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ABSTRACT

Context. High resolution observations have permitted the resolution of solar prominences/filaments into sets of threads/fibrils. How-
ever, the values of the physical parameters of these threads and their structuring remain poorly constrained.
Aims. We use prominence seismology techniques to analyse transverse oscillations in threads by comparing magnetohydrodynamic
(MHD) models and observations.
Methods. We applied Bayesian methods to obtain two different types of information. We first inferred the marginal posterior distri-
bution of physical parameters such as the magnetic field strength or length of the thread, when a totally filled tube, partially filled
tube, and three damping models are considered as certain; the three damping models are resonant absorption in the Alfvén continuum,
resonant absorption in the slow continuum, and Cowling’s diffusion. Then, we compared the relative plausibility between alternative
MHD models by computing the Bayes factors.
Results. Well-constrained probability density distributions can be obtained for the magnetic field strength, length of the thread, den-
sity contrast, and parameters associated with the damping models. In a comparison of the damping models of resonant absorption in
the Alfvén continuum, resonant absorption in the slow continuum, and Cowling’s diffusion due to partial ionisation of prominence
plasma, the resonant absorption in the Alfvén continuum is the most plausible mechanism to explain the existing observations. Rela-
tions between periods of fundamental and first overtone kink modes with values around 1 are better explained by expressions of the
period ratio in the long thread approximation, while the rest of the values are more probable in the short thread limit for the period
ratio.
Conclusions. Our results show that Bayesian analysis offers valuable methods to perform parameter inference and a model compari-
son in the context of prominence seismology.

Key words. Sun: filaments, prominences – Sun: magnetic fields – Sun: oscillations – magnetohydrodynamics (MHD) –
methods: statistical

1. Introduction

Understanding the physical plasma conditions, dynamics, and
energetics of solar prominences is a challenge. High resolu-
tion imaging observations in Hα with the Swedish Solar Tele-
scope (SST) and Hinode for example have enabled us to resolve
the fine structures forming the prominence bodies. These struc-
tures consist of fine threads not thicker than ∼0.2–0.3 arcsec,
i.e. ∼145–218 km (Lin 2004; Lin et al. 2005, 2008; Okamoto
et al. 2007). Characterising the physical properties and dynam-
ics of these fine threads is key to understanding the field of solar
prominences.

To complement direct observations, indirect inference meth-
ods offer valuable information. Ample observational evidence
exists about the presence of waves in prominences (Oliver &
Ballester 2002; Arregui et al. 2018a). These observed waves are
classified in large and small amplitude oscillations and imply
both transverse or longitudinal motions with respect to the
structures (see e.g. Yi et al. 1991; Yi & Engvold 1991; Terradas
et al. 2002; Foullon et al. 2004; Berger et al. 2008; Tripathi et al.
2009). Focussing on small amplitude oscillations, these waves
display a wide range of periods and typical velocity amplitudes
consistent with the timescales of transverse motions in threads
reported by Lin et al. (2007, 2009). Mass flows have also been
detected that have velocities in the range 15–46 km s−1 (Zirker

et al. 1998; Lin et al. 2005; Okamoto et al. 2007; Ning et al.
2009). These plasma flows can possibly affect wave propagation
properties.

Several theoretical models with different levels of
complexity have been proposed to explain prominence thread
oscillations. Simple fibril models under the zero plasma-β
approximation in Cartesian geometry (Joarder et al. 1997; Díaz
et al. 2001) laid the foundations of thread oscillation studies
to more complex and realistic models in cylindrical geometry
focussed on fast magnetohydrodynamic wave properties (Díaz
et al. 2002; Dymova & Ruderman 2005). Posterior studies by
Soler & Goossens (2011) considered the influence of mass flows
on the different oscillating modes.

Damping of transverse waves in threads is a commonly
observed phenomenon with typical ratios of the damping time
to the period in the range 1–10 (Arregui et al. 2011). Diverse
mechanisms have been considered to explain the damping pro-
cess in threads. Non-ideal effects were considered in uniform
media with and without flows (Carbonell et al. 2004, 2006, 2009;
Terradas et al. 2005), in stratified media with and without flows
(Soler et al. 2007, 2008, 2009a), and with partial ionisation effects
(Forteza et al. 2007, 2008). Among partial ionisation effects,
only Cowling’s diffusion seems to be efficient enough to pro-
duce strong damping compatible with observations (Soler et al.
2009b,c). Wave leakage has been also considered as a damping
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mechanism (van den Oord & Kuperus 1992; Schutgens 1997a,b;
van den Oord et al. 1998) but some issues such as different
damping rates for vertical and horizontal oscillations still remain
unclear (Schutgens & Tóth 1999; McLaughlin & Hood 2006;
McDougall & Hood 2007). Resonant absorption of kink waves
in the Alfvén continuum, first proposed by Arregui et al. (2008)
in this context of prominence threads, is another candidate to
explain this phenomenon with damping timescales compatible
with those observed. In a subsequent work by Soler et al. (2009d),
damping from resonant absorption in the slow continuum was
further considered, but for typical prominence parameters, the
resulting damping times seem to be too long in comparison to
those observed. Additional information on damping mechanisms
for prominence oscillations can be found in Arregui & Ballester
(2011) and Arregui et al. (2018a).

Over the years, improvements in observations and theory
have enabled us to obtain more precise measurements of wave
properties and a better understanding of theoretical prominence
thread oscillations. Improving the accuracy of seismology inver-
sions however requires the adoption of new techniques for the
comparison between observations and theory and the solution
to the ensuring inverse problems. Recent developments in coro-
nal loop seismology have considered the use of Bayesian inver-
sion techniques (Pascoe et al. 2017, 2018; Arregui 2018), which
have been successful in the task of obtaining information about
physical parameters from observations (inference) and in com-
paring the relative performance of alternative models to explain
observed data (model comparison). Motivated by the success
of Bayesian methods in coronal seismology, we aim to apply
these methods to solar prominence seismology to infer physical
parameters of threads and to compare between different theoret-
ical models.

The layout of the paper is as follows. The Bayesian method-
ology used in our study is explained in Sect. 2. Then, in Sect. 3
our results on parameter inference and model comparison are
presented. Our summary and conclusions can be found in Sect. 4.

2. Methodology: Bayesian statistics

Bayesian methods permit us to confront theoretical models and
observations on three different levels. At a first level, we can
perform inference of model parameters assuming a particular
considered model as certain. Then, at a second level, we can
compare the plausibility of alternative models in explaining
observed data. These two levels have already been applied in
coronal loops by Montes-Solís & Arregui (2017). A third level,
not considered here, would consist of model averaging (see e.g.
Arregui et al. 2015).

The foundational principle for all three inference levels is the
Bayes theorem defined as

p(θ|M, d) =
p(θ|M)p(d|M, θ)

p(d|M)
, (1)

which establishes the posterior distribution p(θ|M, d) of a set of
parameters, θ, assuming one particular model M as certain, and
conditional on observed data, d. This probability density dis-
tribution gives a simple relation between the prior probability,
p(θ|M), before considering the data, and the likelihood function,
p(d|M, θ). The denominator in Eq. (1) is a normalisation factor,
the so-called marginal likelihood of the data given a model M. It
can be computed by performing the integral

p(d|M) =

∫
θ

p(θ|M)p(d|M, θ)dθ (2)

Table 1. Kass & Raftery (1995) evidence classification.

2 ln BFk j Evidence

0–2 Not Worth more than a bare Mention (NWM)
2–6 Positive Evidence (PE)

6–10 Strong Evidence (SE)
>10 Very Strong Evidence (VSE)

over the full parameter space so the probability of the data given
the model is obtained.

When model M is represented in terms of n parameters, the
inference of information on each specific parameter θi can be gath-
ered by computation of the marginal posterior, integrating the full
posterior with respect to the rest of n model parameters as

p(θi|M, d) =

∫
p(θ|M, d)dθ1 . . . dθi−1dθi+1 . . . dθn. (3)

Moving to model comparison, Bayesian methods offer tools
to quantify the plausibility of different mechanisms in explain-
ing the observed data in two ways. Marginal likelihoods corre-
sponding to alternative models can be computed, using Eq. (2),
and directly compared. On the other hand, if there is no a priori
preference for any of the considered models, a one-to-one com-
parison can be performed using the so-called Bayes factor (see
e.g. Kass & Raftery 1995) defined as

BFk j =
p(d|Mk)
p(d|M j)

; k , j. (4)

By following the evidence classification criteria by Kass &
Raftery (1995), see Table 1; the level of evidence for one model
against the alternative is evaluated.

Any Bayesian inference, at any level, depends on the prior
information one accepts as plausible and on the likelihood func-
tion. These two pieces of information are adopted and lead to
the posteriors, which are computed. In this study, we adopted
independent priors for model parameters, so that the global prior
is given by the product of the individual priors associated with
each parameter. We consider two types of individual priors. To
express our prior belief that each parameter lies on a given plau-
sible range, where all values are equally probable a priori, a uni-
form prior of the form

p(θi) =
1

θi,max−θi,min
, (5)

is adopted. On the other hand, to take into account some more
specific prior information on a particular parameter of interest, a
Gaussian prior of the form

p(θi) =
1

√
2πσθi

exp

− (
θi − µθi

)2

2σ2
θi

 , (6)

is considered, where µθ and σθ represent the estimated value
of the parameter and its uncertainty, respectively. As likeli-
hood function, Gaussian profiles are applied according to normal
errors assumption.

The computation of posteriors and marginal likelihoods fur-
ther requires us to solve integrals in the parameter space. When
the problem at hand is low-dimensional, direct numerical inte-
gration is possible, and the Monte Carlo (MC) method are a
feasible alternative in low-dimensional but also applicable in
high-dimensional spaces. As in Montes-Solís & Arregui (2017)
we followed both approaches by making sure both give identical
results.
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3. Results

In this paper, Bayesian methods are applied to a number of
theoretical models and observations of transversally oscillating
prominence threads. We first make an inference about some
physical parameters such as the magnetic field strength or
length of the thread. Then, we compare alternative models for
the damping of oscillations. Finally, we consider the relation
between the periods of the fundamental and first overtone kink
modes to compare short and long thread approximations.

3.1. Inference

3.1.1. Magnetic field strength

We first assume that threads can be modelled as homogeneous
thin flux tubes with an internal prominence density, ρp, in a
coronal environment with density ρc. Under this assumption,
the phase speed of fast kink modes in threads can be simply
expressed as vph = vAi

√
2ζ/(1 + ζ), which depends on the inter-

nal Alfvén velocity, vAi, and the density contrast, ζ = ρp/ρc
(Spruit 1982; Edwin & Roberts 1983).

Expanding the Alfvén speed as a function of the magnetic
field strength, B, and the internal density in the thread, the theo-
retical equation for the phase speed can be written in the follow-
ing form:

vph =

√
2

µ0ρp
B, (7)

which is a good approximation for sufficiently large density con-
trasts typical of these structures (see panel a of Fig. 3.8 by Soler
2010).

Observationally, the phase speed of transverse kink waves
in prominence threads can be estimated (Lin et al. 2009). By
assuming that the phase speed estimated from observations is
equal to the kink speed, vph ≈ ck, given in Eq. (7) and taking this
as the observable data, d = vph, the inference of the unknown
parameters θ = {ρp, B} can be attempted.

In their analysis, Lin et al. (2009) took a fixed value of
ρp = 5 × 10−11 kg m−3 and solved Eq. (7) for the magnetic field
strength in a forward analysis. Their results for the ten analysed
threads are shown in the third column of Table 2. The assumption
of a particular value of ρp enables us in principle to estimate the
magnetic field strength. The main drawback of this procedure is
that the density of prominence plasmas is highly uncertain and
difficult to estimate with some accuracy. Repeating the proce-
dure for values of density in an extended plausible range leads to
a variability in the inferred magnetic field strength (see Fig. 1a).

In this paper, we performed the Bayesian inference of the
magnetic field strength by assuming uniform priors in Eq. (5) for
both parameters. Assuming plausible ranges for B ∈ [0.01, 50]
G and ρp ∈ [10−12, 10−9] kg m−3, theoretical model predictions
cover the range of phase speeds vph ∈ (0−6000) km s−1.

Figure 1b shows the Bayesian inference result obtained
for each thread analysed by Lin et al. (2009) in terms of
marginal posterior distributions for the magnetic field strength.
The median and errors at the 68% credible interval are given
in Table 2. For all threads, the marginal posteriors can be prop-
erly inferred. Figure 1b shows that the distributions spread over
a range of values from below 1 up to 20 G. When we compare
this finding with to the classic result in Fig. 1a, the difference
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Fig. 1. Panel a: curves obtained for each observed thread by Lin et al.
(2009) in the forward problem using Eq. (7). Panel b: posterior distribu-
tions of magnetic field strength (B) for each considered thread obtained
with Bayesian methods. Each number and colour in panels a and b
correspond to each observed thread according to legends and Table 2.
Panel c: global posterior computed for the fifth thread, considering a
Gaussian prior of the internal density ( ρi) centred in a value equal to
ρp = 5 × 10−11 kg m−3 and given an uncertainty of 50%. Panel d: com-
parison of posterior distributions of the magnetic field strength in totally
filled tube (purple line), partially filled tube (magenta line), and partially
filled tube considering a Gaussian prior for the proportion of thread
length centred in Lp/L = 0.5 with 50% of uncertainty (dashed magenta
line).
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Table 2. Summary of results from the analysis of threads observed by
Lin et al. (2009).

Thread vph BLin Bu BG Bpar
u

# (km s−1) (G) (G) (G) (G)

1 16 ± 3 0.9 ± 0.3 3+1
−1 1.0+0.3

−0.2 2 ± 1
2 20 ± 6 1.1 ± 0.5 4+2

−2 1.2+0.5
−0.4 2 ± 1

3 24 ± 6 1.3 ± 0.5 5+2
−2 1.5 ± 0.5 2 ± 1

4 36 ± 6 2.0 ± 0.4 7+2
−2 2.2 ± 0.6 4 ± 1

5 57 ± 9 3.2 ± 0.7 11+4
−3 3.4 ± 0.9 5 ± 2

6 28 ± 12 1.6 ± 0.9 5+3
−3 1.7+0.8

−0.7 3+2
−1

7 62 ± 10 3.5 ± 0.8 12+4
−4 4 ± 1 6 ± 2

8 40 ± 6 2.3 ± 0.8 8+3
−2 2.4 ± 0.6 4 ± 1

9 20 ± 3 1.1 ± 0.2 4+1
−1 1.3 ± 0.3 2 ± 1

10 28 ± 9 1.6 ± 0.7 5+2
−3 1.7+0.7

−0.6 3+2
−1

Notes. The columns contain the thread number (#), phase velocity (vph),
magnetic field derived by Lin et al. (2009) (BLin), and median and errors
at the 68% credible interval for the magnetic field strength computed
using uniform priors (Bu), Gaussian priors (BG), and for a partially filled
tube using uniform priors (Bpar

u ).

is that the values of magnetic field strength that spread over a
given range because of the variability in density, now have a dif-
ferent plausibility with the Bayesian analysis. It is worth not-
ing that the distributions for different threads belonging to the
same prominence display rather different maximum a posteriori
estimates. This is indicative of the highly inhomogeneous nature
of the magnetic field strength at small scales. We note that the
transverse non-uniformity of the field strength would need to be
counteracted by gas pressure forces to provide the constant total
pressure in the transverse direction, which is an ingredient that
has not been considered in the model under consideration. If we
compare our results using uniform priors and a range of density
values (column Bu in Table 2) with those by Lin et al. (2009)
using a fixed prominence density (column BLin in Table 2) we
appreciate significant differences. The results by Lin et al. (2009)
seem to be more precise and our results are more uncertain. This
is because Lin et al. (2009) removed all the uncertainty on the
prominence density. Instead of fixing a value of the density as in
Lin et al. (2009), Bayesian methods enable us to mimic this by
considering a Gaussian prior centred in ρp = 5 × 10−11 kg m−3

and with some uncertainty. An example result is shown in Fig. 1c
where the joint posterior for the magnetic field strength and the
density for the thread number five is plotted. Now, comparing
the column BLin with the column BG corresponding to calcula-
tions with Gaussian priors in Table 2, we see that we obtain sim-
ilar results; the advantage is that the Bayesian results have the
uncertainty correctly propagated. If we compare the result for
thread number five using uniform prior (purple line in Fig. 1b or
its summary value in Table 2) with that obtained using the Gaus-
sian prior, we see that a better constrained magnetic field strength
is inferred for this latter case. The accuracy in the magnetic
field strength inference thus depends strongly on the precision in
observationally estimated prominence densities. In the absence
of information on the internal density, this parameter cannot be
properly inferred, as has been noted by Arregui et al. (2018b) in
the context of coronal loop oscillations. Figure 2 shows posterior
distributions of the magnetic field strength, for the fifth thread,
computed using different priors for the density. Besides the
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Fig. 2. Posterior distributions of the magnetic field strength (B) con-
sidering a Gaussian prior of the internal density ( ρi) centred in a value
equal to ρp = 5×10−11 kg m−3 (pink), a Gaussian prior centred in a value
equal to ρp = 2×10−10 kg m−3 (blue), and a uniform prior (black dashed
line). Uncertainties in Gaussian priors are considered to be of 50%. The
totally filled tube and the plausible ranges for the parameters of Fig. 1
are assumed.

uniform prior, two Gaussian priors centred at two density val-
ues are used. The results for each case clearly differ.

The cool and dense threads in the prominences do not occupy
the entire magnetic flux tube. If we now consider the thread with
length Lp as part of a longer flux tube of total length L, the period
can be approximated by P ≈ π

√
Lp(L − Lp)/

√
2vAi (Soler et al.

2010). This period can be easily transformed to phase velocity
(vph = 2L/P) with the following form:

vpar
ph =

2

π
√

Lp

L

(
1 − Lp

L

)vtot
ph , (8)

where we denote vtot
ph for the phase velocity in Eq. (7) for the

totally filled tube and vpar
ph for a partially filled tube. In this model,

the space of parameters becomes larger with the ratio of the
length of the thread to total length, Lp/L, as an additional param-
eter. Under these conditions, we infer the magnetic field strength
for each thread analysed by Lin et al. (2009) to quantify the dif-
ferences with the previous results. Figure 1d shows an exam-
ple of comparison between marginal posteriors for the magnetic
field strength in a totally filled tube (purple line) and in a partially
filled tube (magenta line) for the thread number five. Uniform
priors have been considered for all parameters with the length of
the thread to the total length in the plausible range Lp/L ∈ (0, 1).
The posterior distribution for the partially filled tube shows more
constrained values of the magnetic field strength than the pos-
terior corresponding to the totally filled tube (see median val-
ues at the sixth column of Table 2). Additionally, it peaks at
a lower value of this parameter. Figure 1d further includes a
dashed magenta line resulting from considering a Gaussian prior
for the new parameter centred at Lp/L = 0.5 with an uncertainty
of 50%. This solution is very similar to that considered a uniform
prior over the full range of Lp/L.

3.1.2. Damping model parameters

Damping of transverse oscillations is a commonly observed phe-
nomenon in threads; see for example Ning et al. (2009). A num-
ber of theoretical models have been put forward to explain the
damping process in prominences (Arregui et al. 2011). These
two ingredients of damping, i.e. observations and theoretical
models, are used to perform seismology and infer conditions in
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Fig. 3. Posterior distributions of the thickness of non-uniform layer
(l/R) for resonant absorption in the Alfvén continuum. Three differ-
ent damping ratios (τd/P) with an associated uncertainty of 10% are
considered.

these structures (see Arregui et al. 2018a, for a review). In this
work, we consider three damping mechanisms, namely resonant
absorption in the Alfvén continuum (Arregui et al. 2008), reso-
nant absorption in the slow continuum (Soler et al. 2009d), and
Cowling’s diffusion in a partially ionised plasma (Soler et al.
2009b,c) to extract information of physical features in promi-
nence threads.

The first considered damping model is resonant absorption
in the Alfvén continuum. This is a widely invoked mechanism in
the context of coronal loop oscillations (Goossens et al. 2002)
and was suggested in the context of prominence plasmas by
Arregui et al. (2008). The mechanism transfers global kink mode
energy to small scale azimuthal motions at the boundary of the
flux tube that separates the prominence and coronal plasmas.
Under the thin tube and thin boundary approximations and con-
sidering large density contrast ratios, ρp � ρc, a simple expres-
sion relates the damping ratio and the transverse inhomogeneity
length scale,

τd

P
=

2
π

R
l
· (9)

In this equation, τd is the damping time, P the oscillation period,
and l/R the inhomogeneity length scale at the tube boundary in
units of the tube radius R. The factor 2/π arises because we
are considering a sinusoidal variation of density at that tube
boundary.

The use of observational values of the damping ratios, d =
τd/P, and the theoretical expression in Eq. (9), permit us to
infer the damping model parameter for resonant absorption in
the Alfvén continuum, θ = {l/R}. The possible values that l/R
can take are restricted by the model itself with l/R = 0 for a tube
with a jump on density between ρp and ρc and l/R = 2 for a fully
non-uniform continuous variation of density. This leads to theo-
retically predicted damping ratios in the range τd/P ≈ [0.3,∞],
compatible with observed values.

Figure 3 shows resulting posterior distributions for the damp-
ing model parameter when a uniform prior and three different
values of the damping ratio with a given uncertainty are con-
sidered. All distributions can be inferred with short values of
l/R being more plausible for higher damping ratio values. These
results are akin to those obtained by Montes-Solís & Arregui
(2017) for the transverse inhomogeneity length scales in coronal
loop oscillations damped by resonant absorption.

The next considered damping model is resonant absorption
in the slow continuum. In this case, the damping is produced
by an energy transfer from the global kink mode to slow mode

oscillations at the boundary of the magnetic flux tube. Relax-
ing the zero-β approximation, the existence of slow magneto-
acoustic waves cannot be discarded since plasma in threads has
chromospheric properties. This mechanism was first considered
by Soler et al. (2009d) in the context of prominence threads.
They derived an analytical expression for the damping ratio of
the form

τd

P
=

2
π

R
l

 kzR
1 + 2

γβ

−2

, (10)

with kzR the longitudinal wavenumber normalised to the radius
of the tube, γ = 5/3 the adiabatic constant of a mono-atomic gas,
and β the plasma-β parameter.

Taking the damping ratio as observable, d = τd/P, and
Eq. (10), we can attempt to infer the three parameters associ-
ated with damping by resonant absorption in the slow contin-
uum, θ = {l/R, β, kzR}. Plausible ranges of the model parame-
ters l/R ∈ [0.01, 2], β ∈ [0.01, 1], and kzR ∈ [10−3, 0.1] lead
to theoretically predicted damping ratios in the range τd/P ∼
[154, 1013]. Figure 4 shows the resulting marginal posteriors
associated with the three model parameters for resonant absorp-
tion in the slow continuum with uniform prior assumptions for
all parameters. All distributions can be inferred with the same
tendency to peak in higher parameter values for lower damp-
ing ratio values. In the left panel, posterior distributions associ-
ated with the thickness of non-uniform layer peak at a similar
value of l/R, regardless of the value of τd/P, which is a value
that is similar to the l/R value for resonant absorption in the
Alfvén continuum. In the middle panel, posterior distributions
for the plasma-β parameter peak at low values indicating that
the zero plasma-β approximation in prominence threads seems
a good approximation. In the right panel, posteriors have been
also inferred for kzR for the three considered damping ratios, but
the range of possible wavenumber values in threads had to be
extended until kzR = 4, otherwise this mechanism is not able to
explain those damping ratios. Much higher damping ratios need
be considered to have a proper inference with the typical reduced
wavenumbers.

We could ask ourselves if results would change considering
a more realistic adiabatic constant. Repeating the inference pro-
cess with the value derived by Van Doorsselaere et al. (2011)
(γ = 1.10 ± 0.02) to define a Gaussian prior for the adiabatic
index γ, we found that the posterior distributions of the model
parameters do not differ significantly.

Finally, we consider the mechanism of Cowling’s diffusion
in partially ionised plasmas. This process consists of a magnetic
diffusion in the perpendicular direction to the magnetic field
lines due to ion-neutral collisions. Considering the analysis by
Soler et al. (2009b,c), the theoretical expression for the damping
ratio can be expressed as

τd

P
=

√
2

πkzRη̃c
, (11)

where η̃c is the Cowling’s diffusion coefficient in dimensionless
form.

As with previous damping models, we infer the parameters
associated with this model, θ = {kzR, η̃c}, for different damping
ratios, d = τd/P, as observables. However, plausible values of
Cowling’s diffusion coefficient in threads are not well known,
so we first explore those plausible values in this kind of coronal
structures.

Determining the Cowling’s diffusion coefficient is difficult
because of its dependence on multiple unknown quantities in the
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Fig. 4. Marginal posterior distributions for the width of non-uniform
layer (l/R), plasma-β parameter (β), and wavenumber (kzR) for resonant
absorption in the slow continuum. Different damping ratios (τd/P) with
an associated uncertainty of 10% are considered.

form (Leake 2005)

η̃c =
ηc

vApR
where ηc =

B2χ2
n

µ0αn
(12)

andαn =
1
2
χn(1 − χn)

ρ2
pΣin

mn

√
16kBTp

πmi
,

where χn = 2−1/µ̃p, µ̃p the ionisation degree of plasma, Σin =

5 × 10−19 m−2 the ion-neutral cross-section, mnandmi the neu-
tral and ion masses, B the magnetic field strength, ρp, Tp, and R
the density, temperature, and radius of the thread, respectively.
Assuming the prominence plasma is only constituted by neutral
and ionised hydrogen, mn ≈ mi, the Cowling’s diffusion coeffi-
cient can be computed as

η̃c =
2.88 × 10−8Bχn

R
√

Tpρ
3
p(1 − χn)

· (13)

To estimate plausible limits of this parameter, we assume threads
with R = 100 km, ρp = 5 × 10−11 kg m−3, Tp = 8000 K, B = 5 G,
and χn varying according to the ionisation degree in the range
µ̃p ∈ (0.5, 1). Hence, the diffusion coefficient takes values in the
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Fig. 5. Marginal posterior distributions for wavenumber (kzR) and
Cowling’s coefficient (η̃c) for Cowling’s diffusion. Three different
damping ratios (τd/P) with associated uncertainty of 10% are
considered.

range η̃c ∈ [10−4, 0.5]. Considering in addition typical wavenum-
bers, kzR ∈ [10−3, 0.1], and plasma-β ∈ [0.01, 1], theoretically
predicted damping ratios for the Cowling’s diffusion mecha-
nism take values in the range τd/P ∼ (30−107), which points
to this mechanism being unable to provide the observed damp-
ing timescales.

In spite of this, we performed the inference of the two rel-
evant parameters, kzR and η̃c, for three different damping ratio
values. The resulting posteriors are shown in Fig. 5. Uniform pri-
ors were considered. Posterior distributions can be inferred with
posteriors corresponding to wavenumbers peaking at higher val-
ues for lower damping ratios. For the inference of the Cowling’s
coefficient, we had to extend the range of considered values up
to η̃c = 4 to obtain posterior distributions corresponding to low
damping ratios. Typical values of the diffusion coefficient seem
to be adequate for damping ratios of about tens.

3.1.3. Lengths and densities of prominence threads

One of the main difficulties with prominence thread seismology
in comparison to coronal loop seismology is that threads show
up in observations as cool and overdense plasma condensations
occupying only part of a longer magnetic flux tube whose total
length cannot be directly measured. The ratio of the length of
the thread to the length of the tube, Lp/L, is a relevant parame-
ter upon which periods and damping times of transverse thread
oscillations depend (Soler et al. 2010; Arregui et al. 2011).

It was first suggested by Díaz et al. (2010) that the ratio of
the period of the fundamental transverse kink mode to twice that
of the first overtone period can be used as a tool for prominence
seismology. Their analysis was based on the configuration by
Díaz et al. (2002) in which the thread consists of cool material
with density ρp occupying a length Lp embedded in a longer flux
tube of length L with coronal density ρc. In the low frequency
limit (ωL/vAp � π/2), the period ratio can be cast as a function
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of the density contrast, ρp/ρc, and the length of the thread in units
of the total length, Lp/L, as

P1

2P2
≈

1

2
√

Lp/L

√
1 + Lp/L(3 f 2 − 1)
1 + Lp/L( f 2 − 1)

, (14)

where f =
√

(ρp/ρc + 1)/2. If we further assume that ρp/ρc � 1,
the period ratio can be approximated as

P1

2P2
≈

√
3

4Lp/L
· (15)

As shown by Díaz et al. (2010), the fundamental mode satisfies
the condition of low frequency in Eq. (15) but the first overtone
does not. For this reason, Díaz et al. (2010) considered the next
term in their frequency series expansion, obtaining the following
expression for the period ratio

P1

2P2
≈

√
3

4Lp/L

√√
1 +

√
(1 + Lp/3L)/(1 − Lp/L)

1 +
√

(9/5 − Lp/L)/(1 − Lp/L)
· (16)

For our Bayesian inversion we consider the period ratio, d =
P1/2P2 as observable and Eqs. (15) and (16) as theoretical pre-
dictions. Then, the inference of the proportion of the total length
occupied by the thread, Lp/L, can be attempted. A uniform prior
is applied to this analysis for Lp/L ∈ (0, 1), which includes val-
ues in between the two limiting cases of Lp/L = 0, in which the
thread does not exist, and Lp/L = 1, in which the thread occu-
pies the full length of the tube. For this range, Eq. (16) predicts
period ratios in between 0.9 and∞.

Figure 6 shows the inferred marginal posterior distributions
of Lp/L for four values of the observable period ratio using
both approximations given by Eqs. (15) and (16). The higher the
period ratio is, the shorter are the inferred values of Lp/L. When
comparing the results using both approximations, we find that
posterior distributions obtained from the Eq. (16) peak at slightly
lower values of the period ratio than those acquired using the
most simple equation. This means that including one more term
in the series expansion of the direct problem affects the inferred
value of the length of the thread. Regarding real observations,
Lin et al. (2007) reported a possible detection of multiple har-
monic oscillations, which have a period ratio P1/2P2 ∼ 2.22.
Although the reliability of this observation is questionable, seis-
mology applications based on this event have been presented by
Soler et al. (2015) and Arregui & Soler (2015). If we believe
in the reliability of the observational estimate, this leads to an
inferred value of Lp/L = 0.16 ± 0.03, when an uncertainty of
10% in the period ratio is considered.

In addition to the limitation that Eqs. (15) and (16) are only
valid in the low frequency limit, they are not very good approx-
imations to the period ratio for short threads (see Fig. 3 of Díaz
et al. 2010). For the short thread limit, Díaz et al. (2010) derived
an expression for the period ratio of the form

P1

2P2
≈ 1 + ( f 2 − 2)

L
Lp
− ( f 2 + 1)

(
L
Lp

)2

. (17)

Using the same inference procedure as before, we now use
Eq. (17) to infer the two parameters θ = {Lp/L, ρp/ρc} from the
observable period ratio. Uniform priors are used for the length
of the thread in the range of Lp/L ∈ [0, 1] as a first approxima-
tion to sample all plausible values and for the density contrast
ρp/ρc ∈ [1.01, 300] to account for the large density contrast typ-
ical of prominence plasmas. Figures 7a and b show the resulting
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Fig. 6. Posterior distributions of proportion of thread (Lp/L) consider-
ing Eq. (15) (continuous line) and Eq. (16) (dashed line) in the short
frequency limit. Observable values of P1/2P2 with an associated uncer-
tainty of 10% are considered.

posterior probabilities for both parameters, Lp/L and ρp/ρc. For
all considered period ratios, both the density contrast and length
of the thread can be properly inferred. Figure 7a, correspond-
ing to the length of thread, shows two clearly visible peaks for
each distribution with small differences between them for differ-
ent period ratio values. Low values of the theoretical period ratio
are compatible with large lengths of thread and small density
contrast but also with small lengths of thread and large density
contrasts because of the negative sign of last term in Eq. (17).
The distributions for the density contrast in Fig. 7b peak at low
values of the parameter spread to higher values for higher period
ratio values. In the considered range for this parameter, the sec-
ondary peak is not visible.

We note that Eq. (17) is only strictly valid in the short thread
limit. If we constrain the possible values of Lp/L to the shorter
range Lp/L ∈ [0, 0.1], we obtain the results shown in Figs. 7c
and d. In contrast to the tendency found for the marginal poste-
riors for Lp/L in the long thread approximation, the posteriors
in Fig. 7c move towards higher values of Lp/L for higher period
ratio values. A similar behaviour is obtained for the posterior
distributions of density contrast which peak at larger values in
comparison to those obtained considering the full range in Lp/L
in the previous case. Also, a very low probability is obtained for
density contrasts above 200, unless we consider wider ranges of
ρp/ρc with values from tens to thousands.

To analyse possible differences between several equations in
this section, i.e. Eqs. (14)–(17), we compute the posterior of
the length of thread proportion for all plausible range of the
parameter in all cases with an observable period ratio equal to
P1/2P2 = 2.0±0.2. Figure 8 shows posterior distributions result-
ing from this analysis. In the long thread approximation, dis-
tributions obtained from considering different equations do not
differ. However, the result differs when we consider the equation
for the short thread approximation. The posterior distribution has
one peak in a value next to zero differing from the other distribu-
tions. In addition, it shows a secondary peak with smaller ampli-
tude at the opposite side of parameter range, next to 1 due to the
sign of the last term in the equation.

3.1.4. Length of flowing and oscillating threads

Prominence threads are observed flowing at the same time that
they support transverse oscillations (Okamoto et al. 2007, 2015).
Some theoretical models have considered the properties of
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Fig. 7. Posterior distributions of the
thread length (Lp/L) and the density
contrast (ρp/ρc) for several values of
the period ratio (P1/2P2) with an asso-
ciated uncertainty of 10%. Top pan-
els correspond to using Eq. (17) with
Lp/L ∈ [0, 1] and ρp/ρc ∈ [1.1, 100].
Bottom panels: results of considering
short thread limit using the same equa-
tion as top panels with Lp/L ∈ [0, 0.1]
and ρp/ρc ∈ [1.1, 300].

transverse waves in non-static equilibria and the influence of
mass flows in their oscillatory features (Dymova & Ruderman
2005); the first applications of these models are to Hinode obser-
vations (Terradas et al. 2008).

To perform our analysis, we consider again the partially filled
tube model based on Díaz et al. (2002) but the thread is permitted
to flow along the magnetic field direction. In this scenario, the
inclusion of a flowing thread with velocity v0 produces the period
of fundamental kink mode to vary in time. Soler & Goossens
(2011) analysed the temporal evolution of the period and gave
an analytic expression for the ratio of the period at any time, t,
to period at time t = 0, of the form

P(t)
P(0)

=

√
1 −

4v2
0t2

(L + 1
3 Lp)(L − Lp)

· (18)

This expression depends on three physical quantities, the flow
velocity, v0, the length of the thread, Lp, and the total length of
the flux tube, L.

Considering the theoretical prediction given by Eq. (18), we
first compute the posterior distribution for each model parame-
ter θ = {L, v0, Lp} assuming a time of observation equal to 180 s
and an observable d = P(t = 180 s)/P(0) = 0.9, where the
associated uncertainty is 10%. The possible values of parame-
ters inside the square root are limited by mathematical reasons
since the second term should be less than 1, so that considered
ranges of parameters are v0 ∈ (0, 100] km s−1, Lp ∈ [0, 20] Mm,
and L ∈ [50, 200] Mm, but not all combinations of these values
are possible. Uniform priors are assumed for the three quantities
in the first scenario and Gaussian priors for the flux velocity and
length of the thread in a second scenario.

The resulting posterior distributions for the total length of
the flux tube are presented in Fig. 9 for the two scenarios.
Different values of observation times, period ratios, and uncer-
tainties are studied. The flow velocity and thread length cannot
be properly inferred and they are omitted for clarity. In gen-
eral, distributions are not well constrained, showing long tails
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Fig. 8. Comparison of posterior distributions of the thread length pro-
portion (Lp/L) obtained for Eqs. (14)–(17). One observable period
ratio of P1/2P2 = 2 is considered with an associated uncertainty
of 10%.

for large values of the parameter but more defined distributions
are obtained when Gaussian priors are assumed. Panels a and d
show posteriors of L for different times of observations. Larger
values of L are more plausible for larger times. A lower limit of L
could be inferred in the second scenario. Panels b and e present
posterior distributions for various period ratio values. Smaller
values of L are more likely and more defined distributions are
obtained with lower period ratio values. Regarding the influence
of considering different uncertainties in measurements, panels c
and f show that posterior distributions for the total length of the
flux tube do not change significantly except for the lowest value
of the uncertainty. The length of the flux tube cannot be well
inferred, unless the uncertainty associated with the period ratio
measurement is very small.

After analysing the general case, we focus on applying the
same model to particular real observations reported by Okamoto
et al. (2007). These authors report on the simultaneous presence
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Fig. 9. Posterior distributions of the total length
(L) with uniform (left panels) and Gaussian
(right panels) priors. Gaussian priors are cen-
tred in v0 = 22 km s−1 and Lp = 4 Mm with an
uncertainty of 10%. The first row shows results
of considering multiple observation times with
P(t)/P(0) = 0.9 and an associated uncertainty
of 10%. The second row shows results of con-
sidering multiple period ratios with t = 180 s
and 10% as uncertainty for all observables. The
third row conforms results associated with dif-
ferent uncertainties, σ = 10, 25, 50, 75%, with
P(t)/P(0) = 0.9 and t = 180 s.

of flowing and transversally oscillating threads observed with
Hinode. Although period variations in time were not reported,
we assume hypothetical period changes to exemplify a possible
application to infer the total length of the flux tube from this kind
of observations. Table 3 gives a summary of the thread lengths
and flow velocities reported by Okamoto et al. (2007). In our
inference, the observable and its uncertainty remain the same
as in the previous scenario but Gaussian priors are used for the
length of the thread and flow velocity, where Gaussians are cen-
tred at those values measured by Okamoto et al. (2007). Uncer-
tainties are not given in their work, so that we have considered
uncertainties of 10% for all measurements. Regarding the total
length of the flux tube, a uniform prior is assumed.

Results for the inferred distributions and summary values of
median with errors for the total length for all six threads are
shown in Fig. 10 and Table 3, third column. The total length
of the flux tube cannot be properly inferred because the posterior
distributions show long and high tails at the right-hand side of the
distributions. However, all six distributions show a common ten-
dency to peak at values of the length in between approximately
20 Mm and 40 Mm, except for thread numbers 2 and 6 whose
posteriors cannot be inferred because of limitations imposed by
Eq. (18). Analysing the median values in Table 3, the total length
takes values roughly in between 20 and 90 Mm within the errors;
this last value is next to values reported in some previous stud-
ies, which fixed a minimum value of 100 Mm (Soler et al. 2010;
Terradas et al. 2008). Hence, Lp represents less than 10% of the
total flux tube.

It is worth mentioning that the flow speeds by Okamoto et al.
(2007) might be apparent and due to the presence of intensity
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Fig. 10. Posterior distributions of the total length of threads analysed by
Okamoto et al. (2007). An observation time of t = 180 s and a ratio of
0.9 have been assumed with an associated uncertainty of 10%.

variations from heating/cooling processes. Also, the authors did
not consider any uncertainty coming from, for instance line-of-
sight projection effects.

3.2. Model comparison

The use of Bayesian techniques provides information about
model parameters and further permits us to compare the capabil-
ity of alternative models to explain observations. In this section,
we present results from two applications of model comparison.
We first compare the plausibility of the three damping models
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Table 3. Threads data analysed by Okamoto et al. (2007).

Thread Lp v0 L
# (Mm) (km s−1) (Mm)

1 3.6 39 58+28
−22

2 16 15 59+28
−25

3 6.7 39 59+28
−22

4 2.2 46 60+27
−21

5 3.5 45 60+27
−21

6 1.7 25 54+31
−26

Notes. Columns contain the number of thread (#), observed thread
length (Lp), measured velocity of flow (v0), and median values of poste-
rior distributions of the total length of the flux tube (L) with a credible
interval of 68%.

considered in Sect. 3.1.2. Then, we do the same with the two
alternative period ratio approximations in the short and long
thread limits described in Sect. 3.1.3.

3.2.1. Damping mechanisms

The causative mechanism of damping of transverse oscillations
in threads remains unknown. A simple evaluation of the capac-
ity of each damping mechanism to reproduce observed damping
ratios can be obtained by inserting typical values for the model
parameters in Eqs. (9)–(11), corresponding to resonant absorp-
tion in the Alfvén continuum, resonant absorption in the slow
continuum, and Cowling’s diffusion, respectively. The ranges so
obtained and already discussed in Sect. 3.1.2 point towards the
Alfvén resonance as the most plausible mechanism. However,
we note that those so-called typical values are highly uncertain
and cannot be measured directly. Therefore, different combi-
nations of typical values would lead to different predictions of
τd/P for each model, which could have a large variability. The
Bayesian model comparison permits us to analyse this variabil-
ity, by studying how often different model parameter combina-
tions lead to a given observable.

We first use the marginal likelihood, as defined in Eq. (2),
to calculate the likelihood of a given model to reproduce a given
observed damping ratio, considering how different combinations
of model parameters contribute to theoretical predictions close to
the observed data. The marginal likelihood also depends on the
error on the measured damping ratio. In our case, we consid-
ered a 10% uncertainty on the observable, d = τd/P. Uniform
and independent priors for all parameters of the damping mod-
els have been contemplated. The values for these parameters are
enclosed in the same plausible ranges for prominence conditions
used in the inference analysis.

Figure 11 shows marginal likelihoods corresponding to each
damping mechanism, as a function of the observable damping
ratio. Resonant absorption in the Alfvén continuum (Fig. 11a)
has the largest plausibility for very strong damping regimes,
which have values of τd/P even below 1. The marginal likeli-
hood for resonant absorption in the slow continuum (Fig. 11b)
spreads over much higher damping ratio values, peaking at a
damping ratio around 470. Finally, the marginal likelihood for
Cowling’s diffusion (Fig. 11c) is more compatible with observed
damping ratios in the range 5× 106−5× 107. Hence, each mech-
anism seems to explain better different ranges of τd/P, but only
the Alfvén resonant absorption shows a marginal likelihood that
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Fig. 11. Marginal likelihoods for the three selected damping mech-
anisms. Panel a: resonant absorption in the Alfvén continuum.
Panel b: resonant absorption in the slow continuum. Panel c: cowling’s
diffusion. τd/P values are indicated in the x-axis. An uncertainty of 10%
has been used.

has the highest values for damping ratios compatible with those
observed.

The marginal likelihood only gives information on how the
plausibility of a model is distributed over possible values of
observable data. To assess the relative plausibility between mod-
els, Bayes factors using Eq. (4) must be computed. This is
done in a one-to one comparison between the three mechanisms.
Then, the obtained Bayes factor values are associated with lev-
els of evidence, according to Table 1. Figure 12 shows the Bayes
factor, Bi j, as a function of the observable damping ratio, with
the subscripts i j ∈ [0, 1, 2] corresponding to resonant absorp-
tion in the Alfvén continuum, resonant absorption in the slow
continuum, and Cowling’s diffusion, respectively. Hence, when
confronted to the other alternatives, resonant absorption in the
Alfvén continuum is the only mechanism for which Bayes fac-
tors showing strong evidence is obtained in the region of typi-
cally observed damping ratios of the order of units.

In the comparison between resonant absorption in the Alfvén
continuum and resonant absorption in the slow continuum
(Fig. 12a), we find strong evidence in favour of the first model
for damping ratios up to 125, in which Bayes factor values reach
up to 100; the figure was cut in the vertical direction for clar-
ity. In the rest of the interval, resonant absorption in the slow
continuum dominates with very strong evidence. In the compar-
ison between resonant absorption in the Alfvén continuum and
Cowling’s diffusion (Fig. 12b), we find strong evidence in favour
of resonant absorption for the lowest values of damping ratio
(τd/P < 9), intermediate values do not show enough evidence
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Fig. 12. Bayes factors as a function of the damping ratio (τd/P) with
an associated uncertainty of 10%. The subscripts 0, 1, and 2 correspond
to resonant absorption in the Alfvén continuum, resonant absorption to
the slow continuum, and Cowling’s diffusion, respectively.

to support any of the two models, and the rest of values (τd/P >
13) are better explained by Cowling’s diffusion. Finally, in the
comparison between resonant absorption in the slow continuum
and Cowling’s diffusion (Fig. 12c), we find very strong evidence
in favour of Cowling’s diffusion for all damping ratios below
τd/P ∼ 200. For the remaining damping ratio values, the evidence
is not strong enough to support any of these two models.

Soler et al. (2009d) already found that the damping time due
to resonant absorption in the Alfvén continuum is much shorter
than that corresponding to resonant absorption in the slow con-
tinuum. In a situation with both continua, the former would
damp the oscillations much earlier. Our analysis is based on rea-
soning about plausibilities in the Bayesian context. In this case,
the computation of marginal likelihoods has to be done sepa-
rately and gives a measure of how many times different combi-
nation of parameters would lead to a given observable.

3.2.2. Short and long thread limits

In Sect. 3.1.3 thread lengths and densities were inferred under
the short and long thread approximations for the period ratio.
As the length of the full magnetic tube is difficult to estimate, we
wish to ascertain how plausible each approximation is for a given
observationally estimated period ratio. To do so, we consider
Eqs. (16) and (17) and compute the marginal likelihood asso-
ciated with each approximation. We also compare these through
the use of Bayes factors. The ranges of plausible values for the

parameters, θ = {Lp/L, ρp/ρc}, are the same as in inference anal-
ysis. We assumed uniform priors for these parameters and values
of the period ratio, P1/2P2, from 0 to 5 are taken with an uncer-
tainty of 10%.

Figure 13a shows the obtained marginal likelihoods. We can
appreciate that values of P1/2P2 lower than 1 are very unlikely
under the considered models. For the long thread approximation,
the marginal likelihood peaks around period ratios in between 1
and 2.5 approximately, and probabilities are three times higher
than those for the short thread limit. For higher values of the
period ratio, the short thread approximation seems to be more
probable.

Regarding Bayes factors, the results are shown in Fig. 13b.
Very strong evidence in favour of the short thread model is
obtained when P1/2P2 values are below 1, positive evidence in
favour of the long thread model for intermediate values of the
period ratio, and positive evidence for the short thread limit for
even higher period ratio values.

Therefore, in partially filled tubes, values of the period ratio
in between 1 and 2.5 are better explained by the long thread
approximation, while the short thread approximation provides
greater evidence for period ratio values below and above that
range. This model comparison analysis enables us to quantify
the goodness of the inference results in Sect. 3.1.3 under a given
period ratio approximation for a given period ratio measurement,
with its corresponding observational error.

4. Summary and conclusions

We applied Bayesian analysis techniques to infer physical prop-
erties of prominence threads and to quantify the plausibility of
alternative models using prominence seismology. We first con-
sidered fully and partially filled density tubes to model promi-
nence threads and infer their equilibrium characteristics. Our
results indicate that the magnetic field strength of prominence
threads can be properly inferred and magnitudes smaller than 20 G
are obtained for a totally filled tube and even smaller for a par-
tially filled tube. The values show a rather large variability which
depends on the particular thread that is considered in a quiescent
prominence. The damping model parameters of three damping
mechanisms, resonant absorption in the Alfvén continuum, res-
onant absorption in the slow continuum, and Cowling’s diffusion,
can also be inferred by giving information on the transverse inho-
mogeneity length scale, the wavenumber, plasma-β, and Cowl-
ing’s diffusion coefficient. Observations of period ratios between
the fundamental kink mode and the first longitudinal overtone
enable us to infer the lengths of prominence threads in relation
to the total length of the flux tube. Different results are obtained
depending on whether the long or short thread approximations are
considered. The analysis also leads to the conclusion that thread
densities larger than 200 have a very low probability. When flows
are included in the modelling, the total length of the flux tube can
be inferred leading to values in between 20–40 Mm in a particu-
lar application to a prominence observed with Hinode/SOT. These
values are lower than those expected for an active region promi-
nence. In a more general case, the total length of the flux tube
seems to depend on the flow velocity measurements more than on
the observed length of the thread.

Two applications of Bayesian model comparison were pre-
sented. Our comparison between three alternative damping
mechanisms shows that resonant absorption in the Alfvén con-
tinuum is the most plausible mechanism for explaining current
observations with very short damping times. The comparison
between two analytical approximations for the period ratio of
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Fig. 13. Panel a: marginal likelihoods for long and short thread limits. P1/2P2 ∈ (0, 5] with associated uncertainties of 10%. Panel b: Bayes
factors as a function of the ratio of the fundamental kink mode period to twice the first overtone period. An uncertainty of 10% has been assumed.
Subscripts 0 and 1 correspond to long and short thread limits, respectively.

thread oscillations indicates that values of the period ratio around
1 are better explained by the long thread model, while period
ratio values below 1 and above 2.5 are better explained by the
short thread model.

We believe the application of Bayesian techniques to promi-
nence seismology is advantageous because it enables us to con-
strain what can be plausibly said about difficult to measure
physical parameters and to compare the performance of alter-
native physical models in view of observed data with their
uncertainties.
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