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Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA, cDepartment of Physics and Astron-

omy, University of Tennessee, 1408 Circle Drive, Knoxville, Tennessee 37996, USA, dTelenor Research and

Development, 1331 Fornebu, Oslo, Norway, and eComputational Science & Engineering Center & Physics

Department, University of California, Davis, One Shields Avenue, Davis, California 95616, USA. Corre-

spondence e-mail: dpvarn@pks.mpg.de, geoffrey.canright@telenor.com, chaos@cse.ucdavis.edu

Previously we detailed a novel algorithm,ε-machine spectral reconstruction the-
ory (εMSR), that infers pattern and disorder in planar-faulted, close-packed struc-
tures directly from X-ray diffraction spectra [Varn, Canright & Crutchfield, sub-
mitted toActa Crystallographica A]. Here we applyεMSR to simulated diffrac-
tion spectra from five close-packed crystals. We find that forstacking structures
with a memory length of three or less,εMSR reproduces the statistics of the stack-
ing structure; the result being in the form of a directed graph called anε-machine.
For stacking structures with a memory length larger than three,εMSR returns a
model that captures many important features of the originalstacking structure.
These include multiple stacking faults and multiple crystal structures. Further, we
find that εMSR is able to discover stacking structure in even highly disordered
crystals. In order to address issues concerning the long range order observed in
many classes of layered materials, we define several length parameters calculable
from theε-machine, and discuss their relevance.

Keywords: X-ray diffraction; diffuse scattering; one-dimensional disorder; polytypes;
planar faults; computational mechanics.

1. Introduction

While crystallography has historically focused on the charac-
terization of materials whose constituent parts are arranged in
an orderly fashion, researchers have become increasingly inter-
ested in materials that display varying amounts of disorder, sev-
eral examples being glasses, aerogels (Erenburget al., 2005)
and amorphous metal oxides (Bataronovet al., 2004). A broad
range of layered materials calledpolytypesalso show consider-
able disorder and have been the subject of numerous theoreti-
cal and experimental investigations (Jagodzinski, 1949; Verma
& Krisha, 1966; Pandey & Krishna, 1982; Trigunayat, 1991;
Sebastian & Krishna, 1994). Polytypism is the phenomenon
where a solid is built up by the stacking of identical layers,
called modular layers(MLs) (Varn & Canright, 2001). Each
ML is itself crystalline and the only possible disorder comes
from how adjacent MLs are stacked. Typically energetic con-
siderations restrict the number of ways two MLs can be stacked
to a usually small set of relative orientations. Thus the spec-
ification of a disordered polytype reduces to giving the one-
dimensional list of the sequence of MLs called thestacking
sequence.

Polytypes have attracted so much interest in part due to the

multiple crystalline stacking sequences commonly observed—
for two of the most polytypic materials, ZnS and SiC, there are
185 and 150 known periodic stacking structures respectively.
Some of these crystalline structures have unit cells extending
over 100 MLs (Sebastian & Krishna, 1994). This is in con-
trast to the calculated inter-ML interaction range of∼ 1 ML
in ZnS (Engel & Needs, 1990) and∼ 3 MLs in SiC (Cheng
et al., 1987; Chenget al., 1988; Shaw & Heine, 1990; Cheng
et al., 1990). An important ancillary question is whether the
disorderedpolytypes so commonly observed in annealed and
as-grown crystals also possess coordination in the stacking of
MLs over such a long range.

Significant simplifications in the analysis of X-ray diffraction
spectra occur if the disorder in the crystal is restricted toone
dimension and the constituent parts can assume only discrete
positions. This is just the case that arises in the analysis of poly-
types. While the general problem of inverting diffraction spectra
to obtain structure remains unsolved, this more restrictedone-
dimensional case has been much more amenable to theoretical
analysis. We recently introduced a novel inference algorithm,ε-
machine spectral reconstruction theory (εMSR or “emissary”),
that does solve the problem of inferring planar disorder from
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1 We note that there are no inherent obstacles to applyingεMSR to materials with more complicated MLs or stacking rules (Brindley, 1980; Thompson, 1981; Varn
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diffraction spectra for the special case of close-packed struc-
tures (CPSs) (Varnet al., 2002; Varnet al., 2005a).1 Although
we do not find the particular stacking sequence that generated
the experimental diffraction spectrum, we do find a unique, sta-
tistical expression for an ensemble of stacking sequences each
of which could have produced the observed diffraction spec-
trum. This statistical description comes in the compact form of
an ε-machine(Crutchfield & Young, 1989; Shalizi & Crutch-
field, 2001).

We claim in a companion paper (Varnet al., 2005a) that
εMSR has significant advantages over competing inference
algorithms, particularly the fault model (FM).2 These advan-
tages include the following: (i)εMSR does not assume any
underlying crystal structure, nor does it require one to postu-
latea priori any particular candidate faulting structures. That is,
there need not be any ‘parent’ crystal structure into which some
preselected faulting is introduced. (ii) Consequently,εMSR can
model crystals with multiple crystal or fault structures. (iii)
SinceεMSR doesn’t require a parent crystal structure, it can
detect and quantify stacking structure in samples with even
highly disordered stacking sequences. (iv)εMSR uses all of
the information available from the diffraction spectrum, both
Bragg and diffuse scattering. (v)εMSR results in a minimal and
unique description of the stacking structure in the form of an
ε-machine. From knowledge of theε-machine, insight into the
spacial organization of the stacking structure is possible. (vi)
Parameters of physical interest, such as entropy density, hexag-
onality and memory length, are directly calculable from theε-
machine.

Our purpose here is four-fold: (i) We wish to validate the
above assertions concerning the efficacy ofεMSR by demon-
strating its application to the discovery of pattern and disorder
in layered materials from their X-ray diffraction spectra.(ii) As
developed in (Varnet al., 2005a), εMSR can reconstruct pro-
cesses up to 3rd-order Markovian. We wish to test the robust-
ness ofεMSR by analyzing diffraction spectra from stacking
sequences not describable as 3rd-order Markovian. While we
expect thatεMSR will not recover the precise statistics of the
original stacking sequence for these complicated stackingpro-
cesses, we wish to understand how much it deviates in these
cases. (iii) We wish to address the issue of long range order
in disordered polytypes. Thus we also define length parameters
calculable from theε-machine and discuss their implication for
finding long range order in polytypes. (iv) Lastly, we wish to
demonstrate how the architecture of theε-machine provides an
intuitive and quantitative understanding into the spacialorgani-
zation of layered CPSs.

These goals are convincingly realized by analyzing diffrac-
tion spectra derived from simulated stacking sequences where
there are no issues concerning experimental error. We are able
to compare theε-machine reconstructed from spectral data with
theε-machine that describes the original stacking structure, and
thus we can explore how effectivelyεMSR captures the statis-
tics of these complicated stacking structures. Additionally, this

kind of analysis also allows us to identify possible difficulties
that may arise when applyingεMSR.

Our development is organized as follows: in§2 we provide
numerical details about the techniques we use to analyze the
simulated diffraction spectra; in§3 we present our analysis of
five simulated diffraction spectra usingεMSR and contrast our
results to those of the FM; in§4 we define several characteris-
tic lengths calculable from a knowledge of theε-machine and
consider their implications for the long range order so ubiqui-
tous in polytypes; and in§5 we give our conclusions and direc-
tions for future work. In a companion paper we applyεMSR to
diffraction spectra obtained from single crystal X-ray diffrac-
tion experiments (Varnet al., 2005b).

2. Methods

We use the same notational conventions and definitions intro-
duced elsewhere (Varnet al., 2005a). We examine five proto-
type processes in detail. Some of these processes are selected
because they illustrate a particular feature ofεMSR while oth-
ers have a more physical motivation,i.e. they may represent
real stacking structures in known polytypes. In Example A, we
reconstruct anε-machine for a known memory lengthr l = 3
process and show that the technique works in this case and,
indeed, for any process that hasr l ≤ 3. Example A also
nicely demonstrates how multiple crystal and fault structures
can be simultaneously accommodated on the sameε-machine.
Examples B and E are selected because they may be similar
to stacking structures in known polytypes. We also wish to test
the effectiveness ofεMSR on structures that require a mem-
ory length longer thanr l = 3. Example B needsr l = 4 and
Examples D and E represent processes whose statistics can not
be fully captured by any finite range process. This allows us
testεMSR on stacking structures we known that it can not com-
pletely detect and thus we can develop an intuition into the kinds
of error one might expect. In order to illustrate the application of
the equivalence relation, Eq. (11) of (Varnet al., 2005a), to min-
imize the reconstructedε-machine [step 3c of Table 1 in (Varn
et al., 2005a)], we treat a process withr l = 1 in Example C.
This shows that had we not terminated reconstruction atr = 1,
the equivalence relation would require the merging of equiva-
lent histories that would effectively find ther = 1 ε-machine.
Additionally, for each example we give a structural interpreta-
tion of theε-machine.

For each example we begin with a stacking structure as
described by anε-machine. We generate a sample sequence
from the ε-machine of length 400 000 in the Hägg notation.
We map this spin sequence into a stacking orientation sequence
in the ABC notation. We directly scan this latter sequence to
find the two-layercorrelation functions(CFs): Qc(n), Qa(n)
and Qs(n) (Yi & Canright, 1996). For the disordered stack-
ing sequences we treat here, the CFs typically decay to an
asymptotic value of 1/3 for largen. We set the CFs to 1/3
when they reach≈ 1% of this value, which usually occurs for
n ≈ 25− 100. We could, of course, find the CFs directly from

& Canright, 2001). However the case of CPSs is by no means academic, since several important polytypes, such as SiC and ZnS, are describable as CPSs.
2 We discuss the FM in detail in (Varnet al., 2005a).
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spin-sequence probabilities, via Eq. (9) of (Varnet al., 2005a).
However, if one needed to calculate CFs for, say,n = 50, this
would require finding the sequence probabilities for sequences
of length 50. There are 250 ≈ 1015 spin sequences forn = 50,
so the sum implied by Eq. (9) of (Varnet al., 2005a) is difficult
to perform in practice. As an alternative, one changes repre-
sentation and rewrites theε-machine in terms of the absolute
stacking positionsABC. From this new representation the CFs
are calculable from thetransition matrices, Eqs. (12) and (13)
of (Varn et al., 2005a). This has not been done here however.
Additionally, it is possible to derive analytical expressions for
the CFs in some cases (Varn, 2001).

We then calculate thecorrected diffracted intensity per ML,
I(l) (Varn et al., 2005a), along the 10.l row in increments of
∆l = 0.001 using Eqs. (1) and (2) of (Varnet al., 2005a) with
a stacking sequence of 10 000 MLs. Throughout we refer to
the corrected diffracted intensity per ML,I(l), as simply the
diffraction spectrum. We now now take this simulated diffrac-
tion spectrum as our “experimental” diffraction spectrum.

We applyεMSR [Table 1 of (Varnet al., 2005a)] to each
experimental diffraction spectrum. Since these are simulated
diffraction spectra, we find that the figures-of-merit,γ andβ,
are equal to their theoretical values within numerical error over
all unit l intervals. Therefore, we do not reportγ andβ, and
instead performεMSR over the interval 0≤ l ≤ 1. Fur-
ther, again since these are simulated spectra and hence haveno
error, we are not able to set an acceptable threshold errorΓ in
advance. Instead, each example, except for Example C, mini-
mally requires ther = 3 solutions. Thus we solve thespectral
equationsat r = 3 [Appendix A.3 of (Varnet al., 2005a)] via
a Monte Carlo technique (Varn, 2001) to find sequences proba-
bilities of length-4. We take ther = 3 ε-machine given in Fig.
1 of (Varnet al., 2005a) as our default or candidateε-machine.
All casual states(CSs) and allowed transitions between CSs
are initially assumed present. From the sequence probabilities
we estimate the transition matrices,T

(s)
Si→S j

, for making a tran-
sition from a candidate CSSi to a candidate CSS j on seeing
a spins. We apply the equivalence relation, Eq. (11) of (Varn
et al., 2005a) to generate a final set of CSs. We refer to the
resultingε-machine as the reconstructed or “theoretical”r = 3
ε-machine for the spectrum. In the event that the reconstructed
ε-machine assigns to a CS an asymptotic state probability of
less than 0.01, we take that CS to be nonexistent.

To find the predicted CFs for eachε-machine, we again take a
sample spin sequence generated by theε-machine of length 400
000 and find the CFs by directly scanning the resulting stacking
sequence. The diffraction spectrum along the 10.l row is again
calculated from Eqs. (1) and (2) of (Varnet al., 2005a) using a
sample of 10 000 MLs and we compare this with the diffraction
spectrum for the original process.

We also calculate the information-theoretic quantities
described in§2.6 of (Varnet al., 2005a) for each example and
the reconstructedε-machine.

3. Analysis

3.1. Example A

We begin with the sample process given in Fig. 1. This pro-
cess can approximately be decomposed into FM structural com-
ponents using Eq. (24) of (Varnet al., 2005a) in the following
way:

2H 54%
3C+ 24%
Deformation fault 16%
Growth fault 6%

where the “+” on 3C indicates that only the positive chirality
(...1111...) structure is present. The faulting is given with ref-
erence to the 2H crystal.3 The diffraction spectrum from this
process is shown in Fig. 2. The experienced crystallographer
has little difficulty guessing the underlying crystal structure: the
peaks atl ≈ 0.50 and atl ≈ 1.00 are indicative of the 2H
structure; while the peak atl ≈ 0.33 is characteristic of the 3C
structure.

The faulting structure is less clear, however. It is known that
various kinds of faults produce different effects on the Bragg
peaks (Sebastian & Krishna, 1994). For instance, both growth
and deformation faults broaden the peaks in the diffraction
spectrum of the 2H structure, the difference being that growth
faults broaden the integer-l peaks three times more than the
half-integer-l peaks, while peaks broadened due to deforma-
tion faulting are about equal. The full-width at half maximum
(FWHM) for the peaks are 0.028, 0.034, and 0.049 forl ≈ 0.33,
0.5, and 1, respectively. This gives then a ratio of about 1.4 for
the integer-l to half-integer-l broadening, suggesting (perhaps)
that deformation faulting is prominent. One expects there to be
no shift in the position of the peaks for either growth or defor-
mation faulting; which is clearly not the case here. In fact,the
two peaks associated with the 2H structure atl ≈ 0.50 and 1.00
are shifted by∆l ≈ 0.006 and 0.009, respectively. This analysis
is, of course, only justified for one parent crystal in the overall
structure, nonetheless if we neglect the peak shifts, the simple
intuitive analysis appears to give good qualitative results here.

With the 3C peak, both deformation and growth faults pro-
duce a broadening, the difference being that the broadeningis
asymmetrical for the growth faults. One also expects there to
be some peak shifting for the deformation faulting. There isa
slight shift (∆l ≈ 0.002) for thel ≈ 0.33 peak and the broad-
ening seems (arguably) symmetric, so one is tempted to guess
that deformation faulting is important here. Indeed, thecausal
state cycle(CSC) [S7S6S5S3]4 is consistent with deformation
faulting in the 3C crystal. Heuristic arguments, while not jus-
tified here, seem to give qualitative agreement with the known
structure.

The ε-machine description does better. The reconstructedε-
machine is equivalent to the original one, with CS probabilities
and transition probabilities typically within 0.1% of their origi-
nal values, except for the transition probability from fromS4 to

3 Here and elsewhere we use the Ramsdell notation to specify crystalline stacking structures in CPSs. Recall that theε-machine gives stacking sequences in terms
of the Ḧagg notation. For a discussion of nomenclature and faulting structure as revealed by the CS architecture ofε-machines, see (Varnet al., 2005a).
4 We will denote a CSC by giving the sequence of CSs that compose the cycle in square brackets [].
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S1, T
(1)
S4→S1

= 0.33, which was 1% too small. Not surprisingly,
the process shown in Fig. 1is the reconstructedε-machine and
so we do not repeat the figure.

The two-layer CFsQs(n) versusn from the process and from
the reconstructedε-machine are shown in Fig. 3. The differ-
ences are too small to be seen on the graph. We calculate the
profileR-factor (Varnet al., 2005a) to compare the experimen-
tal spectrum (Example A) to the theoretical spectrum (recon-
structedε-machine) and find a value ofR = 2%. If we generate
several spectra from the same process, we find profileR-factors
of similar magnitude. This error then must be due to sampling.
It stems from the finite spin sequence length we use to cal-
culate the CFs and our method for setting them equal to their
asymptotic value. This can be improved by taking longer sam-
ple sequence lengths and refining the procedure for setting the
CFs to their asymptotic value. Since profileR-factors compar-
ing theory and experiment are typically much larger than this,
at present, this does not seem problematic. A comparison of the
two spectra is shown in Fig. 2. This kind of agreement is typical
of εMSR from any process that can be represented as ar = 3
ε-machine (Varn, 2001).

We find by direct calculation from theε-machine that both
Example A and the reconstructed process have a configura-
tional entropy ofhµ = 0.44 bits/spin, a statistical complexity
of Cµ = 2.27 bits, and an excess entropy ofE = 0.95 bits.

Since the original process was representable as anr = 3 ε-
machine, this first example is largely a consistency check on
εMSR. In the next example, we treat anr > 3 process not rep-
resentable by ther = 3 ε-machines that we reconstruct.

3.2. Example B

Upon annealing, a solid-state transformation in ZnS from
the 2H structure to either the 3C or 6H structures is possible,
sometimes both occurring in different parts of the same crys-
tal (Sebastian & Krishna, 1994). However, two crystal struc-
tures represented with anε-machine cannot share a CS, as
discussed in§3.1.2 of (Varnet al., 2005a). On anr = 3 ε-
machine, for example, both the CSCs associated with the 3C
and the 6H structures shareS7 andS0, so a crystal contain-
ing both structures cannot be properly modeled atr = 3. In
fact, it is necessary to use anr = 4 ε-machine to encompass
both structures. So, to see how wellεMSR works atr = 3 for
an r = 4 process, we consider the process shown in Fig. 4.
[R1R3R7R14R12R8] would give rise to 6H structure if it were
a strong CSC, but we find that thecausal state cycle probability
PCSC(6H) = 0.25 (Varnet al., 2005a). We say then that this is
mild 6H structure. [R0] and [R15] give the twinned 3C struc-
tures.

Employing spectral reconstruction, we find ther = 3 ε-
machine shown in Fig. 5. All CSs are present and all transitions,
save those that connectS2 andS5, are present. A comparison of
the CFs for the original process and the reconstructedε-machine
is given in Fig. 6. The agreement is remarkably good. It seems
that ther = 3 ε-machine picks up most of the structure in the
original process.

There is similar, though not as good, agreement in the diffrac-

tion spectra, as Fig. 7 shows. The most notable discrepancies
are in the small rises atl ≈ 0.17 andl ≈ 0.83. We calculate
a profileR-factor ofR = 12% between the diffraction spectra
for Example B and the reconstructedε-machine. Ther = 3 ε-
machine has difficulty reproducing the 6H structure in the pres-
ence of 3C structure, as expected.

Given the good agreement between the CFs and the spec-
tra generated by Example B and ther = 3 ε-machine, we are
led to ask what the differences between the two are. In Table 1
we give the frequencies of the eight length-3 sequences gen-
erated by each process. The agreement is excellent. They both
give nearly the same probabilities (∼ 0.32) for the most com-
mon length-3 sequences, 111 and 000. Example B does forbid
two length-3 sequences, 101 and 010, which the reconstructed
r = 3 ε-machine allows with a small probability (∼ 0.03). At
the level of length-3 sequences, theε-machine is capturing most
of the structure in the stacking sequence.

A similar analysis allows us to compare the probabilities of
the 16 length-4 sequences generated by each; the results are
given in Table 2. There are more striking differences here. The
frequencies of the two most common length-4 sequences in
Example B, P(1111) = P(0000) = 0.227, are overestimated
by the r = 3 ε-machine, which assigns them a probability of
∼ 0.30 each. Similarly, sequences forbidden by Example B—
1101, 1011, 1010, 1001, 0110, 0101, 0100, 0010—are not nec-
essarily forbidden by ther = 3 ε-machine. In fact, ther = 3 ε-
machine forbids only two of them, 0101 and 1010. This implies
thatr = 3 ε-machine can find spurious sequences that are not in
the original stacking sequence. This is to be expected. But the
r = 3 ε-machinedoesdetect important features of the original
process. It finds that this is a twinned 3C structure. It also finds
that 2H structure plays no role in the stacking process. [We see
this by the absence of transitions betweenS2 andS5 in Fig. 5.]

One can also attempt to decompose ther = 3 ε-machine into
a sum of CSCs and interpret this as crystal and fault structure.
However, as is typically the case, there is no unique decompo-
sition and so therefore such an exercise is of questionable valid-
ity. With the exception of the sequences 1111 and 0000, the
other twelve non-vanishing sequences all appear with a small,
but rather constant probability in the range 0.024 - 0.052. One
possible interpretation is to say that [S0] and [S7] contribute
to 3C structure with a weight of 0.58. We could further inter-
pret [S7S6S5S3] and [S0S1S2S4] as deformation faulting of the
3C structure giving a combined weight of 0.24. And finally, we
could associate [S1S3S6S4] with 4H structure. This last inter-
pretation of [S1S3S6S4] with any crystal structure is trouble-
some as thePCSC([S1S3S6S4]) � 1. Another possible decom-
position would be to again assign [S0] and [S7] to the 3C struc-
ture with a weight of 0.58, to interpret the pathsS7S6S4S0

andS0S1S3S7 as as twin faulting with a probability weight of
0.18, treat [S1S3S6S4] as 4H structure, and finally to interpret
[S1S2S4] and [S3S6S5] as 9R structures. These two descriptions
are clearly rather different and, arguably, have no use in any
account, other than serving to illustrate the ambiguity of FM-
like structural interpretations.

In addition to the non-uniqueness difficulties, by simply list-
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ing the probability density of the various crystals and fault
structures, we say nothing about how one crystal converts
into another as one scans the stacking sequence. This exercise
demonstrates the impoverished view of crystal structure inher-
ent in the FM. In short, the stacking sequence implied by the
ε-machine in Fig. 5 comes from a physical structure that is not
describable in terms of the FM.

We find by direct calculation that the Example B process
has a configurational entropy ofhµ = 0.51 bits/spin, a statis-
tical complexity ofCµ = 2.86 bits, and an excess entropy of
E = 0.82 bits. The reconstructed process gives similar results
with a configurational entropyhµ = 0.54 bits/spin, a statisti-
cal complexity ofCµ = 2.44 bits, and an excess entropy of
E = 0.83 bits.

3.3. Example C

We treat this next system, Example C, to contrast it with the
last and to demonstrate how pasts with equivalent futures are
merged to form CSs. Theε-machine for this system is shown
in Fig. 8 and is known as thegolden mean process. The rule
for generating the golden mean process is simply stated: a 0 or
1 are allowed with equal probability unless the previous spin
was a 0, in which case the next spin is a 1. Clearly then, this
process needs to only remember the previous spin, and hence
it has a memory length ofr = 1. It forbids the sequence 00
and all sequences that contain this as a subsequence. The pro-
cess is so-named because the total number of allowed sequences
grows with sequence length at a rate given by the golden mean
φ = (1 +

√
5)/2.

We employ theεMSR algorithm and find theε-machine given
(again) in Fig. 8 atr = 1. A comparison of the CFs from Exam-
ple C and the golden mean process are given in Fig. 9. The dif-
ferences are too small to be seen. We next compare the diffrac-
tion spectra, and these are shown in Fig. 10. We find excellent
agreement and calculate a profileR-factor of R = 2%. At
this pointεMSR should terminate, as we have found satisfac-
tory agreement (to within the numerical error of our technique)
between “experiment”, Example C, and “theory”, the recon-
structedε-machine.

Let us suppose that instead, we incrementr and follow the
εMSR algorithm as if the agreement atr = 1 had been unsatis-
factory. In this case, we would have generated the “ε-machine”
shown in Fig. 11 at the end of step 3b [Table 1 of (Varn
et al., 2005a)]. We have yet to apply the equivalence relation
Eq. (11) of (Varnet al., 2005a) and so let us call this thenon-
minimal ε-machine. That is, we have not yet combined pasts
with equivalent futures to form CSs, step 3c [Table 1 of (Varn
et al., 2005a)]. Let us do that now.

We observe that the stateS2 is different from the other two,
S1 andS3, in that one can only see the spin 1 upon leaving
this state. Therefore it cannot possibly share the same futures as
S1 andS3, so no equivalence between them is possible. How-
ever, we do see that P(1|S1) = P(1|S3) = 1/2 and P(0|S1) =
P(0|S3) = 1/2 and, thus, these states share the same probability
of seeing futures of length-1. More formally, we can write

T
(s)
01→1s = T

(s)
11→1s . (1)

Since we are labeling the states by the last two symbols seen at
r = 2, within our approximation they do have the same futures
and thusS1 andS3 can be merged to form a single CS. The
result is theε-machine shown in Fig. 8.

In general, in order to merge two histories, we check that
each has an equivalent future up to the memory lengthr. In this
example, we need only check futures up to length-1, because
after the addition of one spin (s) each is labeled by the same
past, namely 1s. Had we tried to merge the pasts 11 and 10, we
would need to check all possible futures after the addition of
two spins, after which the states would have the same futures
(by assumption). That is, we would require

T
(s)
11→1s = T

(s)
10→0s (2)

and

T
(s′)
1s→ss′ = T

(s′)
0s→ss′ (3)

for all s, s′.
We find by direct calculation from theε-machine that the

both Example C and the reconstructed process have a configu-
rational entropy ofhµ = 0.67 bits/spin, a statistical complexity
of Cµ = 0.92 bits, and an excess entropy ofE = 0.25 bits.

3.4. Example D

We now consider a simple finite-state process that cannot be
represented by a finite-order Markov process, called theeven
process(Crutchfield & Feldman, 2003; Crutchfield, 1992), as
the previous examples could. Theeven language(Hopcroft &
Ullman, 1979; Badii & Politi, 1997) consists of sequences such
that between any two 0s either there are no 1s or an even num-
ber of 1s. In a sequence, therefore, if the immediately preceding
spin was a 1, then the admissibility of the next spin requires
remembering theevennessof the number of previous consecu-
tive 1s, since seeing the last 0. In the most general instance, this
requires an indefinitely long memory and so the even process
cannot be represented by any finite-order Markov chain.

We define the even process as follows: If a 0 or an even
number of consecutive 1s were the last spin(s) seen, then the
next spin is either 1 or 0 with equal probability; otherwise the
next spin is 1. While this might seem somewhat artificial for
the stacking of simple polytypes, one cannot exclude this class
of (so-calledsofic) structures on physical grounds. Indeed, such
long-range memories may be induced in solid-state phase trans-
formations between two crystal structures (Kabra & Pandey,
1988; Varn & Crutchfield, 2004). It is instructive, therefore,
to explore the results of our procedure on processes with such
structures.

Additionally, analyzing a sofic process provides a valuable
test ofεMSR as practiced here. Specifically, we invoke a finite-
order Markov approximation for the solution of ther = 3 equa-
tions, and we shall determine how closely this approximatesthe
even process with its effectively infinite range.

Theε-machine for this process is shown in Fig. 12. Its causal-
state transition structure is equivalent to that in theε-machine
for the golden mean process. They differ only in thespinsemit-
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ted upon transitions out of theS1 (Seven) CS. It seems, then, that
this process should be easy to detect.

The result ofε-machine reconstruction atr = 3 is shown in
Fig. 13. Again, it is interesting to see if the sequences forbidden
by the even process are also forbidden by ther = 3 ε-machine.
One finds that the sequence 010—forbidden by the process—
is also forbidden by the reconstructedε-machine. This occurs
becauseS2 is missing.5 We do notice that the reconstructedε-
machine has much more “structure” than the original process.
We now examine the source of this additional structure.

Let us first contrast differences betweenεMSR and otherε-
machine reconstruction techniques, taking the subtree-merging
method (SMM) of Crutchfield and Young (Crutchfield &
Young, 1989; Hansen, 1993; Crutchfield, 1994) as the alterna-
tive prototype. There are two major differences. First, since here
we estimate sequence probabilities from the diffraction spectra
and not a symbol sequence, we find it necessary to invoke the
memory-length reduction approximation (Varnet al., 2005a) at
r ≥ 3 to obtain a complete set of equations. Specifically, we
assume that (i) only histories up to ranger are needed to make
an optimal prediction of the next spin, and (ii) we can label CSs
by their length-r history.

We can test these assumptions in the following way. For (i),
we compare the frequencies of length-4 sequences obtained
from each method. This is shown in Table 3. The agreement
is excellent. All sequence frequencies are within±0.01 of the
correct values. The small differences are due to the memory-
length reduction approximation. So this does have an effect, but
it is small here.

To test (ii), we can compare theε-machines generated from
each method given the same “exact” or “correct” length-4
sequence probabilities. Doing so, SMM gives theε-machine
for the even process shown in Fig. 12.εMSR gives a different
result. After merging pasts with equivalent futures, one finds the
ε-machine shown in Fig. 15. For clarity, we explicitly show the
length-3 sequence histories associated with each CS, but donot
write out the asymptotic state probabilities.

The ε-machine generated byεMSR is in some respects as
good as that generated by SMM. Both reproduce the sequence
probabilities up to length-4 from which they were estimated.
The difference is that forεMSR, our insistence that histories
be labeled by the lastr-spins forces the representation to be
Markovian of ranger. Here, a simpler model for the process,
as measured by the smaller statistical complexity (0.92 bits as
compared to 1.92 bits), can be found. So the notion of mini-
mality is violated. That is,εMSR searches only a subset of the
space from which processes can belong. Should the true pro-
cess lie outside this subset (Markovian processes of ranger),
then εMSR returns an approximation to the true process. The
approximation may be both more complex and less predictive
than the true process. It is interesting to note that had we given
SMM the sequence probabilities found from the solutions of the
spectral equations, we would have found (within some error)the

ε-machine given in Fig. 12.
We find, then, that there are two separate consequences to

applying εMSR that affect the reconstructedε-machine. The
first is that forr ≥ 3, the memory-length reduction approxi-
mation must be invoked to obtain a complete set of equations.
This approximation limits the histories treated and can affect
the values estimated for the sequence probabilities. The second
is the state-labeling scheme. Only for Markovian (non-sofic)
processes can CSs be labeled by a unique finite history. Mak-
ing this assumption effectively limits the class of processes one
can detect to those that are block-r Markovian. To see this more
clearly, we can catalog the possible histories that lead to the two
CSs in Fig. 12. In doing so, we find that the histories 000, 011,
110, 100, and 100 always leave the process in CSSeven. Simi-
larly, the histories 001 and 101 always leave the process in CS
Sodd. But having seen the history 111 does not specify the CS
as one can arrive in both CSs from this history. So the labeling
of CSs by histories of a finite length fails here.

Then why do we not find sequence probabilities by solving
the spectral equations and then use SMM to reconstruct theε-
machine? There are two reasons. The first is that in general one
must know sequence probabilities for longer sequences thanis
necessary forεMSR. Solving the spectral equations for these
longer sequence frequencies is onerous. The second is that error
in the sequence probabilities found from solving the spectral
equations for these longer sequences makes identifying equiva-
lent pasts almost impossible. The even process is an exception
here, since one needs to consider only futures of length-1. This
is certainly not the case in general.

Having explored the differences betweenεMSR and SSM,
we now return to a comparison between CFs and diffraction
spectrum generated by theεMSR and the even process. The
CFs for the even process and the reconstructedε-machine are
given in Fig. 14. We see that both decay quite quickly to their
asymptotic values of 1/3. There is good agreement, except in
the region between 5≤ n ≤ 10. Examining the diffraction
spectra in Fig. 16, we see that there is likewise good agreement
except in the region 0.7 < l < 0.9. We calculate the profile
R-factor between the theoretical and experimental spectra to be
R = 8%.

There is a curious isolated zero in the process’s spectrum at
l ≈ 0.83. The other interesting feature is the broad peak at
l ≈ 0.33. One might guess that this originates from some 3C+

structure and, indeed, glancing at the reconstructedε-machine
of Fig. 13 shows that [S7] is strongly represented. The fault-
ing is less clear. We would expect, though, that the presence
of [S7S6S4S0S1S3] would indicate layer-displacement faulting
of the 3C+ structure and [S7S6S5S3] is characteristic of defor-
mation faulting of the 3C+ structure. But given that most non-
vanishing transitions between CSs occur with a probabilitynear
∼ 0.5, such an identification is questionable.

We find by direct calculation from the even process that it
has a configurational entropy ofhµ = 0.67 bits/spin, a statis-

5 We do note that the solution of the spectral equations atr = 3 assigns the sequences 0100 and 0010 a small probability, P(0100) ≈ P(0010) ≈ 0.005, which
implies that the sequence 010 is also present with a small probability, P(010) < 0.01. Since this falls below our threshold, we take this CS as being nonexistent. For
this example, probabilities of this small magnitude are not meaningful, as the spectral equations atr = 3 are difficult to satisfy with purely real probabilities. We
also note that the solution of the spectral equations atr = 2 doesforbid the 010 sequence. For additional discussion, see (Varn, 2001).
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tical complexity ofCµ = 0.92 bits, and an excess entropy of
E = 0.91 bits. The reconstructedε-machine gives information-
theoretic quantities that are rather different. We find a config-
urational entropyhµ = 0.79 bits/spin, a statistical complexity
of Cµ = 2.58 bits, and an excess entropy ofE = 0.21 bits.
Thus we find the reconstructedε-machine ismore complexthan
the original process, [Cµ(theory) = 2.58 bits as compared to
Cµ(experiment) = 0.92 bits] butless predictive[hµ(theory) =
0.79 bits/spin as compared tohµ(experiment) = 0.67 bits/spin].

One reason that the reconstructedε-machine gives CFs and
diffraction spectra in such good agreement with the even pro-
cess in spite of the fact that the information-theoretic quan-
tities are different is the insensitivity of the CFs and diffrac-
tion spectra to the frequencies of individual long sequences:
Eq. (9) of (Varnet al., 2005a) sums sequence probabilities to
find CFs. The fact that the even process has such a long mem-
ory is masked by this. However, information-theoretic quanti-
ties are sensitive to the structure of long sequences.εMSR at
r = 4 should prove interesting, in this light, since the even
process picks up another forbidden sequence—01110—and this
additional structure would be reflected in the reconstructed ε-
machine.

3.5. Example E

ZnS is believed to have only two stable phases, the high-
temperature phase, 2H and the low-temperature phase, 3C.
Crystals can be grown at high temperatures (above 1024 C)
in the 2H phase and then cooled to a temperature range where
the 3C phase becomes stable. The crystal then transforms enan-
tiotropically from the former into the latter predominantly via
deformation faulting (Roth, 1960; Sebastian & Krishna, 1984;
Sebastian, 1988). This transformation can be arrested at any
point by cooling the crystal further to a temperature range where
the MLs lack the necessary thermal activation energy to slip.
Thus it is possible to experimentally study partially transformed
crystals.

This martensitic transformation can be modeled in a straight-
forward fashion (Varn & Crutchfield, 2004). We note that an
undefected 2H crystal can be represented by the antiferromag-
netic phase of a linear chain of Ising spins and a 3C crystal
is just the ferromagnetic phase. Let us make four assumptions:
(i) Deformation faulting is the primary mode of transformation.
In terms of spins, this corresponds to flipping a single spin,
i.e. Glauber dynamics (Glauber, 1963). (ii) Only interactions
between neighboring spins are important. (iii) A spin can flip
only if it is energetically favorable to do so. (iv) The transforma-
tion happens slowly. Putting this all together, let us beginwith
an antiferromagnetic chain. We visit a spin randomly (but never
more than once) and flip this spin only if it is antiparallel to
bothof its neighbors. We call the fraction of spins so visited the
faulting parameter f. Due to its formal similarity to elementary
cellular automaton rule 232, except that here the update rule is
applied asynchronously to only a fraction of spins, this model
is called ACA 232. While much simpler that other models
of solid-state transformations (Kabra & Pandey, 1988; Engel,
1990; Shrestha & Pandey, 1996a; Shresthaet al., 1996; Shrestha

& Pandey, 1996b), ACA 232 nonetheless reproduces many of
the significant features seen in experimental diffraction spectra
of annealed ZnS crystals.

Real transformations in ZnS crystals are undoubtedly much
more complex than this. However, despite its simplicity, the ε-
machine that describes the stacking process for a crystal trans-
formed under ACA 232 has an infinite memory length,i.e. it is
sofic. The physical origin of this soficity is not difficult to under-
stand. Note that the original unfaulted crystal has only oddspin
domains. (Indeed each spin domain in the unfaulted 2H crys-
tal is exactly one spin long.) A spin flip (deformation fault)has
the effect of joining two such odd spin domains by flipping the
single spin that separates them. Thus the resulting larger spin
domain must also have an odd number of spins. It follows then
that a perfect 2H crystal undergoing this transform can never
have even spin domains. Just as for the even system, Example
D, one must remember the oddness (evenness) of the previous
like spins scanned to determine the admissibility of the next
spin. So in general the description of this process requiresone
to remember an indefinitely long history of spins. An important
consequence of soficity is that no finite-order Markov process
can fully reproduce the statistics. Thus it is reasonable toask
how much of the stacking structureεMSR can capture.

We consider a partially transformed crystal with a faulting
parameterf = 0.10. For a crystal only weakly faulted by the
ACA 232 process, as is the case here, theε-machine shown in
Fig. 17 gives an excellent representation of the stacking struc-
ture and we take this to be our experimentalε-machine. The
concomitant diffraction spectrum is shown in Fig. 18. From the
Bragg-like reflections atl ≈ 0.50 andl ≈ 1.00, it is clear that
the structure of this crystal is predominantly 2H.

Since the faulting is weak, we are able to perform a FM anal-
ysis. We find that the Bragg peaks are broadened symmetrically
and any shifting in their placement is negligible. We further find
that the FWHM is 0.059 for the integer-l peaks and 0.058 for the
half-integer-l peaks. All of this is consistent with deformation
faulting of the 2H structure.

Employing spectral reconstruction, we find ther = 3 ε-
machine shown in Fig. 19. We notice that the CS architecture
between the twoε-machinesappearsto be rather different. We
compare the theoretical and experimental CFs in Fig. 20. The
agreement is excellent. There is, however, some discrepancy
in the range 10≤ n ≤ 30, where the theoretical CFs have
slightly stronger oscillations. Similarly, we compare thediffrac-
tion spectra in Fig. 18. Here we also find excellent agreementas
evidenced by theR-factor between the two spectra ofR = 8%.
Given such good agreement between the theoretical and experi-
mental diffraction spectra and CFs, we are led to ask how thisis
possible when their respectiveε-machines seem to be so differ-
ent. We find however, the differences are indeed more apparent
than real.

Let us follow the same kind of analysis as we performed ear-
lier (Varn & Crutchfield, 2004), where one begins in one of the
CSs that is part of the 2H crystal structure and then follows a
path of CSs associated with faulting. First we note that the both
ε-machines have CSCs that generate the 2H stacking structure:
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[AB] in the experimentalε-machine and [S2S5] for the theoret-
ical one. They even have nearly the same CS transition proba-
bilities connecting them:T(0)

A→B
= 0.90 ≈ T

(0)
S5→S2

= 0.92 and

T
(1)
B→A

= 0.90 ≈ T
(1)
S2→S5

= 0.88. Thus these two CSCs per-
form equivalent functions on their respectiveε-machines. For
small faulting as is the case here, the remainder of the CSs on
eachε-machine describe deviations from this crystal structure.
As noted elsewhere (Varn & Crutchfield, 2004), the three spin
sequence 100 necessarily places the experimentalε-machine in
D. ThusS4 in the theoreticalε-machine (which by definition
assumes the three spin history of 100) is analogous toD in the
experimentalε-machine (at least for length-3 spin histories). We
find that transitions out of these two CSs are identical: P(0|D) =
P(0|S4) = 1 and P(1|D) = P(1|S4) = 0. This demonstrates
that the theoreticalε-machine also prohibits the 1001 stack-
ing sequence just as the experimentalε-machine does. After
the sequence history 1000 the experimentalε-machine is inF
and the theoreticalε-machine is inS0. We find that transitions
out these two CSs are equal (to within the numerical accu-
racy of solving the spectral equations): P(0|F) = 0.096 ≈
P(0|S0) = 0.10 and P(1|F) = 0.904 ≈ P(1|S0) = 0.90.
However, the destination CSs after these latter transitions do
not appear to be analogous on the twoε-machines. A 1 on the
experimentalε-machine returns theε-machine toA, i.e. it has
now returned to [AB] or the 2H structure. The theoreticalε-
machine however advances toS1, rather thanS5, the CS analo-
gous toA on the theoreticalε-machine. The transition probabili-
ties for the next spin are a little different for the twoε-machines:
P(0|A) = 0.90 6= P(0|S1) = 1.00. But if we do follow this
transition on 0, we will find eachε-machine back into [AB]
or [S2S5] associated with 2H structure. We find then that for
[BDFA] on the experimentalε-machine we have an analogous
CSC, [S2S4S0S1], on the theoreticalε-machine,if we allowS1

to play a similar role toS5. In fact,S1 andS5 have nearly iden-
tical futures. Each transitions toS2 on a 0, and had the spectral
equations not found a vanishing probability for the sequence
0011,S1 would transition to toS3 on a 1, just asS5 does. Indeed,
had the conditional probabilities out ofS1 andS5 been equal,
the equivalence relation, Eq. (11) of (Varnet al., 2005a), would
have required the merger of these two CSs to form a single CS.
The spin sequence associated with [BDFA] and [S2S4S0S1] is
just 0100010, where the first three spins can inferred as neces-
sary to fix eachε-machine intoB or S2. The interpretation is
clear: these two CSCs represent a single, isolated deformation
fault of the 2H structure. This exercise strengthens the inter-
pretation of the CS structure of weak deformation faulting on
an r = 3 ε-machine in a 2H crystal given in§3.2.2 of (Varn
et al., 2005a).

We can further demonstrate the similarity between the exper-
imental and theoreticalε-machines with the following exercise.
Since theS1 and S5 do have nearly identical futures, let us
merge them in to a single CS, and call itS1/5. Similarly, let
us also mergeS2 andS6 and label the resulting CSS2/6. To
find the transition probabilities for these new states, we just
take a weighted average of the transition probabilities forthe
old states. Further, we can rearrange the CSs on the theoreti-

cal ε-machine so that the CSs occupy the same position as their
analogous states on the experimentalε-machine. We call this the
“reduced” theoreticalε-machine and it is shown in Fig. 21. The
similarity between the reducedε-machine and the experimental
one, Fig. 17, is striking. The CS architectures are nearly identi-
cal, the only difference being that theS0 andS7 on the reduced
theoreticalε-machine have a self-state transition on a 0 and 1
respectively, whereas on the experimentalε-machineF andE

transition to different CSs on a 0 and 1 respectively. Further,
the transition probabilities between CSs and the asymptotic CS
probabilities are nearly identical.

Given that the theoreticalε-machine and the experimental
one are indeed so similar, we can ask whyεMSR didn’t find
the experimentalε-machine. As with Example D, we can trace
the reasons to two difficulties: (i) errors in sequence proba-
bilities as found by solving the spectral equations, and (ii)
the state labeling scheme. We compare the probabilities for
length-4 sequences in Table 4. The spectral equations reproduce
the sequence probabilities from the experimentalε-machine
reasonably well. For sequences appearing only rarely, how-
ever, there are some relatively large deviations. Notably,the
sequences 1100 and 0011 each occur with a frequency of 0.004
in the experimentalε-machine, but the theoreticalε-machine
assigns them probabilities of 0.014 and 0.000 respectively. This,
along with the error in the probabilities for the 1101 and 0010
sequences, gives transition probabilities out ofS1 andS6 that
prevent these CSs from being merged withS5 andS2, respec-
tively. Thus the theoreticalε-machine makes distinctions about
pasts that the experimental one does not. The second difficulty
lies with the state labeling scheme. Since each state is ini-
tially labeled by the last three spins seen,S0 andS7 necessar-
ily have self-state transitions. So the kind of CS architecture
on the experimentalε-machine that generates the infinite range
memory—that bouncing between CSs, such as that betweenF

andD that prohibits even spin domains while allowing odd spin
domains of any size—can never be realized if states are labeled
by finite histories.

Returning our attention to the theoreticalε-machine in Fig.
19, we examine how its CS architecture reveals information
about the stacking structure. As previously noted, the large
asymptotic state probabilities forS2 andS5, Pr(S2) = Pr(S5) =
0.37, as well as their large casual state cycle probability,
PCSC([S2S5]) = 0.81, indicate that this is crystal is predom-
inantly 2H. The remaining CSCs give the faulting structure.
Since there is no CS transition from eitherS3 toS6 or fromS1 to
S4, we see that stacking structure associated with both growth
and layer displacement faults is absent. Further, the self-state
transition probabilities forS0 andS7 are likewise small, so we
conclude that there are no large regions where the crystal has
transformed to the 3C structure.

This ε-machine can be approximately broken down into FM
structural components using Eq. (24) of (Varnet al., 2005a) and
we find:

2H 66%
Deformation fault 31%
Other 3%.
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This then is consistent with 2H crystal that has been weakly
deformation faulted. We also note thatfault probability (Varn
et al., 2005a), i.e. the probability that upon scanning the crys-
tal one finds a particular kind of fault, can also be approxi-
mated directly from the theoreticalε-machine. For this weakly
faulted crystal we take [S2S5] as the parent crystal structure.
The probability of leaving [S2S5] averaged over the CSC is just
(1/2){P(1|S5) + P(0|S2)} = (1/2){0.12+ 0.08} = 0.10. This
is the quantity usually reported in the literature. Since there is
but a single parent structure with one kind of fault, finding the
fault probability here is unambiguous. For multiple crystalline
and fault structures, this kind of simple analysis may not bepos-
sible.

We find by direct calculation from ACA 232 that it has a con-
figurational entropy ofhµ = 0.42 bits/spin, a statistical com-
plexity of Cµ = 1.86 bits, and an excess entropy ofE = 1.01
bits. The reconstructedε-machine gives similar information-
theoretic quantities. We find a configurational entropyhµ =
0.42 bits/spin, a statistical complexity ofCµ = 2.26 bits, and
an excess entropy ofE = 0.99 bits. Thus we find the recon-
structedε-machine ismore complexthan the original process,
[Cµ(theory) = 2.26 bits as compared toCµ(experiment) =
1.86 bits] but equally predictive, [hµ(theory) = 0.42 bits/spin
as compared tohµ(experiment) = 0.42 bits/spin].

For comparison we list each example’s information-theoretic
properties in Table 5.

3.6. Anticipated Difficulties with Applying εMSR

We have considered five examples that demonstrate success-
ful applications ofεMSR. We have found instances, however,
when theεMSR has difficulties converging to a satisfactory
result. We now analyze each step inεMSR as given in Table 1
of (Varn et al., 2005a) and discuss possible problems that may
be encountered.

Step 1. Several problems can arise here. One is that the figures-
of-merit, β andγ, are sufficiently different from their theoret-
ical values over all possiblel -intervals thatεMSR should not
even be attempted. Even if one does find an interval such that
they indicate satisfactory spectral data, it is possible that the
CFs extracted over this interval are unphysical. That is, there
is no guarantee that all of the CFs are both positive and less
than unity. In such a case, no stacking of MLs can reproduce
these CFs. Finally, if error ranges have not been reported with
the experimental data, it may not be possible to set the error
thresholdΓ.

Step 2. The P(ωr) solutions to the spectral equations are not
guaranteed to be either real or positive forr ≥ 3. If this is so,
then no physical stacking of MLs can reproduce the CFs from
the spectrum.

Step 3. Given P(ωr) that satisfy the elementary conditions of
probability (i.e., there is no difficulty at step 2), step 3 will return
a machine that generates P(ωr). It is possible, however, that the

resulting CSs are notstrongly connected, and thus the result
may not be interpreted as a singleε-machine.

Step 4. There are no difficulties here.

Step 5. It is possible that one is required to go to anr that is cum-
bersome to calculate. In this case, one terminates the procedure
through practicality.

We find that the roots of these difficulties can be ultimately
traced to four problems: (i) excessive error in the diffraction
spectrum, (ii) the process has statistics that are too complex to
be captured by a finite-range Markov process, (iii) the memory-
length approximation is not satisfied, and (iv) the initial assump-
tions of polytypism are violated. We are likely to discover (i) in
step 1. For (ii) and (iii), we find no difficulties at step 1, but
rather at steps 2, 3, and 5. For (iv), we have not examined this
case in detail. However, we expect that if the assumptions ofthe
stacking of MLs [see§2.1 of (Varnet al., 2005a)] are not met,
then since Eq. (1) of (Varnet al., 2005a) is no longer valid, the
CFs found by Fourier analysis will not reflect the actual stacking
probabilities. This will likely be interpreted as poor figures-of-
merit, andεMSR will terminate at step 1.

Of the four possible difficulties only (ii) and (iii) should be
considered to be inherent toεMSR. It is satisfying thatεMSR
can detect errors in the diffraction spectrum and then stop,so
that it does not generate an invalid representation that simply
describes “error” or “noise”.

4. Characteristic Lengths in CPSs

We now return to one of the mysteries of polytypism, namely
that of the long-range order which they seem to possess. It is
of interest, then, to ask what, if anything, the spectrally recon-
structedε-machine indicates about the range of interactions
between MLs. In this section, we discuss and quantify several
characteristic lengths that can be estimated from reconstructed
ε-machines.

(i) Correlation Length,λc. From statistical mechanics, we have
the notion of a correlation length, (Binneyet al., 1993; Yeo-
mans, 1992) which is simply the characteristic length scaleover
which “structures” are found. The correlation functionsQc(n),
Qa(n), and Qs(n) are known to decay to 1/3 for many dis-
ordered stackings.6 For the disordered cases considered here,
exponential decay to 1/3 seems to be the rule. We therefore
define thecorrelation lengthλc as the characteristic length over
which correlation information is lost with increasing separation
n. More precisely, let us defineΨq(n) as

Ψq(n) =
∑

α

∣

∣

∣
Qα(n) − 1

3

∣

∣

∣
, (4)

so thatΨq(n) gives a measure of the deviation of the CFs from
their asymptotic value. Then we say that

Ψq(n) = F(n) × 2−n/λc , (5)

whereF(n) is some function ofn.
6 There are some exceptions to this. See Kabra and Pandey (1988), Yi and Canright (1996), and Varn (2001) for some examples.
7 The exponential decay of correlations is discussed by Crutchfield & Feldman (2003).
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For those cases where the CFs do not decay to 1/3, we say
that the correlation length is infinite. We find that exponential
decay is not always obeyed, but it seems to be common,7 and
the correlation length thus defined gives a useful measure ofthe
rate of coherence loss asn increases. Our definition of correla-
tion length is similar to thecharacteristic length Ldefined by
Shrestha and Pandey (Shrestha & Pandey, 1996a; Shrestha &
Pandey, 1997).

(ii) Recurrence Length,P. For an exactly periodic process, the
period gives the length over which a template pattern repeats
itself. We can generalize this for arbitrary, aperiodic processes
in the following way. Let us take therecurrence lengthP as
the geometric mean of the distances between visits to each CS
weighted by the probability to visit that CS:

P ≡
∏

Si∈S

T pi
i , (6)

whereTi is the average distance between visits to a CS andpi is
the probability of visiting that CS. Then,

P =
∏

Si∈S

(2log2 Ti )pi

=
∏

Si∈S

2−pi log2 pi

= 2−
∑

Si∈S pi log2 pi

= 2Cµ , (7)

where we have used the relationTi = 1/pi .
For periodic processes,Cµ = log2 P and soP is simply a

process’s period. For aperiodic processesP gives a measure of
the average distance over which theε-machine returns to a CS.
Notice that this is defined as the average recurrence lengthin
the Hägg notation. For cubic and rhombohedral structures, for
example, this is one-third of the physical repeat distance in the
absolute stacking sequence.

(iii) Memory Length, rl . Recall from §3.7 of (Varn et al.,
2005a) that thememory lengthis an integer which specifies the
maximum number of previous spins that one must know in the
worst case to make an optimal prediction of the next spin. For
anr th-order Markov process this isr.

(iv) Interaction Length, rI . The interaction lengthis an integer
that gives the maximum range over which spin-spin interactions
appear in the Hamiltonian.

We calculated theλc, P, andr l (in units of MLs) for Exam-
ples A-E as well as for three crystal structures. The resultsare
displayed in Table 6. We see that each captures a different aspect
of the system. The correlation lengthλc sets a scale over which a
process is coherent. For crystals, as shown in Table 6, this length
is infinite. For more disordered systems, this value decreases.
The generalized periodP is a measure of the scale over which
the pattern produced by the process repeats. The memory length
r l is most closely related to what we might think as the maxi-
mum range of “influence” of a spin. That is, it is the maximum

distance over which one might need to look to obtain informa-
tion to predict a spin’s value.

For periodic, infinitely correlated systems spins at large sep-
aration carry information about each other, as seen in crystals.
But this information is redundant. Outside a small neighbor-
hood one gets no additional information by knowing the orien-
tation a spin assumes. Notice that one can have an infinite mem-
ory length with a relatively small correlation length, as seen for
the even system (Example D) and ACA 232 (Example E). That
is, even though onaveragethe knowledge one has about a spin
may decay, there are still configurations in which distantlysepa-
rated spins carry information about each other that is not stored
in the intervening spins.

If we know theε-machine for a process, then we can directly
calculateλc, P, andr l . How, then, do these relate to the interac-
tion lengthrI ? Infinite correlation lengths can be achieved with
very smallrI , as in the case of simple crystals. So correlation
lengths alone imply little about the range of interactions.For a
periodic system in the ground state, the configuration’s period
puts a lower bound on the interaction length viarI ≥ log2 P—
barring fine tuning of parameters, such as found at the mul-
tiphase boundaries in the ANNNI model (Yeomans, 1988) or
those imposed by symmetry considerations (Canright & Wat-
son, 1996; Yi & Canright, 1996; Varn & Canright, 2001). The
most likely candidate for a useful relation betweenrI and a
quantity generated from theε-machine isr l . Indeedr l sets a
lower bound onrI , if the system is in equilibrium. For poly-
types, the multitude of observed structures suggests that most
are not in equilibrium but rather trapped in nonequilibrium
metastable states, and, consequently one does not know what
the relation betweenrI and r l is. It is conceivable, especially
in the midst of a solid-state phase transition, that smallrI

could generate larger l (Varn & Crutchfield, 2004). While an
ε-machine is a complete description of the underlying stack-
ing process, one must additionally require that the material is
in equilibrium in order to make inferences concerningrI . This
reflects the different ways in which a Hamiltonian and anε-
machine describe a material.

5. Conclusions

We have demonstrated the feasibility and accuracy ofε-machine
spectral reconstruction by applying it to five simulated diffrac-
tion spectra. In each case, we find thatεMSR either reproduces
the statistics of the stacking structure, as for Examples A and
C, or finds a close approximation to it. Elsewhere we apply
the same procedures to the analysis of experimental diffraction
spectra from single-crystal planar faulted ZnS, focusing on the
novel physical and material properties that can be discovered
with this technique (Varnet al., 2005b).

It is worthwhile to return one final time to howεMSR dif-
fers from other spectral inference algorithms—particularly the
FM—and discuss howεMSR gives an improved framework
in which to discover and understand disorder and structure in
planar faulted crystals. (i)εMSR makes no assumptions about
either the crystal or faulting structures that may be present.
Instead, using correlation information as input,εMSR con-
structs a model of the stacking structure—in the form of an
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ε-machine—that reproduces the observed correlations. There-
fore, the algorithm need not rely on the experience or ingenu-
ity of the researcher to makea priori postulates about crystal
or fault structure. (ii) As the analysis of Example A shows,
εMSR is able to detect and describe stacking structures that
contain multiple crystal and fault structures. Indeed, Example
A represented a crystal that was predominately 2H, but also had
significant portions of 3C crystal structure. Additionally, two
faulting structures, growth and deformation faults were identi-
fied. (iii) SinceεMSR doesn’t need to assume any underlying
crystal structure, it can detect and describe even highly disor-
dered structures. Example C has significant disorder (hµ = 0.67
bits/ML8) and doesn’t contain any readily identifiable crystal
structure. Nevertheless,εMSR is capable of finding and describ-
ing the statistics of even such highly disordered stacking struc-
tures. (iv) In contrast to many other techniques,εMSR uses all
of the information available in diffraction spectrum. By inte-
grating the diffraction spectrum over a unit interval in recipro-
cal space to find the CFs,εMSR makes no distinction between
diffuse scattering and Bragg-like peaks. Each is treated equally.
Indeed, even though Example B shows both Bragg-like peaks
as well as considerable diffuse scattering between peaks,εMSR
naturally captures the information contained in both by integrat-
ing over the entire spectrum. (v) It is advantageous not to invoke
a more complicated explanation than is necessary to understand
experimental data. By initially assuming a small memory length
and incrementing this as needed to improve agreement between
theory and experiment, as well as merging stacking “histories”
with equivalent “futures”,εMSR builds the smallest possible
model that reproduces the experimentally observed diffraction
spectrum without over-fitting the data. Example C shows how
εMSR is able to find this minimal expression for the stacking
structure. (vi) Finally, the resulting expression of the stacking
structure, the process’sε-machine, allows for the calculation of
parameters of physical interest. For each example, we were able
to find the configurational entropy associated with the stacking
process and the statistical complexity of the stacking structure.
In a companion paper (Varnet al., 2005b), we show how the
average stacking energy and hexagonality may be calculated
from theε-machine.

Additionally, we have identified three length parameters that
are calculable from theε-machine: the correlation length,λc;
the recurrence length,P; and the memory length,r l . Each mea-
sures a different length scale over which structural organization
appears. New to this work isP, which is a generalization of
the period of a periodic process.P is a measure of the aver-
age length between visits to each CS. As such it quantifies the
average distance over which the pattern repeats itself. Thus both
periodic and aperiodic patterns have a characteristic length scale
after which they begin to repeat. More importantly however,is
r l , the distance over which a ML can carry nonredundant infor-
mation about the orientation of another ML. This is most closely
related to therI . If the assumption of equilibrium can be made
for polytypes,r l places a lower bound onrI . But the assumption
of equilibrium is critical, and not likely met by many polytypes.

Even with these advantages, however,εMSR as practiced
here is not without its shortcomings. Perhaps most restrictive
is thatεMSR is limited to Markov processes, and has only been
worked out for 3rd-order Markov processes. Since the maximum
number of terms in the spectral equations grows as the exponen-
tial of an exponential in the memory length, the task of writing
out the higher order spectral equations quickly becomes pro-
hibitively difficult. We believe that ther = 4 case is almost cer-
tainly tractable, but the case ofr ≥ 5 is probably not. Although
r = 3 ε-machines certainly identify much of the structure in
higher order processes, we found two difficulties. (i) Approx-
imations made in the derivation of the spectral equations can
result in sequence probabilities that differ from those of the
true process. As was shown in Example E this could interfere
with the identification of stacking histories that have equivalent
futures. (ii) The state labeling scheme imposes a CS architec-
ture on the reconstructedε-machine that may be too restric-
tive. The ε-machines in Examples D and E both belonged to
a class of processes, formally known as sofic processes, that
have a special kind of infinite range memory. The CSs on the
ε-machines that describe these processes can not be specified
by any finite history. So the scheme of labeling states by the
lastr-spins seen, as is done here, is inadequate. Since the range
of interaction between MLs in some materials, e.g. SiC (Cheng
et al., 1987; Chenget al., 1988; Shaw & Heine, 1990; Cheng
et al., 1990), is calculated to ber = 3 and numerical simulations
of martensitic transformations in ZnS suggest that the effec-
tive memory length is infinite (Varn & Crutchfield, 2004), alter-
nate methods of inferring such long range structure from spec-
tral data are needed. Reverse Monte Carlo techniques (Keen &
McGreevy, 1990) have been applied to a wide range of disor-
dered materials, and may be useful here. This is a current sub-
ject of research. Additionally, we are investigating alternative
techniques to the direct solution of the spectral equations.

Finally, we stress that there is a difference between struc-
ture and mechanism in disordered stacking sequences. Theε-
machine describes the structure, but has little to say abouthow
the material came to be stacked in this fashion. While it is pos-
sible to formally identify CSCs with “faulting structures”as we
have done here, this can be misleading. It is certainly possible
that the cumulative effects of repeated faulting by a particular
mechanism may lead to a structure that is different from a crys-
tal simply permeated with that kind of fault. That is, for high
fault densities, adjacent faults may be produced in the same
way, but the close proximity of the faults may cause us to inter-
pret the structure differently—e.g., as a small segment of com-
plex crystal.

In order to determine the mechanism of faulting in, say, an
annealed crystal undergoing a solid-state phase transition, it
is desirable to begin with many (identical) crystals and arrest
the solid-state transformation at various stages. By reconstruct-
ing theε-machine after different annealing times, the route to
disorder can be made plain. The result is a picture of how
structure [as captured by intermediateε-machines] changes
during annealing. This change in structure should give direct

8 For comparison, a completely random stacking of MLs for CPSs would havehµ = 1 bit/ML.
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insight into the structure-forming mechanisms. This should
be compared with the numerical simulation of faulting in
a crystal (Kabra & Pandey, 1988; Engel, 1990; Shrestha &
Pandey, 1996a; Shrestha & Pandey, 1997; Gosk, 2000; Gosk,
2001; Gosk, 2003; Varn & Crutchfield, 2004). We note that
in such simulations, theε-machine can be directly calculated
from the sequence to high accuracy. Some experimental work
on solid-state phase transitions has been done (Sebastian &
Krishna, 1994), but we hope that this improved theoretical
framework will stimulate additional effort in this direction.
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Table 1
The frequencies of length-3 sequences obtained from ExampleB and theε-
machine reconstructed atr = 3.

Sequence Example B εMSR Sequence Example B εMSR

111 0.318 0.324 011 0.091 0.070
110 0.091 0.081 010 0.000 0.026
101 0.000 0.027 001 0.091 0.076
100 0.091 0.076 000 0.318 0.322

Table 2
The frequencies of length-4 sequences obtained from ExampleB and theε-
machine reconstructed atr = 3.

Sequence Example B εMSR Sequence Example B εMSR

1111 0.227 0.300 0111 0.091 0.025
1110 0.091 0.024 0110 0.000 0.045
1101 0.000 0.029 0101 0.000 0.000
1100 0.091 0.052 0100 0.000 0.026
1011 0.000 0.027 0011 0.091 0.046
1010 0.000 0.000 0010 0.000 0.030
1001 0.000 0.049 0001 0.091 0.026
1000 0.091 0.027 0000 0.227 0.296

12
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Table 3
The frequencies of length-4 sequences obtained fromεMSR and SMM for the
even process, Example D. At most, they differ by±0.01.

Sequence εMSR SMM Sequence εMSR SMM

1111 0.24 0.25 0111 0.09 0.08
1110 0.09 0.08 0110 0.07 0.08
1101 0.09 0.08 0101 0.00 0.00
1100 0.08 0.08 0100 < 0.01 0.00
1011 0.08 0.08 0011 0.08 0.08
1010 0.00 0.00 0010 < 0.01 0.00
1001 0.04 0.04 0001 0.05 0.04
1000 0.04 0.04 0000 0.04 0.04

Table 4
The frequencies of length-4 sequences obtained from ExampleE (ACA 232)
and theε-machine reconstructed atr = 3.

Sequence Example E εMSR Sequence Example E εMSR

1111 0.009 0.005 0111 0.041 0.043
1110 0.041 0.043 0110 0.000 0.000
1101 0.037 0.029 0101 0.331 0.336
1100 0.004 0.014 0100 0.037 0.029
1011 0.037 0.043 0011 0.004 0.000
1010 0.331 0.322 0010 0.037 0.043
1001 0.000 0.000 0001 0.041 0.043
1000 0.041 0.043 0000 0.009 0.005

Table 5
Measures of intrinsic computation calculated from the processes of Examples
A, B, C, D and E and their (r = 3) reconstructedε-machines. For Examples
A, B, C and E the reconstructedε-machines give good agreement. For Example
D, however, the reconstructedε-machine requires more memory and still has a
entropy densityhµ significantly higher than that of the even process. The last
column gives∆ = Cµ − E − rhµ as a consistency check derived from Eq. (23)
of (Varn et al., 2005a), which describes order-r Markov processes. Recall that
the even process of Example D and ACA 232 of Example E are not a finite-r
processes and so Eq. (23) of (Varnet al., 2005a) does not hold. All one can say
is thatE ≤ Cµ, which is the case for both Examples D and E.

System Range hµ [bits/ML] Cµ [bits] E [bits] ∆

Example A 3 0.44 2.27 0.95 0.00
ε-machine 3 0.44 2.27 0.95 0.00

Example B 4 0.51 2.86 0.82 0.00
ε-machine 3 0.54 2.44 0.83 -0.01

Example C 1 0.67 0.92 0.25 0.00
ε-machine 1 0.67 0.92 0.25 0.00

Example D ∞ 0.67 0.92 0.91
ε-machine 3 0.79 2.58 0.21 0.00

Example E ∞ 0.42 1.86 1.01
ε-machine 3 0.42 2.26 0.99 0.01

Table 6
The three characteristic lengths that one can calculate from knowledge of the
ε-machine: the correlation lengthλc, the recurrence lengthP , and the memory
lengthr l . For comparison, we also give these quantities for several crystalline
structures.

System λc P r l

Example A,r = 3 ∼ 7.4 4.8 3
Example B,r = 4 ∼ 7.8 7.3 4
Example C, Golden Mean ∼ 4.5 1.9 1
Example D, Even Process ∼ 1.7 1.9 ∞

Example E, ACA 232,f = 0.10 ∼ 3.9 3.6 ∞

3C ∞ 1 0
2H ∞ 2 1
6H ∞ 6 3
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Figure 1
Ther = 3 theoretical and experimentalε-machine for the Example A process.
The nodes represent CSs and the directed arcs are transitions between them. The
edge labelss|p indicate that a transition occurs between the two CSs on sym-
bol s with probability p. The asymptotic probabilities for each CS are given in
parentheses. The large CSC probabilities for the [S7] CSC (PCSC([S7]) = 0.92)
and the [S2S5] CSC (PCSC[S2S5]) = 0.81) suggest that one think of these
cycles as crystal structure and everything else as faulting.

Figure 2
A comparison between the diffraction spectraI(l) generated by Example A and
by ther = 3 spectrally reconstructedε-machine. The differences between the
diffraction spectra for Example A and ther = 3 reconstructedε-machine are
too small to be seen. We calculateR = 2%, but this is largely due to numerical
error. (See text.) The peak atl ≈ 1/3 corresponds to the 3C structure and the
two peaks atl ≈ 1/2 andl ≈ 1 to the 2H structure.
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Figure 3
A comparison of the CFsQs(n) between the Example A process and ther = 3
reconstructedε-machine. As with the diffraction spectra, the differences are too
small to be seen on the graph. As an aid to the eye, here and in other graphs
showing CFs, we connect the the values of adjacent CFs with straight lines. The
CFs, of course, are defined only for integer values ofn.
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Figure 4
The experimentalε-machine for Example B. Since it has a memory ofr l = 4,
we label the states with the last four spins observed: i.e.,R12 means that 1100
were the last four spins. The CSCs [R15] and [R0] give rise to 3C structure and
the CSC [R1R3R7R14R12R8] generates 6H structure.
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Figure 5
The reconstructed (theoretical)ε-machine atr = 3 for Example B.

Figure 6
A comparison of the CFsQs(n) generated by ther = 3 reconstructedε-machine
(dashed line) and generated by Example B (solid line). The agreement is excel-
lent.

Figure 7
A comparison of the diffraction spectraI(l) betweenr = 3 reconstructedε-
machine and the process of Example B. The agreement is surprisingly good;
we calculate a profileR-factor ofR = 12%. The small peaks atl ≈ 1/6 and
l ≈ 5/6 correspond to the 6H structure. Ther = 3 ε-machine has difficulty
in reproducing these because the 6H and the 3C structure bothshare theS7

andS0 CSs and so require anε-machine reconstructed atr = 4 to properly
disambiguate them.
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Figure 8
The recurrent portion of theε-machine for the golden mean process, Example
C. The process has a memory length ofr = 1, and so we label each CS by the
last spin seen.
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Figure 9
A comparison of the CFsQs(n) generated by ther = 1 reconstructedε-machine
and the golden mean process of Example C. The CFs decay quickly to their
asymptotic value of 1/3.

Figure 10
A comparison of the diffraction spectra for Example C and the reconstructed
r = 1 ε-machine. The agreement is excellent. One finds a profileR-factor of
2% between the experimental spectrum, Example C, and the theoretical spec-
trum calculated from the reconstructedε-machine.
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Figure 11
Ther = 2 reconstructed non-minimalε-machine for the golden mean process,
Example C. Applying the equivalence relation, Eq. (11) of (Varn et al., 2005a),
we find thatS1 andS3 have the same futures, and thus should be collapsed into
a single CS. Doing so gives theε-machine in Fig. 8.
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Figure 12
The recurrent portion of theε-machine for the even process, Example D. Since
the CSs cannot be specified by a finite history of previous spins, we have labeled
themSevenandSodd. We find that thisε-machine has a statistical complexity of
Cµ = 0.92 bits.
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Figure 13
The r = 3 reconstructedε-machine for the even process of Example D. Since
the even process forbids the sequences{012k+10, k = 0, 1, 2, . . .} and all
sequences containing them, it is satisfying to see that 010 isforbidden by
the reconstructedε-machine, as evidenced by the missingS2 CS. We find that
Cµ = 2.58 bits.

Figure 14
A comparison of the CFsQs(n) generated by ther = 3 reconstructedε-machine
and the even process of Example D. The CFs decay quickly to their asymptotic
value of 1/3.
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Figure 15
Theε-machine inferred from the exact sequence frequencies. The causal states
are labeled with the (possibly several) histories that can lead to them. We find
thatCµ = 1.92 bits.

Figure 16
A comparison between the diffraction spectraI(l) generated by ther = 3 recon-
structedε-machine and by the even process of Example D. The agreement is
good (R = 8%) except in the region 0.7 < l < 0.9. Notably, the diffraction
spectra for the even process has an isolated zero atl = 5/6.
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The recurrent portion of theε-machine for Example E, ACA 232, withf =
0.10. Thisε-machine is sofic, as it prohibits spin domains with an even num-
ber of spins. Thisε-machine should be compared to the 10 stateε-machine
that describes ACA 232 for an arbitrary amount of faulting, Fig. 2 of (Varn &
Crutchfield, 2004). For small amounts of faulting, we find that the CSsI, J, G

andH of this latterε-machine collapse in to the CSsD, F, C andE respectively.
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A comparison between the diffraction spectraI(l) generated by ther = 3 recon-
structedε-machine and by Example E, ACA 232, withf = 0.10. We calculate
a profileR-factor ofR = 8% between the experimental and theoretical diffrac-
tion spectra.
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Figure 19
The r = 3 reconstructedε-machine for Example E, ACA 232, withf = 0.10.
The large asymptotic state probabilities forS2 andS5, as well as their large
casual state cycle probability,PCSC([S2S5]) = 0.81, indicate that this is crystal
is predominantly 2H. [S2S4S0S1] and [S5S3S7S6] are characteristic of defor-
mation faulting of the 2H crystal structure.
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Figure 20
A comparison of the CFsQs(n) generated by ther = 3 reconstructedε-machine
and Example E, ACA 232.
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Figure 21
The reduced theoreticalε-machine for Example E. Thisε-machine should be
compared to the experimentalε-machine given in Fig. 17. The CS architecture
is nearly identical as are the CS probabilities and transitions between CSs.
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