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Abstract We describe the reconstruction of a phylogeny for a set of taxa, with
a character-based cladistics approach, in a declarative knowledge representation
formalism, and show how to use computational methods of answer set programming
to generate conjectures about the evolution of the given taxa. We have applied
this computational method in two domains: historical analysis of languages and
historical analysis of parasite-host systems. In particular, using this method, we
have computed some plausible phylogenies for Chinese dialects, for Indo-European
language groups, and for Alcataenia species. Some of these plausible phylogenies are
different from the ones computed by other software. Using this method, we can easily
describe domain-specific information (e.g., temporal and geographical constraints),
and thus prevent the reconstruction of some phylogenies that are not plausible.
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1 Introduction

Cladistics (or phylogenetic systematics), developed by Willi Hennig [23–25], is the
study of evolutionary relations between species based on their shared traits. Rep-
resented diagrammatically, these relations can form a tree whose leaves represent
the species, internal vertices represent their ancestors, and edges represent the
genetic relationships between them. Such a tree is called a “phylogenetic tree” (or
a “phylogeny”). In this paper, we study the problem of reconstructing phylogenies
for a set of taxa (taxonomic units) with a character-based cladistics approach.1

In character-based cladistics, each taxonomic unit is described with a set of
“(qualitative) characters” – traits that every taxonomic unit can instantiate in a
variety of ways. The taxonomic units that instantiate the character in the same
way are assigned the same “state” of that character. Here is an example from [38].
Consider the languages English, German, French, Spanish, Italian, and Russian. A
character for these languages is the basic meaning of “hand”:

English German French Spanish Italian Russian
hand Hand main mano mano ruká

Since the English and German words descended from the same word in their
parent language, namely Proto-Germanic *handuz, by direct linguistic inheritance,
those languages must be assigned the same state for this character. The three
Romance languages must likewise be assigned a second state (since their words are
all descendants of Latin manus), and Russian must be assigned a third:

English German French Spanish Italian Russian
1 1 2 2 2 3

In character-based cladistics, after describing each taxonomic unit with a set of
characters, and determining the character states, the phylogenies are reconstructed
by analyzing the character states. There are two main approaches: one is based on
the “maximum parsimony” criterion [10], and the other is based on the “maximum
compatibility” criterion [6]. According to the former, the goal is to infer a phylogeny
with the minimum number of character state changes along the edges. With the
latter approach, the goal is to reconstruct a phylogeny with the maximum number of
“compatible” characters. Intuitively, a character is compatible if it evolves without
backmutation (i.e., it does not evolve from one state to another and then back to
the earlier state) or parallel evolution (i.e., if no state appears independently in
different lines of descent). Both problems are NP-hard [8, 20]. In this paper we
present a method for reconstructing a phylogenetic tree for a set of taxa, with the
latter approach.

Our method is based on the programming methodology called answer set pro-
gramming (ASP) [28, 33, 40]. It provides a declarative representation of the problem
as a logic program whose answer sets [21, 22] correspond to solutions. The answer
sets for the given formalism can be computed by special systems called answer set

1See [15] for a survey on the other methods for phylogeny reconstruction.
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solvers. For instance, cmodels,2 smodels,3 and dlv4 are some of the answer set
solvers that are currently available. Answer set solvers are similar to SAT solvers
in terms of speed, but they have a more expressive input language. In particular, they
allow recursive definitions, which may be used to describe trees – crucial to the work
presented here.

We apply our method of reconstructing phylogenies using ASP to historical
analysis of languages and to historical analysis of parasite-host systems.

Histories of individual languages give us information from which we can infer
principles of language change. This information is of interest not only to historical
linguists but also to archaeologists, human geneticists, and physical anthropologists.
For instance, an accurate reconstruction of the evolutionary history of certain lan-
guages can help us answer questions about human migrations, the time that certain
artifacts were developed, when ancient people began to use horses in agriculture
[31, 32, 39, 42].

Parasites occur worldwide, causing malnutrition, sickness, and even sometimes the
death of their hosts. Historical analysis of parasites gives us information on where
they come from and when they first started infecting their hosts. The phylogenies of
parasites, with the phylogenies of their hosts and with the geographical distribution
of their hosts, can be used to understand the changing dietary habits of a host species,
to understand the structure and the history of ecosystems, and to identify the history
of animal and human diseases. This information allows predictions about the age
and duration of specific groups of animals of a particular region or period and
the identification of regions of evolutionary “hot spots” [5] and thus can be useful
to assess the importance of specific habitats, geographic regions, and biotas – all
the plant and animal life of a particular region – and areas of critical genealogical
and ecological diversity [4, 5]. Identification of the most vulnerable members of
a community by this way allows us to make more reliable predictions about the
impacts of perturbations (natural or caused by humans) on ecosystem structure and
stability [4].

With this method, using the answer set solver cmodels, we have computed
33 phylogenetic trees for seven Chinese dialects based on 15 lexical characters,
and 45 phylogenetic trees for 24 Indo-European languages based on 248 lexical,
22 phonological, and 12 morphological characters. Some of these phylogenies are
plausible from the viewpoint of historical linguistics. We have also computed 21
phylogenetic trees for nine species of Alcataenia (a tapeworm genus) based on their
15 morphological characters, some of which are plausible from the viewpoint of
coevolution – the evolution of two or more interdependent species each adapting to
changes in the other, and from the viewpoint of historical biogeography – the study
of the geographic distribution of organisms.

We have also computed most parsimonious trees for these three sets of taxa,
using pars (available with phylip [16]). Considering also the most parsimonious
trees published in [37] (for Indo-European languages), [34] (for Chinese dialects),
and [26, 27] (for Alcataenia species), we have observed that some of the plausible

2http://www.cs.utexas.edu/users/tag/cmodels.html.
3http://www.tcs.hut.fi/Software/smodels/.
4http://www.dbai.tuwien.ac.at/proj/dlv/.

http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.tcs.hut.fi/Software/smodels/
http://www.dbai.tuwien.ac.at/proj/dlv/
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trees we have computed using the compatibility criterion are different from the most
parsimonious ones. This situation shows that the availability of our computational
method based on maximum compatibility can be useful for generating conjectures
that cannot be found by other computational tools based on maximum parsimony.

As for related work, one available software system that can compute phylogenies
for a set of taxa based on the maximum compatibility criterion is clique (available
with phylip), which is applicable only to sets of taxa where a taxonomic unit is
mapped to state 0 or state 1 for each character. This feature prevents us from
using clique to reconstruct phylogenies for the three sets of taxa mentioned above
because, in each set, some taxonomic unit is mapped to state 2 for some character.
Another system is the Perfect Phylogeny software of [38], which can compute
a phylogeny with the maximum number of compatible characters only when all
characters are compatible. Otherwise, it computes an approximate solution. In this
sense, our method is more general than the existing ones that compute trees based
on maximum compatibility.

Another advantage of our method over the existing ones mentioned above is that
we can easily include in the program domain-specific information (e.g., temporal and
geographical constraints) and thus prevent the reconstruction of some trees that are
not plausible.

We consider reconstruction of phylogenies as the first step of reconstructing the
evolutionary history of a set of taxa. The idea is then to reconstruct (temporal)
phylogenetic networks, which also explain the contacts (or borrowings) between
taxonomic units, from the reconstructed phylogenies. The second step is studied
in [12, 13, 36].

In the following, first we precisely describe the problem we address in this paper,
that is, the Maximum Compatibility Problem (Section 2), and we define answer sets
(Section 3). After describing the ASP programming methodology (Section 4), we
formulate the problem as a logic program (Section 5) and address the correctness
of the program (Section 6). After describing some useful heuristics to make the
computation more efficient (Section 7), we discuss how we compute phylogenies
in ASP and with respect to which assumptions, and how we evaluate the re-
sults (Section 8). Then we present the phylogenies reconstructed for Chinese dialects
(Section 9), for Indo-European languages (Section 10), and for Alcataenia species
(Section 11) and elaborate on their plausibility. We conclude with a comparison of
our approach to related work (Section 12). Proofs of theorems are presented in the
Appendix.

2 Problem Description

We use graphs to describe the problem of computing phylogenies. Therefore, we first
introduce some definitions related to graphs.

A directed graph (digraph) is an ordered pair 〈V, E〉, where V is a set and E is a
binary relation on V. In a digraph 〈V, E〉, the elements of V are called vertices, and
the elements of E are called the edges of the digraph. The out-degree of a vertex v

is the number of edges (v, u) (u ∈ V), and the in-degree of v is the number of edges
(u, v) (u ∈ V). A digraph 〈V ′, E′〉 is a subgraph of a digraph 〈V, E〉 if V ′ ⊆ V and
E′ ⊆ E.
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In a digraph 〈V, E〉, a path from a vertex u to a vertex u′ is a sequence v0, v1, . . . , vk

of vertices such that u = v0 and u′ = vk, and (vi−1, vi) ∈ E for 1 ≤ i ≤ k. If there is a
path from a vertex u to a vertex v, then we say that v is reachable from u. If V ′ is a
subset of V, a path from u to v whose vertices belong to V ′ is a path from u to v in V ′.
If there exists a path from u to v in V ′ , v is reachable from u in V ′.

A rooted tree is a digraph with a vertex of in-degree 0, called the root, such that
every vertex different from the root has in-degree 1 and is reachable from the root.
In a rooted tree, a vertex of out-degree 0 is called a leaf.

A phylogenetic tree (or phylogeny) for a set of taxa is a finite rooted binary
tree 〈V, E〉 along with two finite sets I and S and a function f from L × I to S, where
L is the set of leaves of the tree. The set L represents the given taxonomic units,
whereas the set V describes their ancestral units and the set E describes the genetic
relationships between them. The elements of I are usually positive integers (“in-
dices”) that represent, intuitively, qualitative characters, and elements of S are possi-
ble states of these characters. The function f “labels” every leaf v by mapping every
index i to the state f (v, i) of the corresponding character in that taxonomic unit.

For instance, Fig. 1 illustrates a phylogeny with I = {1, 2} and S = {0, 1}; f (v, i) is
represented by the ith member of the tuple labeling the leaf v.

A character i ∈ I is compatible with a phylogeny (V, E, L, I, S, f ) if there exists a
function g : V × {i} → S such that

(C1) For every leaf v of the phylogeny, g(v, i) = f (v, i);
(C2) For every s ∈ S, if the set

Vis = {x ∈ V : g(x, i) = s}
is nonempty, then the digraph 〈V, E〉 has a subgraph with the set Vis of vertices
that is a rooted tree.

A character is incompatible with a phylogeny if it is not compatible with that
phylogeny.

Note in the definition above that, for each character state s, the vertices in V
that are mapped to s by such a function g, form a tree. Such a tree provides an
explanation as to why the leaves mapped to the character state s by f have the
same state at character i: most probably these leaves have inherited the state s from
their common ancestor. Note also that, for each character state s, such a function g
models an evolution without backmutation or parallel evolution; this conforms with
the intuition behind the concept of compatibility mentioned in the introduction.

Fig. 1 A phylogeny for the
languages A, B, C, D

0 1
CA

0 0
B D

1 1 1 1
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For instance, Character 2 is compatible with the phylogeny of Fig. 1: take g to be
a function that maps every internal vertex to 1, and every leaf x to f (x). The vertices
labeled 1 by g form a tree; the vertices labeled 0 by g also form a tree. On the other
hand, Character 1 is incompatible: there is no way of labeling the internal vertices of
the tree so that the vertices labeled 1 form a tree and that the vertices labeled 0 form
a tree.

The computational problem we are interested in is as follows: Given the sets L, I,
S, and the function f , build a phylogeny (V, E, L, I, S, f ) with the maximum number
of compatible characters. This problem is called the maximum compatibility problem.
It is NP-hard even when the characters are binary [8].5

To solve the maximum compatibility problem, we consider the following problem:
given sets L, I, S, a function f from L × I to S, and a nonnegative integer n,
decide the existence of a phylogeny (V, E, L, I, S, f ) with at most n incompatible
characters.

We describe this decision problem as a logic program (Section 5) whose answer
sets correspond to such phylogenies. That is, the program has an answer set iff there
is such a phylogeny.

3 Answer Sets

The method we introduce in this paper is based on the answer set semantics of logic
programs [21]. In the following, we define the concept of an answer set for the kind
of programs considered in this paper.6

We begin with a set of propositional symbols, called atoms. Elementary formulas
are atoms and the 0-place connectives ⊥ and 
. Formulas are built from elementary
formulas by using the unary connective not (negation as failure) and the binary
connectives , (conjunction) and ; (disjunction). A rule is an expression of the form

Head ← Body (1)

where Head is an atom or ⊥, and Body is a formula.7 If Head = ⊥, we will drop the
head; rules with the head ⊥ are called constraints. A program is a set of rules.

We define when a set X of atoms satisfies a formula F (symbolically, X |= F)
recursively, as follows:

– For elementary F, X |= F if F ∈ X or F = 
,
– X |= not F if X �|= F,
– X |= (F, G) if X |= F and X |= G,
– X |= (F; G) if X |= F or X |= G.

5A slight modification of the problem is the perfect phylogeny problem, where the goal is to build a
“perfect” phylogeny, that is, a phylogeny (V, E, L, I, S, f ) according to which every character in I is
compatible. This problem is NP-hard [2].
6Answer sets are defined for programs of a more general form that may contain classical negation ¬
and disjunction [22] and nested expressions [29] in heads of rules as well.
7In [29], the syntax of rules is more general: the head may be an arbitrary formula, in particular a
disjunction.
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A set X of atoms is closed under a program � if, for every rule (1) in �, Head ∈ X
whenever X |= Body.

Let us first define the answer set for a program � that does not contain negation as
failure. We say that X is an answer set for � if X is minimal among the sets of atoms
closed under �. For instance, the set {p} is the answer set for the program consisting
of the single rule

p ← . (2)

Now consider a program � that may contain negation as failure. The reduct �X

of a program � relative to a set X of atoms is obtained from � by replacing every
maximal occurrence of a formula of the form not F in � (that is, every occurrence of
not F that is not in the scope of another not) with ⊥ if X |= F, and with 
 otherwise.
A set X of atoms is an answer set for � if it is the answer set for the reduct �X . For
instance, the reduct of the program

p ← not not p (3)

relative to {p} is also (2). Since {p} is the answer set for (2), {p} is an answer set for
program (3). Similarly, {} is an answer set for program (3) as well.

4 Answer Set Programming

The idea of answer set programming (ASP) [28, 33, 40] is to represent a computa-
tional problem as a logic program whose answer sets correspond to the solutions
of the problem and to find the answer sets for that program by using an answer
set solver.

When we represent a problem in answer set programming, two kinds of rules play
a major role: those that “generate” many answer sets corresponding to “possible
solutions” and those that can be used to “weed out” the answer sets that do not
correspond to solutions. For instance, rules (3) are of the former kind: they generate
the answer sets {p} and {}. Constraints are of the latter kind. For instance, adding the
constraint

← p

to a program, such as (3), eliminates the answer sets for the program that contain p.
In answer set programming, one can use special constructs of the form

{A1, . . . , An}c (4)

and of the form

l ≤ {A1, . . . , Am} ≤ u (5)

in programs, where each Ai is an atom; the nonnegative integers l and u (the “lower
bound” and the “upper bound”) are optional [40]. (See Lifschitz (unpublished draft),
[17] for more information on these constructs.) Programs using these constructs can
be viewed as abbreviations for programs in the sense of the previous section, from
[18]. For instance, the following program

{p}c ←
stands for program (3).
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Expression (4) describes subsets of {A1, . . . , An}. Such expressions can be used in
heads of rules to generate many answer sets. For instance, the answer sets for the
program

{p, q, r}c ← (6)

are arbitrary subsets of {p, q, r}.
Expression (5) describes the subsets of the set {A1, . . . , Am} whose cardinalities

are at least l and at most u. Such expressions can be used in constraints to eliminate
some answer sets. For instance, adding the constraint

← 2 ≤ {p, q, r}
to program (6) eliminates the answer sets for (6) whose cardinalities are at least 2.
Adding the constraint

← not (1 ≤ {p, q, r}) (7)

to program (6) eliminates the answer sets for (6) whose cardinalities are not at least 1.
Adding the constraint

← not ({p, q, r} ≤ 1) (8)

to program (6) eliminates the answer sets for (6) whose cardinalities are not at most 1.
In the following, the rules

{A1, . . . , Am}c ← Body
← not (l ≤ {A1, . . . , Am})
← not ({A1, . . . , Am} ≤ u)

will be abbreviated as

l ≤ {A1, . . . , Am}c ≤ u ← Body.

For instance, rules (6)–(8) can be written as

1 ≤ {p, q, r}c ≤ 1 ←
whose answer sets are the singleton subsets of {p, q, r}.

5 Describing the Problem as a Logic Program

We formalize the problem of phylogeny reconstruction for a set of taxa (as described
in Section 2) as a logic program. The inputs to this problem are

– a set L of leaves 0, . . . , k (k > 0), representing a set of taxa,
– a set I of (qualitative) characters,
– a set S of (character) states,
– a function f mapping every leaf, for every character, to a state, and
– a nonnegative integer n.

The output is a phylogeny (V, E, L, I, S, f ) for L with at most n incompatible
characters, if such a phylogeny exists.
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The logic program describing the problem has two parts. In the first part, rooted
binary trees whose leaves represent the given taxa are generated. In the second part,
the rooted binary trees with more than n incompatible characters are eliminated.

Part 1 In this part we generate rooted binary trees with the leaves L. In order to
determine whether a character is compatible with a given phylogeny, the names of
nonleaf vertices in V \ L are not important. What is important for compatibility
is the way in which the vertices are connected. (We illustrated compatibility and
phylogenies using Fig. 1, which did not even show the names of internal vertices.)
Therefore, we may choose an arbitrary set of names for vertices in V \ L. Even with
a fixed set of vertex and leaf names, however, many trees are isomorphic to each
other. For example, Fig. 2 shows a rooted binary tree with vertices V = {0, . . . , 6},
and we may change the names of the internal vertices to get five other isomorphic
trees. Since we are interested only in how vertices are connected in the rooted binary
trees, we need a way to represent all such isomorphic trees by a single tree. For that
we need the following definition.

An ordered binary tree 〈V, E〉 with the leaves L = {0, . . . , k} is a rooted binary
tree with the leaves L such that

(O1) V = {0, . . . , 2k},
(O2) For every edge (x, y) ∈ E, x > y, and
(O3) For any two internal vertices x and x1, x > x1 iff the maximum of the children

of x is greater than the maximum of the children of x1.

For example, Fig. 2 shows an ordered binary tree. The following proposition states
that no other ordered binary trees are isomorphic to it.

Proposition 1 For any rooted binary tree X with the leaves L = {0, . . . , k}, there is a
unique ordered binary tree with the leaves L that is isomorphic to X.

Proposition 1 allows us to represent isomorphic rooted binary trees canonically
with ordered binary trees. We generate ordered binary trees as follows.

From condition (O1), we take V = {0, . . . , 2k}. (In the rest of the paper, whenever
we refer to a set X of edges as a tree, we mean the tree 〈V, X〉.) Suppose that the
edges (x, y) of the ordered binary tree, that is, elements of E, are described by atoms
of the form edge(x, y). We describe E as follows.

Fig. 2 An ordered binary tree
with leaves L = 0, 1, 2, 3

0 1 2 3

5

6

4
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First the sets of atoms of the form edge(x, y) are “generated” by the rule

2 ≤ {edge(x, y) : y ∈ V, x > y}c ≤ 2 ← (x ∈ V \ L). (9)

Each set describes a digraph where there is an edge from every internal vertex to two
other vertices such that condition (O2) holds. Note that, because of the numbering
of the internal vertices above, the in-degree of Vertex 2k is 0. Therefore, Vertex 2k
is the root of the tree.

Then these generated sets of edges are “tested” with some constraints expressing
that the set describes a tree – (a) the set describes a connected digraph, and (b) the
digraph is acyclic – and with some constraints expressing that this tree is ordered,
that is, condition (O3) holds.

To describe (a) and (b), we “define” the reachability of a vertex y from vertex x
in 〈V, E〉:8

reachable(x, y) ← edge(x, y) (x, y ∈ V)

reachable(x, y) ← edge(x, z), reachable(z, y) (x, y, z ∈ V). (10)

For (a), we make sure that every vertex different from the root is reachable from
the root by the constraint

← not reachable(2k, x) (x ∈ V \ {2k}). (11)

For (b), we make sure that no vertex is reachable (over a path v0, . . . , vk (k ≥ 1))
from itself:

← reachable(x, x) (x ∈ V). (12)

For condition (O3), we first “define” maxchild(x, y) (“Child y of vertex x is larger
than the sister of y”)

maxchild(x, y) ← edge(x, y), edge(x, y1) (x, y, y1 ∈ V, y > y1) (13)

and make sure that a vertex x is larger than another vertex x1 if the largest child of x
is larger than that of x1:

← maxchild(x, y), maxchild(x1, y1) (x, x1, y, y1 ∈ V, y > y1, x < x1). (14)

Part 2 In this part we eliminate the rooted binary trees, generated by Part 1 above,
with more than n incompatible characters. To do so, we need the following definition
and proposition.

Let (V, E, L, I, S, f ) be a phylogeny. A character i ∈ I is g-incompatible with
(V, E, L, I, S, f ) for a function g : V × {i} → S if condition (C1) holds but condition
(C2) does not. For a function g : V × I → S, we will denote by Ig the set of characters
i ∈ I that are g-incompatible with (V, E, L, I, S, f ) for g |V×{i}.

8Since we need the concept of reachability to express that every vertex different from the root is
reachable from the root and that no vertex is reachable (over a path v0, . . . , vk (k ≥ 1)) from itself,
we define the reachable relation as the irreflexive transitive closure of the relation edge.
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Proposition 2 Let (V, E, L, I, S, f ) be a phylogeny. Then the following conditions
are equivalent:

– There exists a function g : V × I → S such that g |L×I= f and |Ig| ≤ n.
– The number of characters incompatible with the phylogeny (V, E, L, I, S, f ) is at

most n.

Proposition 2 allows us to identify the ordered binary trees 〈V, E〉, generated
by Part 1, with more than n incompatible characters, by checking whether the
number of g-incompatible characters for some function is greater than n. We describe
g-incompatible characters as follows.

According to condition (C1), g coincides with f , where the latter is defined:

g(x, i, s) ← (x ∈ L, f (x, i) = s, i ∈ I, s ∈ S). (15)

The internal vertices are labeled by exactly one state for each character by the rule

1 ≤ {g(x, i, s) : s ∈ S}c ≤ 1 ← (x ∈ V \ L, i ∈ I). (16)

By Proposition 1 of [12], condition (C2) can be equivalently expressed as follows:

(C2)′ For every s ∈ S, if the set

Vis = {x ∈ V : g(x, i) = s}
is nonempty, then there is a vertex ris ∈ Vis such that every other vertex in Vis

is reachable from ris in Vis.

Note that, among the vertices in Vis, vertex ris is the closest to the root of 〈V, E〉, that
is, ris is not reachable from any other vertex in Vis in 〈V, E〉. Therefore, instead of
describing that condition (C2) does not hold, we can describe that condition (C2)′
does not hold.

First, for each character i and for each state s such that Vis is not empty, we pick a
root x from Vis by the rule

{rootis(x, i, s)}c ← g(x, i, s) (x ∈ V, i ∈ I, s ∈ S). (17)

We make sure that exactly one root is picked by the constraints

← rootis(x, i, s), rootis(y, i, s) (x, y ∈ V, x �= y, i ∈ I, s ∈ S) (18)

← {rootis(x, i, s) : x ∈ V} ≤ 0, g(y, i, s) (y ∈ V, i ∈ I, s ∈ S) (19)

and that this root is not reachable from any other vertex y in Vis by the constraint

← rootis(x, i, s), g(y, i, s), reachable(y, x) (x, y ∈ V, x �= y, i ∈ I, s ∈ S). (20)

After defining the reachability of a vertex in Vis from the root

reachableis(x, i, s) ← rootis(x, i, s) (x ∈ V, i ∈ I, s ∈ S) (21)

reachableis(x, i, s) ← g(x, i, s), reachableis(z, i, s), edge(z, x)

(x, z ∈ V, i ∈ I, s ∈ S), (22)
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we define the g-incompatibility of a character i for g:

incompatible(i) ← g(x, i, s), not reachableis(x, i, s)

(x ∈ V, i ∈ I, s ∈ S). (23)

We make sure that there are at most n such g-incompatible characters for some
function g by the constraint

← n + 1 ≤ {incompatible(i) : i ∈ I}. (24)

To find a phylogeny with the minimum number of incompatible characters (and
thus, by Proposition 2, the minimum number of g-incompatible characters for some
function g), we need to find the minimum n such that the program above has an
answer set.

Note that, for the minimum n, constraints (19) and (20) are redundant and thus can
be dropped from the program above. In our experiments, we drop just constraint (19)
for a faster computation.

6 Correctness Properties of the Program

Let �1 be the program consisting of rules (9)–(14). The following proposition shows
that the answer sets for �1 describe ordered binary trees.

Let us denote by Ek the set of all atoms of the form edge(x, y) such that
0 ≤ y < x ≤ 2k. We will identify every edge (x, y) with the atom edge(x, y).

Proposition 3 For a set X of edges, X is an ordered binary tree with the set L =
{0, . . . , k} of leaves iff X can be represented in the form Z ∩ Ek for some answer
set Z for �1. Furthermore, every ordered binary tree with the set L of leaves can be
represented in this form in only one way.

Let �2 be the program consisting of rules (15)–(24). Given one of the ordered bi-
nary trees 〈V, E〉 generated by Part 1, a function f labeling the leaves of the tree, and
a nonnegative integer n, program �2 checks whether the phylogeny (V, E, L, I, S, f )
has at most n g-incompatible characters for some function g : V × I → S.

Indeed, let us consider the program �′
2 obtained from �2 by replacing con-

straint (20) with

← rootis(x, i, s), g(y, i, s)

(x, y ∈ V, x �= y, xis reachable from yin 〈V, E〉, i ∈ I, s ∈ S) (25)

and by replacing rule (22) with

reachableis(x, i, s) ← g(x, i, s), reachableis(z, i, s)

(x, z ∈ V, (z, x) ∈ E, i ∈ I, s ∈ S). (26)

Intuitively, �′
2 is the partial evaluation of �2 with respect to the tree 〈V, E〉 described

by �1.
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Proposition 4 A phylogeny (V, E, L, I, S, f ) has at most n g-incompatible characters
for some function g : V × I → S iff �′

2 has an answer set.

Let � be the program consisting of rules (9)–(24). The following theorem shows
that � correctly describes the maximum compatibility problem stated as a decision
problem.

Correctness Theorem for the Phylogency Program For a given input (L, I, S, f, n),
and for a set E of edges that is a rooted binary tree with the leaves L, E describes a
phylogeny (V, E, L, I, S, f ) with at most n incompatible characters iff E is isomorphic
to the ordered binary tree Z ∩ Ek for some answer set Z for �. Furthermore, for every
rooted binary tree X with the leaves L, there is only one ordered binary tree isomorphic
to X.

The proofs of Propositions 3 and 4 and the correctness theorem are based on the
splitting set theorem and use the method proposed in [14]. They are presented in the
Appendix.

7 Useful Heuristics

We can use the answer set solver cmodels with the phylogeny program described
above to solve small instances of the maximum compatibility problem. Larger
datasets, such as the Indo-European dataset (Section 10), require the use of some
heuristics.

7.1 Informative Characters

Sometimes the maximum compatibility problem for a given input (L, I, S, f, n) can
be simplified by making the set I of characters smaller. In particular, we can identify
the characters that would be compatible with any phylogeny constructed for the
given taxa. For instance, if every taxonomic unit is mapped to a different state at
the same character, that is, the character does not have any “essential” state,9 then
we do not need to consider this character in the computation. Similarly, if every
taxonomic unit is mapped to the same state at the same character, then the character
has only one essential state, and that character can be eliminated. Therefore, we can
consider just the characters with at least two essential states. Such a character will
be called informative because it is incompatible for some phylogeny. With this kind
of preprocessing, for instance, for Indo-European language groups, we have found
that, out of 275 characters, 21 are informative. After identifying the set of informative
characters, we consider I to be this set in the phylogeny program.

9Let (V, E, L, I, S, f ) be a phylogeny, with f : L × I → S. A state s ∈ S is essential with respect to
a character j ∈ I if there exist two different leaves l1 and l2 in L such that f (l1, j) = f (l2, j) = s.
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7.2 Partial Labelings

As described in [12], we can use partial labelings of vertices considering essential
states instead of a total one. To do so, we need to replace rule (16) by the rule

{g(x, i, s) : s ∈ ESi}c ≤ 1 ← (x ∈ V \ L, i ∈ I) (27)

where ESi denotes the set of essential states for the informative character i. This
heuristic, for instance, improves the computation time by a factor of 3 for the Indo-
European languages.

By the definition of a (partial) perfect network in [12], a character i is compat-
ible with respect to a phylogeny (V, E, L, I, S, f ) iff there is a partial mapping g
from V × {i} to S such that (V, E, ∅, g) is a partial perfect network built on the
phylogeny (V, E, L, {i}, S, f |L×{i}). Then, Propositions 4 and 5 from [12] ensure that
no solution is lost when the heuristics above are used in the reconstruction of a
phylogeny with the maximum number of compatible characters.

7.3 Propagating Labels Up

By condition (C2), every nonempty Vis forms a tree in 〈V, E〉. In each such tree, for
every pair of sisters x and y, such that x, y ∈ Vis, x and y are labeled for character i
in the same way as their parent is labeled. Therefore, to make the computation more
efficient, while labeling the internal vertices of the rooted binary tree in Part 2, we
can propagate common labels up.

For that, we modify the phylogeny program as follows. First we introduce the
atom g′(x, i, s) expressing that vertex x is mapped to state s at character i as a result
of propagation of states up the tree.

g′(x, i, s) ← (x ∈ V, f (x, i) = s, i ∈ I, s ∈ ESi)

g′(y, i, s) ← g′(x, i, s), g′(x′, i, s)
(〈y, x〉, 〈y, x′〉 ∈ E, x < x′, i ∈ I, s ∈ ESi) (28)

Then, for each informative character i, we identify the vertices x that are labeled by
this process of propagation.

marked(x, i) ← g′(x, i, s) (x ∈ V, i ∈ I, s ∈ ESi) (29)

After that we replace rules (15) with the rules

g(x, i, s) ← g′(x, i, s) (x ∈ V, i ∈ I, s ∈ ESi) (30)

and replace rules (27) with the rules

{g(x, i, s) : s ∈ ESi}c ≤ 1 ← not marked(x, i)
(x ∈ V \ L, i ∈ I).

(31)

Finally, we consider ESi instead of S in rules (17)–(23).
With these modifications, for instance, the computation time is improved by a

factor of 2 for the Alcataenia species.
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8 Computation and Evaluation of Phylogenetic Trees

We have applied the computational method described above to three sets of taxa:
Chinese dialects, Indo-European languages, and Alcataenia (a tapeworm genus)
species. Our experiments with these taxa are described in the following three
sections.

To compute phylogenies, we have used the answer set solver cmodels with the
programs describing a set of taxa, preprocessing of the taxa, and reconstruction of
a phylogeny. cmodels transforms them into a propositional theory [30] and calls a
SAT solver to compute the models of this theory. By the following proposition, these
models are identical to the answer sets for the given programs.10

Proposition 5 For a given input (L, I, S, f, n), program � is tight on every set of
atoms closed under �.

In our experiments, we have used cmodels (Version 3.55) with the SAT solver
zchaff (Version 2004.11.15) [35]. All problem instances used in these experi-
ments are available at http://people.sabanciuniv.edu/∼esraerdem/ASP-benchmarks/
cladistics.html. Performance from our experiments is summarized in Table 1. All
CPU times are in seconds, for a PC with a 733 MHz Intel Pentium III processor and
256 MB RAM, running SuSE Linux (Version 8.1). The computation time includes
the time spent by cmodels for transforming the input programs into a propositional
theory and the time spent by zchaff for finding a satisfying interpretation. The
instance size is described in terms of the number of atoms and the number of clauses
contained in the propositional theory obtained by cmodels from that instance.

For each taxa and a given integer n, we have computed all phylogenies with at
most n incompatible characters, iteratively with a script as follows: at iteration i,
compute the ith phylogeny with the input program using cmodels and then add to the
input program a constraint that prevents generation of the answer sets that describe
the ith phylogeny.

We can observe from Table 1 that the computation of a phylogeny for Alcataenia
takes more time compared to the computation of a phylogeny for Chinese dialects
and for Indo-European languages; this is due to the lack of domain-specific informa-
tion about Alcataenia.

With these problem instances, we have also tried the answer set solver smodels
(Version 2.32), and observed that cmodels performs better in terms of computation
time (e.g., a phylogeny for Chinese dialects cannot be computed by smodels in
several minutes). In the following, we present the computed trees in the Newick
format, where the sister subtrees are enclosed by parentheses. For instance, the tree
of Fig. 1 can be represented in the Newick format as ((A, B), (C, D)).

We compare the computed phylogenetic trees with respect to three criteria. First,
we identify the phylogenies that are plausible. For the Chinese dialects and Indo-
European languages, the plausibility of phylogenies depends on the linguistics and
archaeological evidence; for Alcataenia, the plausibility of the phylogeny we compute
depends on the knowledge of host phylogeny (e.g., phylogeny of the seabird family

10See [11] for more information on tight programs.

http://people.sabanciuniv.edu/~esraerdem/ASP-benchmarks/cladistics.html
http://people.sabanciuniv.edu/~esraerdem/ASP-benchmarks/cladistics.html
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Table 1 Experimental results
in terms of computation time
(in seconds) and input size

Taxa CPU time # of atoms # of clauses

Chinese dialects < 1 6,885 27,270
Indo-European languages < 2 8,480 30,635
Alcataenia species < 121 8,747 36,385

Alcidae), chronology of the fossil record, and biogeographical evidence. Since our
method is based on maximum compatibility, the second criterion is the number of
incompatible characters: the more the number of compatible characters, the better
the trees are. As pointed out in Section 1, we view reconstructing phylogenies as
the first step of reconstructing the evolutionary history of a set of taxonomic units.
The second step is then, to obtain a perfect (temporal) phylogenetic network from
the reconstructed phylogeny by adding some lateral edges, in the sense of [12, 13, 36].
Therefore, the third criterion is the minimum number of lateral edges (denoting
contacts such as borrowings) required to turn the phylogeny into a phylogenetic
network.

We also compare these trees to the ones computed by a maximum parsimony
method. Usually, in order to compare a set of trees with another set, “consensus
trees” are used. A consensus tree “summarizes” a set of trees by retaining compo-
nents that occur sufficiently often. We have used the program consense, available
with phylip [16], to find consensus trees.

9 Computing Phylogenetic Trees for Chinese Dialects

The computational method described above was used to reconstruct a phylogeny for
the Chinese dialects Xiang, Gan, Wu, Mandarin, Hakka, Min, and Yue. We have
used the dataset, originally gathered by Xu Tongqiang and processed by Wang Feng,
described in [34]. In this dataset, there are 15 lexical characters, and they are all
informative. Each character has two to five states. For some characters, their states
are presented in Table 2. After the inessential states are eliminated as explained in
Section 7, each character has two essential states.

Table 2 The character states of some informative characters for seven Chinese dialects: Xiang, Gan,
Wu, Mandarin, Hakka, Min, and Yue

Character Xiang Gan Wu Mandarin Hakka Min Yue

‘eat’ 1 1 1 1 2 2 2
‘egg’ 1 1 1 3 2 2 1
‘eye’ 1 1 1 1 2 2 1
‘feather’ 1 2 2 1 2 1 2
‘give’ 1 1 2 3 4 5 2
‘grease’ 1 2 1 3 2 2 2
‘know’ 1 1 1 2 2 2 2
‘say’ 1 3 2 2 1 1 1
‘what’ 3 1 4 1 2 1 2
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With this dataset, we have computed 33 phylogenies with six incompatible
characters, and we have found out that there is no phylogeny with fewer than six
incompatible characters. These phylogenies are presented in Table 3 in the Newick
format. One feature common to all these 33 phylogenies is that characters “feather”
and “what” are not compatible with respect to any of them.

The subgrouping of the Chinese dialects is not yet established. However, many
specialists agree that there is a Northern group and a Southern group. That is, for
the dialects we chose in our study, we would expect a (Wu, Mandarin, Gan, Xiang)
Northern grouping and a (Hakka, Min) Southern grouping. (It is not clear which
group Yue belongs to.) Phylogenies 15, 18, 23, 24, and 27 are more plausible than

Table 3 The 33 phylogenies computed for Chinese dialects Xiang, Gan, Wu, Mandarin, Hakka, Min,
and Yue, using cmodels

Phylogenies m

1 (Mandarin, (Wu, (Xiang, (Gan, (Yue, (Hakka, Min)))))) 3
2 (Xiang, (Gan, ((Wu, Mandarin), (Yue, (Hakka, Min))))) 3
3 (Mandarin, ((Wu, (Xiang, Gan)), (Yue, (Hakka, Min)))) 3
4 ((Wu, (Xiang, Gan)), (Mandarin, (Yue, (Hakka, Min)))) 3
5 (Hakka, (Min, (Yue, (Mandarin, (Wu, (Xiang, Gan)))))) 3
6 (Min, (Hakka, (Yue, (Mandarin, (Wu, (Xiang, Gan)))))) 3
7 (Min, (Hakka, (Yue, (Gan, (Xiang, (Wu, Mandarin)))))) 2
8 (Hakka, (Min, (Yue, (Gan, (Xiang, (Wu, Mandarin)))))) 2
9 (Xiang, (Gan, (Wu, (Mandarin, (Yue, (Hakka, Min)))))) 3
10 ((Xiang, Gan), ((Wu, Mandarin), (Yue, (Hakka, Min)))) 3
11 (Gan, (Xiang, (Wu, (Mandarin, (Yue, (Hakka, Min)))))) 3
12 (Hakka, (Min, (Yue, ((Xiang, Gan), (Wu, Mandarin))))) 3
13 (Gan, ((Xiang, (Wu, Mandarin)), (Yue, (Hakka, Min)))) 2
14 (Wu, ((Xiang, Gan), (Mandarin, (Yue, (Hakka, Min))))) 3
*15 ((Hakka, Min), (Yue, (Gan, (Xiang, (Wu, Mandarin))))) 2
16 ((Xiang, Gan), (Wu, (Mandarin, (Yue, (Hakka, Min))))) 3
17 (Wu, (Mandarin, (Xiang, (Gan, (Yue, (Hakka, Min)))))) 3
*18 ((Yue, (Hakka, Min)), (Mandarin, (Wu, (Xiang, Gan)))) 3
19 (Xiang, ((Wu, Mandarin), (Gan, (Yue, (Hakka, Min))))) 2
20 ((Wu, Mandarin), (Xiang, (Gan, (Yue, (Hakka, Min))))) 2
21 (Wu, (Mandarin, ((Xiang, Gan), (Yue, (Hakka, Min))))) 3
22 ((Wu, Mandarin), ((Xiang, Gan), (Yue, (Hakka, Min)))) 3
*23 ((Hakka, Min), (Yue, ((Xiang, Gan), (Wu, Mandarin)))) 3
*24 ((Yue, (Hakka, Min)), (Gan, (Xiang, (Wu, Mandarin)))) 2
25 (Gan, (Xiang, ((Wu, Mandarin), (Yue, (Hakka, Min))))) 3
26 ((Xiang, (Wu, Mandarin)), (Gan, (Yue, (Hakka, Min)))) 2
*27 ((Hakka, Min), (Yue, (Mandarin, (Wu, (Xiang, Gan))))) 3
28 (Yue, ((Hakka, Min), (Mandarin, (Wu, (Xiang, Gan))))) 3
29 (Yue, ((Hakka, Min), (Gan, (Xiang, (Wu, Mandarin))))) 2
30 (Mandarin, (Wu, ((Xiang, Gan), (Yue, (Hakka, Min))))) 3
31 (((Xiang, Gan), (Wu, Mandarin)), (Yue, (Hakka, Min))) 3
32 (Yue, ((Hakka, Min), ((Xiang, Gan), (Wu, Mandarin)))) 3
33 (Min, (Hakka, (Yue, ((Xiang, Gan), (Wu, Mandarin))))) 3

The ones marked with the symbol * are more plausible from the viewpoint of historical linguistics.
Each of these trees has six incompatible characters and requires m lateral edges to turn into a perfect
phylogenetic network.
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Fig. 3 A phylogeny computed
for Chinese dialects, using
cmodels

Hakka

WuMandarin

Xiang

Gan

Yue Min

the other phylogenies with respect to this hypothesis.11 One of these plausible trees,
Phylogeny 15, is presented in Fig. 3. Among these five phylogenies, Phylogenies
15 and 24 require at least two lateral edges (representing borrowings between Gan
and Wu, and between (Mandarin, Wu) and Min) to turn into a perfect phylogenetic
network; the others require at least three edges.

With the dataset above, we have constructed the five most parsimonious phyloge-
nies using the phylogeny reconstruction program pars. They are presented in Table 4.
We observe that none of these phylogenies is consistent with the hypothesis about
the grouping of Northern and Southern Chinese dialects.

Now let us compare the 33 trees of Table 3 with the 55 trees of [34] computed by
a method based on the maximum parsimony criterion of [19].

Using the program consense, we have computed the majority-consensus tree for
our 33 phylogenies:

((Yue, (Hakka, Min)), ((Gan, Xiang), (Wu, Mandarin))).

Both this tree and the majority-consensus tree for the 55 most parsimonious trees
of [34]

((Yue, (Hakka, Min)), (Wu, Mandarin, Gan, Xiang))

are consistent with the more conventional hypothesis above, grouping Yue with the
Southern dialects.

All of the 33 phylogenies we have computed using cmodels correspond to the
trees of Types I–III in [34]. Each of the remaining 22 trees (of Types IV and V) of
[34] has seven incompatible characters, but they have the same degree of parsimony
as the other 33 trees. This highlights the difference between a maximum parsimony
method and a maximum compatibility method.

11Based on recent evidence [1], Yue may well be the outgroup of all the other languages; then
Phylogenies 28, 29, and 32 would be plausible, too (but perhaps not as plausible as Phylogenies 15,
18, 23, 24, and 27).
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Table 4 Five most
parsimonious phylogenies for
Chinese dialects, computed
using pars

Phylogeny

1 ((Mandarin,Wu),((Yue,(Min,Hakka)),Gan),Xiang)
2 ((((Yue,(Min,Hakka)),Mandarin),Wu),Gan,Xiang)
3 (((Yue,(Min,Hakka)),(Mandarin,Wu)),Gan,Xiang)
4 (Mandarin,(Wu,((Yue,(Min,Hakka)),Gan)),Xiang)
5 (Mandarin,(((Yue,(Min,Hakka)),Wu),Gan),Xiang)

10 Computing Phylogenetic Trees for Indo-European Languages

We have applied the computational method described above to reconstruct a
phylogeny for the Indo-European languages Hittite, Luvian, Lycian, Tocharian A,
Tocharian B, Vedic, Avestan, Old Persian, Classical Armenian, Ancient Greek,
Latin, Oscan, Umbrian, Gothic, Old Norse, Old English, Old High German, Old
Irish, Welsh, Old Church Slavonic, Old Prussian, Lithuanian, Latvian, and Albanian.
We have used the dataset assembled by Don Ringe and Ann Taylor, with the advice
of other specialist colleagues. This dataset is described in [38].

There are 282 informative characters in this dataset. Out of 282 characters, 22 are
phonological characters encoding regular sound changes that have occurred in the
prehistory of various languages, 12 are morphological characters encoding details of
inflection (or, in one case, word formation), and 248 are lexical characters defined by
meanings on a basic word list. For each character, there are 2–22 states. Some of the
character states for some Indo-European languages are shown in Table 5.

To compute phylogenetic trees, we have considered as units the language groups
Balto–Slavic, Italo–Celtic, Greco–Armenian, Anatolian, Tocharian, Indo–Iranian,
Germanic, and the language Albanian; the seven language groups are shown in
Table 6.

For each language group, we have obtained the character states by propagating the
character states for languages up, similar to the preprocessing of [12]. For instance,
the languages Ancient Greek and Classical Armenian have State 2 at Character
“father.” These two languages have the same state because, most probably, they have
inherited this state from their parent. Therefore, we map proto-Greco–Armenian

Table 5 The character states of some informative characters for six Indo-European languages:
Ancient Greek, Old Church Slavonic, Old English, Old High German, Latin, and Old Persian

Character Ancient Old Old Old Latin Old
Greek Church English High Persian

Slavonic German

‘arm’ 3 6 8 8 10 13
‘beard’ 2 5 5 5 5 10
‘child’ 3 8 10 18 12 15
‘father’ 2 1 2 2 2 2
‘free’ 3 8 10 10 3 14
‘laugh’ 2 7 9 9 11 14
‘pour’ 3 6 14 14 14 9
‘tear’ 2 4 2 2 2 7
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Table 6 Seven Indo-European language groups

Proto-Language Subtree

proto-Anatolian (Hittite,(Luvian,Lycian))
proto-Tocharian (Tocharian A,Tocharian B)
proto-Italo–Celtic (((Oscan,Umbrian),Latin),(Old Irish,Welsh))
proto-Germanic (((Old English,Old High German),Old Norse),Gothic)
proto-Greco–Armenian (Ancient Greek,Classical Armenian)
proto-Balto–Slavic (((Lithuanian,Latvian),Old Prussian),Old Church Slavonic)
proto-Indo–Iranian ((Old Persian,Avestan),Vedic)

to State 2 at Character ‘father.’ After propagating character states up, we have
found out that grouping Baltic and Slavic makes one character incompatible, and
grouping Italic and Celtic makes six characters incompatible. (For the purposes of
this experiment we accept the Italo–Celtic subgroup as found in [38] largely on
the basis of phonological and morphological characters.) Other groupings do not
make any character incompatible. Therefore, we have not considered these seven
characters while computing a phylogenetic tree, since we already know that they
would be incompatible with every phylogeny.

Then, we have identified the characters that would be compatible with every
phylogeny built for these seven language groups and the language Albanian. For
instance, Character “child” is compatible with any phylogeny because it does not
have any essential state: every language group is mapped to a different state. By
eliminating such characters, as explained in Section 7, we have found out that, out
of 282 − 7 = 275 characters, 21 characters are informative. Out of those 21, two are
phonological (P2 and P3) and one is morphological (M5). Each character has 2–3
essential states.

While computing phylogenetic trees for the seven language groups and the
language Albanian, we have ensured that each tree satisfies the following domain-
specific constraints:

1. Anatolian is the outgroup for all the other subgroups; within the residue,
Tocharian is the outgroup.

2. Within the residue of that, Italo–Celtic, and possibly Albanian are outgroups,
but not necessarily as a single clade.

3. Albanian cannot be a sister of Indo–Iranian or Balto–Slavic.

The domain-specific information above can be formalized as constraints. For
instance, we can express that Anatolian is the outgroup for all the other subgroups
by the constraint

← not edge(2k, 6)

where 2k is the root of the phylogeny and 6 denotes proto-Anatolian.
Another piece of domain-specific information is about the phonological and

morphological characters. The phonological and morphological innovations (except
the phonological characters P2 and P3) considered in the dataset are too unlikely
to have spread from language to language, and independent parallel innovation is
practically excluded. (The only qualification involves the phonological characters P2
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Table 7 Abbreviations for
some Indo-European
(proto-)languages

(Proto-)Language Abbreviation

proto-Anatolian AN
proto-Tocharian TO
proto-Italo–Celtic IC
proto-Germanic GE
proto-Greco–Armenian GA
proto-Balto–Slavic BS
proto-Indo–Iranian IIR
Albanian AL

and P3, because it has been claimed that those sound changes might have spread
through an already differentiating dialect continuum.) Therefore, while computing
phylogenetic trees, we have also ensured that all morphological characters and
all phonological characters, except P2 and P3, are compatible with them. This is
achieved by adding to the program the constraint

← incompatible(i) (i ∈ I ∩ MP)

where MP is the set of all morphological and phonological characters except P2
and P3.

With 21 informative characters, each with two to three essential states, we have
computed 45 phylogenetic trees for the seven language groups above and the
language Albanian. Phylogenies 1–45 can be divided into three groups: 1–6 in Group
1, 7–39 in Group 2, and 40–45 in Group 3. These trees are shown, in the Newick
format, in Tables 8, 9, and 10. In these tables, abbreviations are used for proto-
Balto–Slavic, proto-Italo–Celtic, proto-Greco–Armenian, proto-Anatolian, proto-
Tocharian, proto-Indo–Iranian, proto-Germanic, and the language Albanian, as
shown in Table 7.

In Group 1, the trees are of the form

(AN, (TO, (AL, (IC, (a tree formed for GE, GA, BS, IIR))))).

In this group the least likely tree is Phylogeny 3 because it puts BS and GA
together; Phylogeny 4 is also a little odd because it puts GE and GA together. (There
seems to be no good evidence of shared innovations between GA and those subtrees

Table 8 Phylogenies 1–6 computed for Indo-European languages, using cmodels

Phylogeny n m

*1 (AN, (TO, (AL, (IC, (GE, (GA, (IIR, BS))))))) 17 3
*2 (AN, (TO, (AL, (IC, (GE, (BS, (IIR, GA))))))) 18 3
3 (AN, (TO, (AL, (IC, (GE, (IIR, (BS, GA))))))) 19
4 (AN, (TO, (AL, (IC, ((IIR, BS), (GA, GE)))))) 20
*5 (AN, (TO, (AL, (IC, ((IIR, GA), (BS, GE)))))) 20 >3
*6 (AN, (TO, (AL, (IC, (GA, (GE, (IIR, BS))))))) 20 3

The ones marked with the symbol * are plausible from the viewpoint of historical linguistics. Each
phylogeny has n incompatible characters, and each plausible phylogeny requires m lateral edges to
turn into a perfect phylogenetic network.
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Table 9 Phylogenies 7–39 computed for Indo-European languages, using cmodels

Phylogeny n m

*7 (AN, (TO, (IC, ((GE, AL), (GA, (IIR, BS)))))) 16 3
*8 (AN, (TO, (IC, ((GE, AL), (BS, (IIR, GA)))))) 17 3
*9 (AN, (TO, (IC, (GE, (AL, (GA, (IIR, BS))))))) 17 3
*10 (AN, (TO, (IC, (AL, (GE, (GA, (IIR, BS))))))) 17 3
*11 (AN, (TO, (IC, (GE, (GA, (AL, (IIR, BS))))))) 17 3
*12 (AN, (TO, (IC, (GE, ((IIR, BS), (GA, AL)))))) 17 3
*13 (AN, (TO, (IC, (AL, (GE, (BS, (IIR, GA))))))) 18 3
14 (AN, (TO, (IC, ((GE, AL), (IIR, (BS, GA)))))) 18
*15 (AN, (TO, (IC, (GE, (BS, (IIR, (GA, AL))))))) 18 > 3
*16 (AN, (TO, (IC, (GE, (AL, (BS, (IIR, GA))))))) 18 3
*17 (AN, (TO, (IC, (GE, (BS, (AL, (IIR, GA))))))) 18 > 3
18 (AN, (TO, (IC, (AL, (GE, (IIR, (BS, GA))))))) 19
*19 (AN, (TO, (IC, ((IIR, GA), (BS, (GE, AL)))))) 19 > 3
*20 (AN, (TO, (IC, (GE, (IIR, (BS, (GA, AL))))))) 19 > 3
21 (AN, (TO, (IC, (GE, (AL, (IIR, (BS, GA))))))) 19
22 (AN, (TO, (IC, ((IIR, BS), (GA, (GE, AL)))))) 19
*23 (AN, (TO, (IC, (GA, ((IIR, BS), (GE, AL)))))) 19 3
24 (AN, (TO, (IC, (GE, (IIR, (AL, (BS, GA))))))) 19
*25 (AN, (TO, (IC, (AL, ((IIR, GA), (BS, GE)))))) 20 > 3
*26 (AN, (TO, (IC, ((GA, AL), (GE, (IIR, BS)))))) 20 3
*27 (AN, (TO, (IC, ((BS, GE), (AL, (IIR, GA)))))) 20 > 3
*28 (AN, (TO, (IC, ((IIR, GA), (AL, (BS, GE)))))) 20 > 3
*29 (AN, (TO, (IC, (GA, (GE, (AL, (IIR, BS))))))) 20 3
30 (AN, (TO, (IC, (IIR, (GA, (BS, (GE, AL))))))) 20
*31 (AN, (TO, (IC, (GA, (IIR, (BS, (GE, AL))))))) 20 3
*32 (AN, (TO, (IC, ((GA, GE), (AL, (IIR, BS)))))) 20 3
33 (AN, (TO, (IC, (IIR, ((BS, GA), (GE, AL)))))) 20
*34 (AN, (TO, (IC, ((BS, GE), (IIR, (GA, AL)))))) 20 > 3
*35 (AN, (TO, (IC, (AL, ((IIR, BS), (GA, GE)))))) 20 3
*36 (AN, (TO, (IC, ((IIR, BS), (AL, (GA, GE)))))) 20 3
*37 (AN, (TO, (IC, (AL, (GA, (GE, (IIR, BS))))))) 20 3
*38 (AN, (TO, (IC, (GA, (AL, (GE, (IIR, BS))))))) 20 3
*39 (AN, (TO, (IC, ((IIR, BS), (GE, (GA, AL)))))) 20 3

The ones marked with the symbol * are plausible from the point of view of historical linguistics. Each
phylogeny has n incompatible characters, and each plausible phylogeny requires m lateral edges to
turn into a perfect phylogenetic network.

that are not also shared by other subtrees.) In this group, Phylogeny 1 is marginally
better than the others.

In Group 2, the trees are of the form

(AN, (TO, (IC, (a tree formed for GE, GA, BS, IIR, AL)))).

In this group, most of the trees look reasonable; again, the least likely are the ones
that put GA and BS together (namely, Phylogenies 14, 18, 21, 24, and 33). Also a
little odd are Phylogeny 22 (which puts GA and (GE, AL) together) and Phylogeny
30 (which puts GA, BS, and (GE, AL) in a clade together against IIR). In this group,
Phylogeny 7, shown in Fig. 4, is marginally better than any of the other 44.
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Table 10 Phylogenies 40–45 computed for Indo-European languages, using cmodels

Phylogeny n m

*40 (AN, (TO, ((GE, (GA, (IIR, BS))), (AL, IC)))) 17 3
*41 (AN, (TO, ((GE, (BS, (IIR, GA))), (AL, IC)))) 18 3
42 (AN, (TO, ((GE, (IIR, (BS, GA))), (AL, IC)))) 19
*43 (AN, (TO, ((GA, (GE, (IIR, BS))), (AL, IC)))) 20 3
*44 (AN, (TO, (((IIR, GA), (BS, GE)), (AL, IC)))) 20 > 3
45 (AN, (TO, (((IIR, BS), (GA, GE)), (AL, IC)))) 20

The ones marked with the symbol * are plausible from the viewpoint of historical linguistics. Each
phylogeny has n incompatible characters, and each plausible phylogeny requires m lateral edges to
turn into a perfect phylogenetic network.

In Group 3, the trees are of the form

(AN, (TO, ((AL, IC), (a tree formed for GE, GA, BS, IIR)))).

In this Group 3, it is the same story: Phylogeny 42 is not very plausible because it puts
BS and GA together, and Phylogeny 45 is odd because it puts GA and GE together.
Phylogeny 40 is marginally better than the other trees in this group, strictly by the
numbers.

In summary, out of the 45 phylogenies computed by using cmodels, 34 are iden-
tified by Don Ringe as plausible from the viewpoint of historical linguistics. Figure 4
shows the most plausible one with 16 incompatible characters. This phylogeny is
identical to the phylogeny presented in [38], which was computed with a greedy
heuristic using the Perfect Phylogeny software and was used in [12, 13, 36] to build a
perfect phylogenetic network for Indo-European.

proto–Germanic

proto–Tocharian 

proto–Anatolian

proto–

proto–

proto–

proto–Balto–Slavic

Albanian

Greco–Armenian

Italo–Celtic

Indo–Iranian

Fig. 4 A phylogeny computed for Indo-European languages, using cmodels
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Table 11 Phylogenies a–c of [37] computed for Indo-European languages Baltic (BA), Slavic (SL),
Indic (IN), Iranian (IR), Germanic (GE), Italic (IT), Albanian (AL), Celtic (CE), Greek (GR),
Armenian (AR), Hittite (HI), with the dataset of [9], using paup

Phylogeny

1 ((((((BA,SL),(IN,IR)),(((GE,IT),AL),CE)),GR),AR),HI)
2 ((((((BA,SL),(IN,IR)),((GE,IT,AL),CE)),GR),AR),HI)
3 (((((((BA,SL),((GE,IT),CE)),(GR,AR)),IN),IR),AL),HI)

With the same Indo-European dataset obtained after preprocessing (with 21 in-
formative characters, each with two to three essential states), we have also computed
a most parsimonious phylogeny using the computational tool pars:

(AN,TO,(GA,((AL,((IC,GE),BS)),IIR))) .

Some other most parsimonious phylogenies constructed for Indo-European lan-
guages are due to [37], where the authors use paup [41] with the dataset Isidore
Dyen [9] to generate phylogenies, whose consensus trees are presented in Table 11.
None of these most parsimonious trees is consistent with the domain-specific infor-
mation described above, and thus none is plausible from the viewpoint of historical
linguistics. On the other hand, we note that Dyen’s dataset is not very reliable since
it is a purely lexical database from modern languages. (With this data, one cannot
always separate potential contact phenomena from real inheritance.)

11 Computing Phylogenetic Trees for Alcataenia Species

With the computational method presented above, we can also infer phylogenies for
some species, based on some morphological features. Here we have considered 9
species of Alcataenia – a tapeworm genus whose species live in alcid birds (puffins and
their relatives): A. larina, A. fraterculae, A. atlantiensis, A. cerorhincae, A. pygmaeus,
A. armillaris, A. longicervica, A. meinertzhageni, A. campylacantha. We have used
the dataset described in [27].

In this dataset, there are 15 characters, each with two to three states. For some
characters, their states are presented in Table 12. After preprocessing, we are left
with 10 informative characters, each with two essential states.

Table 12 Character states
of some characters for
five Alcataenia species:
A. longicervica (LO),
A. cerorhincae (CE),
A. pygmaeus (PY),
A. meinertzhageni (ME),
A. campylacantha (CA)

Character LO CE PY ME CA

genital atrium 1 1 2 1 1
uterus 1 1 1 1 1
size of hooks 1 0 1 2 2
position in host 1 0 1 1 0
position of hooks 1 0 0 2 1
length of neck 2 0 0 0 0
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Table 13 Abbreviations for
Alcataenia species

Species Abbreviation

A. Larina LA
A. fraterculae FR
A. atlantiensis AT
A. cerorhincae CE
A. pygmaeus PY
A. armillaris AR
A. longicervica LO
A. meinertzhageni ME
A. campylacantha CA

According to [27], the outgroup for all Alcataenia species is A. larina. We have
expressed this domain-specific information by the constraint

← not edge(2k, 0)

where 2k is the root of the phylogeny, and 0 denotes A. larina.
With the dataset obtained after preprocessing, we have found out that, for

Alcataenia, no phylogeny has fewer than five incompatible characters. Then we
have computed 18 phylogenies, with five incompatible characters, for Alcataenia.
Abbreviations are used for Alcataenia species as shown in Table 13. The trees are
shown, in the Newick format, in Table 14. One of these phylogenies is presented in
Fig. 5.

For the plausibility of the phylogenies for Alcataenia, we consider the phylogenies
of its host Alcidae (a seabird family) and the geographical distributions of Alcidae
(see Table 15). This information is summarized in Table 3 of [27]. For instance,
according to host and geographic distributions over the time, diversification of

Table 14 Phylogenies 1–18
computed for Alcataenia
species, using cmodels

The ones marked with the
symbol * are plausible from
the point of view of
coevolution of
Alcataenia-Alcidae, and
historical biogeography.
Each phylogeny has five
incompatible characters,
and each plausible phylogeny
requires three lateral
edges to turn into a perfect
phylogenetic network

Phylogeny

1 (((((((LO,ME),CA),AR),CE),(PY,AT)),FR),LA)
*2 ((((((((CA,ME),LO),AR),PY),AT),CE),FR),LA)
3 (((((((CA,ME),LO),AR),PY),(AT,CE)),FR),LA)
4 ((((((((CA,ME),LO),AR),PY),CE),AT),FR),LA)
5 ((((((LO,ME),CA),AR)((PY,CE),AT)),FR),LA)
6 (((((((LO,ME),CA),AR),(AT,CE)),PY),FR),LA)
7 ((((((LO,ME),CA),AR)((PY,AT),PY)),FR),LA)
8 ((((((((LO,ME),CA),AR),AT),PY),CE),FR),LA)
9 ((((((((LO,ME),CA),AR),CE),PY),AT),FR),LA)
10 ((((((LO,ME),CA),AR),((AT,PY),CE)),FR),LA)
11 (((((((LO,ME),CA),AR),PY),(AT,CE)),FR),LA)
12 (((((((LO,ME),CA),AR),AT),(PY,CE)),FR),LA)
13 (((((((LO,ME),CA),AR),(AT,PY)),CE),FR),LA)
14 ((((((((LO,ME),CA),AR),CE),AT),PY),FR),LA)
15 ((((((((LO,ME),CA),AR),PY),CE),AT),FR),LA)
*16 ((((((((LO,ME),CA),AR),PY),AT),CE),FR),LA)
17 ((((((((LO,ME),CA),AR),AT),CE),PY),FR),LA)
18 (((((((LO,ME),CA),AR),(CE,PY)),AT),FR),LA)
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Fig. 5 A plausible phylogeny
computed for Alcataenia
species, using cmodels

LO AR PY AT CE FR LACA ME

Alcataenia is associated with sequential colonization of puffins (parasitized by
A. fraterculae and A. cerorhincae), razorbills (parasitized by A. atlantiensis), auklets
(parasitized by A. pygmaeus), and murres (parasitized by A. armillaris, A. longicer-
vica, and A. meinertzhageni). This pattern of sequential colonization is supported by
the phylogeny of Alcidae in [7]. Out of the 18 trees we have computed, only two
are consistent with this pattern. One of them, Phylogeny 2 is shown in Fig. 5. These
trees are also plausible from the viewpoint of historical biogeography of Alcataenia
in Alcidae, summarized in [27]. Each plausible tree needs three lateral edges to turn
into a perfect phylogenetic network.

On the other hand, from the viewpoint of historical biogeography of Alcataenia
in Alcidae, the story has begun with the fluctuations of the sea level (e.g., 100 m
reduction) during glacial maxima. These fluctuations have led to the separation of
North Pacific basin and Arctic basin. It is conjectured that the origin of Alcataenia
in Laridae (gull family, another host of A. larina) was in the North Atlantic (3–
3.5 million years ago). Subsequently, range expansion occurred through the Arctic
basin and resulted in the development of early holarctic distributions for hosts and
parasites (2.5–3 million years ago).12 Initial entry to the North Pacific basin through
the Bering Strait occurred soon after the submergence of Beringia. Alcataenia
species diversified, following colonization of puffins (parasitized by A. fraterculae and
A. cerorhincae), through sequential colonization and radiation in auklets (parasitized
by A. pygmaeus), murres (parasitized by A. armillaris, A. longicervica, and A. mein-
ertzhageni), and guillemots (parasitized by A. campylacantha) (starting less than 2.5
million years ago). Secondary holarctic ranges were attained later by Alcataenia
species among murres and guillemots since less than 1.5 million years ago.

Note that the evolutionary and biogeographical histories of Alcataenia are
congruent.

With the Alcataenia dataset described above, we have computed a most parsimo-
nious tree using pars.

((((((CA,ME),LO),AR),PY),CE,AT),FR,LA)

12The holarctic region consists of all the nontropical parts of Europe and Asia, Africa north of the
Sahara, and North America south to the Mexican desert region.
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Table 15 Host and geographic
distribution for nine
Alcataenia species among
Alcidae

Species Host Geographic range

A. fraterculae Puffins North Pacific basin
A. atlantiensis Razorbills Eastern Atlantic basin
A. cerorhincae Auklets North Pacific basin
A. pygmaeus Auklets North Pacific basin
A. armillaris Murres Holarctic Region
A. longicervica Murres North Pacific basin
A. meinertzhageni Murres Holarctic Region
A. campylacantha Guillemots North Pacific basin,

Holarctic Region,
Okhotsk Sea

This tree is very similar to the phylogeny of Fig. 5, and to the most parsimonious
phylogeny computed for the Alcataenia species above (except A. atlantiensis) by Eric
Hoberg [26, Fig. 1]:

(((((((CA,ME),LO),AR),PY),CE),FR),LA) .

According to [26, 27], a more plausible phylogeny for Alcataenia is the variation
of the phylogeny of Fig. 5 where A. armillaris and A. longicervica are sisters. We can
express that A. armillaris and A. longicervica are sisters by the constraint

← not sister(2, 4)

where 2 and 4 denote A. armillaris and A. longicervica, respectively. By adding this
constraint to the problem description, we have computed three phylogenies, each
with six incompatible characters,

(((((((CA,ME),(AR,LO)),PY),AT),CE),FR),LA)
(((((((CA,ME),(AR,LO)),PY),CE),AT),FR),LA)
((((((CA,ME),(AR,LO)),PY),(CE,AT)),FR),LA)

whose strict consensus tree is

(((((CA,ME),(LO,AR)),PY),AT,CE,FR),LA) .

This consensus tree is identical to the one presented in Fig. 5 of [27]. It is not the
most parsimonious tree.

12 Conclusion

We have described how to use answer set programming to generate conjectures
about the phylogenies of a set of taxa based on the compatibility of characters. Using
this method with the answer set solver cmodels, we have computed phylogenies for
seven Chinese dialects and for 24 Indo-European languages. Some of these trees
are plausible from the viewpoint of historical linguistics. We have also computed
phylogenies for nine Alcataenia species and identified some as more plausible from
the viewpoint of coevolution and historical biogeography.

Some of the plausible phylogenies we have computed (e.g., the ones computed for
Indo-European) using cmodels are different from the ones computed using other
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software, like pars of phylip, based on maximum parsimony. These results show that
the availability of our computational method based on maximum compatibility can
be useful for generating conjectures that cannot be found by other computational
tools.

One software program that can compute phylogenies for a set of taxa based
on the maximum compatibility criterion is clique (available with phylip), which is
applicable only to sets of taxa where a taxonomic unit is mapped to state 0 or state
1 for each character. Another one is the Perfect Phylogeny software of [38], which
can compute a phylogeny with the maximum number of compatible characters only
when all characters are compatible. Our method is applicable to sets of taxa (like the
ones we have experimented with) where a taxonomic unit can be mapped to multiple
states. Also, it guarantees to find a tree with the maximum number of compatible
characters, if one exists, when all characters may not be compatible. In this sense, our
method is more general than the existing ones that compute trees based on maximum
compatibility.

Another advantage of our method over the existing ones mentioned above is due
to answer set programming. Its declarative representation formalism allows us to
easily include in the program domain specific information, and thus to prevent the
reconstruction of some phylogenetic trees that are not plausible. Moreover, well-
studied properties of programs in this formalism allow us to easily prove that the
maximum compatibility problem is correctly described as a decision problem by the
phylogeny program.
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Appendix

Proofs of Theorems

We use Proposition 2 and the splitting set theorem of [14], Proposition 12(iii) and
Theorem 1 of [17], and Theorem 2 and Propositions 4 and 5 of [11] in our proofs,
with programs containing expressions like {. . . }c, like l{. . . }cl, or like l{. . . }. This is
possible because of the equivalent transformations of [18, Section 4.2].13

13The propositions and theorems from [14], [11], and [17] are stated in a form slightly simpler than
their originals because we don’t use ¬ in the programs in this paper.
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Proposition 2 of [14] For any program � and formula F, a set X of atoms is an
answer set for � ∪ {← F} iff X is an answer set for � and does not satisfy F.

The following definitions are needed for stating the splitting set theorem of [14].
A splitting set for a program � is any set U of atoms such that, for every rule

r ∈ �, if the head contains any atoms from U , then all of the atoms in r are in U . The
bottom of � relative to U , denoted by bU (�), is the set of rules r ∈ � such that all of
the atoms in r belong to U . The top of � relative to U is the set � \ bU (�).

The function eU defined below represents the process of “partial evaluation” of a
formula. Consider two sets of atoms U , X and a formula F. For each occurrence of
an atom A in F such that A ∈ U , if A ∈ X replace L with 
; otherwise replace L
with ⊥. The new formula obtained will be denoted by eU (F, X). For a program �,
we will denote by eU (�, X) the program obtained by replacing each rule F ← G of
� by eU (F, X) ← eU (G, X).

The Splitting Set Theorem of [14] Let U be a splitting set for a program �. A set of
atoms is an answer set for � iff it can be written as X ∪ Y, where X is an answer set
for bU (�) and Y is an answer set for eU (� \ bU (�), X).

Proposition 12(iii) of [17] Let A1, . . . , An be pairwise distinct atoms, let l and u
be nonnegative integers, and let X be a set of atoms. X is an answer set for l ≤
{A1, . . . , An}c ≤ u iff X ⊆ {A1, . . . , An} and l ≤ |X| ≤ u.

The following definition is needed for stating Theorem 1 of [17].
An atom A is a head atom of a program � if it occurs in the head of at least one

rule in �.

Theorem 1 of [17] Any answer set for � is a subset of the set of head atoms of �.

In the statements of Proposition 4, Theorem 2, and Proposition 5 of [11], C is a
nonempty set of symbols (“object constants”), p and tc are functions from C × C to
the set of atoms such that all atoms p(x, y) and tc(x, y) are pairwise distinct, and Def
denotes the definition of the transitive closure tc of a binary predicate p:

tc(x, y) ← p(x, y)

tc(x, y) ← p(x, v), tc(v, y).

Proposition 4 of [11] Let � be a program that does not contain atoms of the form
tc(x, y) in the heads of rules. If X is an answer set for � ∪ Def , then

{〈x, y〉 : tc(x, y) ∈ X}
is the transitive closure of

{〈x, y〉 : p(x, y) ∈ X}.

The following definitions are needed for stating Theorem 2 of [11].
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For any program � and any set X of atoms, we say about atoms P, P′ ∈ X that P
is a parent of P′ relative to � and X if there is a rule (1) in � such that

– X |= Body,
– P occurs in Body, but not in the scope of negation as failure, and
– P′ = Head.

For any program � and any set X of atoms, we say about atoms P, P′ ∈ X that
P′ is an ancestor of P relative to � and X if there exists a finite sequence of atoms
P1, . . . , Pn ∈ X (n > 1) such that P = P1, P′ = Pn and for every i (1 ≤ i < n), Pi+1

is a parent of Pi relative to � and X. In other words, the ancestor relation is the
transitive closure of the parent relation.

Theorem 2 of [11] Let � be a program that does not contain atoms of the form
tc(x, y) in the heads of rules. For any set X of atoms, if

(i) � is tight on X,
(ii) {〈x, y〉 : p(y, x) ∈ X} is well-founded, and

(iii) No atom of the form tc(x, y) is an ancestor of an atom of the form p(x, y) relative
to � and X,

then � ∪ Def is tight on X.

Proposition 5 of [11] If � contains constraint

← tc(x, x)

and C is finite then, for every set X of atoms closed under � ∪ Def , set {〈x, y〉 :
p(y, x) ∈ X} is well-founded.

Proof of Proposition 1

Proposition 1 A rooted binary tree with the leaves L = {0, . . . , k} is uniquely repre-
sented by an ordered binary tree with the leaves L.

We define the height of a vertex v in a tree 〈V, E〉 as follows.

height(v) =
{

0 v is a leaf
1 + max(v,u)∈Eheight(u) otherwise

The height of a tree is maxv∈Vheight(v).

Lemma 1 For an ordered binary tree with the leaves L = {0, . . . , k}, the vertices with
the same height are consecutive numbers.

Proof of Proposition 1 The proof follows from the following three facts. First, every
internal vertex is larger than its children (from (O2)). Second, by Lemma 1, the
vertices with the same height are labeled with consecutive numbers. Third, the
vertices at some height are labeled in only one way (from (O3)). Therefore, by (O1),
the tree is labeled in only one way. ��
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Proof of Lemma 1 For an ordered binary tree with the leaves L = {0, . . . , k} and
with the height H, we want to show that, for every h (0 ≤ h ≤ H), the vertices with
the height h are consecutive numbers.

The proof is by induction on h. The vertices with h = 0 are the leaves
L={0, . . . , k}. To prove the lemma for vertices with height h+1 (h≥0), suppose that

(IH) For all j (0 ≤ j ≤ h < H), the vertices with the height j are consecutive
numbers.

If there is only one vertex with the height h + 1, then the vertices with the height
h + 1 are consecutive numbers. Suppose that there are at least two vertices with the
height h + 1. Let m be the smallest vertex of height h + 1 and m + w the largest
(m > k, w > 0). Take any vertex m′ (m < m′ ≤ m + w) such that height(m′) = h + 1.
By the induction hypothesis (IH), the definition of height of a vertex, and thus every
internal vertex, is larger than its children (from (O2)),

(*) For all j (0 ≤ j ≤ h < H), every vertex with height j is smaller than vertices
with heights greater than j.

Since height(m) = h + 1 and m ≤ m′ − 1, height(m′ − 1) cannot be smaller than
h + 1 (i.e., h + 1 ≤ height(m′ − 1)); otherwise, it contradicts (*). On the other hand,
height(m′ − 1) cannot be greater than h + 1 (i.e., height(m′ − 1) ≤ h + 1); otherwise,
i.e., height(m′ − 1) > h + 1, by (O2) and the definition of height, m′ − 1 is an ancestor
of a vertex m′′ (m′ − 1 > m′′) with the height h + 1. By (*), m′′ is greater than
the vertices with heights less than h + 1, thus the children of the vertices with the
height h + 1. Then, by (O3), m′ − 1 is greater than any vertex with the height h + 1.
This contradicts that height(m′) = h + 1. Then, height(m′ − 1) = h + 1 = height(m′).
Therefore, if there are at least two vertices with the height h + 1, then the vertices
with the height h + 1 are consecutive numbers. ��

Proof of Proposition 2

Proposition 2 Let (V, E, L, I, S, f ) be a phylogeny. Then there exists a function g :
V × I → S such that g |L×I= f and |Ig| ≤ n iff the number of characters incompatible
with the phylogeny (V, E, L, I, S, f ) is at most n.

Proof Let (V, E, L, I, S, f ) be a phylogeny. Let IN (IN ⊆ I) denote the set of
characters incompatible with this phylogeny. Recall that, for a function g : V × I →
S, Ig denotes the set of characters i ∈ I that are g-incompatible with (V, E, L, I, S, f )
for g |V×{i}. Recall also that a character i ∈ I is incompatible with (V, E, L, I, S, f )
iff i is g-incompatible with (V, E, L, I, S, f ) for every function g : V × {i} → S such
that condition (C1) holds. Left-to-right. Let g : V × I → S be a function such that
g |L×I= f . By the definition of incompatibility, IN ⊆ Ig. Therefore, if |Ig| ≤ n, then
|IN| ≤ n. Right-to-left. Suppose that |IN| ≤ n. Take a function g : V × I → S such
that g |L×I= f , and for which |Ig| is minimum. Such a function exists by the definition
of incompatibility. Since |Ig| is minimum, for every character i in Ig, there is no
function g : V × {i} → S such that conditions (C1) and (C2) hold. That is, Ig is the
set of the characters incompatible with (V, E, L, I, S, f ). Thus, |Ig| ≤ n. ��
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Proof of Proposition 3

Proposition 3 For a set X of edges, X is an ordered binary tree with the set L =
{0, . . . , k} of leaves iff X can be represented in the form Z ∩ Ek for some answer
set Z for �1. Furthermore, every ordered binary tree with the set L of leaves can be
represented in this form in only one way.

Recall that Ek denotes the set of all atoms of the form edge(x, y) such that
0 ≤ y < x ≤ 2k.

Given a set X of edges, we will denote by RX the set of atoms reachable(x, y) for
all vertices x and y such that there is a nonempty path from x to y over edges in X.

Given a set X of edges, we will denote by MX the set of atoms maxY(x, y) for
all vertices x and y such that (x, y) ∈ X and y is the largest of the vertices y′, where
(x, y′) ∈ X.

Let �11 be the program consisting of rules (9) and (10) of �1. Let �12 be the
program �11∪ (11) ∪ (12). Let �13 be the program �12∪ (13).

Lemma 2 For a set Z of atoms, Z is an answer set for �11 iff Z = X ∪ RX for some
X ⊆ Ek such that X is an answer set for (9).

Lemma 3 For a set X of edges (x, y) (x, y ∈ V = {0, . . . , 2k}, y < x), X is a rooted
binary tree with the set L = {0, . . . , k} of leaves iff X can be represented in the form
Z ∩ Ek for some answer set Z for �12 . Furthermore, Z has the form X ∪ RX.

Lemma 4 For a set Z of atoms, Z is an answer set for �13 iff Z = X ∪ RX ∪ MX for
some X ⊆ Ek such that X ∪ RX is an answer set for �12 .

Proof of Proposition 3 Let Z be a set of atoms. By Proposition 2 of [14], Z is an
answer set for �1 iff

(1) Z is an answer set for �13 and
(2) Z does not violate constraints (14).

From (1), by Lemma 4, it follows that Z = X ∪ RX ∪ MX such that X ⊆ Ek

and X ∪ RX is an answer set for �12 . Then, from Lemma 3, (X ∪ RX) ∩ Ek =
Z ∩ Ek is a rooted binary tree with the set L of leaves. From the definition of
Ek, conditions (O1) and (O2) are satisfied by X. From (2), MX does not satisfy
the formula

maxchild(x, y), maxchild(x1, y1)

for all vertices x, x1, y, y1 covered by edges in X such that y > y1 and x < x1.
That is, condition (O3) is satisfied by X. Therefore, Z ∩ Ek = X is an ordered
binary tree with the set L of leaves.
Suppose there are two answer sets Z , Z ′ such that Z ∩ Ek = Z ′ ∩ Ek = Y
represents an ordered binary tree with the set L of leaves. By Proposition 2
of [14],

(3) Z and Z ′ are answer sets for �13 .

Then, by (3) and Lemma 4,

Z = X ∪ RX ∪ MX , Z ′ = X ′ ∪ RX ′ ∪ MX ′
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for some X, X ′ ⊆ Ek such that X ∪ RX and X ′ ∪ RX ′ are answer sets for �12 . Then,
Y = X = X ′, and, by the definition of RX and MX , Z = Z ′. ��

Proof of Lemma 2 The proof is similar to the proof of the lemma in [14]. Take Ek as
a splitting set for �11 . The bottom bEk(�11) is (9), and the top �11 \ bEk(�11) is (10).

The answer sets for bEk(�11) are subsets of Ek such that, for every vertex
x ∈ V \ L,

|{edge(x, y) : y ∈ V, edge(x, y) ∈ Ek}| = 2

from Proposition 12(iii) of [17]. For any subset X of Ek, the program eEk(�11 \
bEk(�11), X) is

reachable(x, y) ← 
 ((x, y) ∈ Ek)

reachable(x, y) ← ⊥ ((x, y) �∈ Ek, x, y ∈ V)

reachable(x, y) ← 
, reachable(z, y) ((x, z) ∈ Ek, y ∈ V)

reachable(x, y) ← ⊥, reachable(z, y) ((x, z) �∈ Ek, x, y, z ∈ V),

which can be rewritten as

reachable(x, y) ← 
 ((x, y) ∈ Ek)

reachable(x, y) ← 
, reachable(z, y) ((x, z) ∈ Ek, y ∈ V). (32)

The only answer set for this program is the smallest set that satisfies it, which is RX .
By the splitting set theorem of [14], it follows that a set of atoms is an answer set for
�11 iff it has the form X ∪ RX for some X ⊆ Ek that is an answer set for (9). ��

Proof of Lemma 3 Let X be a set of edges (x, y) (x, y ∈ V, y < x). Note that the in-
degree of the vertex 2k is 0. Then X is a rooted binary tree with the root 2k and the
set L of leaves iff

(a) every vertex x (0 ≤ x < 2k) is reachable from 2k over the edges in X,
(b) X is acyclic, and
(c) the out-degree of each vertex in L is 0, and the out-degree of each vertex in

V \ L is 2.

Condition (a) can be expressed by saying that RX does not satisfy the formulas

not reachable(2k, x) (33)

for all vertices x ∈ {0, . . . , 2k − 1}.
Condition (b) can be expressed by saying that RX does not satisfy the formulas

reachable(x, x) (34)

for all vertices x ∈ {0, . . . , 2k}.
Condition (c) can be expressed by saying that X is an answer set for (9)

2 ≤ {edge(x, y) : y ∈ V}c ≤ 2 ←
for all x ∈ V \ L, due Proposition 12(iii) of [17].

By Proposition 2 of [14], the condition

X has the form Z ∩ Ek for some answer set Z for �12
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is equivalent to

X has the form Z ∩ Ek for some answer set Z for �11

that does not satisfy formulas (33) and (34)

because �12 is the union of �11 with the constraints (11) and (12), the bodies of
which are (33) and (34), respectively. By Lemma 2, Z has the form X ′ ∪ RX ′ for
some X ′ ⊆ Ek, and the condition above is equivalent to

X has the form (X ′ ∪ RX ′) ∩ Ek for some X ′ ⊆ Ek

such that X ′ is an answer set for (9), and
X ′ ∪ RX ′ does not satisfy formulas (33) and (34).

Since (X ′ ∪ RX ′) ∩ Ek = X ′, X = X ′, and by the definition of RX , RX = RX ′ . Then
Z has the form X ∪ RX , and the condition above is further equivalent to the
condition

X ∪ RX does not satisfy formulas (33) and (34), and
X is an answer set for (9) .

This is equivalent to saying that X is a binary tree with the leaves 0, . . . , k and the
root 2k, that is, conditions (a)–(c) are satisfied. ��

Proof of Lemma 4 The proof is similar to the proof of Lemma 2. Take the set
Ek ∪ REk as a splitting set for �13 . The bottom bEk∪REk

(�13) is �12 and the top
�13 \ bEk∪REk

(�13) is (13).
The answer sets for bEk∪REk

(�13), by Proposition 2 of [14], are also answer sets for
�11 . Then, by Lemma 2, the answer sets for bEk∪REk

(�13) are of the form X ∪ RX

where X ⊆ Ek and X is an answer set for (9). For any such answer set X ∪ RX , the
program eEk∪REk

(�13 \ bEk∪REk
(�13), X ∪ RX) is

maxchild(x, y) ← 
 ((x, y), (x, y1) ∈ X, y > y1).

The only answer set for the program above is the smallest set that satisfies it, which is
MX , since, due to Lemma 3, X is a binary tree. By the splitting set theorem of [14], it
follows that a set of atoms is an answer set for �13 iff it has the form (X ∪ RX) ∪ MX

for some X ⊆ Ek such that X ∪ RX is an answer set for �12 . ��

Proof of Proposition 4

Proposition 4 A phylogeny (V, E, L, I, S, f ) has at most n g-incompatible characters
for some function g : V × I → S iff �′

2 has an answer set.

The proof of Proposition 4 is similar to that of Proposition 3 in that a series of
applications of the splitting set theorem is used.

Let (V, E, L, I, S, f ) be a phylogeny. Let W be the set of atoms of the form
g(x, i, s) (x ∈ V, i ∈ I, s ∈ S). Let O be the set of atoms of the form rootis(x, j, z)

(x ∈ V, j ∈ I, z ∈ S).
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For some X ⊆W, describing a function g mapping V× I to S such that g|L×I = f ,
let OX denote the set consisting of all subsets of O, each containing, for every
j ∈ I and z ∈ S such that Vjz = {x : g(x, j, z) ∈ X} is not empty, exactly one atom
rootis(x, j, z) for some x ∈ Vjz such that x is not reachable from any other vertex
y ∈ Vjz in 〈V, E〉.

For some Y ∈ OX , by RX,Y we will denote the set of atoms of the form
reachableis(x, j, z) (x ∈ V, j ∈ I, z ∈ S) satisfying the following condition: If there
is some r ∈ Vjz such that rootis(r, j, z) ∈ Y, then there is a path from r to x in Vjz.

For some Y ∈ OX , we will denote by IX,Y the set of atoms of the form
incompatible( j) ( j ∈ I) satisfying the following condition: for some x ∈ V and for
some z ∈ S such that g(x, j, z) ∈ X, reachableis(x, j, z) is not in RX,Y .

Let �′
21

be the program consisting of rules (15)–(17) of �′
2. Let �′

22
be the program

consisting of �′
21

and rules (18), (19), and (25). Let �′
23

be the program consisting of
�′

22
and rules (21) and (26). Let �′

24
be the program consisting of �′

23
and rules (23).

Lemma 5 Let (V, E, L, I, S, f ) be a phylogeny, and let Z be a set of atoms. Then Z
is an answer set for �′

21
iff Z = X ∪ Y for some X ⊆ W and for some Y ⊆ O such

that X is an answer set for (15) ∪ (16). Furthermore, X describes a function g mapping
V × I to S such that g |L×I= f .

Lemma 6 Let (V, E, L, I, S, f ) be a phylogeny. Let Z be a set of atoms. Then Z is
an answer set for �′

22
iff Z = X ∪ Y for some X ⊆ W and for some Y ∈ OX such that

X ∪ Y is an answer set for �′
21

.

Lemma 7 Let (V, E, L, I, S, f ) be a phylogeny. Let Z be a set of atoms. Then Z is
an answer set for �′

23
iff Z = X ∪ Y ∪ RX,Y for some X ⊆ W and for some Y ∈ OX

such that X ∪ Y is an answer set for �′
22

.

Lemma 8 Let (V, E, L, I, S, f ) be a phylogeny. Let Z be a set of atoms. Then Z is an
answer set for �′

24
iff Z = X ∪ Y ∪ RX,Y ∪ IX,Y for some X ⊆ W, for some Y ∈ OX

such that X ∪ Y ∪ RX,Y is an answer set for �′
23

.

Proof of Proposition 4 Let (V, E, L, I, S, f ) be a phylogeny. Let us identify a func-
tion g mapping V × I to S such that g |L×I= f , with a subset X of W such that
g(x, i) = s iff g(x, i, s) ∈ X. Let us also identify the g-incompatible characters for
a function X, that is, characters for which condition (C2) (or, from Proposition 1
of [12], equivalently condition (C2)′) does not hold relative to function X, with a set
of atoms of the form incompatible( j) ( j ∈ I).

Suppose that the phylogeny (V, E, L, I, S, f ) has at most n g-incompatible char-
acters for a function X ⊆ W mapping V × I to S such that g |L×I= f . For each
character j and for some state z such that Vjz is not empty, let us pick a vertex r jz ∈ Vjz

closest to the root of 〈V, E〉, i.e., r jz is not reachable from any other vertex y ∈ Vjz

in 〈V, E〉. A character i ∈ I is g-incompatible with (V, E, L, I, S, f ) for X iff some
vertex other than r jz in Vjz is not reachable from r jz. Let us identify vertices r jz by
the atoms rootis(r jz, j, z). Then the set of vertices r jz can be described by an element
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Y of OX . Then, the set IX,Y describes the set of all g-incompatible characters for X.
Since |IX,Y | ≤ n, IX,Y does not satisfy the formula

n + 1 ≤ {incompatible(i) : i ∈ I}. (35)

Let Z be a set of atoms. By Proposition 2 of [14], the condition

�′
2 has an answer set Z

is equivalent to

�′
24

has an answer set Z such that Z does not satisfy formula (35)

because �′
2 is the union of �′

24
with the constraint (24), the body of which is (35). By

Lemmas 6, 7, and 8, this condition is equivalent to

Z = X ∪ Y ∪ RX,Y ∪ IX,Y for some X ⊆ W, for some Y ∈ OX

such that X ∪ Y is an answer set for �′
21

, and
that IX,Y does not satisfy formula (35)

and by Lemma 5, it follows that

Z = X ∪ Y ∪ RX,Y ∪ IX,Y for some X ⊆ W, for some Y ∈ OX

such that X is an answer set for (15) ∪ (16),
that X describes a function g mapping V × I to S such that g |L×I= f , and

that IX,Y does not satisfy formula (35) .

This is equivalent to saying that, for the phylogeny (V, E, L, I, S, f ) and for some
function g, the number of g-incompatible characters is at most n. ��

Proof of Lemma 5 Take W as a splitting set for �′
21

. The bottom bW(�′
21

) is (15) ∪
(16), and the top �′

21
\ bW(�′

21
) is (17).

The answer sets for bW(�′
21

) are subsets X of W such that, for every vertex
x and for every character i, there is exactly one state s such that g(x, i, s) ∈ X.
(Furthermore, for any g(x, i, s) ∈ X, if x ∈ L, then s = f (x, i).) For any such subset
X, the program eW(�′

21
\ bW(�′

21
), X) is

{rootis(x, i, s)}c ← 
 (g(x, i, s) ∈ X).

Every answer set for this program is a subset Y of O. By the splitting set theorem of
[14], it follows that a set of atoms is an answer set for �′

21
iff it has the form X ∪ Y for

some X ⊆ W and for some Y ⊆ O such that X is an answer set for (15) ∪ (16). ��

Proof of Lemma 6 Let (V, E, L, I, S, f ) be a phylogeny, and let X ⊆ W be a func-
tion mapping V × I to S such that g |L×I= f .
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Let Y be an element of OX . Then, for each character i ∈ S and for each state s ∈ S
such that Vis �= ∅,

|{x : rootis(x, i, s) ∈ Y}| = 1 (36)

and

for every element rootis(x, i, s)of Y,

for every vertex m �= xfrom which xis reachable , m �∈ Vis. (37)

Equivalently, instead of (36) and (37), we can say that X ∪ Y does not satisfy the
formulas

rootis(x, i, s), rootis(y, i, s) (38)

for all vertices x, y ∈ V where x �= y,

{rootis(x, i, s) : x ∈ V} 0, g(y, i, s) (39)

for all vertices y ∈ V, and the formulas

rootis(x, i, s), g(y, i, s) (40)

for all vertices x, y ∈ V, x �= y, where x is reachable from y.
By Proposition 2 of [14], the condition

Z is an answer set for �′
22

is equivalent to

Z is an answer set for �′
21

, and
Z does not satisfy formulas (38)–(40)

because �′
22

is the union of �′
21

with the constraints (18), (19), and (25), the bodies
of which are (38)–(40) respectively. By Lemma 5, this condition is equivalent to

Z = X ∪ Y for some X ⊆ W and for some Y ⊆ O such that
X is an answer set for (15) ∪ (16),

X describes a function g mapping V × I to S such that g |L×I= f , and
Z does not satisfy formulas (38)–(40),

which is, by the definition of OX , further equivalent to saying that

Z = X ∪ Y for some X ⊆ W and for some Y ∈ OX such that
X ∪ Y is an answer set for �′

21
.

��

Proof of Lemma 7 Take W ∪ O as a splitting set for �′
23

. The bottom bW∪O(�′
23

) is
�′

22
, and the top �′

23
\ bW∪O(�′

23
) is (21) ∪ (26).
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From Lemma 6, answer sets A for �′
22

are of the form X ∪ Y for some X ⊆ W,
for some Y ∈ OX . For any answer set A, the program eW∪O(�′

23
\ bW∪O(�′

23
), A) is

reachableis(x, i, s) ← 
 (rootis(x, i, s) ∈ A)

reachableis(x, i, s) ← reachableis(z, i, s)
(x, z ∈ V, (z, x) ∈ E, g(x, i, s) ∈ A).

The answer set for this program is RX,Y .
Then, by the splitting set theorem of [14], it follows that a set of atoms is an answer

set for �′
23

iff it has the form X ∪ Y ∪ RX,Y for some X ⊆ W and for some Y ∈ OX

such that X ∪ Y is an answer set for �′
22

. ��

Proof of Lemma 8 Let Q be the set of atoms of the form reachableis(x, j, z) for
x ∈ V, j ∈ I and z ∈ S. Take W ∪ O ∪ Q as a splitting set for �′

24
. The bottom

bW∪O∪Q(�′
24

) is �′
23

, and the top �′
24

\ bW∪O∪Q(�′
24

) is (23).
By Lemma 7, answer sets A for �′

23
are of the form X∪Y∪RX,Y for some X ⊆W

and for some Y ∈ OX . For any such answer set A, the program eW∪O∪Q(�′
24

\
bW∪O∪Q(�′

24
), A) is

incompatible(i) ← 
 (g(x, i, s) ∈ A, reachableis(x, i, s) �∈ A).

The answer set for this program is IX,Y .
By the splitting set theorem of [14], it follows that a set of atoms is an answer

set for �′
24

iff it has the form X ∪ Y ∪ RX,Y ∪ IX,Y for some X ⊆ W and for some
Y ∈ OX such that X ∪ Y ∪ RX is an answer set for �′

23
. ��

Proof of the Correctness Theorem for the Phylogeny Program

Correctness Theorem for the Phylogeny Program For a given input (L, I, S, f, n),
and for a set E of edges that is a rooted binary tree with the leaves L, E describes
a phylogeny (V, E, L, I, S, f ) with at most n incompatible characters iff E can
be represented by the ordered binary tree Z ∩ Ek for some answer set Z for �.
Furthermore, for every rooted binary tree X with the leaves L, there is only one ordered
binary tree isomorphic to X.

Proof Take Ek ∪ REk ∪ MEk as a splitting set for �. The bottom bEk∪REk ∪MEk
(�) is

�1, and the top � \ bEk∪REk ∪MEk
(�) is �2.

By Proposition 3, every answer set X for bEk∪REk ∪MEk
(�) describes an ordered

binary tree with the set L of leaves and thus, by Proposition 1, uniquely represents a
rooted binary tree E with the set L of leaves. For any such answer set X, the program

eEk∪REk ∪MEk

(
� \ bEk∪REk ∪MEk

(�), X
)

is program �′
2. By the splitting set theorem of [14], it follows that a set Z of atoms is

an answer set for � iff it has the form X ∪ Y such that X is an answer set for �1 and
Y is an answer set for �′

2. Note also that Z ∩ Ek = X ∩ Ek, since Y ∩ Ek = ∅ from
Theorem 1 of [17].

By Proposition 4, �′
2 has an answer set iff the phylogeny described by E has at

most n g-incompatible characters for some function g : V × I → S. By Proposition 2,
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�′
2 has an answer set iff phylogeny described by E has at most n incompatible

characters.
Therefore, � has an answer set Z iff Z ∩ Ek represents a rooted binary tree E

with the set L of leaves such that the phylogeny (V, E, L, I, S, f ) has at most n
incompatible characters ��

Proof of Proposition 5

Proposition 5 For a given input (L, I, S, f, n), program � is tight on every set of
atoms closed under �.

Proof For a set Y of atoms closed under �:

(1) (�\ ((21) ∪ (22))) \ (10) is absolutely tight;
(2) reachable is the transitive closure of edge (Proposition 4 of [11]);
(3) the set {〈x, y〉 : edge(y, x) ∈ Y} is well-founded (Proposition 5 of [11], with finite

V, (2) above, and constraint (12) in �);
(4) none of the atoms of the form reachable(x, y) is an ancestor of an atom of the

form edge(x, y) relative to (�\ ((21) ∪ (22))) \ (10) and Y;
(5) �\ ((21) ∪ (22)) is tight on Y (Theorem 2 of [11], with (1)–(4) above), that is,

the parent relation relative to �\ ((21) ∪ (22)) and Y is well-founded;
(6) none of the atoms of the form reachableis(x, i, s) is an ancestor of an atom of

the form edge(x, y), an atom of the form rootis, or an atom of the form g(x, i, s)
relative to (�\ ((21) ∪ (22))) and Y;

(7) no atom reachableis(x, i, s) ∈ Y is an ancestor of itself relative to � and Y (Y is
closed under �, and (3) above); and

(8) the parent relation relative to � and Y is well-founded ((5)–(7) above), that is,
� is tight on Y. ��
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