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Cai Z, Neveu CL, Baxter DA, Byrne JH, Aazhang B. Inferring
neuronal network functional connectivity with directed information. J
Neurophysiol 118: 1055–1069, 2017. First published May 3, 2017;
doi:10.1152/jn.00086.2017.—A major challenge in neuroscience is to
develop effective tools that infer the circuit connectivity from large-
scale recordings of neuronal activity patterns. In this study, context
tree maximizing (CTM) was used to estimate directed information
(DI), which measures causal influences among neural spike trains in
order to infer putative synaptic connections. In contrast to existing
methods, the method presented here is data driven and can readily
identify both linear and nonlinear relations between neurons. This
CTM-DI method reliably identified circuit structures underlying sim-
ulations of realistic conductance-based networks. It also inferred
circuit properties from voltage-sensitive dye recordings of the buccal
ganglion of Aplysia. This method can be applied to other large-scale
recordings as well. It offers a systematic tool to map network con-
nectivity and to track changes in network structure such as synaptic
strengths as well as the degrees of connectivity of individual neurons,
which in turn could provide insights into how modifications produced
by learning are distributed in a neural network.

NEW & NOTEWORTHY This study brings together the techniques
of voltage-sensitive dye recording and information theory to infer the
functional connectome of the feeding central pattern generating net-
work of Aplysia. In contrast to current statistical approaches, the
inference method developed in this study is data driven and validated
by conductance-based model circuits, can distinguish excitatory and
inhibitory connections, is robust against synaptic plasticity, and is
capable of detecting network structures that mediate motor patterns.

functional connectivity; directed information; context tree maximiz-
ing; Aplysia californica; buccal ganglion

UNDERSTANDING HOW the organization of neurons into neural
circuits enables the different functions of the brain is one of the
core goals of neuroscience and is a prerequisite for studying
how the structures of these networks are modified by learning.
Major advances have been made in the methods and techniques
for simultaneously recording activity in large numbers of
neurons (Alivisatos et al. 2012; Peterka et al. 2011; Stevenson
and Kording 2011). With the ability to collect a large volume
of data, the next step is to reverse-engineer the neural signals
and to delineate the underlying circuits that have generated the
activity. Integrating the techniques of large-scale recordings
with analytical tools would contribute tremendously to delin-
eating and deciphering functional connectomes. Functional

connectivity provides greater insights than anatomical connec-
tivity because it captures the active functional structure of the
circuit, the strengths of different neural pathways, and the
relevance of various neurons in the network. The main focus of
this study was to develop and test a tool that can be used to
reliably detect functionally relevant connections using a scalar
metric based on the information provided in the neuronal
recordings alone.

Several statistical or information theoretic tools have been
used to infer the directed functional connectivity of a neural
circuit (see Brown et al. 2004). In general, two different types
of signals are analyzed by dedicated methods: methods that
focus on inferring connectivities using local field potentials
(LFPs) (Cadotte et al. 2008; Dhamala et al. 2008; Malladi et al.
2015, 2016) and methods that focus on spiking activities from
neuronal-level recordings (Cai et al. 2016b; Gerhard et al.
2013; Kim et al. 2011; Nowak and Bullier 2000; Perkel et al.
1967; Quinn et al. 2011; Truccolo et al. 2005). There are also
methods that can be applied to both signal types by analyzing
the interactions among predefined states of the recordings
(Friedman et al. 2016; Gat et al. 1997). Among methods that
analyze spiking signals, one of the most commonly used tools
is the cross-correlation histogram (cross-correlogram), which
deploys spike-triggered histograms to find the causal relation-
ship between two neurons (Nowak and Bullier 2000; Perkel et
al. 1967). Truccolo et al. (2005) and Kim et al. (2011) employ
a point process-generalized linear model (GLM) framework
together with Granger causality (GC), whereas Quinn et al.
(2011) and So et al. (2012) calculate directed information (DI)
based on the same framework to detect pairwise causal influ-
ences; similarly, Gerhard et al. (2013) use the coupling
strengths obtained from the spline coefficients fitted with the
GLM to reconstruct functional connectivity.

Among all the above-mentioned techniques, DI has many
advantages. Cross-correlation and cross-correlogram are de-
fined on two processes and cannot reliably distinguish mono-
synaptic and polysynaptic connections or common-input struc-
tures. GC assumes that the past samples in the recording have
a linear influence on the future sample and that noise in the
signal is modeled as Gaussian (Barnett and Seth 2014). In
contrast, DI is model free, because its calculation is based
simply on entropy (Massey 1990). The burden of reducing the
estimation error of DI is hence shifted to the estimation of
entropy for neural recordings. To fully exploit the advantages
of DI, an accurate and data-driven entropy estimator should be
used in conjunction with DI.
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Neural spike trains are commonly used to represent spiking
signals and are generated by segmenting the continuous time
spiking data using a predetermined unit time called bin width
into discrete time binary sequences, where a 1 bit indicates a
spike and a 0 indicates no activity. Generally, the statistical
properties of neural spike trains are estimated through a para-
metric approach, the GLM (Kim et al. 2011; Quinn et al. 2011;
So et al. 2012; Truccolo et al. 2005). GLM assumes that the
likelihood of a future spike is modeled as the exponent of the
linear combination of past activity of the spike trains. Because
spiking activity may not always fit the GLM assumption, a
data-driven approach to extract statistical properties without
assuming a linear relationship among spikes in one or more
neural recordings is more desirable. Context tree weighting
(CTW), a universal entropy estimators developed for data
compression (Jiao et al. 2013), is a tool that does not assume a
linear relationship among data in neural spike trains and thus
may serve as a good technique to infer functional connectomes.
Yet the depth of the tree used to determine the length of the
memory needs to be set externally, usually arbitrarily or by
past experience. Also, CTW assumes that all firing patterns are
equally likely, and this method of assigning all patterns equal
weight is very data intensive and does not provide insight into
the data structure. In this study, we implemented a different
method that utilizes the context tree framework—context tree
maximizing (CTM), which, in addition to being data driven,
also automatically finds the appropriate tree depth as well as
the best tree structure that fits the data in the a posteriori sense
and prevents overfitting (Csiszár and Talata 2006; Volf and
Willems 1995), in which case the model tends to fit the noise
other than the underlying patterns and relationships of the
signals. Because it is data driven, CTM is not constrained by
model types and is able to detect both linear and nonlinear
relationships between spike train sequences.

In this report, we begin by reviewing the theoretical basis for
DI for discrete time series. We then estimate DI for spike train
data using CTM and construct a synaptic profile from the tree
model that allows us to view the synaptic influence with
different kinetics and time courses and differentiate excitatory
and inhibitory connections. Next, we use a heuristic to deter-
mine direct vs. indirect connections. To demonstrate the ro-
bustness of our approach, we test it using a sparse Poisson
spiking model and several small realistic conductance-based
neuronal circuits. The performance is further tested with a
larger network that resembles the central pattern generator
(CPG) network of the Aplysia feeding circuit. Finally, we apply
the technique to actual data obtained from voltage-sensitive
dye (VSD) recordings of a buccal ganglion from Aplysia and
identify some promising putative connections.

Our method of constructing connectivity diagrams from
large-scale recordings is an automated, comprehensive frame-
work for inferring neuronal network structures. It is robust
against synaptic plasticity such as facilitation and depression. It
is able to exclude indirect connections, differentiate excitatory
from inhibitory synapses, and infer the time course of the
synaptic responses. This method is generally applicable to
analysis of neural network structures and could be used to track
functional changes due to change of behavioral states, neuro-
modulation, or learning. Preliminary results of this work were
reported in abstract form (Cai et al. 2015, 2016a) as well as in
a conference paper (Cai et al. 2016b).

Throughout this report, Xa
b for b � a is a shorthand for the

vector [XaXa�1 . . . Xb-1Xb], whereas Xb is simply the string of
random variables X1

b from the beginning up to index b. An
uppercase letter denotes a random variable, whereas a lower-
case denotes one realization of that random variable. We
denote a string s � xb�k

b , and then s' � xb�k'
b where k= � k is a

suffix of s, denoted by s � s'; yet if k=� k, s= is called a proper
suffix of s, denoted by s � s'.

METHODS

Directed Information

DI will be used to quantify information flow from one neuron to
another. It is an entropy-based measure that bears much resemblance
to mutual information and can be applied to both discrete and analog
random processes. We focus on the first case, because we segmented
spikes in time using fixed bin widths into neural spike trains and the
random process used to represent these discretized neuronal activities
is then a discrete time and binary alphabet random process.

DI was originally formulated by H. Marko and formally defined by
J. Massey (Massey 1990). It measures the amount of single-direc-
tional information flow from random sequence X to sequence Y. It is
defined as

I�Xn → Yn� � H�Yn� � H�Yn � Xn� (1)

where

H�Yn� � �
i�1

n

H�Yi � Yi�1� (2)

is the chain rule of entropy quantifying the entropy of Y itself and

H�Yn � Xn� � �
i�1

n

H�Yi�Y
i�1, Xi� (3)

is the causally conditioned entropy. Causally conditioned entropy is
the entropy of Y conditioned on the causal part of X in addition to the
history of itself. In the formulation of mutual information, the condi-
tional entropy term in Eq. 3 is H�Yi�Y

i�1,Xn� instead. DI quantifies the
reduction in entropy given the causal part of X in addition to the
history of Y.

In practice, the DI rate, which is defined as �
I�X→Y� � limn→�

1

n
I

�X→Y�, is most commonly used because it is bounded by the largest
entropy a random variable can achieve, which in binary spike trains is
1. With a slight abuse of terminology, we refer to the DI rate simply
as DI for the remainder of this report. Both the entropy rate for Y alone
as well as the causally conditioned entropy rate can be estimated by
using entropy estimators that directly provide the H�Yi�Y

i�1,Xi� terms.
Such an approach is demonstrated by estimators 1 and 3 in Jiao et al.
(2013), where the asymptotic equipartition property is evoked and
entropy rate or divergence rate is estimated directly. It is also possible
to estimate the entropy rates by using plug-in estimators that approx-
imate the probability distribution P�Yi�Y

i�1,Xi�, with which entropy
rates can later be calculated, such as in estimators 2 and 4 in Jiao et
al. (2013). In this study, we focused on estimator 1, for its faster
convergence rate based on our simulations. We used a context
tree-based algorithm to estimate causally conditioned entropy. Caus-
ally conditioned entropy rate obtained via the asymptotic equipartition
property is shown to converge in the almost sure sense (Venkatara-
manan and Pradhan 2007) as well as in the L1 sense (Jiao et al. 2013).
Almost sure sense convergence is when the probability of the estimate
and the true distribution being the same goes to 1. L1 convergence is
that the expected value of the absolute error goes to 0.
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In actual implementations, convergence is data dependent. For
neurons with tonic firing activity, the convergence is faster. The
fluctuation of the DI value is �0.1% with a spike train whose length
is in the order of 103 data points. In this favorable case, if the bin
width is 10 ms, typically �1 min of data is needed. For neurons with
phasic activity, the DI rate curve stabilizes slower. Based on simula-
tions, roughly 2 min of data is needed depending on the diversity of
the spiking patterns, which differs from neuron to neuron.

Context Tree Estimation

To calculate DI, the conditional entropy terms in Eq. 1 need to be
estimated. Multiple entropy or plug-in probability estimators are
available, which aim to detect patterns in data sequences and to
minimize entropy in the area of data compression. Examples include
Lempel-Ziv (Ziv and Lempel 1978), Burrows-Wheeler transform
(Burrows and Wheeler 1994), and prediction by partial matching
(Cleary and Witten 1984). However, context tree-based algorithms
show a faster convergence (Gao et al. 2008). In this section, we
provide a brief description of how a tree model generates a sequence.
If we know that tree model entirely, the likelihood of the observed
sequence as well as its conditional probability can be calculated. Yet
if the model is unknown, it is necessary to first use the sequence to
estimate a tree model that most likely (in the a posteriori sense) has
generated the given sequence, and with this estimated model we can
then obtain the probability measure we need to calculate DI.

Tree structure. Tree structures are commonly used to model finite-
alphabet, finite memory, stationary and ergodic sources that have
generated the observed sequences. We denote a unique tree structure
by T. Assume that a fictive tree model T has depth D. Its symbols are
drawn from a finite alphabet A � �0,...,�A� � 1�, and the cardinality
(also known as the size) of the alphabet is |A|. For a complete tree
model, it then has D levels, and on each level every node splits up into
|A| branches, and therefore there are |A|D leaf nodes (see Fig. 1A for a
simple example). Note that this complete tree corresponds to a
Markov chain model of order D. Each leaf defines the complete path
from the root to a leaf, with the segments closer to the root being more
recent and the ones closer to the leaves older. It represents a context
that is unique and is independent of all others. A context is denoted
by s and represents the history of spike activity with a duration of de-
pth D times bin width. The tree T is formed by all its contexts.
Associated with each leaf there is a parameter vector �s, an |A|-
dimensional simplex [�s(0),..., �s(|A| � 1)], with each entry dictating
the probability of the next symbol being a, where a � A. Let yn be a
sequence generated by this tree T. If all the digits yi in yn that follow
the same context s are grouped into a new sequence ys, then the
subsequent ys � �yi�yi�yn,yi�D

i�1 � s� emitted by the same leaf is

modeled as an independently identically distributed (i.i.d.) process.
Furthermore, ys= is independent of ys if s= � s, for s, s= � T. Because
each leaf is modeled as an i.i.d. source, the probability of an outcome
yn using the known tree model T is

PT (yn) � �
s�T

P(ys) (4)

� �
s�T

�
a�0

�A��1

P(a�s)cs(n,a) (5)

where cs(n, a), a � A, is the count of all occurrences of symbol a that
directly follow the context s.

However, a tree structure does not have to be complete, and this is
one advantage over the Markov chain model. If the lengths of the
branches are allowed to vary, letting some longer contexts be merged
into one shorter context, the number of contexts can be markedly
reduced (Fig. 1B) and therefore the model’s complexity is also
substantially reduced. The tree model can be simplified as long as the
tree is irreducible, which means that no branch can be a suffix of
another. The entire class of irreducible tree models is denoted by I.
This requirement is automatically guaranteed by the tree structure
itself.

In many scientific applications such as neural spike trains, the real
model that has generated the observation is never known. An inter-
mediate step is to assume that we know the tree structure T but do not
know the leaf parameters. In this scenario, the leaves could be used to
partition the observation yn into individual ys. Because the subse-
quence ys corresponds to each context s is i.i.d., an appropriate
estimator for a memoryless source can be used to find its parameters.

Estimation of leaf parameters. In this work, leaf parameter estima-
tion was accomplished through the Krichevskii-Trofimov (KT) esti-
mator (Krichevsky and Trofimov 1981). KT estimator is a Bayesian
estimator, and it also has the capability to be implemented sequen-
tially for potential real-time applications. Suppose a sequence Xn is
i.i.d and each variable Xi can only take on values from a finite-sized
alphabet A; therefore, xn is generated by a multinomial with parameter
[�(0),..., �(|A| � 1)]. Denote a symbol in the alphabet by a, for a �
{0,1,..., |A| � 1}. Let the count of each symbol a observed before
index n be c(n, a), but for simplicity we denote it as c(a). The KT
estimator produces an estimate of the probability of an entire realiza-
tion xn of a stationary memoryless string using Bayesian statistics (See
APPENDIX A for details). Let us denote the estimate of such an i.i.d.
sequence by P̂(xn). It can be computed sequentially as

P̂�Xn � a, xn�1�

�
c(a) 	 


c(0) 	 c(1) 	 . . . 	c��A� � 1� 	 
�A�
P̂�xn�1�

�
c(a) 	 


(n � 1) 	 
�A�
P̂�xn�1� (6)

starting with P̂(�) � 1, which means an empty string starts with
probability 1 (see APPENDIX A). Here 
 is the “add-something” param-
eter of the sequential estimator (Krichevskii 1997). Most often 
 �
1

2
, such that the error of the estimated log likelihood is uniformly

bounded (Krichevsky and Trofimov 1981).
In the framework of context tree estimation, for a Markov chain

process Yn with order D, we simply have for each context s

P̂�Yn � a�Yn�D
n�1 � s� � P̂�a�s� �

cs(a) 	
1

2

�ns � 1� 	
�A�

2

(7)

which is the conditional probability needed for Eq. 5.

root

leaves

0

0

0 0 0 0

0

1

1 1

1           1           1           1

l(s)=0

l(s)=1

l(s)=2

l(s)=3

root
0

0

0

1

1

1
leaves

A B

Fig. 1. A binary context tree structure with maximum depth 3. A: a complete
tree with leaves associated with all possible 23 � 8 contexts. All contexts are
equally long with 3 digits. The highlighted path refers to (Yn-3 � 0, Yn-2 � 1,
Yn-1 � 1), which also shows that the branch segment closer to the root
corresponds to a newer sample (yn-1) and the segment closer to the leaf
corresponds to an older one (yn-3). B: a trimmed tree with only 4 contexts. Note
that any trimmed branch cannot be a suffix of another branch. In this case, both
context ...011 and context ...111 are mapped to the same branch—the high-
lighted branch ...11.
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Maximum a posteriori tree model with penalties. After estimating
the leaf parameters �s of a tree structure, we next searched the entire
set of all irreducible tree models I for the tree structure that described
the observed data best in the a posteriori sense. Because KT estimator
is used to produce an estimate P̂(a|s), maximizing P̂T (yn) in Eq. 5
among all assumed model Ts yields the maximum a posteriori esti-
mator, which is equivalent to minimizing the negative log likelihood
�logP̂T (yn). Negative log likelihood of a sequence is the number of
bits needed to encode that sequence in the field of compression.
Intuitively, the lower the number, the better fit the model has.
However, in an effort to control complexity and prevent overfitting,
we want to penalize models with higher orders and find a model with
limited tree depth D0, D0 � D. We can introduce a minimum
description length criterion that takes into account the cost of the
model: the number of bits needed to describe the tree model itself
including both the parameters as well as the tree structure. Define the
cost of the model to be

�T � ��T � 	 �u : u � s�� · log�A� (8)

where |T | is the number of contexts (i.e., the number of leaves);
|u : u � s| is the total number of inner nodes. A tree with the same
number of leaves but a higher order requires more bits to detail all the
layers of the longer branches. This condition often arises in compres-
sion where an optimal trade-off between the code length of the
sequence and the cost of the model is desired (Volf and Willems
1995). With this penalty term, we construct our objective function as
a trade-off between the model complexity and finding a tree model
that maximizes the a posteriori probability:

T̂ (yn) � arg min
T�I

��log P̂T (yn) 	 �T� (9)

minimized among set I. This objective function can be solved
recursively, and the penalty term can be readily broken down and
incorporated into the recursive optimization process (Volf and Wil-

lems 1995). We define the maximized probability P̂s
� at node s as

P̂s
*(yn) �	max
 1

�A�
P̂s(y

n),
1

�A��a�0
�A��1 P̂sa

� (yn)� , 0 � l�s� 
 D

1

�A�
P̂s(y

n), l�s� � D

(10)

Here sa is a child node of s, which represents a string with symbol a
appended to the end of the string represented by s. P̂* at the root level
is the maximized probability for this sequence. The recursive process
defined by Eq. 10 is equivalent to solving the optimization problem
Eq. 9, which is expanded in details in APPENDIX B. We can interpret the

recursive maximizing process this way: if P̂s�yn� � �i�0
|A|�1 P̂sa

* �yn�,
branches below s are trimmed as in Fig. 1B. Assume that the depth D
of the model we start with is deeper than that of the actual source. It
is worth noting, however, that the magnitude of D is limited by the
amount of data points and is actually conveniently bounded by a
function of the length of the data n, which is D(n) � o(log n) (Csiszár
and Talata 2006).

This method is the so-called context tree maximizing (CTM)
algorithm (Willems et al. 2000). Although CTM is not a consistent
estimator in general, it has a very low computational complexity as
well as a low memory requirement, and by penalizing complex
models, it mitigates the problem of overfitting.

Probability Estimation for Multiple Neurons

Because neural spike trains are discrete time binary sequences
where |A| � 2, a binary context tree is used to estimate the probabil-
ities of individual neurons. However, to calculate the causally condi-

tioned entropy term in DI, the individual term P(yi|y
i�1, xi) is needed

to calculate H(Yi|Y
i�1,Xi) for Eq. 3. The most common way to

estimate joint probability is to augment X with Y. Let Z � X � 2Y and
conduct the context tree estimation algorithm on Z, whose alphabet
size is then 4. Context tree estimation is executed on this new
sequence Z to find P̂(zi|z

i�1). In fact, P̂(zi|z
i�1) � P̂(xi,yi|x

i�1,yi�1). To
obtain the P̂(yi|x

i�1,yi�1) term needed for DI, we simply take the
marginal about X. This way, we can calculate the DI, which indicates
the strength of the influence, from one neuron to another.

Reconstructing the Synaptic Profile

In addition to estimating the strength of information flow through
a synaptic connection quantified by DI, it is also essential to distin-
guish excitation from inhibition as well as to infer the synaptic profile.
We define synaptic profile as the time course of the synaptic action. It
is a set of parameters that depict the relative impact of spikes with
respect to time lags in neuron X on the likelihood of observing a spike
in neuron Y. We specifically examined whether a 1 bit (spike) in X
leads to a higher probability of Y having a 1 (excitation) or lower
probability of a 1 bit (inhibition) compared with the average firing rate
of Y. This problem of extracting the synaptic parameters only pertains
to binary neural spike trains.

From the tree structure estimated using the joint sequence Z � X �
2Y discussed in Probability Estimation for Multiple Neurons, we can
obtain how likely Y will be a 1 seeing certain contexts, which is
defined by P�Yn � 1�Xn�D0

n�1 ,Yn�D0

n�1 �, where D0 is the depth of the
longest branch of the truncated tree. To describe the influence from
the context digit i, we need to find P(Yn � 1|Xn�i � 1) for each i �
{0,..., D0}. P(Yn � 1|Xn�i � 1) can be obtained by taking the marginal
of the target context index i:

P̂�Yn � 1�Xn�i� � �
∀yn�k,k��1,...D0�

∀xn�k,k�i

P̂�Yn � 1�Xn�D0

n�1 , Yn�D0

n�1 �

� P̂�Xn�D0

n�1 \ Xn�i, Yn�D0

n�1 �Xn�i� (11)

where

P̂�Xn�D0

n�1 \ Xn�i, Yn�D0

n�1 �Xn�i� �
�count of context Xn�D0

n�1 , Yn�D0

n�1 �
�count of context Xn�i�

(12)

Theorem 1. Two binary sequences Xn and Yn are both Markov
chains, of order DX and DY, respectively. Then, for i � max{DX, DY},

lim
n→�

P̂�Yn�Xn�i� � P�Yn�Xn�i� � 0 (13)

The proof of theorem 1 can be found in APPENDIX C.
Then, simply subtracting away the average firing rate of neuron Y

would produce the synaptic profile:

W(i) � P̂�Yn � 1�Xn�i � 1� � P̂�Yn � 1� (14)

The value and shape of W(i) not only convey the sign of the synaptic
action, with positive values signaling synaptic excitation and negative
values synaptic inhibition, they also depict the time course of the
effect of a presynaptic spike in X on the firing probability of Y, which
can help classify synapses as fast vs. slow. In Fig. 2, the synaptic
profile differentiates a fast excitatory synapse from a much slower
inhibitory synapse, providing information on the time course of the
synaptic influence. Also note that the synaptic profile defined here is
closely related to the cross-correlogram. The conditional probability
term P̂(Yn � 1|Xn�i � 1) is equivalent to the right side of the
cross-correlogram normalized by the spike count of the presynaptic
neuron X. Conversely, if the average firing rate of the postsynaptic
neuron Y is subtracted away from the right side of the normalized
cross-correlogram, we obtain W(i) defined in Eq. 14. The values from
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these two metrics could differ because of different estimation
approaches.

Eliminating Indirect Connections

A positive DI value between two neurons does not guarantee an
actual direct link between these two neurons. In fact, the information
can flow through an indirect route. Quinn et al. (2011) describes two
fundamental structures where indirect connections could be incor-
rectly identified as direct connections: the cascade structure and the
proxy structure (Fig. 3). In the proxy configuration, the path of
information flow is from X via Z to Y, but a false connection from X
to Y could be detected. In the cascade configuration, neuron Z drives
neuron X and neuron Y through two different paths, but a false
connection could be detected between X and Y. To address this issue,
Quinn et al. (2011) employ Kramer’s concept of causally conditioned
directed information (CCDI) (Kramer 1998), which is defined as

I�Xn → Yn � Zn�– H�Yn � Zn� � H�Yn � Xn, Zn� (15)

The interpretation of this measure is very intuitive. If a connection
between X and Y is suggested by DI and yet Z is the agent that
actually directly influences Y, then the entropy estimate of Y
knowing Z alone can account for the external information Y
receives, and knowing X additionally would not yield any more
information and, therefore, would not reduce the entropy further.
On the other hand, if I(Xn ¡Yn�Zn) � 0, the connection between X
and Y is direct and should be kept in the graph. Any context tree
estimation method can easily estimate the H(Yn�Xn,Zn) term by
joining the bits of the spike trains from X, Y, and Z to form an
alphabet of size 8, an example of which is W � X � 2Y � 4Z.

Strictly speaking, to identify whether a connection is direct, it is
necessary to calculate CCDI simultaneously conditioned on all other
neurons, which on one hand creates a forbiddingly large number of
states and on the other demands a large amount of data to estimate
those states. However, a heuristic is employed here analyzing small
triangular structures. Evoking data processing inequality (DPI) for DI
(see theorem 2), it is sufficient to perform CCDI analysis on all groups
of three neurons that form the structures identified in Fig. 3 to
eliminate all single-path indirect connections.

Definition 1. Random sequences Un, Vn, and Wn form a directed
causal chain if I(Un ¡ Vn) � 0, I(Vn�1 ¡ Un) � 0, I(Vn ¡ Wn) � 0,
I(Wn�1 ¡ Un) � 0, and I(Un ¡ Wn�Vn) � 0. With a slight abuse of
notation, we denote this causal chain as Un ¡ Vn ¡ Wn. Using the
notation of Markov chains, this relationship is expressed as Ui ¡ Vi,
Vi ¡ Wi for i � 1, 2, ..., n.

Theorem 2 (DPI for DI). If Un ¡ Vn ¡ Wn causally, then I(Vn ¡
Wn) � I(Un ¡ Wn) and I(Un ¡ Vn) � I(Un ¡ Wn).

The proof of theorem 2 can be found in APPENDIX D.
We define a “1-relay” link as an indirect link with one intermediate

relay neuron, a “2-relay” link as an indirect connection with two
intermediate neurons, and so on. A “1-relay” link conveys more
information than a “2-relay” link in signal transmission with noise,
according to DPI. Therefore, by calculating CCDI on all groups of
three and deleting links with 0 CCDI values, we can eliminate all
single-path indirect connections. The limitation of this heuristic is that
if multipath indirect connections arise, the indirect link might not be
eliminated, and conditioning on more neurons is required.

Calculating Final DI Values

For every circuit analyzed, continuous time spiking signals were
converted into discrete time spike trains using bin widths ranging
from 2 ms to 30 ms with an increment of 1 ms. The DI algorithm was
executed on all these spike trains. This range of bin widths was chosen
in order to survey a sufficient amount of history to capture causal
influences. From this, we plotted the values of DI vs. bin widths,
where true connections had DI curves that plateaued after an initial
rise (see Fig. 6C). If the DI curve for a connection had at least four
consecutive values larger than a 0.01 threshold, all nonzero entries
were averaged to produce the final DI value. In cases where four
consecutive values � 0.01 did not occur, DI was set to 0.

The threshold of 0.01 was chosen based on a few preliminary receiver
operating characteristic analyses generated from simulated neuronal spike
trains. Typical excitatory and inhibitory synapses were simulated with the
sparse Poisson spiking model detailed in Sparse Poisson spiking model.
This value consistently yielded satisfactory results on realistic conduc-
tance-based network models and was therefore retained.

Implementation of Directed Information

The entire connectivity analysis was implemented in MATLAB.
The software package includes a wrapper function that executes
pairwise DI analysis, identifies triangular structures where indirect
connections occur, and carries out causally conditioned DI on these
structures to eliminate indirect connections. The package also includes
a subfunction that conducts CTM estimation of sequences of any
arbitrary alphabet size and can also generate the synaptic profile if
needed. The implementation of the CTM-DI algorithm does not
require specialized toolboxes from MathWorks and can be executed
on open-source software such as Octave. This package can be found
in our online depository (http://www.ece.rice.edu/neuroengineering/)
with examples and instructions.

VSD Recording Technique

Aplysia californica (20–45 g) were obtained from the University of
Miami National Institutes of Health National Resource for Aplysia.
Animals were anesthetized by injection of isotonic MgCl2 (0.5 ml/g).

A B
X

Z Y

Z

X Y
Fig. 3. Two fundamental types of indirect connections. A: proxy configuration.
The path of information flow is from X to Z to Y, yet a false connection from
X to Y can be detected. B: cascade configuration. Neuron Z is driving neurons
X and Y through 2 different paths, and a false connection can be detected
between X and Y.
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A B

Fig. 2. Synaptic profiles illustrating the time course of the synaptic action and
distinguishing excitatory vs. inhibitory synaptic actions. A: profile of synapse AB
from the network illustrated in Fig. 6A. The bin width used in this example was
10 ms. The influence from A to B is fast and strong. The values are positive,
which indicates that the synapse is excitatory. B: profile of synapse BD from
Fig. 6A. The influence from B to D is negative, suggesting an inhibitory
connection. It is weak yet has a longer duration compared with AB.
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The buccal ganglia were isolated and pinned down to a Sylgard-lined
imaging chamber containing artificial seawater (ASW) with a high
concentration of divalent ions [in mM: 330 NaCl, 10 KCl, 90
MgCl2(6H2O), 20 MgSO4, 30 CaCl2(2H2O), 10 HEPES] with a pH
adjusted to 7.5. The ganglion was stained with the VSD, RH-155
(0.25 mg/ml; AnaSpec), for 7 min and imaged for 120 s in normal
ASW [in mM: 450 NaCl, 10 KCl, 30 MgCl2(6H2O), 20 MgSO4, 10
CaCl2(2H2O), 10 HEPES] with a pH adjusted to 7.5 and containing
10� dilution of RH-155 similar to Hill et al. (2015). The bath solution
was maintained at 23°C room temperature. An Olympus BX50WI
upright microscope was equipped with a �20 0.95 NA water immer-
sion objective. Light from a 150-W halogen bulb was passed through
a 710/40 band-pass filter (BrightLine), and a 0.8 NA Olympus
condenser, through the ganglia and projected to a 128 � 128 CMOS
camera (Redshirt Imaging) recording at 2.5 kHz. The neurons were
recorded for 2 min, which was preceded by a 15-s nerve stimulation
(10 Hz, 100 V, 0.5 ms) and application of 40 �M L-DOPA (Tocris)
to facilitate the induction of buccal motor programs (Kabotyanski
et al. 2000). Twenty-eight cells were marked, and signals from
pixels overlaying each cell were averaged to obtain the recording
of a given neuron (see Fig. 8A). Each VSD signal was band pass
filtered in MATLAB (Butterworth, Fpass1 � 15 Hz, Fstop1 � 0.1
Hz, Fpass2 � 1 kHz, Apass � 0.1, Astop1 � 60, Astop2 � 60).
Spikes were detected in the VSD signal with a slope threshold
method. If the peak of a signal differed by 2.5 times the standard
deviation from the baseline measured 4 ms before and differed by 3
times the standard deviation from the postspike period measured 4.8
ms afterward, then a spike was said to occur. The spike times were
then converted to binary spike trains (see Fig. 8B).

RESULTS

Validating the Connectivity Metric

Sparse Poisson spiking model. As a first step to validate the
method, a simple model of two neurons was used to examine
the effect of various conditions and parameters on DI. This
model is a variation of the sparse Poisson spiking model (Cutts
and Eglen 2014). When the firing pattern of a neuron is sparse,
a homogeneous Poisson process with a fixed rate can be used
to model its spiking activity.

Neuron X was designed to be the “master neuron.” Spiking
activity in X was generated by a Poisson model with a total
length of T seconds and a rate of �X. For a fixed bin width 	,
the digitized sequence had n � T/	 samples and on average
k � �XT spikes. �X was chosen such that k �� n and that signal
X was sparse. Spikes in neuron Y were generated directly based
on the spikes in X, and therefore this synapse was excitatory. d
represented the delay between a spike in X and a spike in Y and
P(Yi � 1|xi�d � 1) the probability of one spike in X eliciting
one spike in Y, which quantified the strength of the synapse.
Some “jitter” was also introduced in Y’s spikes, and this
temporal variation was defined by a Gaussian random variable
w ~ N(0, �2). Some baseline level activity was added to Y,
which was defined by a Poisson process with rate �Y in
addition to the spikes induced by X. MATLAB implementation
of this model can also be found in our online repository.

In actual experiments, normalized DI Ĩ(X ¡ Y) � I
�
(X ¡

Y)/H
�

(Y) is preferred because it bounds the DI value between 0
and 1 as well as normalizing the information Y receives with
respect to the level of information in itself. Normalized DI was
used in the following results.

In the first example, we examined the effect of synaptic
strength on Ĩ(X ¡ Y) values. In this case, T � 600 s, 	 � 0.01

s, �X � 0.01, d � 0.05 s, and � �
1

�2
� � 0.007. Back-

ground activity of Y was suppressed by setting �Y 
 0.
P(Yi � 1|xi-d � 1) was varied from 0 to 1 with an increment
of 0.05. As expected, DI value increased with increased
synaptic strength as the baseline activity level in the post-
synaptic neuron was kept constant (Fig. 4A). Also note that
normalized DI was plotted and the jump at 0 was caused by
thresholding.

In the second example, we examined the effect of back-
ground activity level in Y on Ĩ(X ¡ Y) values. �Y was varied
from 0.001 to 10 while the synaptic strength P(Yi � 1|xi-d � 1)
was held constant at 0.8. Although the synaptic strength was
kept constant, DI value decreased as the baseline activity level
of Y increased (Fig. 4B), illustrating that DI is not solely
determined by synaptic strength. Indeed, DI quantifies the
amount of information flow from one neuron to another. DI
quantifies how much the information present in neuron Y can
be accounted for by the information in X. Therefore, if X
accounts for only a small portion of the spikes in Y, then DI
would be relatively small.

In the third example, we examined the effect of the variation
in the time course of the synaptic response on normalized
directed information. Let P(Yi � 1|xi-d � 1) � 0.8, and �Y 

0. � was increased from 0 to 0.02. It makes intuitive sense that
more variance in the distance between a pre- and a postsynaptic
spike made the pattern more unpredictable, and hence the
lower the DI value (Fig. 4C).

In the final example, we examined the effect of varying bin
width on Ĩ(X ¡ Y) in the presence of noise. Bin widths
between 1.5 ms and 30 ms were examined. When the synaptic
delay had 0 variance, different bin widths should not have any
influence on the normalized DI values, because each time a
presynaptic spike occurred CTM was sure to find a postsyn-
aptic spike exactly d/	 bins away. We demonstrated this by
setting P(Yi � 1|xi-d � 1) � 0.8 and � � 0 (Fig. 4D). Note that
the fluctuation in DI was caused by the artifact of binning an
already discretized signal. Then, we set � � 0.01 and 0.02. In
the presence of synaptic time course variation, however, as we
used smaller bin width 	, normalized DI became smaller as
well. Essentially, (d � w)/	 landed in more different patterns
as 	 decreased. This result illustrates that a small bin width is
not always desirable in order to detect a slow connection,
whose slower dynamics entails a greater range of variation in
the time course of its synaptic response.

Simulated neural networks. Next, we used the realistic
networks generated in the neurosimulator SNNAP (Simulator
for Neural Networks and Action Potentials) to further validate
CTM-DI. SNNAP has the ability to simulate each neuron with
a set of Hodgkin-Huxley-type conductance-based equations
and different types of chemical and electrical synapses with or
without plasticity (Av-Ron et al. 2006, 2008; Baxter and Byrne
2007; Ziv et al. 1994). This toolbox also has the ability to
introduce random noise into various components of the math-
ematical formulation such as the membrane leakage current
and the synaptic current. SNNAP has been used to model the
CPG in the buccal ganglion of Aplysia (Cataldo et al. 2006;
Susswein et al. 2002), and therefore it is a useful tool to check
the performance of our method. It is also worth noting that,
unlike the previous example, which is based on a linear spiking
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model, SNNAP can simulate realistic neural connections and
their activity. The Java-based SNNAP software, as well as all
the networks used in this section, can be found in the online
repository.

We began by testing our method using three simple circuits
without synaptic plasticity. For all three circuits, simulations
were 200 s in duration and neuron A was activated by a
depolarizing current (0.57 nA, 10 s) added at an interstimulus
interval of 10 s. The connectivity matrix detected by DI was
represented as a heat map. In this heat map, rows represent
presynaptic cells and columns represent postsynaptic cells.
Therefore, each entry of the matrix represents a connection
from the cell of the corresponding row to the cell of the
corresponding column. Warmer colors indicate excitatory con-
nections, whereas cooler ones indicate inhibitory connec-
tions (Fig. 5C). In the network of Fig. 5A1, DI correctly
distinguished the excitatory connection from the inhibitory
connection. The network of Fig. 5A2 contained a conver-
gence of a direct and an indirect path, and the method was
able to identify the correct connections without incorrectly
eliminating the disynaptic connection. In the network of Fig.
5A3, the four neurons formed a feedforward chain. The
method successfully predicted the appropriate connections
and eliminated all indirect connections that could possibly
arise from the long chain.

As a comparison, we applied the cross-correlogram method
on these three examples. The bin width of each network was

chosen to be the same as that used in the CTM-DI method, and
the total number of bins the cross-correlogram has was 2D �
1, where D was the maximum depth we used to initialize the
tree. A �2-test with a significance level of 0.01 was used to
detect significant relations. The strengths of the connections
were determined by Equation 6 in Shao and Tsau (1996), and
the directions of the connections were determined by the
locations of the peaks or troughs. The cross-correlogram per-
formed comparably on networks A1 and A2. However, on
network A3, the cross-correlogram failed to eliminate the
indirect connections AC and BD.

We next tested the effect of synaptic plasticity on DI.
Three different conditions were simulated in which the
plasticity was manipulated for synapse B to D: no plasticity,
with facilitation, and with depression. No other synaptic
connections within this network had plasticity. Sample sig-
nal traces from the simulations are shown in Fig. 6B.
Estimates of DI were made on spike trains with different
time resolutions (Fig. 6C). This example shows that the
method is able to correctly infer the network even in the
presence of synaptic plasticity (Fig. 6D). Note that intro-
ducing depression reduced the DI value but did not elimi-
nate it entirely in this connection.

We next tested the algorithm on a model of components
of a CPG circuit of Aplysia (Cataldo et al. 2006), which
simulates some of the neuronal activity underlying feeding
behavior. The model was slightly modified to simulate
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Fig. 4. Trends of normalized DI tested under the
sparse Poisson spiking model. Parameters such as
synaptic strength, background activity rate of the
postsynaptic neuron, amount of “jitter” for post-
synaptic spikes, and bin width were examined. A:
relationship between DI and varying levels of
synaptic strength. Synaptic strength was varied by
changing the probability of a postsynaptic spike
being elicited after a presynaptic spike. As pre-
dicted, DI value increases with a stronger synapse
when the baseline activity level in Y is kept
constant. B: relationship between baseline activity
level �Y of Y and DI. The value of DI decreases as
the baseline activity in Y increases. C: relationship
between the variance of the time course of the
synaptic action and DI. The value of DI is in-
versely related to the variance of the time course.
D: relationship between bin width and DI for
different levels of “jitter.” A large drop in DI can
be observed for � � 0.01 for small bin widths
(�3 ms). However, relatively small changes in DI
can be seen for bin widths � 10 ms. At � � 0, DI
remains high regardless of the size of the bin
width. E: sample spike trains generated by the
Poisson spiking model. �Y � 0.1 and other pa-
rameters are the same as the model in B.
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ingestion buccal motor patterns. The model included eight
known neurons: B4, B8, B34, B35, B51, B52, B63, and B64
(Fig. 7). This network contains excitatory and inhibitory
synaptic connections, many of which exhibit facilitation or
depression. Finally, some of these neurons contain regener-

ative properties that elicit recurrent spike activity that out-
lasts the excitatory input. All of these features are present in
the actual feeding CPG of Aplysia, and therefore this model
provides a comprehensive test for DI. White Gaussian noise
was introduced into the membrane leakage currents for all
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the method introduced in Reconstructing the
Synaptic Profile are attached to the DI values for
ease of visualization.
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cells and the synaptic currents for all synapses. Five trials of
simulations, each 2 min long, were generated. In this net-
work, 2 min of simulated data was sufficient for the algo-
rithm to converge. The algorithm correctly identified on
average 9.2 (5.6 � 3.6) key connections (Fig. 7B and Table
1), and, together with true negatives, DI correctly located or
rejected 41.4 of all 56 possible connections (diagonals
excluded). The number of false positives was on average
less than one synapse per trial. The number of false nega-
tives, however, was on average 12.4 (3.4 � 9) synapses per
trial. However, it is worth noting that seven of the unde-
tected synapses were weak connections: B64-B34, B52-
B64, B52-B51, B34-B8, B25-B4, B51-B52, and B4-B52.
When these connections were trimmed from the simulator,
the quality of the feeding pattern was not affected. This
possible simplification illustrates the importance of a func-
tional connectome, which identifies active information path-
ways that are in a subset of the anatomical connectome.
Three essential connections, B64-B51, B51-B64, and B4-
B64, went undetected throughout all five trials. The electri-
cal coupling between B64 and B51 might have been over-

looked by DI because the connection did not produce any
clear spike-to-spike relationship, which is a limitation of
this method. The inhibitory synapse B4-B64 was not de-
tected by DI presumably because the B4-B64 synaptic
connection did not have adequate strength to overcome the
strong regenerative properties of B64. There were on aver-
age 1.4 incorrect signs, all of which were inhibitory syn-
apses inferred to be excitatory. The B4-B51 synaptic con-
nection was a biphasic synapse with an early excitatory and
a later inhibitory component. The excitatory component
seemed to override the inhibitory component, leading DI to
infer an excitatory rather than inhibitory connection.

Mapping Connectivity of Recorded Neurons

After DI was tested on the simulated CPG network, DI was
applied to VSD recordings (Fig. 8). Neurons with �10 spikes
were excluded from the analysis. Bin widths ranging from 2 ms
to 30 ms were used to generate spike trains, on which DI was
applied. The DI algorithm detected many putative connections,
their signs (i.e., excitatory or inhibitory), and their relative
strengths of influence (Fig. 8C). Some of the detected connec-
tions were consistent with visual inspection, such as 2-1,
14-15, and 17-10, in which activity of one neuron seemed to
follow the activity of the other. The algorithm also revealed
some connections that would otherwise be difficult to observe,
such as 2-10, 3-5, and 8-27.

We next examined a general architectural feature of the
inferred network from the VSD recordings by determining
whether the recorded neurons could be categorized as either
sources or sinks. We compared the indegree and outdegree
for each neuron (Fig. 9B). In graph theory, indegree is the
number of incoming connections to a node, and outdegree is
the number of outgoing connections from a node (Chartrand
and Zhang 2012). Nodes with positive indegrees and 0
outdegrees are sinks, whereas those with positive outdegrees
and 0 indegrees are sources. Neurons either primarily sent
outgoing (e.g., 2, 8, 13, 14, 17, and 20) connections or
primarily received (e.g., 1, 7, 9, 22, and 23) connections,
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Table 1. DI performance on simulated CPG network

Trial

True (�) True (�)
Incorrect

Sign False (�) False (�)

E-E I-I N-N E-I I-E E-N I-N N-E N-I

1 6 4 32 1 0 0 1 3 9
2 5 4 31 1 0 2 0 4 9
3 5 5 32 1 0 1 0 4 8
4 6 2 33 2 0 0 0 3 10
5 6 3 33 2 0 0 0 3 9

Mean 5.6 3.6 32.2 1.4 0 0.6 0.2 3.4 9
SD 0.2 0.5 0.4 0.2 0 0.4 0.2 0.2 0.3

Letters with dashes indicate the DI detection � actual. For example, E-E
denotes that DI inferred an excitatory (E) connection and this connection was
indeed modeled as excitatory. I-N denotes that DI inferred an inhibitory (I)
connection between two neurons but no (N) connection was actually modeled
between these neurons.
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which suggests that information generally flows unidirec-
tionally in the network and that these sources and sinks are
specialized neurons and may be premotor and motor neu-
rons, respectively. This pattern of connectivity of neurons

will aid in identifying cells in the buccal ganglion network.
For example, neuron 20 makes many outgoing connections
and is located in a region of the ganglia where many pattern
initiator neurons are found.
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ration in Fig. 8. A: inferred connectivity dia-
gram. B: indegrees and outdegrees of neurons.
Neurons without any connections are not
shown. This graph shows neurons that pri-
marily receive connections (left) and those
that send out connections (right).
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DISCUSSION

Our method of exploiting the CTM entropy estimator to-
gether with DI can infer functional connectivity in small
realistic simulated neural networks. The CTM-based estimator
has the advantage of low computational complexity and fast
convergence, being nonparametric, as well as being able to
mitigate overfitting. We have shown that our implementation
of CTM can identify direct connections, eliminate indirect
connections, reliably distinguish excitatory from inhibitory
synaptic actions, and quantify the amount of information flow
from one neuron to another (Fig. 5). Furthermore, this infer-
ence technique based on DI is robust against signal nonlineari-
ties, which linear methods such as GC or estimates based on
the generalized linear model might not be able to capture. For
example, it is able to detect connections with facilitation or
depression (Fig. 6), which are common throughout invertebrate
and vertebrate nervous systems.

A sound CTM-DI theoretical framework requires the ob-
served sequences to be stationary. We believe this assumption
is valid, because in the VSD recordings the buccal motor
patterns are similar from one to the next and so the underlying
system appears to be stationary during the limited frame of the
analysis. The context tree method analyzes different contexts,
which are patterns, independently. Therefore, it is able to analyze
not only tonic activity but also phasic activity. The result of the
CTM-DI algorithm is the average strength taking into account all
the different spiking patterns in the recording window.

The CTM-DI based method has its own limitations. A
challenge for the DI-CTM approach is a combination of weak
connections and sparse activity. Many networks use spatial
summation of multiple weak connections (Adesnik et al.
2012); therefore, weak connections may be a fundamental
component of a network. Detecting weak connections is one of
the general disadvantages of using discrete time spike trains
that other analyses using point process-GLM-based GC and DI
encounter as well. Bin widths that are used to segment a
spiking signal into a binary spike train are small compared with
the interevent intervals of spikes. As a result, 0s predominate
the sequence. Maximum entropy is achieved when 0s and 1s
are equally likely. With predominantly 0s, the entropy of the
sequence is already low, and then any further drop in entropy
due to conditioning on another sequence will be negligible.
This problem could potentially be mitigated by dynamically
setting a baseline firing rate. Another limitation of our method,
as well as other methods analyzing binary spike trains, is the
difficulty in detecting inhibitory synapses, especially when the
postsynaptic cell is already inactive or is completely sup-
pressed. Such synapses, however, could have a significant
influence on the network despite not being detected by DI.
Strong inhibition and weak excitation are challenging for
statistical methods because they are based on spike trains that
do not reflect information on subthreshold excitatory or inhib-
itory postsynaptic potentials, which are all mapped to the value
0. Further developments of the DI method might include a
combination of spike train analysis and analysis of the analog
signals. Presynaptic inhibition is another challenge for pairwise
causality analysis, which requires conditioning on more than
one neuron.

Despite some limitations, the CTM-DI-based method has
practical advantages. It naturally turns its focus onto active

neurons that are generating information and playing an impor-
tant role in the network. It captures the salient, active commu-
nication pathways of a neural network. The method produced
promising results on the realistic Aplysia buccal CPG network.
DI correctly identified many connections in the CPG model
circuit with a relatively small false positive rate. We applied
the technique to the VSD recordings of the Aplysia buccal
ganglion and discovered some interesting putative functional
connectome structures. In a single recording this method iden-
tified 40 putative synaptic connections, a feat that would be
virtually impossible with pairwise intracellular electrodes. The
DI analysis suggested that neurons tended to be either sources
or sinks and rarely have an equal number of indegree and
outdegree connections. This finding indicates that the flow of
information in the feeding network tends to be unidirectional.
However, additional experiments are needed to confirm this
observation. It will be interesting to apply the technique to
ganglia before and after different forms of learning such as
operant and classical conditioning (Brembs 2003; Lechner et
al. 2000; Lorenzetti et al. 2006; Nargeot et al. 1999). DI has the
potential to identify distributed sites of plasticity and the ways
in which the circuit is reconfigured by learning. The results of
this study indicate that this method is highly versatile and
correctly infers the connectivity of networks containing many
different features in complex circuits. This versatility indicates
that this technique can also be applied to more complex
systems such as the vertebrate central nervous system.

APPENDIX A: SEQUENTIAL KT ESTIMATOR

Likelihood function P(yn|�) is modeled as a sequence of multivar-
iate Bernoulli variables with parameters � � (�0, ..., �|A|-1), where

�i � 0 and �i�0
M�1�i � 1. In a realization yn, the count for symbol

ai � A is denoted by ci for simplicity in notation and �i�0
|A|�1 � n. The

probability of this specific string yn being generated is

P�yn��� � �
i�0

�A��1

(�i)
ci (16)

A Dirichlet (
, . . ., 
) distribution is the prior, denoted by P(�|
)
where 
 is the hyperparameter:

P � (��
) �
�(
�A�)

�(
)�A� �
i�0

�A��1

�i

�1 (17)

where �(·) is the gamma function. Let us denote the estimated
probability generated specifically by the KT estimator by P̂. Then the
probability of the sequence is

P̂�yn� � P�yn�
� � 

�

P(��
)P(yn��)d�

�
�(
�A�)

�(
)�A�

(18)


0

1 
0

1��0 ...
0

1��0...���A��2 �
i�0

�A��2

�i
ci	
�1

� �1 � �0 ... ���A��2�c�A��1	
�1d��A��2 ... d�0 (19)

�
��
�A���i�0

�A��1 ��ci 	 
�
��
��A���n 	 
�A��

(20)

We express �|A|�1 � 1 � �0... ��|A|�2. � here is a |A|-dimensional
simplex. The integral in Eq. 19 is the multivariate beta integral. When

 � 1/2, this estimated probability evaluates to
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P̂(yn) �

���A�
2 ��i�0

�A��1 ��ci 	
1

2�
�

�A�
2 ��n 	

�A�
2 � (21)

Using the properties of the gamma function �(x) � (x � 1)�(x � 1)

as well as ��1

2� � ��, it is easily shown that

P̂(yn) �

���A�
2 ��i�0

�A��1 �ci � 1 	
1

2��ci � 2 	
1

2� · · · �1

2���1

2�
�

�A�
2 �n � 1 	

�A�
2 ��n � 2 	

�A�
2 � · · · ��A�

2 ����A�
2 �

(22)

which is exactly Eq. 6. Equation 21 also shows that P̂(�) � 1 (in this
case n and ci are 0).

APPENDIX B: INCORPORATING PENALTIES INTO RECURSIVE

MODEL FINDING

For the objective function defined by Eq. 9 in terms of code length
with total number of nodes as a trade-off

T̂�yn� � arg min
T�I

� log P̂T �yn� 	 ��S� 	 �u : u � s��log�A�
(23)

Take exp{�(·)} on both sides and we have

exp��T̂�yn�� � P̂T �yn�exp���S�log�A� � �u : u � s�log�A��
(24)

�� 1

�A��
�u:u�s�

· �
s��S�

P̂(yn�s) �
s��S�

�A���S� (25)

�� 1

�A��
�u:u�s�

· �
s��S�

1

�A�
P̂(yn�s) (26)

Therefore, it is clearly shown that a penalty factor of
1

|A|
is applied

to the estimate of each leaf. The term � 1

|A|�|u:u�s|

corresponds to the

penalty generated by all the inner nodes. While this term cannot be
factored into individual contexts, it can be understood this way: if
instead of the parent node the child nodes are kept as contexts, the
parent node still needs to be kept and hence 1 more node in addition

to the child nodes is added to the structure. Therefore, a factor of
1

|A|
is added to the product term in Eq. 10.

APPENDIX C: PROPERTY OF THE PROFILE ESTIMATOR

Proof of Theorem 1

Let Z be a new random variable with an alphabet of size 4
obtained by Z � 2X � Y, then P�Zn�Zn�1� � P�Zn�Zn�D0

n�1 �, wh-
ere D0 � max{DX, DY}. Let P(Zn|Zn�1) denote the true conditi-
onal probability of Z. Denote the KT estimate of the condit-
ional probability by P̂KT(Zn|Zn�1) and the maximum likelihood
(ML) estimate by P̂ML(Zn|Zn�1). We know that @k � {1,..., D0}

P̂(Yn � 1�Xn�i) � �
∀xn�k,k�i

∀yn�k

P̂KT(Yn � 1�Xn�D0

n�1 , Yn�D0

n�1 )
Ç

A

� P̂(Xn�D0

n�1 \ Xn�i, Yn�D0

n�1 �Xn�i)
Ç

B

(27)

First note that P̂KT�Yn � 1�Xn�D0

n�1 ,Yn�D0

n�1 � is obtained by taking the

marginal of P̂KT�Zn�Zn�D0

n�1 �, where for each a � Z

P̂KT(Zn � a�Zn�D0

n�1 ) � P̂ML(Zn � a�Zn�D0

n�1 ) (28)

�

c�a� 	
1

2

n 	
�A�

2

�
c(a)

n
(29)

�

1

2
(n � c(a) · �A�)

n2 	
�A�

2
n

(30)

As n ¡ �, Eq. 30 ¡ 0. Since the maximum likelihood estimate (MLE)
is asymptotically consistent, we have

P̂KT(Zn � a�Zn�D0

n�1 ) � P(Zn � a�Zn�D0

n�1 ) � �1→
n→�

0 (31)

The second term for Eq. 11 is calculated by

P̂(Xn�D0

n�1 \ Xn�i, Yn�D0

n�1 �Xn�i) �
c(Xn�D0

n�1 , Yn�D0

n�1 )

c(Xn�i)
(32)

where c(·) is the count function. If Zn is Markovian, Zn�1 � {Xn-i � 1}
is also Markovian. We then can use the typicality theorem for stationary,
irreducible Markov chains (Csiszár 2002). For a fixed-order D0, the
empirical frequency of a length D0 string tends to its true probability:

� P̂�Zn�D0

n�1 \ Xn�i�Xn�i�
P�Zn�D0

n�1 \ Xn�i�Xn�i�� 
 C� log log n

n
(33)

1 � C� log log n

n



P̂(Zn�D0

n�1 \ Xn�i�Xn�i)

P(Zn�D0

n�1 \ Xn�i�Xn�i)

 1 	 C� log log n

n
(34)

�P̂(Zn�D0

n�1 \ Xn�i�Xn�i) � P(Zn�D0

n�1 \ Xn�i�Xn�i)�

 C · P(Zn�D0

n�1 \ Xn�i�Xn�i)� log log n

n
(35)

Since P�Zn�D0

n�1 \Xn�i�Xn�i� is bounded by 1,

�P̂(Zn�D0

n�1 \ Xn�i�Xn�i) � P(Zn�D0

n�1 \ Xn�i�Xn�i)� � �2→
n→�

0 (36)

Putting everything together, we have

P̂�Yn � 1�Xn�i� � �
∀xn�k,k�i

∀yn�k

P̂KT(A) � P̂(B) (37)

� �
∀xn�k,k�i

∀yn�k

[P(A) 	 �1][P(B) 	 �2] (38)

� �
∀xn�k,k�i

∀yn�k

[P(A)P(B) 	 �1P(B) 	 �2P(A) 	 �1�2] (39)
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�P(Yn � 1�Xn�i) 	 �
∀xn�k,k�i

∀yn�k

[�1P(B) 	 �2P(A) 	 �1�2] (40)

and then

P̂(Yn � 1�Xn�i) � P(Yn � 1�Xn�i)
� �

∀xn�k,k�i

∀yn�k

[�1P(B) 	 �2P(A) 	 �1�2] (41)

�2(2D0�1)(�1 	 �2 	 �1�2) (42)

In most neural science applications, D0 is finite and does not grow
with n; therefore 2�2D0�1� 
 �. Because �1P(B), �2P(A), and �1�2 tend
to 0 as n ¡ �, the statement is proved.

APPENDIX D: ELIMINATING INDIRECT CONNECTIONS

Proof of Theorem 2

The first inequality can be easily shown, because we have Wn as a
common receptor.

I(Un → Wn) � H(Wn) � H(Wn � Un) (43)

�H(Wn) � �
i�1

n

H(Wi�W
i�1, Ui) (44)

�H(Wn) � ��
i�1

n

H(Wi�W
i�1, Ui, Vi) 	 �

i�1

n

I(Wi;V
i�Wi�1, Ui)�

(45)

�H(Wn) � H(Wn � Un, Vn) � �
i�1

n

I(Wi;V
i�Wi�1, Ui) (46)

We can expand I(Vn ¡ Wn) similarly:

I(Vn → Wn) � H(Wn) � H(Wn � Un, Vn) � �
i�1

n

I(Wi;U
i�Wi�1, Vi)

(47)

Then

I(Vn → Wn) – I(Un → Wn) � �
i�1

n

�I(Wi;V
i�Wi�1, Ui)

� I(Ui;Wi�W
i�1, Vi)

Ç
�0

� (48)

��
i�1

n

I(Wi;V
i�Wi�1, Ui) (49)

�0 (50)

The term I(Wi; Ui|Wi�1, Vi) � 0 because I(Un ¡ Un||Vn) � 0.
To show the second inequality, we express DI as a cumulative sum

of mutual information:

I(Un → Vn) � �
i�1

n

I(Ui;Vi�V
i�1) (51)

� �
i�1

n

I(Ui;Vi)

Ç
A

� �
i�1

n

I(Ui;Vi�1)

Ç
B

(52)

and

I(Un → Wn) � �
i�1

n

I(Ui;Wi)

Ç
C

� �
i�1

n

I(Ui;Wi�1)

Ç
D

(53)

A � �
i�1

n

I(Ui;Vi) � �
i�1

n

I(Ui;Wi, Vi) � �
i�1

n

I(Ui;Wi�Vi) (54)

��
i�1

n

I(Ui;Wi, Vi) � �
i�1

n

�H(Ui�Vi) � H(Ui�Vi, Wi)� (55)

��
i�1

n

I(Ui;Wi, Vi) � �
i�1

n

�H(Ui�Vi) � H(Ui�Vi)� (56)

��
i�1

n

I(Ui;Wi, Vi) (57)

Because Vi contains all the information in Wi, H(Ui|Vi, Wi) � H(Ui|Vi).
On the other hand,

C � �
i�1

n

I(Ui;Wi) � �
i�1

n

I(Ui;Vi, Wi) � �
i�1

n

I(Ui;Vi�Wi) (58)

Therefore,

A � C � �
i�1

n

I(Ui;Vi) � �
i�1

n

I(Ui;Wi) (59)

��
i�1

n

I(Ui;Vi�Wi) (60)

Now, we look at the remaining terms:

B � �
i�1

n

I(Ui;Vi�1) � �
i�1

n

I(Ui�1, Ui;V
i�1) (61)

� �
i�1

n

I(Vi�1;Ui�U
i�1)

Ç
�0

	 �
i�1

n

I(Vi�1;Ui�1) � �
i�1

n

I(Ui�1, Vi�1)

(62)

The reverse DI �i�1
n I�Vi�1;Ui�U

i�1� � I�Vn�1→Un� � 0 per problem
statement. Similarly,

D � �
i�1

n

I(Ui;Wi�1) � �
i�1

n

I(Ui�1, Wi�1) (63)

From Eq. 60 we know that

B � D � �
i�1

n

I(Ui�1;Vi�1) � �
i�1

n

I(Ui�1, Wi�1) (64)

��
i�1

n

I(Ui�1;Vi�1�Wi�1) (65)

Then,

I(Vn → Wn) � I(Un → Wn) (66)

�A � C � (B � D) (67)

��
i�1

n

I(Ui;Vi�Wi) � �
i�1

n

I(Ui�1;Vi�1�Wi�1) (68)

��
i�1

n

�I(Ui;Vi, Wi) � I(Ui;Wi) � I(Ui�1;Vi�1, Wi�1)

	 I(Ui�1;Wi�1)� (69)

��
i�1

n

�I(Ui;Vi, Wi�V
i�1, Wi�1) 	 I(Ui;Vi�1, Wi�1) � I(Ui;Wi�W

i�1)

�I(Ui;Wi�1) � I(Ui�1;Vi�1, Wi�1) 	 I(Ui�1;Wi�1)� (70)

��
i�1

n

I(Ui;Vi, Wi�V
i�1, Wi�1) � �

i�1

n

I(Ui;Wi�W
i�1) (71)

�I(Un → Vn, Wn) � I(Un → Wn) (72)

�0 (73)

Equation 71 follows from Eq. 70 because of Eq. 62. Therefore,
I(Vn ¡ Wn) � I(Un ¡ Wn) and I(Un ¡ Vn) � I(Un ¡ Wn).
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