
Inferring Packet Processing Behavior using Input/Output
Monitors

Danai Chasaki, Qiang Wu and Tilman Wolf
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA, USA

{dchasaki, qwu, wolf}@ecs.umass.edu

ABSTRACT

Programmable packet processors have replaced traditional
fixed-function custom logic in the data path of routers. This
programmability introduces new vulnerabilities in these sys-
tems that can lead to new types of network attacks. We
propose a modular packet processor monitoring technique
that can help in detecting and avoiding such attacks. Using
information about the processing time distribution of indi-
vidual modules, input/output traffic characteristics can be
inferred and abnormal behavior can be detected.

General Terms

Design, performance, security

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]:
Internetworking—Routers; C.2.0 [Computer-

Communication Networks]: General—Security and

protection

1. INTRODUCTION
Routers lie at the core of the network. Modern routers

need to support many new functions: advanced packet pro-
cessing, in-network services [4], etc. To achieve this level
of flexibility router implementations are based on network
processors. In recent years, the advances in the perfor-
mance of general-purpose multi-core processors has enabled
the development of routers with highly parallel, embedded
multi-processor systems-on-chip (MPSoCs) as integral com-
ponents. When the data path of routers was based on
application-specific integrated circuits (ASICs), it did not
present a potential target for attacks. With the use of pro-
grammable components in the data path, this premise has
changed. In the data plane of the network, where the ac-
tual network traffic is transmitted between end-systems and
routers, attackers may aim to eavesdrop on or intercept com-
munications. In our recent work, we have shown that vul-
nerabilities in the protocol processing functions of routers
can be exploited [2].

Defense mechanisms against such attacks have been pro-
posed in our previous work [1]. A limitation of this prior
work is the assumption that packet processing is a mono-
lithic processing operation. This assumption, however, does
not apply in practice. Due to the complexity of different
packet processing tasks implemented on a router, modular-
ity in processing is a necessity. Several approaches to mod-
ularity in packet processing have been proposed [3]. There-

fore, we need a solution that can support security in such a
modular router.

The monitoring approach we have developed previously
lends itself well for modular implementations as we show
below. Nevertheless, the use of independent monitors for
different processing modules poses a new type of security
challenge: How can be ensured that the overall operation
of a router across modules is correct? In particular, an at-
tacker may change the operation of a router such that indi-
vidual module monitors cannot detect an attack. Therefore,
it is necessary a comprehensive defense mechanism that can
protect modular router implementations from data path at-
tacks.

2. VERIFICATION IN THE DATA PATH
In this work, we present a modular technique for valida-

tion of a router’s correct operation by monitoring the “pro-
cessing” of each module, examining input/output flow char-
acteristics and correlating them with the processing time
spent on individual modules.

2.1 Protection Mechanisms
In previous work we have demonstrated the feasibility and

effects of such an attack in a real network setting. We imple-
mented it on the Click modular router [3] and on a custom
packet processor that has been built in our lab [5]. With
just one malicious packet we exploit an integer vulnerability
and manage to shut down all packet forwarding on the Click
router. On the custom packet processor, which is based on
the NetFPGA platform, the attack has a more devastat-
ing effect. A single attack packet absorbs the whole sys-
tem bandwidth, and can propagate the effect to downstream
routers as well. Clearly, there is a need to protect modern
software-based router designs. In this paper we discuss the
limitations of the solution we proposed in [1] and extend it
to a more thorough approach for data path protection.

One way to counter this type of attacks is to use pro-
cessing monitors which track the operations on the network
processor, as we proposed in [1]. The monitor can determine
if attacks occur because the processor’s operations deviate
from the operations that are valid – as determined by of-
fline analysis of the processing binary. In that work, we
effectively monitor the program execution as a whole.

However, due to vulnerabilities in the data path, we can
expect attacks at the protocol level as well. We can have a
situation where valid processing instructions are executed on
the network processor, but still the overall router behavior is
abnormal. For example, in the case of intentionally mislead-

1



ing routing information advertisement, a large amount of
multi-cast packets could be directed to the wrong router in-
terfaces. While observing the system’s operation as a whole,
we would detect incorrect packet flow behavior even though
monitoring the “processing” of the system would determine
that the program execution in an instruction-per-instruction
basis is correct.

Overall, the processing monitor approach works well, but
in terms of packet flow validation it is difficult to say any-
thing detailed about the behavior of a complex piece of code.
It can only be done at a level where rules are very lose. This
problem is closely related to the lack of modularity in the
processing monitor. Therefore, we propose a modular ap-
proach for verifying data-path processing.

2.2 Modular Verification
We develop a scalable solution which uses both a process-

ing monitor and a packet flow monitor per module. We refer
to Click as our example router architecture, because the sys-
tem is already divided in individual packet processing mod-
ules (elements). Different elements implement simple router
functions, which can be combined to one graph and build a
complete and extendable router configuration.

We are able to verify each module separately and thus
the system operation as a whole, by setting up and using
a processing monitor and an input/output monitor (packet
flow monitor) for every element. The power of this approach
lies in the users’ ability to combine modules into arbitrary
graphs where packets proceed along one path through the
graph. First, we can verify the execution path of every ele-
ment by using a processing monitor [1], that tracks all the
individual instructions executed on the processor while the
particular element is active. Secondly, we can profile the
processing time and delay that each packet encounters in
every element. These characteristics depend on the func-
tionality of each element and can help us determine if the
system encounters any unusual delays while processing the
packets. The way the modules are composed allows aggre-
gation of packet flow specification and thus verification of
router operation from port to port.

2.3 Port-to-Port Packet Flow
Assuming that we have n processing elements m1 . . .mn,

the overall functionality of the router is represented by a
graph connecting these elements. Graph G = (M,E) con-
sists of set of all elements, M , and set of directed edges,
E, indicating that transition of traffic between elements is
allowed. For simplicity of our discussion, we assume that
all packets enter processing at node m1 and leave processing
at node mn. Let α(mi) denote the arrival rate of traffic a
module mi. The departure rate at module mi is denoted by
δ(mi).

Problem statement: determine what the appropriate
δ(mn) of the router is. It should not be too low, which
would indicate too many drops; and not too high, which
would indicate denial of service attack.

Approach: Starting with α(m1) and based on the process-
ing time distribution of each and every node in the graph,
we compute the range of values of δ(mn).

To determine the characteristics of traffic at a node mi,
we determine all paths that can lead from the input to that
node. Let p(mi1

,mi2
, . . . ,mim) denote a path from mi1

to
mim . Figure 1 shows an example network configuration and

...

 

Figure 1: Validating packet flow on node m.

represents the introduced notation more clearly.
Let Pim be the processing time spent on node mim. The

total processing time on every path to node mi can be com-
puted by convoluting the processing time on all individual
nodes in that particular path: Pi = Pi1 ∗ Pi2 ∗ · · · ∗ Pim. If
path i receives an fi percentage of the total traffic rate then
the total processing time on that path is

∑
m

i=1
fi · Pi.

Overall, we can validate port-to-port packet flow by check-
ing if the following equality holds:

α(m1) ∗ (
m∑

i=1

fi · Pi) = δ(mn) (1)

Thus, the effect of the processing delay incurred on the
input traffic distribution by all intermediate modules is di-
rectly reflected on the output traffic distribution. By mon-
itoring this distribution, deviations from normal processing
behavior can be detected.

3. SUMMARY
In this work, we present a modular technique for valida-

tion of a router’s correct operation based on processor mon-
itoring. We track the processing time distribution of each
module and examine input/output traffic flow characteris-
tics. By correlating the input traffic distribution with the
processing time spent on individual modules, we can verify
if the output traffic distribution is the expected one.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. CCF-0952524.

4. REFERENCES
[1] Chasaki, D., and Wolf, T. Design of a secure packet

processor. In Proc. of ACM/IEEE Symposium on
Architectures for Networking and Communication Systems
(ANCS) (San Diego, CA, Oct. 2010).

[2] Chasaki, D., Wu, Q., and Wolf, T. Attacks on network
infrastructure. In Proc. of Twentieth IEEE International
Conference on Computer Communications and Networks
(ICCCN) (Maui, HI, Aug. 2011).

[3] Kohler, E., Morris, R., Chen, B., Jannotti, J., and

Kaashoek, M. F. The Click modular router. ACM
Transactions on Computer Systems 18, 3 (Aug. 2000),
263–297.

[4] Wolf, T. In-network services for customization in
next-generation networks. IEEE Network 24, 4 (July 2010),
6–12.

[5] Wu, Q., Chasaki, D., and Wolf, T. Implementation of a
simplified network processor. In Proc. of IEEE International
Conference on High Performance Switching and Routing
(HPSR) (Richardson, TX, June 2010).

2


