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ABSTRACT

Motivation: Time series expression experiments have emerged as a

popular method for studying a wide range of biological systems

under a variety of conditions. One advantage of such data is the

ability to infer regulatory relationships using time lag analysis.

However, such analysis in a single experiment may result in many

false positives due to the small number of time points and the large

number of genes. Extending these methods to simultaneously

analyze several time series datasets is challenging since under

different experimental conditions biological systems may behave

faster or slower making it hard to rely on the actual duration of the

experiment.

Results: We present a new computational model and an associated

algorithm to address the problem of inferring time-lagged regulatory

relationships from multiple time series expression experiments with

varying (unknown) time-scales. Our proposed algorithm uses a set of

known interacting pairs to compute a temporal transformation

between every two datasets. Using this temporal transformation

we search for new interacting pairs. As we show, our method

achieves a much lower false-positive rate compared to previous

methods that use time series expression data for pairwise regulatory

relationship discovery. Some of the new predictions made by our

method can be verified using other high throughput data sources

and functional annotation databases.

Availability: Matlab implementation is available from the

supporting website: http://www.cs.cmu.edu/�yanxins/regulation_

inference/index.html

Contact: zivbj@cs.cmu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

There are two primary sources for regulation inference from gene

expression data. The first is perturbation experiments which

usually knock out a gene and study the downstream

effects (Hughes et al., 2000; Peer et al., 2001; Yeang and

Jaakkola, 2003). The second is time series experiments in which

researchers use time-lagged correlations to search for regulatory

relationships (Balasubramaniyan et al., 2005; Qian et al., 2001;

Schmitt et al., 2004). While perturbation experiments can identify

direct regulators of the affected gene, the use of such experiments

is limited due to technical and biological reasons [for example,

20% of the yeast genes are essential (Tong et al., 2001)].
Time series expression data has been used to study a wide

range of biological systems in many different species

(Bar-Joseph, 2004). This type of data now accounts for over

40% of publicly available expression datasets (Ernst et al., 2005).

Unlike perturbation experiments which usually start with a single

perturbed gene, time series data implies a number of regulatory

interactions. Current methods using time series expression data

for inferring time-lagged regulatory relationships focus on a

single dataset in which the lag is assumed to be stationary.

However, the application of these methods to a dataset

containing measurements of thousands of genes over a relatively

small number of time points leads to a large number of false

positives. In such a dataset, many of the inferred regulatory

relationships may result from noise or from unrelated sources

(co-occurrence as opposed to activation, see Section 3).
A possible solution for this problem is to combine different

datasets (measuring the same set of genes under different

experimental conditions) and search for regulatory relationships

that are present in a subset of these datasets. However,

combining multiple datasets for this task is a non-trivial

problem. First, different pairs of genes usually have different

lags, even in the same dataset. For example, the lags may depend

on affinity properties of transcription factors (TFs). Second, for

a given pair, the actual time lag may differ between different

experiments since the timescale of the series data may change.

For example, using different arrest methods leads to very

different cell cycle durations in yeast (Spellman et al., 1998).

These different cell cycle durations translate to differences on the

molecular level which affect the time it takes a TF to activate the

genes it regulates (Aach and Church, 2001). Third, even for a

pair of genes displaying time-lagged regulation this relationship

might exist in only a subset of the datasets. For example,

different pathways may be activated under different conditions.
In some cases (for example, when studying just the cell cycle)

the differences in dynamics can be dealt with by looking for an

alignment between the experiments assuming a common

expression pattern for genes in all experiments. However,

when combining more diverse experiments (for example, cell*To whom correspondence should be addressed.
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cycle and stress experiments) such an assumption cannot hold

as shown in Figure 1.

Formally, in this article we consider the task of combining
diverse time series datasets for pairwise lagged regulatory

relationship inference. We formalize this problem as follows:

the input is a set of M datasets, each containing N time

series profiles of the same length for genes fG1, . . .,GNg.

In addition, we are given a subset, P, of pairs of genes:

P ¼ fhGaj ,Gbj i: j ¼ 1, . . .,Pg where aj, bj 2 f1, . . .,Ng. We
assume that we can associate an unknown, linear,1 timescale

factor, Ri ði ¼ 1, . . .,M Þ, with each of the datasets. We also

assume an unknown canonical lag dj ð j ¼ 1, . . .,PÞ for each of

the pairs pj 2 P. For each such pair pj, we model the expected

lag in dataset i as Ri dj.
Our goal is to infer the unknown parameters Ri and dj and

assign a value to an indicator variable, Zij. This variable is set

to 1 if there is a time-lagged regulation between the pair of

genes pj in dataset i and to 0 otherwise.
After presenting a formal model for this problem, we discuss

an expectation maximization (EM) algorithm for estimating

the model parameters. Once these parameters are known, the

prediction problem for each new pair can be carried out
independently.

We applied our algorithm to a set of 16 time series datasets

from yeast. These datasets measured several responses, includ-
ing different types of stress, cell cycle and DNA damage. As we

show in Section 3, the model learned by our algorithm was able

to classify pairs as interacting or not, achieving much better

accuracy than the current, single experiment-based, methods.

We have also analyzed new predictions made by our algorithm

and found that some of them are supported by other high
throughput datasets and by functional annotation databases.

1.1 Related work

There have been two primary computational approaches for
regulatory relationship inference from time series expression

data. The first used time lag analysis in a single dataset and the

second used correlation coefficients (implicitly assuming a fixed

delay in all experiments) to combine time series experiments.
Representative articles from the first (single experiment

based) approach include Qian et al. (2001) which searched a

cell cycle expression dataset for time-lagged and inverted

correlations using a local alignment algorithm. Schmitt et al.

(2004) applied a similar analysis to two highly sampled yeast

datasets (independently for each one). Balasubramaniyan et al.

(2005) used the Spearman rank correlation to compute the

time-lagged correlation between genes in a single time series

expression dataset. However, these methods cannot be directly

applied to the more general problem of combining data from

multiple datasets under different experimental conditions.

As for the second approach, Lee et al. (2004) used correlation

coefficients to combine a large number of human expression

datasets to search for correlated pairs. Mutual information

(Liu et al., 2005) is also widely used for determining regulatory

relationships. Liang (1998) used mutual information to infer

interactions and regulatory relationships between genes.

Zhao et al. (2006) aimed to predict regulatory relationships

using pairwise mutual information followed by an application

of the maximum description length (MDL) principle for model

selection. These methods assume a fixed time delay which

might not be true across different experimental conditions.

As mentioned above, the main difference between our method

and these previous methods is in the ability to infer regulatory,

time-lagged relationships from multiple time series datasets.

Our method combines the advantages of the first approach

(a more reasonable biological assumption about the lag

duration) with the advantages of the second approach (relying

on much more data) in a unified framework.
There have been a lot of recent interests in using various

types of graphical models to search for regulatory relationships

in expression and other types of data. For example, Ong et al.

(2002) used dynamic Bayesian networks (DBNs) to determine

regulatory relationships in a single E.coli time series dataset.

In order to use DBNs with more than one time series dataset,

one must determine a common time unit so that edges in the

network have the same meaning in both datasets. We are not

aware of any work that combined multiple time series datasets

using DBNs. We believe that the ratios learned by our

algorithm will be useful for such temporal mapping (see also

Section 4).
A number of recent articles presented methods for combining

time series datasets that study the same biological system.

Spellman et al. (1998) used the Fourier transform to determine

the phase of different cell cycle datasets and then combined them

to identify cycling genes. Aach and Church (2001) used dynamic
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Fig. 1. Expression profiles of a pair of genes in four time series experiments carried out under different conditions. Plots show the expression profiles

of the transcription factor SWI5 (dark curve) and the gene TEC1 (light curve). SWI5 is a known activator of TEC1 (Kato et al., 2004). While there is

a clear lagged regulatory relationship between this pair, the expression profiles of the genes between figures have no common expression pattern and

the actual lag is also different. The original data points for SWI5 and TEC1 are indicated by dark triangles and light circles, respectively.

1For gene expression data, the linearity assumption for scaling can be
justified (Bar-Joseph et al., 2003a). However, a more general problem
can also be stated using a more complex scaling function.
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programming to align two expression datasets. Bar-Joseph et al.

(2003a) used continuous alignment for the same purpose. All the

above methods assume that the expression of a gene in one

experiment can be transformed to its expression in another

experiment (by an appropriate temporal mapping). In contrast,

our method does not rely on such assumption. Thus, our

algorithm is the first to combine experiments under very different

conditions for the task of pairwise time-lagged regulation

inference.
There are a few other existing methods for analyzing time

series data which, while they have not been used so far in this

domain, can be applied to identify pairwise regulatory relation-

ships. In this article, we compare our results to two such

methods. The first, cross recurrence quantification method

(Marwan, 2003) constructs a binary recurrence matrix for any

two time series. Position i , j in the matrix is set to 1 if the distance

between the ith time point in the first series and the jth time point

in the second is below a certain threshold, otherwise it is set to 0.

The longest diagonal of ones in this matrix represents the best lag

assignment for this pair. The second method we compare to is

the multichannel singular spectrum analysis (MSSA) (Ghil et al.,

2002). This method calculates a lag-covariance matrix for each

pair of time series. Entry i , j in this matrix is the lagged

correlation coefficient between the first series starting at position

i and the second starting at position j (possibly truncated for one

of the series to ensure that both have the same length). While

these two methods search all possible time lags between two time

series, they do not utilize the relationships between different

conditions (for example, to infer a canonical lag d for a pair). In

addition, these methods treat each pair independently and

cannot use information from other pairs in the same condition.

1.2 Pairwise versus combinatorial interactions

The use of time-lagged analysis for gene expression data relies on a

number of assumptions. While these assumptions only hold for a

subset of the pairs, it is a large enough set so as to justify their use.

In addition, the results of our algorithms can be used as a pre-

processing step for a more detailed analysis as we discuss below.
In our model, the expression values of the TF are assumed to

represent their activation levels. This assumption ignores post-

transcriptional modification which may impact the activation

levels of a TF. However, as was shown by Segal et al. (2003), this

assumption does hold for many TFs and thus can be used for

recovering at least a subset of the regulatory relationships.
Another simplifying assumption is the pairwise relationship,

which ignores the combinatorial process that is used to regulate

a subset of the genes. However, there are many cases in which

these assumptions hold:

� Many biological pathways are linear, and pairwise inter-

actions have been shown to play an important role in many

biological systems (Qian et al., 2001). In addition, linear

pathways can be used to represent many regulatory

interactions (Yeang et al., 2004).

� Many combinatorial relationships involve an OR logic

which can be recovered by our method (Beer and Tavazoie,

2004).

� Our method provides important data pre-processing so

that more sophisticated combinatorial methods (such as

DBNs) can be used. These combinatorial methods often

rely on the assumption that timescales in training datasets

are the same and thus require the timescale mapping

learned by our method before they can be applied to

expression data.

2 A PROBABILISTIC ALGORITHM FOR
COMBINING TIME SERIES EXPRESSION
DATASETS

2.1 Multiple datasets tabular combination

(MDTC) model

We introduce the multiple datasets tabular combination

(MDTC) model. This model can be applied to infer pairwise

regulatory relationship between TFs and genes from multiple

time series microarray expression datasets collected under a

variety of experimental conditions. Figure 2a presents the

tabular representation of our model. Each column represents

a particular TF–gene pair, and each row (except the first)

represents a particular experimental dataset. The first row

represents the canonical lag dj for each pair. This parameter

allows us to associate different lags with different pairs. The

MDTC model associates four variables with each cell in the

table: the observed expression profiles for the TF and gene in

this cell (denoted by Tij and Gij, respectively), an indicator

variable Zij for the existence of a regulatory relationship

between this TF–gene pair in this dataset and, if Zij ¼ 1, the

actual lag (denoted by Dij) for this relationship. Both Zij and Dij

are unobserved. In addition, the MDTC model associates one

parameter with each row: the timescale factor Ri. Ri represents

the linear transformation required to translate the time unit of

one experiment to another.
Given the column and row parameters, the expected lag,

Expected Lagij, for each cell can be computed as the product of

the canonical lag for the TF–gene pair and the timescale factor

for this experiment, Ridj.
Figure 2b uses a graphical model to illustrate the

dependencies among variables in the MDTC model. Let TijðtÞ

and GijðtÞ denote the expression values of the TF and gene

of pair j in datasets i at time t, respectively, and let Li denote

the length of experiment i, � denote the model parameters

fRi, dj, ð�
D
i Þ

2, ð�G
i Þ

2
g ði ¼ 1, . . .,M; j ¼ 1, . . .,PÞ.

The conditional probabilities in our graphical model are

defined as follows. The probability of GijðtÞ conditioned on

fTij,Dij,Zij ¼ 1, �g is:

PðGijðtÞ jTij,Dij,Zij ¼ 1, �Þ

�
N ð0, ð�G

i Þ
2
Þ t 2 ½0,Dij�;

NðTijðt�DijÞ, ð�
G
i Þ

2
Þ t 2 ðDij,Li�;

(
ð1Þ

and the probability of GijðtÞ conditioned on

fTij, Dij, Zij ¼ 0, �g is:

PðGijðtÞ jTij, Dij, Zij ¼ 0, �Þ � N ð0, 1Þ; ð2Þ

Equations (1) and (2) reflect the key assumption in our model.

Gene regulation inference

757

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/6/755/417326 by U
.S. D

epartm
ent of Justice user on 17 August 2022



When Zij ¼ 1, the gene’s profile is a lagged noisy repeat

of the TF’s profile [Equation (1)]. The distance of this lag

is Dij. A Gaussian noise with variance ð�G
i Þ

2, is added to

this repeat. This noise represents the biological and experi-

mental noise that may lead to slight difference from

the expected expression level. We learn different values of �i
(noise levels) for different experiments, because our work

uses several expression datasets from different labs and

using different types of arrays (cDNAs, affy, etc.). Prior to

its activation by the TF (between time point 0 and Dij)

the gene’s profile is modelled as a Gaussian with zero mean

and the same variance. When Zij ¼ 0, the gene might be

either regulated by another TF or not activated. To reflect

this uncertainty, each point in the profile is modelled as

a Gaussian with zero mean and unit standard deviation

in Equation (2) (we initially normalize all profiles to

zero mean and unit standard deviation).

Based on Equations (1) and (2), we can derive the overall

dependency of the expression profile Gij on its parents by

integrating the probabilities:

PðGij jTij,Dij,Zij, �Þ

¼ exp

Z Li

t¼0

logPðGijðtÞ jTij,Dij,ZijÞ dt

� �
; ð3Þ

This equation models the probability of a gene’s profile as a

product (or sum in log space) of the probabilities of its values in

the individual time points.
Since we do not try to explain the profile of the TF in the

pair, equal probability is assigned to any TF profile:

PðTijðtÞ j �Þ � N ð0, 1Þ; ð4Þ

Again, the overall dependency of the expression profile Tij on

its parents can be obtained by:

PðTij j �Þ ¼ exp

Z Li

t¼0

logðPðTijðtÞÞÞ dt

� �
; ð5Þ

Note that, in Equations (3) and (5), we use integral to

represent the conditional probabilities of Gij and Tij. In

practice, we approximate this integral by uniformly sampling

at a high rate from a continuous representation of the profiles.

However, for the continuous representation we use there is a

general way to integrate the observation noise as described by

Bar-Joseph et al. (2003b). We have thus used this general

notation when presenting our model.

We model the conditional probabilities of lag Dij as follows:

PðDij jZij ¼ 1, �Þ � N ðExpected Lagij, ð�
D
i Þ

2
Þ; ð6Þ

PðDij jZij ¼ 0, �Þ � Uniformð0, LiÞ; ð7Þ

In Equations (6) and (7), when Zij ¼ 1 the actual lagDij is

assumed to follow a Gaussian distribution2 whose mean is

Expected Lagij which is equal to Ridj, and variance is ð�D
i Þ

2.

ð�D
i Þ

2 represents biological and experimental noise which may

lead to lags that are slightly different from the expected lag.

When Zij ¼ 0 no regulatory relationship exists for this pair.

Thus, the lagDij is not meaningful and any value in its range is

equally probable.
Finally, in Equation (8) we assign the same prior probability,

�, to every Zij. This prior can be determined by domain

knowledge about the expected number of interactions.

PðZij ¼ 1 j �Þ ¼ � ð8Þ

2.2 Learning the parameters of the MDTC model

We use an EM algorithm to estimate our model parameters,

� ¼ fRi, dj, ð�
D
i Þ

2, ð�G
i Þ

2
g ði ¼ 1, . . .,M; j ¼ 1, . . . ,PÞ, by seeking

to maximize the expected likelihood.

Timescale
factor

Experimental

conditions

TF–gene

pair 1

... TF–gene

pair P

1 Canonical

condition

d1 ... dP

R1 Condition 1 V1,1 ... V1,P

R2 Condition 2 V2,1 ... V2,P

... ... ... ... ...

RM Condition M VM,1 ... VM,P

(a)

ij ij 

ij  

α

i

j

MP

ij 

(b)

si
D

s i
G

R D

T G

Z

d

Fig. 2. The multiple datasets tabular combination model.

(a) Tabular representation. Vij ¼ fTij,Gij,Dij,Zijg, where Tij and

Gij are the expression profiles for the TF and gene in pair j

under condition i, respectively. Dij is the actual lag. Zij is a

binary variable indicating whether there is a regulatory relationship

in this cell. Ri is the timescale factor for condition i. dj is the

canonical lag for pair j. (b) Graphical model representation. See text for

details.

2Since the actual lag should be between zero and the length of the
profile, the distribution is in fact a truncated Gaussian distribution.
In practice, we did sample Dij according to this truncated distribution.
However, since the normalization term for this truncated Gaussian is
very close to 1, we ignored its effect when updating the parameters in
M-step.
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In the E-step, we calculate the expectation of the complete

log-likelihood listed below. The expectation is under the

distribution of the hidden variables given the observed variables

and the parameters. Namely:

EðLLÞ ¼
XM
i¼1

XP
j¼1

E ðlogPðGijjTij,Dij,Zij, �ÞÞ
�
þ E ðlogPðTijj�ÞÞ þ E ðlogPðDijjZij, �ÞÞ

þE ðlogPðZijj�ÞÞ
�

ð9Þ

where M is the number of experimental conditions (rows), and

P is the number of pairs (columns). This expectation is

intractable in that it contains the integral over the joint

distribution of Zij and Dij. We used Gibbs sampling to

approximate this expectation.

Dij is sampled from the conditional distribution,

PðDijjTij,Gij,Zij, �Þ, which is proportional to

PðGijjTij,Dij,Zij, �Þ � PðDijjZij, �Þ, where

P ðGijjTij,Dij,Zij ¼ 1, � Þ ¼ exp �
1

2ð�G
i Þ

2
� SE1

ijðDijÞ

 !

� exp Li � log
1ffiffiffiffiffiffi
2�

p
�G
i

 ! !
ð10Þ

P ðGijjTij,Dij,Zij ¼ 0, � Þ ¼ exp �
1

2
� SE0

ij

� �

� exp Li � log
1ffiffiffiffiffiffi
2�

p

� �� �
ð11Þ

where SE1
ijðDijÞ is a function of Dij representing the squared

error of the gene’s profile compared to its mean when Zij ¼ 1

[defined by Equation (1)]. Similarly, SE0
ij is the squared error

compared to zero which is the mean of the gene’s profile when

Zij ¼ 0 [defined by Equation (2)]. In practice, we approximate

the squared error by uniformly sampling a set of points on

the domain of the profile and calculating the weighted sum of

squared difference between two curves evaluated on these

points.
Zij is sampled from the conditional probability

PðZijjDij,Tij,Gij, �Þ, which is proportional to

PðGijjTij,Dij,Zij, �Þ � PðDijjZij, �Þ � PðZijj�Þ, where

PðGijjTij,Dij,Zij, �Þ can be calculated by Equations (10)

and (11).
In the M-step, we search for the parameters,

� ¼ fRi, dj, ð�
D
i Þ

2, ð�G
i Þ

2
g ði ¼ 1, . . .,M; j ¼ 1, . . .,PÞ, in order to

maximize the expected log-likelihood approximated in the

E-step. The final update rules, as well as their derivations are

presented in the supporting material due to lack of space.

Briefly, the update rule for ð�G
i Þ

2 can be computed in close form

using standard Gaussian MLE techniques. Unlike ð�G
i Þ

2, there

are no closed form rules for updating Ri, dj and ð�D
i Þ

2. We used

coordinate ascent to find approximate solutions for these

equations.
In our EM algorithm, we set the initial values of all timescale

factors Ri to be 1. The initial value of dj for TF–gene pair j is

either randomly sampled or set to be the average value of

lags corresponding to the maximum correlation scores in each

experiment for this pair. �D
i is initially set to be standard

deviation between lags corresponding to maximum correlation
scores (the initial values of dj). Finally, the initial value for �

G
i is

estimated from repeated experiments which are available in
many cases for time point 0.

For inference, we define a confidence score, confij, to be
the posterior probability of Zij given the observed variables,

PðZijjTij,Gij, �Þ. This posterior is approximated in the final

E-step by samples of Zij and Dij.
Interested readers are referred to our Supplementary

Material for a detailed derivation of MDTC model and
learning algorithm.

2.3 Predicting new pairs

Given a set of pairs and multiple datasets we can use the

algorithm presented in Section 2.2 to learn the model

parameters. Using these, we can employ an algorithm to
make predictions regarding new TF–gene pairs. Given a new

TF–gene pair, we construct a new table with only one column
for the new pair. Our iterative algorithm runs on this table

holding the learned parameters fRi, ð�
D
i Þ

2, ð�G
i Þ

2
g, fixed to

estimate the canonical lag d and the confidence scores (con fi)
for this new pair. Following convergence we threshold the

confidence scores to arrive at a prediction for each condition.

While the learning method may take a long time to converge
(�12 h for 500 training pairs in 16 experiments on a 3.2GHz

CPU), the prediction algorithm is very quick (a few seconds for
each pair) and is easy to parallelize making it possible to apply

our method to datasets with tens of thousands of genes

(for example, human time series expression data).
For a schematic illustration of our proposed algorithm,

please refer to our Supplementary Material.

3 RESULTS

3.1 Datasets and positive examples

We collected time series microarray expression data for the

yeast Saccharomyces cerevisiae under different experimental
conditions from two online databases (SMD and NCBI’s

GEO). After removing datasets containing56 time points we
ended up with 16 datasets. These datasets cover various

conditions including stresses, cell cycle using different arrest

methods and responses to DNA damage. The experiment
lengths range from 80 to 480min. These datasets are

summarized in supporting website. Most time series expression

datasets contain only a small number of time points which are
usually not uniformly sampled. As a pre-processing step we first

fitted splines, which were shown to provide a good fit for
this data (Bar-Joseph et al., 2003a), to the discretely sampled

values of each gene. Thus, our algorithm uses a continuous

representation of the time series expression profiles of genes.
Following spline assignment the original data is ignored. Next,

we normalized each continuous curve setting its mean to 0

and standard deviation to 1. This step helps in overcoming
differences in amplitude between TFs and the genes they

regulate. Finally, for computational convenience we rescaled

the profiles under every condition so that they have a unit
length. Although we alter the time unit in each experiment,

since we know the original length of each experiment we
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can easily reconstruct the actual timescale factors,
Riði ¼ 1, . . . ,M Þ.
Our TF–gene pair space is made of 184 TFs and 6229 genes

from S.cerevisiae. We have also extracted a set of 1039 known
interactions of TF–gene pairs. These interactions have been

manually curated from the literature (Lee et al., 2002) and are
denoted as ‘real pairs’ below. Our algorithm searches for both

activation and repression regulatory relationships. In order to
identify repression by a TF we carry out the same algorithm

described above using the inverted TF profile.

3.2 Timescale factors

To compute the parameters of our model, we randomly selected

500 pairs from the set of real pairs mentioned in Section 3.1,
and ran our algorithm to infer model parameters from these

500 real pairs.
One of the key problems in combining time series expression

datasets is the difference in timescale. The timescale factor, Ri,
learned by our proposed algorithm allows us to translate

a timescale in one experiment to a timescale in another
experiment. While this is useful for our purpose (inferring

lagged regulatory relationship), it can also be useful for other
types of expression analysis. For example, one can learn DBNs

from multiple expression datasets using this transformation.
We have thus tried to verify that the factors learned are indeed

meaningful.
As mentioned in the Section 1, there have been previous

attempts to compute such temporal transformations. While
these methods relied on a very different model (trying to align

the expression profiles of individual genes), it is interesting to
compare the results learned by our model and those previous

results. We have thus compared our timescale factors with
previous research on aligning cell cycle expression data.

Bar-Joseph et al. (2003b) reported cell cycle lengths for four
experimental conditions (CDC15, CDC28, Alpha and FKH1/2

knockout). Three of these datasets (CDC15, CDC28 and
Alpha) were also analyzed by Spellman et al. (1998) and these

two articles agreed on the cell cycle durations for these
experiments. All four experiments are present in our datasets.

Figure 3a shows the agreement between the timescale factors
learned by MDTC model and these previous studies. As can be

seen, the agreement is very good, indicating that our model is
able to learn reasonable timescale factors.

3.3 Predicting new TF–gene pairs

Using the prediction algorithm presented in Section 2.3, we can
predict whether a TF–gene pair has a regulatory relationship.

While the exact number of true TF–gene pairs in yeast is
unknown, it is unlikely that a gene will be bound by more than

10 TFs (Harbison et al., 2004). Since there are roughly 200 TFs
in yeast, a loose upper bound on the total number of interacting

TF–gene pairs is 5% of the total pairs. Thus, more than 95% of
random pairs represent negative examples. To test the ability

of our algorithm to identify TF–gene pairs, we first used
500 real-pairs to learn the model parameters. We next chose

another (non-overlapping) set of 500 real pairs and generated
9500 ‘random pairs’. We ran our prediction algorithm on every

pair in both sets (real and random). We used the threshold that

worked best for the initial set (S ¼ 0:5) to convert our

posteriors to binary values. In Figure 3b, we present a

precision–recall curve for different values of C (the number of

experiments in which a pair passes the threshold). We also

present six other precision–recall curves which are derived for

methods suggested in the past for inferring regulatory relation-

ships from time series expression data or for methods used to

analyze other types of time series data (see Section 1.1 for

detailed description of these methods). ‘Fixed lag’ is the method

in which we carried out a similar analysis to the MDTC model

except that we had all lags fixed to zero. This method is

designed to simulate correlation-based methods (Lee et al.,

2004). In ‘Fixed factor’, we run MDTC model except that we

fix all ratios to one. This method accounts for the methods that
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Fig. 3. (a) Comparison of the timescale factors learned by MDTC

model and cell cycle lengths reported by Bar-Joseph et al. (2003b) for

four different gene expression datasets. All the timescale factors and

lengths are divided respectively by the timescale factor and length of the

‘Alpha’ condition for rescaling. (b) Comparison of precision–recall

curves for seven different methods for regulatory relationship inference

from time series expression data. Recall is defined as the fraction of real

pairs that are correctly predicted (sum of correct predictions divided by

the total number of true interactions in the datasets). Precision is

defined as the fraction of correct predictions out of all predicted

interacting pairs (sum of correct predictions divided by the total

number of interactions identified by the algorithm).
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do not consider timescaling when combining multiple experi-

ments but still allow lags greater than zero. ‘Avg of single exp.’

uses the algorithm proposed by Qian et al. (2001) which

computes lagged regulatory relationships for individual experi-

ments. We averaged the precision–recall curves of the

individual experiments to obtain the final curve shown in

Figure 3b. ‘MSSA’ is the multichannel singular spectrum

analysis (Ghil et al., 2002). For this method we only looked at

the upper diagonal of the resulting matrix which corresponds

to cases in which the TF precedes the gene. ‘Mutual info.’

computes the mutual information with a delay of one time

point between the TF and gene. ‘Recurrence’ uses cross

recurrence quantification method (Marwan, 2003) to identify

the longest diagonal line for each pair. The cutoff value � for

entries in the matrix for this method was set to be 0.1 using

cross-validation. Similar to the way we converted posteriors to

binary values for our method we thresholded the scores for

these three methods to convert them to binary values (the cross-

validated thresholds are 0.6, 0.2 and 4 for MSSA, mutual

information and cross recurrence, respectively). The precision–

recall curves shown in Figure 3b are drawn as a function of C,

the number of experiments in which the value for each method

passed the threshold. As can be seen, our method that uses both

time-lagged analysis and multiple datasets outperforms all

other methods.
We note that the false-positive rate is based on the

assumption that all random pairs are negative. This is clearly

not the case. Indeed some of the highly scoring random pairs

can be verified using other types of data (see Section 3.4). The

low coverage (6% for a precision of 50%) can be explained

by a number of observations. First, the training data we used

to determine which pairs are real is based on small-scale

regulatory (binding) experiments. While these experiments

can confirm binding of a TF to a gene, this binding may

not represent actual activation or repression which is our

goal. Second, some TFs are activated post-translationally

making it hard to detect their regulatory roles from expression

data. Finally, not all conditions under which a particular pair

is interacting are included in our 16 datasets, and even

those that are included might not be present in high enough

number (we require a high value of C for inclusion in the

top 6%).
The fact that our method can accurately identify

even a small set of interacting pairs is an important

issue. While protein–DNA binding data is available for

yeast under some conditions, it is not available for most

TFs under most conditions. The pairs predicted by our

algorithm to be interacting along with the conditions in

which they were determined to be interacting can serve to

suggest new binding experiments for these conditions. Even

more importantly, our method can be readily applied to higher

organisms, including humans, where little direct binding

information exists.

3.4 Validating predicted TF–gene pairs

As mentioned above, some of the random pairs may actually be

real. To test the agreement between our predictions and other

high throughput biological data we have used two external

sources. The first is a set of protein–DNA binding experiments,

primarily in general growth (YPD) media (Harbison et al.,

2004), which provide binding P-value for each TF–gene pair

indicating their affinity. The second is the gene ontology (GO)

database, which annotates for TFs and genes the biological

processes in which they are involved. Figure 4a presents the

results of this analysis. As can be seen, the higher the

experiment cutoff (or the more experiments in which this pair

was predicted to display lagged regulatory relationship), the

more enriched the set of predicted pairs for both binding P-

values less than 0.005 and GO co-annotations. The fact that

only a few of the pairs are validated using the binding P-values

is the result of the conditions under which these experiments

were carried out. Most TFs were only profiled in YPD media.

In contrast, the majority of our time series experiments are

stress related, and so it is not surprising that many of the

predicted pairs are not found in YPD media.
Figure 1 shows the plots of four conditions with top

confidence scores for the SWI5�TEC1 pair which appears in
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Fig. 4. (a) Top: Proportion of random pairs with a binding P-value

50.005 as a function of cutoff, C. Bottom: Proportion of random pairs

sharing the same third level GO annotation for biological process as a

function of cutoff, C. (Proportions are calculated only for pairs whose

annotations are not missing.) (b) Venn diagram, showing the number of

pairs which are predicted to be interacting in each of the three different

groups of experimental conditions studied.
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our ‘random pair’ list, yet is predicted to be interacting by

our method. As reported by Kato et al. (2004), SWI5 was

determined to be an activator of TEC1 during the M/G1 cell

cycle phase. Therefore, this pair is an example of ‘random pair’

which is actually interacting. The apparently positive correla-

tion shown in Figure 1 is also a strong indication of the

regulatory relationship of SWI5�TEC1 pair.
Figure 5 shows the plots of two other TF–gene pairs detected

by our algorithm. While we were unable to find any reference

for their relationship, the strong correlated curves for

YBL054W�PPM2 and anti-correlated curves for

BAS1�KRE1 in many different experiments may indicate

that their relationships exist. Additional example pairs detected

by our algorithm can be found on our supporting website.

3.5 Common pathways in different

experimental conditions

The experiments we combined in our model can be divided

into three groups of experimental conditions. These include

stress (eight experiments), cell cycle (five) and DNA damage

(three). To test the relationships between these condition

groups, we looked at top scoring pairs in our data to see

under which conditions they were determined to interact.

Figure 4b summarizes these results. As can be seen, most pairs

appear in more than one group. This is partially due to the fact

that we required at least three experiments with high confidence

scores, and our analysis specifically looked for such pairs.
However, it is also apparent that some condition groups

share more pairs than others. Specifically, while stress and

DNA damage had 18 unique common pairs, and cell cycle and

DNA damage had 15, there were only 5 such pairs shared

between cell cycle and stress. This may indicate that pathways

that are activated in DNA damage response include general

stress response pathways and pathways related to cell cycle

(DNA repair). However, stress and cell cycle share a relatively

small number of pathways. This hypothesis is at least in part

supported by previous work. For example, the activation of the

DNA repair pathway as part of the cell cycle was noted by

Zhou and Elledge (2000). Similarly, various stress conditions

have been shown to arrest growth and decrease the activity of

cycling genes (McGrath-Morrow and Stahl, 2001). Our results

support these two conclusions and indicate that these common

responses are activated by a small set of TF–gene pairs.

4 CONCLUSIONS AND FUTURE WORK

In this article, we developed a probabilistic model to combine

multiple time series datasets for gene regulatory relationship

inference. The MDTC model learns a temporal transformation

between different datasets using an input set of potential

interacting pairs. Using this transformation it can assign

confidence scores to new pairs under each condition represent-

ing the posterior probability that the regulatory relationship

exists in that condition. Our results indicate that by combining

multiple datasets we can overcome problems associated with

time-lagged analysis of single experiments, most notably the

high false-positive rate. By being flexible with the time lag

of the regulatory relationship we can improve upon

correlation-based methods that assume a lag of zero.
As mentioned in Section 1, a limitation of our model is that

it only considers pairwise relationships, which could be one

explanation for the low coverage in Figure 3b. However, we

believe that the timescale factors learned by the proposed

algorithm can be used to extend our framework to consider

combinatorial relationships by converting time units in

different experiments to a common temporal scale, and then

using DBNs to explore combinatorial regulations.
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Fig. 5. Expression profiles of TFs and genes under different conditions. The x-axis is time and the y-axis is the expression level. (a) Expression

profiles of YBL054W and PPM2 under four different conditions. (b) Expression profiles of BAS1 and KRE1 under four different conditions.

Original data points for TFs and genes are indicated by dark triangle and light circle, respectively.
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