communication and provides multilayered visualization 

of spatial cell-cell communication. 

 

Benchmarking of NeuronChat 
 

To investigate the ability of NeuronChat to predict intercellular communications, we first compare 

the predicted communication networks with those experimentally identified for benchmarking.  

Two cases were studied: 1) the projection network of the primary visual cortex (VISp) in mouse 

brain, and 2) the projection network of the anterior lateral motor cortex (ALM) in mouse brain. The 

connections from excitatory neurons of VISp and ALM to their cortical target regions were 

identified using monosynaptic retrograde labeling3, where the viral tracers are injected into target 

regions and move towards the presynaptic neurons via retrograde axonal transport without further 

spreading to indirectly contacted cells, allowing the identification of direct neural connections21-25. 

By grouping retrogradely labeled neurons using their cell type annotations, we obtain the coarse-

grained projection networks composed of directed links from excitatory neuron types in VISp and 
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ALM to their cortical target regions (Figure 2a for VISp and Figure 2f for ALM), which are then 

used for subsequent benchmarking. The single-cell RNA-seq data for VISp, ALM and their target 

regions are collected from two published papers3, 26. The data used includes 6,785 glutamatergic 

cells of 7 subclasses (L2/3 IT, L4, L5 IT, L5 PT, L6 CT, L6 IT and L6b) for VISp, and 13,824 

glutamatergic cells from three cortical target regions (ACA, RSP and contralateral VISp); 3,883 

glutamatergic cells of 5 subclasses (L2/3 IT, L5 IT, L5 PT, L6 CT and L6 IT) for ALM, and 17,576 

glutamatergic cells from the six cortical target regions (SSs, SSp, RSP, MOp, contralateral ALM 

and contralateral ORB).  

 

By using NeuronChat, we infer the communication networks containing links from cell types of 

VISp (or ALM) to their target regions for all interaction pairs, and then aggregate them over all 

interaction pairs (see Methods for details). Next, we test whether this aggregated network predicts 

the projection network identified via retrograde labeling. We binarize the aggregate network by 

setting a threshold for the communication strength (Figures 2b and 2g), to enable computation of 

the sensitivity (the fraction of links predicted by NeuronChat from those identified by retrograde 

labeling) and false positive rate (the fraction of links predicted by NeuronChat from those NOT 

identified by retrograde labeling) for a given threshold. Repeating this process by scanning a set 

of continuous thresholds, we obtain the Receiver Operating Characteristic (ROC) curve. We then 

use the Area Under the ROC curve (AUROC) to measure NeuronChat’s prediction performance: 

the closer to 1 the value, the better the prediction performance; AUROC values for random 

classifiers are expected to be 0.5. The AUROC values are 0.832 and 0.764 for VISp (Figure 2c) 

and ALM (Figure 2h), respectively. Please note that a small portion of the communication links 

predicted are incorrect for both of the two cases (e.g., 3/21 for Figure 2b and 7/30 for Figure 2g). 

We also calculate another evaluation metric – the Area Under the Precision-Recall curve 

(AUPRC), which summarizes the trade-off between the recall (also known as sensitivity) and the 

precision (the fraction of links identified by retrograde labeling from those predicted by 
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NeuronChat) under different thresholds. The projection networks predicted by NeuronChat show 

an AUPRC of 0.915 for VISp and an AUPRC of 0.768 for ALM, and are significantly better than 

the random classifiers (Figures 2d and 2i). To determine whether the specific graph topology of 

ground truth labels (i.e., the projection network identified by retrograde labeling) makes the 

prediction task easy for NeuronChat, we perturb the ground truth labels by shuffling cell type 

labels of graph nodes while keeping the same graph topology, and then recalculate AUROC and 

AUPRC. We find that the AUROC for the shuffled ground truth labels leads to a distribution with 

a mean of around 0.5, indicating a poor prediction ability for those shuffled labels even with the 

same topology (Supplementary Figures 1a, 1c, 1e, and 1g). Furthermore, AUROC for the original 

ground truth labels is significantly higher than those for shuffled labels (p-values are 0.010±0.0036 

and 0.017±0.0048 for VISp and ALM projection networks, respectively). Similar results are also 

obtained for the calculation of AUPRC (Supplementary Figures 1b, 1d, 1f, and 1h), suggesting 

NeuronChat’s prediction ability doesn’t directly reflect the specific graph topology of ground truth 

labels.  

 

In addition, the AUROC and AUPRC show little variations over input data subsampling rates 

ranging from 10% to 90% (Supplementary Figure 2). While the predicted communication networks 

may fluctuate among different repeated simulations due to finite sampling in the permutation test, 

the default number of permutations (100) used in NeuronChat yields consistent p-values and most 

of the significant links generated by 1,000 permutations (Supplementary Figure 3). Taken together, 

NeuonChat is relatively robust to the subsampling of input data and the number of permutations. 

 

We also calculate the AUROC and AUPRC of the communication network for individual 

interaction pairs (Figures 2e and 2j, for VISp and ALM respectively). An interaction pair with a 

higher AUROC or AUPRC implies a better prediction of connectivity. As expected, the rankings 

of AUROC and AUPRC for individual interaction pairs are almost the same (for VISp: Spearman's 
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rank correlation 𝜌 = 0.97, p-value < 2.2 × 10!"#; for ALM: Spearman's rank correlation 𝜌 = 0.95, 

p-value < 2.2 × 10!"#), indicating that an interaction pair with high AUROC usually shows high 

AUPRC. Out of top 10 interactions with highest AUROCs, 7 for VISp and 9 for ALM are mediated 

by glutamate, which is consistent with the fact that the projecting neurons are usually 

glutamatergic27, 28, and that glutamate is the major excitatory neurotransmitter in the brain. For 

example, the interaction between glutamate and Grik5 (glutamate receptor, ionotropic kainate 5), 

and the interaction between glutamate and Gria2 (one of the subunits of the AMPA receptor), are 

ranked top 3 in AUROC for predicting both VISp and ALM projections; the interactions between 

glutamate and other receptors such as Gria1, Gria3, Grin1, Grin2b, Grm4, Grm7 and Grik4, also 

show high AUROC’s for VISp or ALM. Additionally, the interaction between synaptic adhesion 

molecules Neurexin 1 (Nrxn1) and Neuroligin 1 (Nlgn1), which connect pre- and postsynaptic 

neurons respectively and play a vital role in synapse formation and maturation29, is ranked #10 in 

AUROC and #6 in AUPRC for predicting ALM projections. Interestingly, Nrxn2-Nlgn2 interaction 

shows moderate prediction ability for VISp projections although neuroligin 2 is believed to locate 

on the inhibitory synapses30. Surprisingly, the interaction between neuropeptide Cck 

(cholecystokinin) and its cognate receptor Cckbr shows the highest prediction ability for VISp 

projection, indicating that the Cck-Cckbr interaction could be related to long-range neuronal 

connectivity. The interaction between neuropeptide Penk and its cognate receptor Oprm1 also 

shows high AUROC for both VISp and ALM. Thus, when experimental connectivity data is 

available, NeuonChat is able to uncover biologically meaningful interaction pairs that are related 

to neural connectivity; when experimental connectivity data is not available, the interaction pairs 

with high information flow (defined as the sum of communication strength over all detected 

significant links), can be potential candidates underlying neural connectivity, as AUROC (or 

AUPRC) is found to have a moderate positive correlation with information flow (Supplementary 

Figure 4).  
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Next we use examples to illustrate how NeuronChat utilizes variations in the abundance profiles 

of ligands in sending cell groups and/or targets in receiving cell groups to differentiate the 

communication strength. While all types of glutamatergic neurons use glutamate as the major 

neurotransmitter, the ligand abundance profiles show clear differences among the sending cell 

groups in VISp (Supplementary Figure 5a, upper panel): L2/3 IT, L4, L5 IT and L6 IT are more 

abundant in most of the ligands than L5 PT, L6 CT and L6b. Likewise, the target abundance 

profiles show large diversity in the receiving cells of different target regions (Supplementary Figure 

5a, lower panel): the major targets are most abundant in contralateral VISp while least abundant 

in ACA.  These overall differences are consistent with the fact that L2/3 IT, L4, L5 IT and L6 IT 

have more outgoing links than other sending cell groups, and contralateral VISp and RSP have 

more incoming links than ACA (Figures 2a and 2b). At the individual interaction level, for example, 

for the Glu-Gria2 interaction pair, the relatively high expression of genes related to glutamate 

synthesis and transportation in L2/3 IT, L4, L5 IT and L6 IT makes these cell types the major 

senders of the inferred communication network; contralateral VISp and RSP express higher Gria2 

than ACA, and are thus inferred as the major receivers (Supplementary Figure 5b). This pattern 

is even clearer for Cck-Cckbr interaction pair (Supplementary Figure 5c).  The analysis for ALM 

projection networks is also carried out, showing similar results (Supplementary Figure 6). Taken 

together, variations in the abundance profiles of ligands in sending cell groups and/or targets in 

receiving cell groups allow NeuronChat to differentiate the communication strength. 

 

Comparison with other cell–cell communication inference tools and modeling 
settings 
 

We further compare NeuronChat with two popular cell–cell communication inference (CCI) tools 

CellChat and CellPhoneDB in predicting neuronal connectivity using the same ligand-target 

database (i.e., NeuronChatDB). We use the same computational workflow of NeuronChat for the 
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implementation of CellChat and CellPhoneDB except for the calculation of ligand abundance and 

the formula for communication strength (see details in Methods for comparison).  On the inference 

of neuronal connectivity in both VISp and ALM projection networks (see the section above), 

NeuronChat outperforms existing CCI methods in two ways: 1) for the aggregated communication 

network, NeuronChat has the highest AUROC and AUPRC among three benchmarking methods 

(Figures 3a-3b for VISp and Figures 3f-3g for ALM); 2) for individual communication networks, 

NeuronChat not only detects more interaction pairs but also yields higher AUROC and AUPRC 

than the other two methods (Figures 3c-3e for VISp and Figures 3h-3j for ALM). Because both 

CellChat and CellPhoneDB use AND logic (geometric mean or minimum) rather than OR logic for 

redundant genes for the same function, the abundance of the small-molecule neurotransmitter is 

dramatically underestimated, leading to fewer detected interaction pairs than NeuronChat. These 

results demonstrate the advantage of NeuronChat in predicting neural-specific cell-cell 

communications.  

 

While NeuronChat uses expressions of synthesizing enzymes and vesicular transporters to 

estimate the abundance of small molecular neurotransmitters, we note that a recent method 

scFEA31 uses a graph neural network model to estimate metabolic flux and balance from scRNA-

seq by incorporating stoichiometric effects of metabolism and pathways dependency. To 

investigate the effects of different abundance surrogates for small-molecule neurotransmitters in 

identifying neural-specific communication networks, using glutamate as an example, we compare 

NeuronChat’s ligand abundance and eight scFEA-derived surrogates (including metabolite 

balance and seven module fluxes) in predicting VISp and ALM projection networks. For each of 

the nine glutamate surrogates, we calculated AUROC and AUPRC values for the communication 

networks of 24 glutamate-mediated interaction pairs, and found that NeuronChat’s ligand 

abundance shows middle or above ranking in AUROC (or AUPRC) median among the nine 

glutamate surrogates (Supplementary Figures 7a and 7c). For the communication network 
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aggregated over 24 glutamate-mediated interaction pairs, NeuronChat’s ligand abundance ranks 

#2 in both AUROC and AUPRC for predicting VISp and ALM projecting networks among the nine 

glutamate surrogates (Supplementary Figures 7b and 7d). Nevertheless, the difference between 

NeuronChat’s ligand abundance and the best scFEA-derived surrogate is very minimal. These 

results indicate that NeuronChat’s ligand abundance works well on the inference of neuronal 

connectivity despite its simplicity. 

 

NeuronChat uses Tukey’s trimean (see Methods) rather than arithmetic mean to calculate the 

average of the gene expression in all cells of a group. According to their definitions, for a given 

gene and a given cell group, the non-zero Tukey's trimean only occurs if the gene is expressed 

in at least 25% of cells while non-zero arithmetic mean occurs if the gene is expressed in at least 

one cell. Because the genes only expressed in a small proportion (less than 25%) of cells are 

filtered out, Tukey's trimean benefits to identify the cell-type enriched ligand-target pairs. As 

expected, Tukey's trimean leads to fewer detected interaction pairs than arithmetic mean 

(Supplementary Figures 8a and 8e); however, the interaction pairs produced by Tukey's trimean 

show overall higher AUROC and AUPRC than those produced by arithmetic mean, suggesting 

Tukey's trimean is able to infer more reliable interaction pairs (Supplementary Figures 8b-8d and 

8f-8h).  

 

We also investigate the effects of four different aggregation methods on inferring neuronal 

connectivity. For the “thresholded weight” method, we choose the threshold for an interaction pair 

as the 80% quantile of all communication strength values for the interaction pair (the default 

setting for benchmarking). This is because the 80% quantile leads to overall higher 

AUROC/AUPRC than other thresholding quantiles, except a slightly lower AUROC for ALM 

projection network (Supplementary Figures 9a-9b and 9e-9f).  Among the four aggregation 

methods, we find that the “thresholded weight” method produces the highest AUROC/AUPRC 
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values for the VISp projection network, and the second highest AUROC/AUPRC values that are 

only slightly lower than the best ones for the ALM projection network (Supplementary Figures 9c-

9d and 9g-9h). Furthermore, “thresholded weight” leads to smaller variations in AUROC/AUPRC 

than other aggregation methods for repeated simulations, thus robustly minimizing the 

randomness generated in the permutation test.  

 
NeuronChat identifies intercellular communication patterns and functional-
related interactions in VISp 
 
The basic function of NeuronChat is to infer and visualize the intercellular communication 

networks, and then identify intercellular communication patterns and categorize the functionally 

related interaction pairs. We illustrate these functionalities of NeuronChat by applying it to the 

single-cell RNA-seq data of mouse VISp3. The 15,469 single cells are well-annotated by three cell 

classes (Glutamatergic, GABAergic and Non-Neuronal) and 21 cell subclasses. By applying 

NeuronChat to this dataset, we identify the communication networks among the 21 cell 

subclasses, which can be visualized by the circle plot, chord diagram and heatmap (Figure 4a). 

Each of the glutamatergic subclasses sends signals to most of the GABAergic subclasses and all 

glutamatergic subclasses as well as astrocytes, while the communication strength for these links 

may differ. Interestingly, there are dense communications among glutamatergic subclasses. 

Compared to glutamatergic subclasses, GABAergic subclasses show relatively sparse outgoing 

communications to the three cell classes. Among GABAergic subclasses, Lamp5, Sncg, and Vip 

are the major senders; while Lamp5, Pvalb and Vip subclasses receive signals from both 

GABAergic subclasses and glutamatergic subclasses, Sst and Meis2 subclasses show a 

preference for receiving signals from glutamatergic neurons. 

 

A total of 109 significant interaction pairs are detected along with the number of links for all 

interaction pairs (Supplementary Figure 10). After computing the information flow for each 
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interaction pair, the interaction pairs Nrxn1-Nlgn1, Nrxn3-Nlgn1, Glu-Gria2, Glu-Grin2b, GABA-

Gabra1, Glu-Gria4, GABA-Gabrb1, Glu-Grm5, GABA-Gabrg2 and Glu-Grik2 are ranked top 10 in 

the information flow, while NO-Gucy1a2, Glu-Gria2, Glu-Grin1, Glu-Grin2b, GABA-Gabbr1, 

GABA-Gabrb1, Nrxn1-Nlgn1, GABA-Gabrb3, Glu-Gria1 and Nrxn3-Nlgn1 are ranked top 10 in 

the number of links. The incomplete overlapping between the top 10 in the information flow and 

the top 10 in the number of links, indicates that some interactions (e.g., Glu-Gria4) are specific 

with strong individual links, while some others (e.g., Glu-Grin1) show wide communications 

among cell subclasses but moderate strength of individual links. 

 

Using a pattern recognition method32, 33 (see Methods), NeuronChat detects the outgoing patterns 

of sending cells and the incoming patterns of receiving cells, which can be visualized via alluvial 

plots. This enables visualization of the correspondence between sending/receiving cell types and 

latent patterns, and the correspondence between latent patterns and individual interaction pairs 

(Figure 4b). As expected, all glutamatergic subclasses correspond to the outgoing pattern #1, 

which is related to all glutamate signaling, Nrxn1 signaling, and a few of neuropeptide interactions 

(e.g., Cck-Cckbr and Adcyap1-Adcyap1r1). In line with the diversity of inhibitory neurons34, 

GABAergic subclasses correspond to outgoing patterns #2-3: Lamp5, Sst and Sst Chodl 

subclasses belong to pattern #2, which is mainly related to the signaling of neuropeptides Sst, 

Npy and Cort; Pvalb, Meis2, Sncg, and Vip subclasses belong to pattern #3, which includes 

signals of GABA, glycine and Nrxn3 as well as some neuropeptides such as Vip and Pnoc. For 

non-neuronal subclasses, Endo, Micro-PVM and SMC-Peri correspond to outgoing pattern #2, 

while Astro and VLMC belong to pattern #4 that represents interactions of gap junction proteins. 

Different from the outgoing patterns, the incoming patterns #2 and #4 include both glutamate 

signals and GABA signals, indicating that corresponding cell subclasses (eg., L5 IT CTX and 

Lamp5) receive both excitatory and inhibitory inputs. Nevertheless, glutamatergic subclasses and 
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GABAergic subclasses correspond to different incoming patterns (patterns #1 & #4, and patterns 

#2-3, respectively).  

 

Through manifold learning35 (see Methods), NeuronChat projects the interaction pairs into a two-

dimensional manifold and groups them into different clusters based on the functional similarity of 

the communication networks. Functional similarity measures the degree to which interaction pairs 

share similar senders and receivers. The 109 interaction pairs are classified into 5 separate 

groups (Figures 4c and 4d). Group #1, dominated by glutamate signals, represents the signaling 

from glutamatergic subclasses, while Group #4 includes many GABA and glycine signals and 

represents the signaling from GABAergic subclasses (see also the aggregated communication 

network for each interaction group from Supplementary Figure 11). Interactions between 

neurexins and neuroligins dominate Group #3. Group #5 contains signaling of neuropeptides such 

as Sst, Vip, Penk and Npy from GABAergic subclasses, indicating that these interaction pairs 

share similar communication patterns. Group #2 is dominated by gap junction proteins and some 

neuropeptide signals, largely representing the signaling among non-neuronal subclasses. The 

results of manifold learning demonstrate that NeuronChat is able to categorize the detected 

ligand-target interaction pairs into biologically meaningful groups.  

 
NeuronChat reveals conserved and context-specific communication patterns 
between interlaminar excitatory networks for ALM and VISp 
 
Another application of NeuronChat is to make comparisons across different biological contexts, 

to identify communication patterns conserved or specific to contexts. Here, we illustrate such 

functionality of NeuronChat by comparing the interlaminar excitatory communication networks 

between ALM and VISp. The single-cell RNA-seq data are from the published paper26, and include 

4,600 glutamatergic neurons for ALM and 8,114 for VISp, both of which are grouped into 8 shared 

subclasses. While the overall communication patterns are similar for both (Figure 5a), some 
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communication networks for individual interaction pairs are different. For example, Glu-Grin3a 

communication networks for ALM and VISp show a dramatic difference (Figure 5b): L4/5 IT CTX 

is predicted to be one of the major target cell subclasses for ALM but not for VISp.  

 

To identify the difference in individual communication networks, we compare the number of links 

and information flow for all individual interactions between the two regions (Figure 5c). We find 

that only a few interaction pairs share the equal or near-equal information flow (or number of links) 

between ALM and VISp, e.g., Glu-Grin1 and Glu-Grm5. Other interaction pairs show significant 

differences between the two regions, for example, Pdyn signaling (including Pdyn-Oprm1, Pdyn-

Oprk1, and Pdyn-Oprd1) is exclusively ON in ALM; Glu-Grik4 and Glu-Gria1 communication 

networks are much denser in ALM than in VISp; Glu-Grm3 and Glu-Grm7 communication 

networks as well as those mediated by Nlgn1 show more links and higher information flow in VISp 

than in ALM.  

 

Another way to compare the individual communication networks for ALM and VISp is based on 

their functional similarity. By projecting the interaction pairs of VISp and ALM onto the same two-

dimensional manifold according to their functional similarity and then categorizing them into 

clusters, we can further spot the interaction pairs that are conserved or context-specific (Figure 

5d). If the communication patterns for one interaction pair are conserved between ALM and VISp, 

then the communication networks for such interaction pairs for ALM and VISp should be grouped 

into the same cluster, and vice versa. The two-dimensional manifold shows that all of the ligand-

target interaction pairs are categorized into five clusters, and the aggregated network for each 

cluster is shown by heatmaps (Figure 5e): cluster #1, related to neuropeptide signaling (e.g., Sst, 

Trh, Nmb, Pdyn and Vip), represents a sparse communication pattern dominated by the signal 

from L6 IT CTX to L6b CTX; cluster #2, including glutamate signaling and neurexin-neuroligin 

interactions, shows the communication pattern where L2/3 IT CTX,  L4/5 IT CTX and L5 PT CTX 
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are the major receivers; cluster #3 represents the communication pattern, in which the signal 

mainly comes from L2/3 IT CTX, L4/5 IT CTX and L5 PT CTX; cluster #4 shows a clear pattern 

where the L4/5 IT CTX and L5/6 NP CTX receive the signals from all subclasses; cluster #5 

represents dense and strong communications among subclasses, which is dominated by 

glutamate signals. Interestingly, for most of the ligand-target interaction pairs, the communication 

networks for ALM and VISp are categorized into the same clusters, indicating most ligand-target 

interaction pairs may be conserved between the two regions. For example, communication 

networks for Glu-Gria2 in the ALM and VISp are both grouped into cluster #5. However, the 

communication networks of Glu-Grin3a for ALM and VISp are grouped into cluster #4 and cluster 

#5, respectively, indicating that Glu-Grin3a is context-specific for ALM and VISp (see also Figure 

5b); likewise, the communication networks of Nrxn1-Nlgn3 for ALM and VISp belong to cluster #2 

and cluster #5, respectively.   

 

NeuronChat predicts the change of intercellular communication patterns in 
patients with autism spectrum disorder  
 
NeuronChatDB also includes the ligand-target interaction information of humans. We investigate 

how NeuronChat can be used to predict the change of intercellular communication patterns in 

patients with particular neurological diseases, by applying it to the published single-nucleus RNA 

sequencing data of cortical tissue from patients with autism spectrum disorder (ASD) and healthy 

controls36. The data were collected from postmortem tissue samples including prefrontal cortex 

and anterior cingulate cortex from 15 ASD patients and 16 controls, containing 52,003 single 

nuclei for ASD patients and 52,556 for controls. To reduce the computational cost, a total of 

20,000 cells are sampled for analysis (10,000 for ASD and 10,000 for control).  

 

We use NeuronChat to infer the communication networks among 17 cell types, including subtypes 

of excitatory neurons, interneurons and astrocytes, for both ASD patients and controls. For the 
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communication networks inferred by NeuronChat, ASD shows not only more total links than 

control (Figure 6a, upper panel) but also increased link strength (Figure 6a, lower panel), 

indicating an overall enhancement of communications among cell types in ASD. Consistent with 

this, by contrasting the aggregated intercellular communication networks of ASD and controls, we 

find that there are more intercellular communications upregulated (Figure 6b, upper panel) than 

downregulated (Figure 6b, lower panel) in ASD patients compared to controls. This may support 

the hypothesis of local overconnectivity in autism37-39. Furthermore, for each cell type and each 

interaction pair, we calculate the differential outgoing and incoming communication strength in 

ASD compared to control (Figure 6c). From the differential outgoing pattern (Figure 6c, upper 

panel), we observe most of the glutamate signals are enhanced for most excitatory neuron types; 

outgoing signals mediated by neuroligin 1 are enhanced for most cell types, but impaired in some 

cell types such as PV interneuron, oligodendrocyte or OPC (oligodendrocyte precursor cell). From 

the incoming differential pattern (Figure 6c, lower panel), we observe that while glutamate signals 

to most cell types are enhanced, the neuroligin 1 signaling to oligodendrocyte (NRXN1-NLGN1 

and NRXN3-NLGN1) and the neuroligin 3 signaling to OPC (NRXN1-NLGN3, NRXN2-NLGN3, 

and NRXN3-NLGN3) is largely reduced. Interestingly, more than 10 missense mutations in 

NLGN3 gene locus have been identified to be associated with ASD, and ASD-associated 

behavioral phenotypes (such as abnormal social interaction, stereotyped behavior, and enhanced 

spatial learning) arise in animal models with mutations in Nlgn340. Our results suggest that 

downregulation of NLGN3 signaling may also underlie dysfunction in ASD. In fact, ASD animal 

models show reductions in oligodendrocyte numbers and myelination41, while the differentiation 

of OPC to oligodendrocyte is affected by NLGN342. Consistent with this evidence, the specific 

downregulated NLGN3 signaling to OPC in ASD, discovered in our analysis, suggests that the 

defect signaling of NRXN3-NLGN3 may cause ASD in a mechanism via the dysfunction of OPC.  
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We next compare the number of communication links and the information flow for each interaction 

pair between ASD and controls (Figure 6d). ASD and controls share similar numbers of links and 

similar information flow for interaction pairs such as GABA-GABRG3 and NRXN1-NLGN4Y, which 

may be not specific to ASD. Some interaction pairs such as NRXN2-NLGN2, Glu-GRM3, and Glu-

GRIN1, are upregulated in ASD in both number of links and information flow. Many interaction 

pairs show little difference in the number of links, but with increased information flow, such as 

NRXN2-NLGN1, Glu-GRIA2 and Glu-GRIA4. Other interactions such as CCK-CCKBR, CRH-

CRHR1, TAC1-TACR1 and GABA-GABRA6 show decrease in ASD, in both number of links and 

information flow.  

 

We further identify the interaction pairs that are conserved or context-specific, by projecting the 

interaction pairs of ASD and control onto the same two-dimensional manifold and clustering 

according to their functional similarity (Figure 6e).  All of the ligand-target interaction pairs are 

categorized into four clusters: cluster 3 and cluster 4 by GABA signaling and neurexin-neuroligin 

signaling, respectively; both cluster 1 and cluster 2 are dominated by glutamate signaling, while 

cluster 1 also includes neuropeptide signaling and gap junction interaction as well as neuroligin 3 

signaling.  Surprisingly, for most of the interactions, the communication networks for ASD and 

control are grouped into the same clusters, indicating that most communication patterns are 

conserved between ASD and control in terms of functional similarity. For interaction pairs Glu-

GRIK1, Glu-GRIK3, Glu-GRIK4, Glu-GRIK5 and Glu-GRIN3A, the communication networks for 

ASD and control are grouped into cluster 1 and cluster 2, respectively. This means that the 

senders or receivers for these interaction pairs are different between ASD and control.  

 

NeuronChat utilizes spatial transcriptomics to infer and visualize neural-
specific communication networks 
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NeuronChat can also be used for the inference and visualization of neural-specific communication 

networks from spatial transcriptomics (ST) data which measure gene expression in neural cells 

together with their spatial locations. We illustrate such functionality of NeuronChat by applying it 

to three mouse brain ST datasets based on three different sequencing techniques including 

seqFISH+5, MERFISH4, and Visium43. The seqFISH+ dataset5 includes mRNA expressions of 

10,000 genes in 913 cells in the mouse somatosensory cortex and subventricular zone, where 

there are 358 excitatory neurons of four types. The MERFISH dataset4 includes mRNA 

expressions of 258 genes in approximately 300,000 cells (including nine glutamatergic 

subclasses and five GABAergic subclasses as well as non-neuronal subclasses) in the mouse 

primary motor cortex and adjacent areas. The Visium dataset43 includes mRNA expression 

profiles in 2,702 spots of a coronal slice of the mouse brain, and these spots are classified into 

seven clusters.  

 

For all three ST datasets, we compute the communication networks among cell types (or spot 

clusters) without imposing spatial constraints. For seqFISH+ and Visium datasets, the 

communication networks are directly calculated from the spatial transcriptomics; for the MERFISH 

dataset, because the number of genes included in the MERFISH dataset is too small to cover 

most of the ligand-target pairs, we use the scRNA-seq data of mouse primary motor cortex26 to 

infer the communication network among seven excitatory cell types that are shared by the 

MERFISH dataset and the scRNA-seq dataset (4,461 cells of seven glutamatergic subclasses). 

To visualize communications networks in space, we develop a multilayered visualization tool to 

illustrate together the spatial communications network, cell type/spot cluster annotation, and 

tissue image/ anatomic reference (Figures 7a-7c; Supplementary Figure 12).   
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NeuronChat also provides an option for adding the spatial constraint to the communication 

network. We test this functionality by applying it to communications among five GABAergic 

subclasses (i.e., Lamp5, Sncg, Vip, Sst, and Pvalb) of the MOp cortex, based on the MERFISH4 

(Supplementary Figure 13) and scRNA-seq data26. While long-range spatial communication 

occurs regularly for neural-specific signals, GABAergic neurons generally have localized axonal 

arbors and the connection probability among them decreases with interneuronal distance44. To 

study the potential spatial effect on communication networks for GABAergic neurons, we 

characterize the spatial proximity among GABAergic subclasses by calculating the spatial 

proximity enrichment score similar to a previous study45 (Figure 7d; see Methods). We can then 

remove communication links with their spatial proximity scores lower than a given threshold, 

leading to a spatially constrained communication network (Figure 7e).  For example, while Pvalb 

subclass has connections with each of the other four GABAergic subclasses in the communication 

network without spatial constraint, this subclass only shows enriched cell proximity with itself or 

Sst subclass. This observation is consistent with the evidence that Pvalb cells preferably connect 

to other Pvalb cells46.  

 

Discussion 
 

NeuronChat is designed specifically for inferring neural-specific intercellular communications from 

single-cell expression data and spatially resolved transcriptomics. We have constructed a ligand-

target interaction database of neural signaling, and presented a computational model that 

incorporates the process of neural signal transmission to infer intercellular communications, 

making NeuronChat different from the existing methods that have been developed for inferring 

communications among cells for non-neuronal activities. The benchmark and applications of 

NeuronChat to multiple datasets has shown its ability to predict neural connectivity. Considering 

the neuron heterogeneity identified from a growing number of single-cell transcriptomic datasets 
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and spatial transcriptomic datasets, novel neural connections among diverse transcriptomic 

states may be predicted by NeuronChat. By contrasting available neural connectivity data, such 

as retrograde labeling data and electrophysiological data, with our predicted communication 

networks for particular ligand-target interaction pairs (e.g., Figures 2d and 2h), one can further 

identify the signaling pathways and key genes that may provide insights into uncharacterized 

mechanisms underlying neural connectivity.  

 

The NeuronChat R package provides versatile and easy-to-use visualization tools and network 

analysis approaches, to allow convenient exploration of neural-specific intercellular 

communication patterns. Using such analysis tool in this study, NeuronChat was shown to classify 

glutamatergic neuron subtypes and GABAergic neuron subtypes into separate sender groups 

based on their outgoing signaling patterns; the interaction pairs mediated by glycine are 

categorized into the interaction group that contains GABA signals from GABAergic neurons; and 

the specific downregulation in NLGN3 signaling to OPC has been identified in ASD patients. 

Collectively, NeuronChat is able to decipher convoluted interneuronal communications with 

biologically meaningful discoveries from scRNA-seq data. To explore the signaling pathways and 

gene regulatory networks downstream from the predicted interneuronal communications, one 

may use the existing database, such as Omnipath47, STRING48 and NicheNet11, to construct 

integrated cell-cell communication networks through connecting signaling as well as 

transcriptional regulation.  

 

There is a trade-off between accuracy and computation speed for permutation-based p-value 

calculations, which are needed for all new applications of NeuronChat. A high number of 

permutations can produce a more accurate empirical p-value, but it suffers from long computation 

time (the time complexity for the permutation-based p-value calculations is 𝛰(𝑛) where 𝑛 is the 

number of permutations). Nevertheless, we find a good consistency between p-values calculated 
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by 100 and 1,000 permutations, and the links detected by 1,000 permutations largely overlap with 

those detected by 100 permutations with no more than 1.5% of links missed (Supplementary 

Figure 3). These results suggest that one may reduce the number of permutations (e.g., default 

number 100 in NeuronChat) to save computation time while maintaining the accuracy of p-value 

calculations. 

 

While NeuronChat’s computational workflow has been optimized to predict neuronal connectivity, 

the settings can be expanded to incorporate more refined models, for example, for estimating the 

abundance of small molecular neurotransmitters. For such cases, the stoichiometric effects of 

metabolism and pathways dependency may be included in addition to using expressions of only 

synthetic enzymes and vesicular transporters. By comparing nine glutamate abundance 

surrogates, we find that some of the scFEA-derived surrogates show higher AUROC (or AUPRC) 

values than NeuronChat’s ligand abundance (Supplementary Figure 7). While the difference 

between NeuronChat’s ligand abundance and the best scFEA-derived surrogate is small, it 

suggests ways in improving the prediction accuracy of neuronal connectivity. 

 

Like other existing methods for inferring cell-cell communications, NeuonChat estimates the 

abundance of ligands and target proteins from transcriptomics that could be inconsistent with 

protein or metabolite levels. In principle, NeuronChat can be applied to proteomics and 

metabolomics data to infer ligand-target interactions if the data becomes available. With the 

single-cell proteomics and metabolomics techniques lagging behind transcriptomics in coverage 

of molecules or throughput49, 50, for now the transcriptomics data remain as a main data source 

for cell-cell communication inference. 

 

While NeuronChatDB includes major small-molecular neurotransmitters, most of the 

neuropeptides, some gasotransmitters, gap junction proteins as well as synaptic adhesion 
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molecules, there may be missing information in the curated interaction entries, leading to bias in 

the inference.  Nevertheless, NeuronChat allows easy updating of the database with user-defined 

interactions that are not included in the current version, to expand its applicability for more 

interactions.  

 

In the current study, NeuronChat splits the multiple different subunits of the heteromeric receptor 

into separate entries when evaluating their abundance. In principle, the subunit stoichiometries 

need to be taken into account to more accurately represent the heteromeric receptors. The 

heteromeric receptor can be assembled from various combinations of subunits, with great 

diversity in subunit compositions51, dramatically affecting its functional properties. For example, 

the existence of the GluA2 subunit in AMPA receptors determines the permeability to calcium 

ions52.  While NeuronChatDB doesn’t contain the information of subunit stoichiometries that are 

largely unknown for most heteromeric receptors, NeuronChat includes the option to model the 

abundance of particular heteromeric receptors with customer-provided subunit stoichiometries. 

We expect that incorporating knowledge of auxiliary proteins and downstream genes will improve 

the accuracy of the communication prediction.  

 

 
Methods 
 
Database construction for ligand-receptor interactions 

NeuronChatDB is curated from existing databases (including KEGG53 and IUPHAR/BPS Guide 

to PHARMACOLOGY54) and literature (e.g., neuropeptide interactions are from the reference16), 

and contains neural-specific intercellular molecular interactions for both mouse and human. There 

are 373 entries in total. Each entry of NeuronChatDB represents an interaction pair, including one 

ligand and a cognate target as well as genes related to them. The ligands include small-molecule 
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neurotransmitters, neuropeptides, gap junction proteins, gasotransmitters and synaptic adhesion 

molecules: small-molecule neurotransmitters include glutamate (Glu), GABA, glycine (Gly), 

acetylcholine (ACh), serotonin (5-HT), dopamine (DA), epinephrine (Epi) and norepinephrine (NE); 

gasotransmitters include carbon monoxide (CO) and Nitric oxide (NO); synaptic adhesion 

molecules refer to neurexins (regarded as the ligand) and neuroligins (regarded as the target). 

The targets are typically but not limited to receptors. For example, the target proteins for 

neurotransmitters can also be uptake transporters or deactivating enzymes; the target proteins 

for gap junction proteins are other compatible gap junction proteins. For non-peptide 

neurotransmitters, corresponding synthesizing enzymes and/or vesicular transporters are 

included in the entry; for heteromeric receptors that contain multiple different subunits, 

corresponding subunits are split into different entries with the same ligand. To be compatible with 

the inference model of NeuronChat, for the non-peptide neurotransmitters, related genes 

including vesicular transporters and synthesizing enzymes responsible for different catalyzing 

steps are annotated into separate groups.  

 

Inference of neural-specific cell-cell communications 

For each ligand-target interaction pair, NeuronChat infers intercellular communication in three 

steps as follows:   

1) Calculation of ensemble average expression. For each gene involved in the ligand-target 

interaction pair, the ensemble average expression in a given cell group is calculated using Tukey’s 

trimean:  

 𝑇𝑀 =
1
2
𝑄$ +

1
4
(𝑄"+𝑄%) (1) 

where 𝑄", 𝑄$, and 𝑄% are the first, second and third quartile of the expression levels of the gene 

in the given cell group. Because the genes expressed in less than 25% of cells are filtered out, 
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Tukey's trimean benefits to identify the cell-type enriched ligand-target pairs (see also 

Supplementary Figure 8).  

2)  Calculation of cell-cell communication strength. NeuronChat estimates the abundance of the 

ligand and the target for each cell group, and computes cell-cell communication strength. When 

the ligand is a peptide or protein that corresponds to a single gene, the abundance of the ligand 

for a given cell group is set as the ensemble average expression defined in step 1. For non-

peptide neurotransmitters, the abundance of the ligand depends on expression levels of 

corresponding synthesizing enzymes and vesicular transporters. Assume that the synthesis of 

the ligand requires 𝑚" catalyzing steps; for the 𝑠-th catalyzing step (𝑠 = 1,2, … ,𝑚"), let 𝑝& denote 

the number of isoenzymes that catalyze the same chemical reaction (e.g., glutamate 

decarboxylase 1 and 2 for the synthesis of GABA), and 𝐸',&,) (𝑙 = 1,2, … , 𝑝&) denote the ensemble 

average expression of the 𝑙-th isoenzyme for step 𝑠 in cell group 𝑖. Likewise, let 𝑞 denote the 

number of vesicular transporters for the storage of the same ligand (e.g., vesicular glutamate 

transporter 1, 2, and 3 for the glutamate), and let 𝑉',) (𝑙 = 1,2, … , 𝑞) denote the ensemble average 

expression of the 𝑙-th vesicular transporter. Then, the abundance of ligand is modeled by the 1 +

𝑚" functional groups of genes including one group for vesicular transporters and 𝑚" groups for 

the 𝑚" steps of synthesis. Because a high abundance of ligand requires high expressions of all 

the 1 +𝑚" groups of genes, so the AND logic (i.e., geometric mean) is applied among different 

groups of genes; since the genes within the same group are redundant for the same function, the 

OR logic (i.e., arithmetic mean) is applied.  Thus, the abundance of ligand for the 𝑖-th cell group 

is modeled as  

 𝐿' = <∑ +!,#
$
#%&
,

∙
∑ -!,&,#
'&
#%&
.&

⋯
∑ -!,(&,#
'(&
#%&
.(&

&)(&
. (2) 

When some of the redundant genes for a function group are missing from the input data due to 

low gene coverage, NeuronChat will only use the remaining genes. If the entire group of genes 
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are missing, the ligand abundance is set to be zero by default; in such case, NeuronChat also 

provides a less-strict mode to allow the calculation by setting the ensemble average expressions 

of these genes as ones, which will be useful for the dataset with low gene coverage.  

 

In the current study, all targets correspond to a single gene (for heteromeric receptors that contain 

multiple different subunits, we just split these subunits into different entries but with the same 

ligand so that the target for each entry is represented by a single subunit), so the target abundance 

𝑇/  for the cell group 𝑗 is set as the ensemble average expression of the corresponding gene 

defined in step 1). Nevertheless, NeuronChat is also compatible with heteromeric receptors given 

customer-provided subunit stoichiometries, and the target abundance in cell group 𝑗 is defined as 

the weight geometric mean of the ensemble average expressions of subunit genes:  

 𝑇/ = @𝑇/,"0&⋯𝑇/,1*
0(*

∑ ,#
(*
#%&  (3) 

where 𝑐)′𝑠 (𝑙 = 1,2, … ,𝑚$) are the subunit stoichiometries and 𝑚$  is the number of different 

subunits. Then the communication strength from cell group 𝑖 to cell group 𝑗 is defined as 

 𝐿𝑇',/ = 𝐿' ∙ 𝑇/ (4) 

3) Determination of the significance of communication links. The statistical significance of each 

communication is calculated through the permutation test by randomly permutating group labels 

of cells and then recalculating the communication strength for each permutation. Then the p-value 

is calculated as  

 𝑝',/ =
1
𝑀
B 𝐼234!,-

(()534!,-6

7

18"

 (5) 

Where 𝐿𝑇',/
(1) is the recalculated ligand-receptor interaction score for the 𝑚-th permutation and 𝑀 

is the total number of permutations (𝑀 =100 by default); 𝐼234!,-(()534!,-6
 is an indicator function of 𝑚, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523826doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523826
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

and equals 1 if  𝐿𝑇',/
(1) > 𝐿𝑇',/ and 0 otherwise. The p-value is corrected for multiple tests by using 

Benjamini–Hochberg procedure and communications with p-value<0.05 are considered 

significant; for non-significant communication links, the communication strength values are set to 

be zeros.  

 

By performing the steps 1)-3) for each ligand-target interaction pair, we obtain the communication 

strength for any interaction pair 𝑘  from any cell group 𝑖  to cell group 𝑗 , 𝑃',/; 	(𝑖 = 1,… , 𝐺, 𝑗 =

1,… , 𝐺, 𝑘 = 1,… , 𝐾), which can be written into a three-dimensional array 𝜬	(𝐺 × 𝐺 × 𝐾), where 𝐺 

is the number of cell groups and 𝐾 is the number of ligand-target interaction pairs.  

 

Implementation of CellChat and CellPhoneDB 

We use the same computational workflow of NeuronChat for the implementation of CellChat and 

CellPhoneDB, except for the calculation of ligand abundance and the formula for the 

communication strength: CellChat computes the ligand abundance as the geometric mean of the 

average expressions of genes contributing to ligand emission, and adopts a Hill function to 

transform the product of ligand and target abundance to get the communication strength; 

CellPhoneDB computes the ligand abundance as the minimum of the average expressions of 

contributing genes, and takes the mean of the ligand and target abundance as the communication 

strength. It should be noted that, for small-molecule neurotransmitters, both of CellChat and 

CellPhoneDB are implemented without categorizing the contributing genes into different 

functional groups and thus use AND logic (geometric mean or minimum) for all contributing genes, 

without applying OR logic for redundant genes for the same function; hence, the ligand 

abundance can be dramatically underestimated if some of the redundant genes are expressed at 

extremely low levels (e.g., zeros).   
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Inference of neural-specific cell-cell communications from spatial 

transcriptomics data 

For spatial transcriptomics data, NeuronChat can calculate the communication networks without 

imposing spatial constraints, by using the cell-by-gene (or spot-by-gene) count matrix. To 

construct the spatially constrained communication networks, we first use the spatial locations of 

cells/spots to characterize the proximity among cell groups/spot clusters by calculating spatial 

proximity enrichment score similar to Giotto45, and then remove communication links (from the 

communication network without spatial constraint) with their spatial proximity scores lower than a 

given threshold. Specifically, for the calculation of spatial proximity enrichment score, we first find 

all cell/spot pairs within a given distant threshold (400 microns used for the MERFISH dataset), 

and calculate the observed frequencies for all combinations of cell group/spot cluster pairs. Then 

we randomly permutate cell/spot labels to recalculate the frequencies for cell group/spot cluster 

pairs, and the expected frequencies are obtained by averaging the figures over 1,000 

permutations by default. The spatial proximity enrichment score for two cell groups/spot clusters 

is calculated as the log2-transformed ratio of the observed frequency over the expected frequency; 

a high spatial proximity enrichment score means the two cell groups/spot clusters are 

preferentially located close to each other in space. The associated p-value is calculated as the 

percentage of permutations that yield frequency values higher than the observed one.  

 

Methods used for aggregating the intercellular communication networks over 

all interaction pairs 

For each interaction pair 𝑘 , denote 𝜬(;) = (𝑃',/; )  the communication strength matrix for the 

significant links among all cell groups (the values for non-significant communication links are set 
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to be zeros). The aggregated cell-cell communication network can then be obtained by 

summarizing all 𝜬(;) over all interaction pairs, using one of the four aggregation methods:  

1) 𝑪𝟏 = ∑ 𝜬(;); . Given the sending and receiving cell group, this aggregation method sums 

communication strength values over all interaction pairs, denoted as “weight”.  

2) 𝑪𝟐 = ∑ 𝑰(;)(𝑎;);  where 𝑰(;)(𝑎;) is a matrix with the same dimensions as 𝜬(;) and its element 

𝐼',/; (𝑎;) = 1	if	𝑃',/; > 𝑎; 	and	𝐼',/; = 0  otherwise. If 𝑎; = 0  for any 𝑘 , then the element in 𝑪𝟐 

counts the number of links with non-zero communication strength over all interaction pairs, 

from one cell group to another; in such case, the aggregation method is denoted as “count”.  

3) 𝑪𝟑 = ∑ 𝒘𝒌𝑰(𝒌)𝒌 (𝑎;) , where 𝑤;  is the sum of elements in 𝜬(;)  and also known as the 

information flow for the interaction pair 𝑘. If 𝑎; = 0 for any 𝑘, this aggregation method counts 

the number of links with non-zero communication strength while assigning the weight of the 

interaction pair as the information flow, denoted as “weighted count”. 

4) 𝑪𝟒 = ∑ 𝜬(;)⨀𝑰(;)(𝑎;); , where ⨀  means Hadamard product, i.e., (𝐴⨀𝐵)	',/ = 𝐴',/𝐵',/ . The 

aggregation method, denoted as “thresholded weight”, sums the communication strength 

values over all interaction pairs with the communication strength values filtered by a threshold 

for each interaction pair. This method is the default setting for benchmarking NeuronChat, 

with threshold 𝑎; defined as the 80% quantile of all the elements of 𝜬(;).  

 

Network analysis approaches 

Network analysis approaches include pattern recognition32, 33 and manifold and classification 

learning35, the implementation of which is based on CellChat functions9. For pattern recognition, 

the latent patterns for the outgoing signaling of sending cells (or incoming signaling of receiving 

cells) are calculated through the non-negative matrix factorization of a two-dimensional matrix 

obtained by summing the three-dimensional array 𝜬 along the second (or first) dimension. The 
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two output matrices, cell loading matrix and signaling loading matrix, which represent the 

correspondence between cell groups and latent patterns and the correspondence latent patterns 

between individual interaction pairs, respectively, can be visualized by the alluvial plots. The 

manifold and classification learning projects the communication networks for individual interaction 

pairs into a low-dimensional manifold and classifies them into groups. The first step is the 

calculation of the functional similarity matrix, of which each element is defined as the ratio of the 

number of overlapped communication links to that of non-overlapped links for two communication 

networks. Then k-nearest neighbors are found for each interaction pair based on the functional 

similarity matrix and used to smooth the functional similarity matrix. Finally, the smoothed 

similarity matrix is used to perform uniform manifold approximation and projection (UMAP) and 

the interaction pairs are grouped based on the k-means clustering of the first two components of 

the learned manifold. 

 

Data preprocessing 

The single-cell RNA count matrices were processed as follows, prior to analysis with NeuronChat. 

The RNA counts for each cell were divided by the total counts in the cell and multiplied by a scale 

factor (10,000 by default), and these values are added with a pseudocount of 1 and then natural-

log transformed. For the genes related to interacting molecules in NeuronChatDB and used to 

calculate the communication strength, the expression values are further normalized by the 

maximum, to guarantee the communication strength has the range from 0 to 1.  

 

Data Availability 
NeuronChatDB is included in the NeuronChat repository (https://github.com/Wei-

BioMath/NeuronChat), and can be also accessed in table formats (https://github.com/Wei-

BioMath/NeuronChatAnalysis2022/tree/main/NeuronChatDB_table). The mouse scRNA-seq 
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datasets analyzed in this study are available from the Gene Expression Omnibus (GEO) 

repository under the following accession numbers: GSE115746 and GSE185862. The human 

datasets analyzed in this study are available at https://autism.cells.ucsc.edu. The processed 

seqFISH+ data are available at https://rubd.github.io/Giotto_site/articles/mouse_seqFISH_corte

x_200914.html. The MERFISH dataset is available at https://doi.org/10.35077/g.21. The Visium 

dataset is available at https://support.10xgenomics.com/spatial-gene-

expression/datasets/1.1.0/V1_Adult_Mouse_Brain. 

 
Code Availability 
NeuronChat is an R package available at (https://github.com/Wei-BioMath/NeuronChat). The R 

code used to produce the analysis in this paper is available at https://github.com/Wei-

BioMath/NeuronChatAnalysis2022.  
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Figure 1. Overview of NeuronChat.  
(a) Overview of NeuronChat database. NeuronChat database includes ligand-target pairs required for 
chemical synapse, electrical synapse and synaptic adhesion (left panel). There are a total of 373 ligand-
target pairs for both human and mouse, curated into five categories based on the type of the ligand (middle 
panel). The interaction pair list includes the ligand, target, and genes contributing to them (right panel). 
Note that genes contributing to the ligand are categorized into different groups (indicated by colors) based 
on their biological functions such as synthesis or vesicular transport.  
(b) Schematic diagram to illustrate the computational model of NeuronChat. The communication strength 
characterizes the coordinated expression of genes required for ligand emission in the sender cell group, 
and the expression of the target gene in the receiver cell group. The statistical significance of a 
communication link is determined by the permutation test (* and ns represent significant and not significant, 
respectively). Only significant links are kept in the output communication strength matrix while values for 
not significant links are set to be zeros. See Methods for details.  
(c) Functionalities of NeuronChat: visualization and analysis of the intercellular communication networks, 
making systemic comparisons across different biological contexts, and multi-layered visualization for spatial 
transcriptomics.  
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Figure 2. Benchmarking NeuronChat on projection networks of two mouse cortex regions: VISp and ALM.   
(a) Projections from seven cell types of VISp to their cortical target regions, identified by retrograde labeling3.  
(b) Aggregated and binarized intercellular communication network for VISp. The false-positive links 
represent those predicted by NeuronChat but not identified by retrograde labeling. The false-negative links 
are those identified by retrograde labeling but missed by NeuronChat prediction. Threshold for binarization 
is 0.028 (normalized by the maximum) in this plot.  
(c) ROC curve for the NeuonChat-inferred aggregated intercellular communication network for VISp, with 
AUROC indicated on the top. The gray dashed line represents the random classifier with an AUROC of 0.5.   
(d) PR curve for NeuonChat-inferred aggregated intercellular communication network for VISp, with AUPRC 
indicated on the top. The gray dashed line represents the random classifier with an AUPRC equal to the 
fraction of links identified by retrograde labeling (i.e., 14/21). 
(e) AUROC (left panel) and AUPRC (right panel) for the inferred VISp projection network of each individual 
interaction pair.  
(f-j) Repeat analysis for ALM, analogous to (a-e). Threshold for binarization is 0.165 for (g). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523826doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523826
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

 
Figure 3. Comparison of NeuronChat, CellPhoneDB, and CellChat in predicting VISp and ALM projection 
networks.  
(a) Typical ROC curves (left panel) and PR curves for the three methods.  
(b) The boxplots of AUROC (left panel) and AUPRC (right panel) values for 100 repeats of the aggregated 
VISp projection networks inferred by the three methods. Each boxplot represents 100 independent repeated 
computations. Boxplot elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 
interquartile range; points, outliers. Note that no variation in each boxplot is observed because the 
aggregated method ‘thresholded_weight’ reduces the fluctuation caused by finite sampling in the 
permutation test (see also Supplementary Figure 9).  
(c) The number of detected interaction pairs for the three methods.  
(d-e) The boxplots of AUROC (d) and AUPRC (e) values for the individual VISp projection networks inferred 
by the three methods. Boxplot elements: center line, median; box limits, upper and lower quartiles; whiskers, 
1.5x interquartile range; points, outliers.  
(f-j) Repeat analysis for ALM projection network, analogous to (a-e).  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523826doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523826
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

 
Figure 4. Visualization and analysis of intercellular communication networks for mouse primary visual cortex. 
(a) Visualizations of the inferred communication networks among multiple cell types of VISp. Circle plot, 
chord diagram and heatmap are used to visualize the intercellular communication networks. In the circle 
plot, the node size indicates the strength of the outgoing signal from the cell, and the text labels are labeled 
by different colors to indicate their cell classes (i.e., glutamatergic, GABAergic and non-neuronal); the 
communication strength for each link is indicated by the width. In the chord diagram, sectors for different 
cell classes are repelled by larger gaps; the width of each link represents the communication strength, while 
the width of a sector (representing a cell group) reflects the strength of the total communications from or to 
this cell group.  
(b) The outgoing signaling patterns of senders and incoming signaling patterns of receivers visualized by 
alluvial plots, which show the correspondence between the inferred latent patterns and cell groups, and the 
correspondence between the inferred latent patterns and interaction pairs. The thickness of the flow 
indicates the contribution of the cell group or interaction pair to each latent pattern. The height of each 
pattern is proportional to the number of its associated cell groups or interaction pairs. The top 60 interaction 
pairs with the highest information flow are used for analysis.  
(c) Projecting interactions onto a two-dimensional manifold according to their functional similarity.  
(d) Magnified view of the two-dimensional manifold for each interaction group. 
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Figure 5. Comparison analysis of interlaminar excitatory communication networks for ALM and VISp.  
(a) The aggregated interlaminar excitatory communication networks for ALM (left panel) and VISp (right 
panel).  
(b) The individual interlaminar excitatory communication networks of Glu-Grin3a for ALM (left panel) and 
VISp (right panel).  
(c) Bar charts comparing the number of links (left panel) and information flow (right panel) between ALM 
and VISp for each interaction pair.  
(d) Projecting interactions for ALM and VISp onto a two-dimensional manifold according to their functional 
similarity.   
(e) Heatmaps of the aggregated interlaminar excitatory communication networks for the five interaction 
clusters in (d).  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523826doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523826
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

 
Figure 6. Comparison analysis of cell-cell communications in cortex between ASD patients and controls.  
(a) Comparison of the number (left panel) and weight (right panel) of all the links inferred between ASD and 
control.  
(b) Circle plots showing the upregulated and downregulated intercellular communications in ASD compared 
to control.  
(c) Heatmap showing the differential outgoing and incoming signal strength between ASD and control.  
(d) Bar charts comparing the number of links (left) and information flow (right) between ASD and control for 
each interaction pair. 
(e) Projecting interactions onto a two-dimensional manifold according to their functional similarity (upper 
panel) and magnified view of each interaction group (lower panel).   
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Figure 7. Multi-layered visualization for spatial data and inference of spatially constrained communication 
network.  
(a-c) Multi-layered visualization for three spatial transcriptomics datasets generated by different techniques 
seqFISH+ (a), MERFISH (b), and Visium (c). Each plot includes the raw tissue slice image/anatomic 
reference (bottom), cell/spot annotation in space (middle), and the aggregated communication network with 
the top 10 links shown (top). The width of a link indicates the sum of communication strengths over all 
significant ligand-target pairs. See Supplementary Figure 12 for the full aggregated networks. The bottom 
image in (b) is the brain anatomic reference (Image credit: Allen Institute for Brain Science. 
[http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960348]).  
(d) Bar plot showing the cell proximity enrichment scores for all pairwise interacting cell types. The cell 
proximity enrichment scores are calculated based on all 64 MERFISH slices. The score>0 (bars in red) and 
score<0 (bars in cyan) represent enriched and depleted proximity between interacting cell types, 
respectively.  
(e) The inference of spatially constrained communication network for GABAergic neurons. Left panel: the 
cell proximity network. Links in red or grey represent enriched or depleted proximity between interacting 
cell types, respectively; the width of a link indicates the strength of enrichment or depletion. Middle panel: 
cell-cell communication network without spatial constraint, calculated based on scRNA-seq data26 for the 
same brain region and same cell types (2,044 single cells in total). The width of a link indicates the sum of 
communication strengths over all significant ligand-target pairs. Right panel: the spatially constrained cell-
cell communication network, obtained by removing links with depleted proximity from the original cell-cell 
communication network. See also Supplementary Figure 13.  
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