international union of crystallography

Acta Crystallographica Section A
Foundations of

Inferring planar disorder in close-packed structures via

Crystallography e-machine spectral reconstruction theory: Examples
ISSN 01087673 from simulated diffraction spectra

Received 14 Nov 2005 D. P. Varn,*P<*{ G. S. Canright®4*{ and J. P. Crutchfield <*§

Accepted 14 Nov 2005

Online 14 Nov 2005

?Max-Planck-Institut fiir Physik komplexer Systeme, Nothnitzer Strafe 38, 01187 Dresden, Germany, PSanta
Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA, “Department of Physics and Astron-
omy, University of Tennessee, 1408 Circle Drive, Knoxville, Tennessee 37996, USA, dTelenor Research and
Development, 1331 Fornebu, Oslo, Norway, and *Computational Science & Engineering Center & Physics
Department, University of California, Davis, One Shields Avenue, Davis, California 95616, USA. Corre-

spondence e-mail: dpvarn@pks.mpg.de, geoffrey.canright@telenor.com, chaos@cse.ucdavis.edu

Previously we detailed a novel algoritheamachine spectral reconstruction the-
ory (eMSR), that infers pattern and disorder in planar-faultéoke-packed struc-
tures directly from X-ray diffraction spectra [Varn, Cagint & Crutchfield, sub-
mitted toActa Crystallographica A Here we applyMSR to simulated diffrac-
tion spectra from five close-packed crystals. We find thastacking structures
with a memory length of three or les$ISR reproduces the statistics of the stack-
ing structure; the result being in the form of a directed brealled an--machine.
For stacking structures with a memory length larger thaeaf#MSR returns a
model that captures many important features of the origitetking structure.
These include multiple stacking faults and multiple criystauctures. Further, we
find thateMSR is able to discover stacking structure in even highlpiered
crystals. In order to address issues concerning the lorgerarder observed in
many classes of layered materials, we define several leagémeters calculable

from thee-machine, and discuss their relevance.
(© 2005 International Union of Crystallography
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1. Introduction multiple crystalline stacking sequences commonly obgkrve
for two of the most polytypic materials, ZnS and SiC, ther ar
185 and 150 known periodic stacking structures respegtivel
Some of these crystalline structures have unit cells ektgnd
over 100 MLs (Sebastian & Krishna, 1994). This is in con-
trast to the calculated inter-ML interaction range~ofl ML

While crystallography has historically focused on the cbara
terization of materials whose constituent parts are agdng
an orderly fashion, researchers have become increasimgly i
ested in materials that display varying amounts of disqes-
eral examples being glasses, aerogels (Erenbtig., 2005) SIS
and amorphous metal oxides (Batarommal, 2004). A broad " ZnS (Engel & Needs, 1990) and 3 MLs in SiC (Cheng
range of layered materials callpdlytypesalso show consider- €t al, 1987; Chenget al, 1988; Shaw & Heine, 1990; Cheng
able disorder and have been the subject of numerous theore§t &l» 1990). An important ancillary question is whether the
cal and experimental investigations (Jagodzinski, 1949md disorderedpolytypes so commonly obgerv_ed in annealed_ and
& Krisha, 1966; Pandey & Krishna, 1982; Trigunayat, 1991;2S-grown crystals also possess coordination in the stgakin
Sebastian & Krishna, 1994). Polytypism is the phenomenof¥ILS over such a long range.
where a solid is built up by the stacking of identical layers, Significant simplifications in the analysis of X-ray difftamn
called modular layers(MLs) (Varn & Canright, 2001). Each spectra occur if the disorder in the crystal is restrictedne
ML is itself crystalline and the only possible disorder came dimension and the constituent parts can assume only discret
from how adjacent MLs are stacked. Typically energetic con{ositions. This is just the case that arises in the analygislg-
siderations restrict the number of ways two MLs can be sthcketypes. While the general problem of inverting diffractiorsfra
to a usually small set of relative orientations. Thus thecspe to obtain structure remains unsolved, this more restriotest
ification of a disordered polytype reduces to giving the one-dimensional case has been much more amenable to theoretical
dimensional list of the sequence of MLs called stacking analysis. We recently introduced a novel inference algorjt-
sequence machine spectral reconstruction theotMER or “emissary”),
Polytypes have attracted so much interest in part due to thiat does solve the problem of inferring planar disordemfro
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1 We note that there are no inherent obstacles to appBMBR to materials with more complicated MLs or stacking rulesr(@ey, 1980; Thompson, 1981; Varn
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diffraction spectra for the special case of close-packeatst kind of analysis also allows us to identify possible diffites
tures (CPSs) (Varet al, 2002; Varnet al, 2005).> Although  that may arise when applying/SR.

we do not find the particular stacking sequence that gerterate Our development is organized as follows:§i& we provide

the experimental diffraction spectrum, we do find a uniqtee, s numerical details about the techniques we use to analyze the
tistical expression for an ensemble of stacking sequermas e simulated diffraction spectra; i§8 we present our analysis of

of which could have produced the observed diffraction specfive simulated diffraction spectra usirlylISR and contrast our
trum. This statistical description comes in the compaanfof  results to those of the FM; g4 we define several characteris-
an e-machine(Crutchfield & Young, 1989; Shalizi & Crutch- tic lengths calculable from a knowledge of thenachine and
field, 2001). consider their implications for the long range order so ubiq

We claim in a companion paper (Vaet al, 200%) that  tous in polytypes; and if5 we give our conclusions and direc-
¢MSR has significant advantages over competing inferencons for future work. In a companion paper we apgySR to
algorithms, particularly the fault model (FM)These advan- diffraction spectra obtained from single crystal X-rayfici€-
tages include the following: (ifMSR does not assume any tion experiments (Varet al, 2005).
underlying crystal structure, nor does it require one totypos
latea priori any particular candidate faulting structures. That is,2. Methods
there need not be any ‘parent’ crystal structure into whaohe

S - We use the same notational conventions and definitions-intro
preselected faulting is introduced. (ii) ConsequertiySR can

: . duced elsewhere (Varet al, 2005). We examine five proto-
model crystals with multiple crystal or fault structures) ( type processes in detail. Some of these processes areeskelect

Since eMSR does_nt require a parent crystal structure_, It Cahecause they illustrate a particular featureMSR while oth-
detect and quantify stacking structure in samples with eVell < have a more physical motivatioe. they may represent

hlgh.ly d|sorQered s_tacklng sequences. @MSR uses all of real stacking structures in known polytypes. In Example &, w
the mformatron avallable. from the dlffractpn spe.ct'runm,trb reconstruct ar-machine for a known memory length = 3
Brggg and dn‘_fus_e scattering. (WISR results m_amlnlmal and process and show that the technique works in this case and,
unique _descr|pt|0n of the stacking strucFure in fche f_orm of a indeed, for any process that has < 3. Example A also
e-maphlne. Fr_om .knowledge of tmaCh'ne' |ns_|ght mtp .the nicely demonstrates how multiple crystal and fault streesu
E‘;?;ﬁleto;?sagézsg;osch{ iﬁirztsatcgﬂlc?higug:\lirrgp? dpeonsesggq can be simultaneously accommodated on the samechine._ _

' Examples B and E are selected because they may be similar

onality and memory length, are directly calculable from ¢he to stacking structures in known polytypes. We also wish $b te
machine. the effectiveness ofMSR on structures that require a mem-
Our purpose here is four-fold: (l) We wish to validate the ory |ength |onger tham, = 3. Examp|e B needs = 4 and
above assertions concerning the efficacyMfSR by demon-  Examples D and E represent processes whose statistics tan no
strating its application to the discovery of pattern anadisr  pe fully captured by any finite range process. This allows us
in layered materials from their X-ray diffraction spectfi§.As  testeMSR on stacking structures we known that it can not com-
developed in (Varret al, 200%), eMSR can reconstruct pro- pletely detect and thus we can develop an intuition into theisk
cesses up to"Sorder Markovian. We wish to test the robust- of error one might expect. In order to illustrate the appiiaraof
ness ofeMSR by analyzing diffraction spectra from stacking the equivalence relation, Eq. (11) of (Vatal, 2005), to min-
sequences not describable d&-@&der Markovian. While we  imize the reconstructedmachine [step 3c of Table 1 in (Varn
expect thakMSR will not recover the precise statistics of the et al, 200%)], we treat a process with = 1 in Example C.
original stacking sequence for these complicated staging  This shows that had we not terminated reconstruction=ati,
cesses, we wish to understand how much it deviates in the$ﬁe equiva|ence relation would require the merging of w.uw
cases. (iii) We wish to address the issue of long range ordagnt histories that would effectively find thre= 1 e-machine.
in disordered polytypes. Thus we also define length paramete additionally, for each example we give a structural intetpr
calculable from the-machine and discuss their implication for tjgn of thee-machine.
finding long range order in polytypes. (iv) Lastly, we wish t0  For each example we begin with a stacking structure as
demonstrate how the architecture of thmachine provides an gescribed by ar-machine. We generate a sample sequence
intuitive and quantitative understanding into the spamiglni-  from the e-machine of length 400 000 in thezgg notation.
zation of layered CPSs. We map this spin sequence into a stacking orientation seguen
These goals are convincingly realized by analyzing diffrac in the ABC notation. We directly scan this latter sequence to
tion spectra derived from simulated stacking sequencesewhefind the two-layercorrelation functions(CFs): Q¢(n), Qa(n)
there are no issues concerning experimental error. We e alband Qs(n) (Yi & Canright, 1996). For the disordered stack-
to compare the-machine reconstructed from spectral data withing sequences we treat here, the CFs typically decay to an
thee-machine that describes the original stacking structur@, a asymptotic value of 1/3 for larga. We set the CFs to 1/3
thus we can explore how effective}ISR captures the statis- when they reach 1% of this value, which usually occurs for
tics of these complicated stacking structures. Additipméhis  n ~ 25— 100. We could, of course, find the CFs directly from

& Canright, 2001). However the case of CPSs is by no means adadgnce several important polytypes, such as SiC and ZeSjescribable as CPSs.
2 We discuss the FM in detail in (Vart al., 2005).
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spin-sequence probabilities, via Eq. (9) of (Vatral, 2005). 3. Analysis

However, if one needed to calculate CFs for, say; 50, this

would require finding the sequence probabilities for seqasen 3.1. Example A

of length 50. There are®2 ~ 10" spin sequences for = 50, We begin with the sample process given in Fig. 1. This pro-
so the sum implied by Eq. (9) of (Vaet al, 2003) is difficult  cess can approximately be decomposed into FM structural com

to perform in practice. As an alternative, one changes fepreponents using Eq. (24) of (Vaet al., 2005) in the following
sentation and rewrites themachine in terms of the absolute way:

stacking position®ABC. From this new representation the CFs

0
are calculable from th&ansition matricesEqs. (12) and (13) g?ﬁ gio//o
of (Varn et al,, 200%). This has not been done here however. . 0
Additionally, it is possible to derive analytical expresss for Deformation fault - 16%

’ Growth fault 6%

the CFs in some cases (Varn, 2001).
We then calculate theorrected diffracted intensity per ML Where the “+” on 3C indicates that only the positive chisalit
I(1) (Varn et al, 2005), along the 10 row in increments of (--1111.) structure is present. The faulting is given with ref-

Al = 0.001 using Egs. (1) and (2) of (Vaet al, 2005) with erence tg the 2H c;ryst_él.‘l’he dn‘fractmq spectrum from this
a stacking sequence of 10 000 MLs. Throughout we refer t#TOC€SS iS shown in Fig. 2. The experienced crystallographe
the corrected diffracted intensity per ML(), as simply the has little difficulty guessing the underlying crystal sture: the

diffraction spectrum. We now now take this simulated diffra P€aks al ~ 0.50 and ail ~ 1.00 are indicative of the 2H
tion spectrum as our “experimental” diffraction spectrum. structure; while the peak &t~ 0.33 is characteristic of the 3C

We applyeMSR [Table 1 of (Varnet al, 2005)] to each structure.

. ) . : : The faulting structure is less clear, however. It is knowat th
experimental diffraction spectrum. Since these are sitadla various kinds of faults produce different effects on thegiya
diffraction spectra, we find that the figures-of-mesitand 3, P

. . o ; peaks (Sebastian & Krishna, 1994). For instance, both ¢growt
are equal to their theoretical values within numerical eoser ) . : )
o and deformation faults broaden the peaks in the diffraction
all unit | intervals. Therefore, we do not repoytand 3, and spectrum of the 2H structure, the difference being that grow
instead performreMSR over the interval 0< | < 1. Fur- P ’ 9

L . faults broaden the integérpeaks three times more than the
ther, again since these are simulated spectra and hencadave . ;
. half-integert peaks, while peaks broadened due to deforma-
error, we are not able to set an acceptable threshold Erior

advance. Instead. each examole. except for Examole C. mi tion faulting are about equal. The full-width at half maximu
! ’ mp'e, excep PI€ & MINEWHM) for the peaks are.028, 0034, and 049 forl ~ 0.33,
mally requires the = 3 solutions. Thus we solve trepectral

. - . . 0.5, and 1, respectively. This gives then a ratio of aboditfar
equationsatr = 3 [Appendlx A3 of (Varne_zt al, 2009] via the integer-to half-integert broadening, suggesting (perhaps)
a Monte Carlo technique (Varn, 2001) to find sequences pmb?ﬁat deformation faulting is prominent. One expects therest
bilities of length-4. We take the = 3 e-machine given in Fig. :

1 of (Varnet al, 200%) as our default or candidatemachine. no shift in the position of the peaks for either growth or defo

All casual stategCSs) and allowed transitions between CSsmatlon faulting; V.Vh'Ch IS clearly not the case here. In féoé,
S ., .. two peaks associated with the 2H structure=&t0.50 and 1.00
are initially assumed present. From the sequence protiedbili

. h iy . 5(53) f Ki are shifted byAl =~ 0.006 and 0.009, respectively. This analysis
we estimate the trgnsmon matrices —s;y lormaxing a tran- is, of course, only justified for one parent crystal in theralle
sition from a candidate CS; to a candidate CS; on seeing

. v th val lati : structure, nonetheless if we neglect the peak shifts, thelsi
a spins. We apply the equivalence relation, Eq. (11) of (Varm;, itive analysis appears to give good qualitative reshére.

et al, 200m) to generate a final set of CSs. We refer to the With the 3C peak, both deformation and growth faults pro-

resulnﬁge-r;macr;]lne as the reconﬁtructed orr] thioret'“atﬁi duce a broadening, the difference being that the broadesing
e-machine for the spectrum. In the event that the reconsiuct oy netrical for the growth faults. One also expects there t

e-machine assigns to a CS an asymptotic; state probability e some peak shifting for the deformation faulting. Thera is
less than @1, we take that CS to be nonexistent. slight shift @I ~ 0.002) for thel ~ 0.33 peak and the broad-
To find the prEdiCted CFs for ea€hnaChine, we again take a ening seems (arguab|y) SymmetriC’ SO one is tempted to guess
sample spin sequence generated bytheachine of length 400  that deformation faulting is important here. Indeed, ¢aesal
000 and find the CFs by directly scanning the resulting staicki state cyclg(CSC) [S7SeSsSs]* is consistent with deformation
sequence. The diffraction spectrum along the #@w is again  faulting in the 3C crystal. Heuristic arguments, while nos-j
calculated from Egs. (1) and (2) of (Vaet al, 200%) using a  tified here, seem to give qualitative agreement with the know
sample of 10 000 MLs and we compare this with the diffractionstrycture.
spectrum for the original process. The e-machine description does better. The reconstrueted
We also calculate the information-theoretic quantitiesmachine is equivalent to the original one, with CS probtesi
described ir§2.6 of (Varnet al,, 200%) for each example and and transition probabilities typically within 0.1% of theirigi-
the reconstructedmachine. nal values, except for the transition probability from frainto

3 Here and elsewhere we use the Ramsdell notation to speciatlige stacking structures in CPSs. Recall thatetheachine gives stacking sequences in terms
of the Hagg notation. For a discussion of nomenclature and faultigtsire as revealed by the CS architecture-ofachines, see (Varet al., 2005%).
4 We will denote a CSC by giving the sequence of CSs that compeseytle in square brackets [].
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S, nglj_}sl = 0.33, which was 1% too small. Not surprisingly, tion spectra, as Fig. 7 shows. The most notable discremancie
the process shown in Fig.i4 the reconstructeemachine and are in the small rises at~ 0.17 andl ~ 0.83. We calculate
so we do not repeat the figure. a profileR-factor of R = 12% between the diffraction spectra
The two-layer CF€s(n) versusn from the process and from for Example B and the reconstructednachine. The = 3 e-
the reconstructed-machine are shown in Fig. 3. The differ- machine has difficulty reproducing the 6H structure in thespr
ences are too small to be seen on the graph. We calculate tg&ce of 3C structure, as expected.
profile R-factor (Varnet al., 2005) to compare the experimen-  Given the good agreement between the CFs and the spec-
tal spectrum (Example A) to the theoretical spectrum (recontra generated by Example B and the= 3 e-machine, we are
structede-machine) and find a value & = 2%. If we generate led to ask what the differences between the two are. In Table 1
several spectra from the same process, we find prefilactors  we give the frequencies of the eight length-3 sequences gen-
of similar magnitude. This error then must be due to samplingerated by each process. The agreement is excellent. Thiy bot
It stems from the finite spin sequence length we use to calgive nearly the same probabilities (0.32) for the most com-
culate the CFs and our method for setting them equal to theimon length-3 sequences, 111 and 000. Example B does forbid
asymptotic value. This can be improved by taking longer samtwo length-3 sequences, 101 and 010, which the reconsiructe
ple sequence lengths and refining the procedure for settgng tr = 3 e-machine allows with a small probability( 0.03). At
CFs to their asymptotic value. Since profitefactors compar- the level of length-3 sequences, tamachine is capturing most
ing theory and experiment are typically much larger thas,thi of the structure in the stacking sequence.
at present, this does not seem problematic. A comparisdreoft A similar analysis allows us to compare the probabilities of
two spectra is shown in Fig. 2. This kind of agreementis @i the 16 length-4 sequences generated by each; the results are
of eMSR from any process that can be representedras=a8  gjven in Table 2. There are more striking differences hehe T
e-machine (Varn, 2001). frequencies of the two most common length-4 sequences in
We find by direct calculation from themachine that both Example B, P1111) = P(0000 = 0.227, are overestimated
Example A and the reconstructed process have a configur@y ther = 3 e-machine, which assigns them a probability of
tional entropy ofh, = 0.44 bits/spin, a statistical complexity ~ 0.30 each. Similarly, sequences forbidden by Example B—
of C, = 2.27 bits, and an excess entropytot= 0.95 bits. 1101, 1011, 1010, 1001, 0110, 0101, 0100, 0010—are not nec-
Since the original process was representable as-am3 e-  essarily forbidden by the = 3 e-machine. In fact, the = 3 ¢-
machine, this first example is largely a consistency check omachine forbids only two of them, 0101 and 1010. This implies
eMSR. In the next example, we treat an> 3 process not rep- thatr = 3 e-machine can find spurious sequences that are not in

resentable by the = 3 e-machines that we reconstruct. the original stacking sequence. This is to be expected. gut t
r = 3 e-machinedoesdetect important features of the original
3.2. Example B process. It finds that this is a twinned 3C structure. It alsdi

Upon annealing, a solid-state transformation in ZnS fromthat 2H structure plays no role in the stacking process. [¥%e s
the 2H structure to either the 3C or 6H structures is possiblehis by the absence of transitions betwe®randSs in Fig. 5.]
sometimes both occurring in different parts of the same-crys One can also attempt to decomposerthe 3 e-machine into
tal (Sebastian & Krishna, 1994). However, two crystal struc a sum of CSCs and interpret this as crystal and fault strectur
tures represented with artmachine cannot share a CS, asHowever, as is typically the case, there is no unique decempo
discussed ir§3.1.2 of (Varnet al, 2005%). On anr = 3 ¢-  sition and so therefore such an exercise is of questionalité v
machine, for example, both the CSCs associated with the 3@y. With the exception of the sequences 1111 and 0000, the
and the 6H structures shaf® and Sy, so a crystal contain- other twelve non-vanishing sequences all appear with alsmal
ing both structures cannot be properly modeled at 3. In  but rather constant probability in the rang@24 - Q052. One
fact, it is necessary to use an= 4 e-machine to encompass possible interpretation is to say tha,] and [S7] contribute
both structures. So, to see how welISR works atr = 3 for  to 3C structure with a weight of.88. We could further inter-
anr = 4 process, we consider the process shown in Fig. 4pret [S7S65583] and [SpS15254] as deformation faulting of the
[R1R3R7R14R12Rs] would give rise to 6H structure if it were 3C structure giving a combined weight aP@. And finally, we
a strong CSC, but we find that thausal state cycle probability could associated; S3SgS4] with 4H structure. This last inter-
Pesc(6H) = 0.25 (Varnet al, 2005). We say then that this is  pretation of [51S53S6S4] with any crystal structure is trouble-
mild 6H structure. Ro] and [R1s] give the twinned 3C struc- some as th&:sq([S1S53S56S4]) < 1. Another possible decom-
tures. position would be to again assigfg] and [S7] to the 3C struc-

Employing spectral reconstruction, we find the= 3 -  ture with a weight of 0.58, to interpret the patisSsSsSo
machine shown in Fig. 5. All CSs are present and all tramsitio andSpS153S7 as as twin faulting with a probability weight of
save those that connest andSs, are present. A comparison of 0.18, treat §15356S4] as 4H structure, and finally to interpret
the CFs for the original process and the reconstructedchine  [S15284] and [S3SeSs] as 9R structures. These two descriptions
is given in Fig. 6. The agreement is remarkably good. It seemare clearly rather different and, arguably, have no use in an
that ther = 3 e-machine picks up most of the structure in the account, other than serving to illustrate the ambiguity bF-F
original process. like structural interpretations.

There is similar, though not as good, agreement in the diffra  In addition to the non-uniqueness difficulties, by simpst-i
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ing the probability density of the various crystals and ffaul Since we are labeling the states by the last two symbols geen a
structures, we say nothing about how one crystal converts = 2, within our approximation they do have the same futures
into another as one scans the stacking sequence. Thissxercand thusS; and S3 can be merged to form a single CS. The
demonstrates the impoverished view of crystal structunerin  result is thee-machine shown in Fig. 8.
ent in the FM. In short, the stacking sequence implied by the In general, in order to merge two histories, we check that
e-machine in Fig. 5 comes from a physical structure that is noeach has an equivalent future up to the memaory lengtinthis
describable in terms of the FM. example, we need only check futures up to length-1, because
We find by direct calculation that the Example B processafter the addition of one spirs)(each is labeled by the same
has a configurational entropy bf, = 0.51 bits/spin, a statis- past, namely 4 Had we tried to merge the pasts 11 and 10, we
tical complexity ofC, = 2.86 bits, and an excess entropy of would need to check all possible futures after the additibn o
E = 0.82 bits. The reconstructed process gives similar resultéwo spins, after which the states would have the same futures
with a configurational entropls, = 0.54 bits/spin, a statisti- (by assumption). That is, we would require
cal complexity ofC, = 2.44 bits, and an excess entropy of

E = 0.83 bits. T =TY o @)
3.3. Example C and

We treat this next system, Example C, to contrast it with the ) )
last and to demonstrate how pasts with equivalent futures ar Tishss = Tostse ®3)

merged to form CSs. Themachine for this system is shown
in Fig. 8 and is known as thgolden mean proces3he rule
for generating the golden mean process is simply stated:ra 0 %
1 are allowed with equal probability unless the previous spi
was a 0, in which case the next spin is a 1. Clearly then, thi
process needs to only remember the previous spin, and hen
it has a memory length of = 1. It forbids the sequence 00

. . 3.4. Example D
and all sequences that contain this as a subsequence. The pro ] ] o
cess is so-named because the total number of allowed seguenc Ve now consider a simple finite-state process that cannot be
grows with sequence length at a rate given by the golden medfPresented by a finite-order Markov process, calledetren
6= (1+V5)2. process(Crutchfield & Feldman, 2003; Crutchfield, 1992), as

We employ theMSR algorithm and find themachine given e prévious examples could. Teeen languaggHopcroft &
(again) in Fig. 8 at = 1. A comparison of the CFs from Exam- Ullman, 1979; Badii & Pol|t.|, 1997) consists of sequencessu
ple C and the golden mean process are given in Fig. 9. The difhat between any two 0Os either there are no 1s or an even num-
ferences are too small to be seen. We next compare the diffrab®r Of 1S. In a sequence, therefore, if the immediately pliege
tion spectra, and these are shown in Fig. 10. We find excelleriPin was a 1, then the admissibility of the next spin requires
agreement and calculate a profiefactor of R = 2%. At remembering thevennessf the number of previous consecu-
this pointeMSR should terminate, as we have found satisfac!Ve 1S, since seeing the last 0. In the most general insfémse
tory agreement (to within the numerical error of our techigly  €duires an indefinitely long memory and so the even process
between “experiment”, Example C, and “theory”, the recon-cannot be represented by any finite-order Markov chain.
structede-machine. We define the even process as follows: If a 0 or an even

Let us suppose that instead, we incremeand follow the number of consecutive 1s were the last spin(s) seen, then the
¢MSR algorithm as if the agreementrat 1 had been unsatis- NeXt spin is either 1 or 0 with equal probability; otherwike t
factory. In this case, we would have generated thmachine”  Next spin is 1. While this might seem somewhat artificial for
shown in Fig. 11 at the end of step 3b [Table 1 of (Varnthe stacking oflsimple polytypes, one cannot exclude tlasscl
et al, 2005)]. We have yet to apply the equivalence relation Of (So-calledsofig structures on physmgl grognds. Indeed, such
Eq. (11) of (Varnet al, 2005) and so let us call this theon- Iong-ra_mge memories may be induced in solid-state phass-tra
minimal e-machine. That is, we have not yet combined pastdormations between two crystal structures (Kabra & Pandey,
with equivalent futures to form CSs, step 3c [Table 1 of (Varn1988; Vam & Cruichfield, 2004). It is instructive, theregor
et al, 2005)]. Let us do that now. to explore the results of our procedure on processes with suc

We observe that the sta is different from the other two, ~Structures. _ _ _

S; and Ss, in that one can only see the spin 1 upon leaving Additionally, analy_zmg a sofic process pronges a vall_Ja}bIe
this state. Therefore it cannot possibly share the samesfsias €St ofeMSR as pract_lced_here. Spemflca_lly, we invoke a finite-
S; andSs, so no equivalence between them is possible. Howeorder Markov approximation for the solution of the= 3 equa-

foralls .

We find by direct calculation from the-machine that the
oth Example C and the reconstructed process have a configu-
gational entropy oh,, = 0.67 bits/spin, a statistical complexity
%C“ = 0.92 bits, and an excess entropyof= 0.25 bits.

ever, we do see that(BS;) = P(1/Ss) = 1/2 and RO|S;) = tions, and we shall determine how closely this approximttes
P(0|S5) = 1/2 and, thus, these states share the same probabili§¥€n Process with its effectively infinite range.
of seeing futures of length-1. More formally, we can write Thee-machine for this process is shown in Fig. 12. Its causal-

state transition structure is equivalent to that in ¢h@achine
Tésl)_)ls = T(151>—>15 . (1)  for the golden mean process. They differ only in spnsemit-



international union of crystallography

ted upon transitions out of th® (Sever) CS. It seems, then, that e-machine given in Fig. 12.
this process should be easy to detect. We find, then, that there are two separate consequences to

The result ofe-machine reconstruction at= 3 is shown in  applying eMSR that affect the reconstructedmachine. The
Fig. 13. Again, it is interesting to see if the sequencesiflsén  first is that forr > 3, the memory-length reduction approxi-
by the even process are also forbidden byrthe 3 e-machine.  mation must be invoked to obtain a complete set of equations.
One finds that the sequence 010—forbidden by the process-Fhis approximation limits the histories treated and caedff
is also forbidden by the reconstructednachine. This occurs the values estimated for the sequence probabilities. Téense
becauseS, is missing? We do notice that the reconstructed is the state-labeling scheme. Only for Markovian (non-3ofic
machine has much more “structure” than the original pracesgrocesses can CSs be labeled by a unique finite history. Mak-
We now examine the source of this additional structure. ing this assumption effectively limits the class of proesssne

Let us first contrast differences betweeMiSR and othee-  can detect to those that are blockiarkovian. To see this more
machine reconstruction techniques, taking the subtreginge  clearly, we can catalog the possible histories that lealedwo
method (SMM) of Crutchfield and Young (Crutchfield & CSsin Fig. 12. In doing so, we find that the histories 000, 011,
Young, 1989; Hansen, 1993; Crutchfield, 1994) as the alernal10, 100, and 100 always leave the process inSes, Simi-
tive prototype. There are two major differences. Firstgsinere  larly, the histories 001 and 101 always leave the processSin C
we estimate sequence probabilities from the diffracticecm  Soqq- But having seen the history 111 does not specify the CS
and not a symbol sequence, we find it necessary to invoke thas one can arrive in both CSs from this history. So the lagelin
memory-length reduction approximation (Varhal., 2005) at  of CSs by histories of a finite length fails here.

r > 3 to obtain a complete set of equations. Specifically, we Then why do we not find sequence probabilities by solving
assume that (i) only histories up to rangare needed to make the spectral equations and then use SMM to reconstruct-the
an optimal prediction of the next spin, and (ii) we can lab86C machine? There are two reasons. The first is that in genegal on
by their lengthr history. must know sequence probabilities for longer sequencesishan

We can test these assumptions in the following way. For (i)necessary foEMSR. Solving the spectral equations for these
we compare the frequencies of length-4 sequences obtaindahger sequence frequencies is onerous. The second isthiat e
from each method. This is shown in Table 3. The agreemerit the sequence probabilities found from solving the spéctr
is excellent. All sequence frequencies are withi@.01 of the  equations for these longer sequences makes identifyingaequ
correct values. The small differences are due to the memonjent pasts almost impossible. The even process is an egoepti
length reduction approximation. So this does have an etie¢t here, since one needs to consider only futures of lengttiis. T
it is small here. is certainly not the case in general.

To test (ii), we can compare themachines generated from  Having explored the differences betweediSR and SSM,
each method given the same “exact” or “correct” length-4we now return to a comparison between CFs and diffraction
sequence probabilities. Doing so, SMM gives thmachine  spectrum generated by th®ISR and the even process. The
for the even process shown in Fig. XRISR gives a different CFs for the even process and the reconstruetetghchine are
result. After merging pasts with equivalent futures, onddithe  given in Fig. 14. We see that both decay quite quickly to their
e-machine shown in Fig. 15. For clarity, we explicitly shoveth asymptotic values of 1/3. There is good agreement, except in
length-3 sequence histories associated with each CS, mdtdo the region between 5 n < 10. Examining the diffraction
write out the asymptotic state probabilities. spectra in Fig. 16, we see that there is likewise good agreeme

The e-machine generated MSR is in some respects as except in the region.@ < | < 0.9. We calculate the profile
good as that generated by SMM. Both reproduce the sequendg-factor between the theoretical and experimental spezta t
probabilities up to length-4 from which they were estimated R = 8%.

The difference is that foeMSR, our insistence that histories  There is a curious isolated zero in the process’s spectrum at
be labeled by the last-spins forces the representation to bel ~ 0.83. The other interesting feature is the broad peak at
Markovian of range. Here, a simpler model for the process, | ~ 0.33. One might guess that this originates from some 3C
as measured by the smaller statistical complexit9Zits as  structure and, indeed, glancing at the reconstruetethchine
compared to B2 hits), can be found. So the notion of mini- of Fig. 13 shows thatJ;] is strongly represented. The fault-
mality is violated. That issMSR searches only a subset of the ing is less clear. We would expect, though, that the presence
space from which processes can belong. Should the true prof [S7S6845051S53] would indicate layer-displacement faulting
cess lie outside this subset (Markovian processes of rapge of the 3C" structure and$;SsSsS3] is characteristic of defor-
theneMSR returns an approximation to the true process. Thenation faulting of the 3C structure. But given that most non-
approximation may be both more complex and less predictiveanishing transitions between CSs occur with a probaliktgr
than the true process. It is interesting to note that had wengi ~ 0.5, such an identification is questionable.

SMM the sequence probabilities found from the solution$ef t We find by direct calculation from the even process that it
spectral equations, we would have found (within some ether) has a configurational entropy bf, = 0.67 bits/spin, a statis-

5 We do note that the solution of the spectral equations-at3 assigns the sequences 0100 and 0010 a small probabiiyp§ ~ P(0010 = 0.005, which
implies that the sequence 010 is also present with a small piliipaP(010) < 0.01. Since this falls below our threshold, we take this CS asgoeonexistent. For
this example, probabilities of this small magnitude are not rimeginl, as the spectral equationsrat 3 are difficult to satisfy with purely real probabilities. We
also note that the solution of the spectral equatioms-a doesforbid the 010 sequence. For additional discussion, sea(¥Z801).
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tical complexity ofC, = 0.92 bits, and an excess entropy of & Pandey, 1996), ACA 232 nonetheless reproduces many of
E = 0.91 bits. The reconstructedmachine gives information- the significant features seen in experimental diffractioecsra
theoretic quantities that are rather different. We find afigen  of annealed ZnS crystals.
urational entropyh,, = 0.79 bits/spin, a statistical complexity  Real transformations in ZnS crystals are undoubtedly much
of C, = 2.58 bits, and an excess entropy Bf= 0.21 bits.  more complex than this. However, despite its simplicitg ¢h
Thus we find the reconstructeemachine isnore complethan  machine that describes the stacking process for a cryatas-tr
the original process(d], (theory) = 2.58 bits as compared t0 formed under ACA 232 has an infinite memory lengt, it is
C,.(experiment = 0.92 bits] butless predictivgh,,(theory) =  sofic. The physical origin of this soficity is not difficult toder-
0.79 bits/spin as comparedg (experiment = 0.67 bits/spin].  stand. Note that the original unfaulted crystal has only suid

One reason that the reconstructethachine gives CFs and domains. (Indeed each spin domain in the unfaulted 2H crys-
diffraction spectra in such good agreement with the even protal is exactly one spin long.) A spin flip (deformation fauigs
cess in spite of the fact that the information-theoreticrgua the effect of joining two such odd spin domains by flipping the
tities are different is the insensitivity of the CFs and -  single spin that separates them. Thus the resulting lager s
tion spectra to the frequencies of individual long sequsnce domain must also have an odd number of spins. It follows then
Eqg. (9) of (Varnet al, 2005) sums sequence probabilities to that a perfect 2H crystal undergoing this transform can meve
find CFs. The fact that the even process has such a long merhave even spin domains. Just as for the even system, Example
ory is masked by this. However, information-theoretic ditan D, one must remember the oddness (evenness) of the previous
ties are sensitive to the structure of long sequenddSR at  like spins scanned to determine the admissibility of thet nex
r = 4 should prove interesting, in this light, since the evenspin. So in general the description of this process requines
process picks up another forbidden sequence—01110—and this remember an indefinitely long history of spins. An impaotta
additional structure would be reflected in the reconstdiete  consequence of soficity is that no finite-order Markov preces

machine. can fully reproduce the statistics. Thus it is reasonablasto
how much of the stacking structusgMSR can capture.
3.5. Example E We consider a partially transformed crystal with a faulting

ZnS is believed to have only two stable phases, the highParameterf = 0.10. For a crystal only weakly faulted by the
temperature phase, 2H and the low-temperature phase, 3GCA 232 process, as is the case here, dmeachine shown in
Crystals can be grown at high temperatures (above 1024 ¢)9- 17 gives an excellent representation of the stacking st
in the 2H phase and then cooled to a temperature range whelig® and we take this to be our experimentahachine. The
the 3C phase becomes stable. The crystal then transforms eng0Ncomitant diffraction spectrum is shown in Fig. 18. Frére t
tiotropically from the former into the latter predominantlia ~ Bragg-like reflections at~ 0.50 and ~ 1.00, itis clear that
deformation faulting (Roth, 1960; Sebastian & Krishna, 4,98 the structure of this crystal is predominantly 2H.

Sebastian, 1988). This transformation can be arrestedyat an Since the faulting is weak, we are able to perform a FM anal-
point by cooling the crystal further to a temperature rangene  ysis. We find that the Bragg peaks are broadened symmeyricall
the MLs lack the necessary thermal activation energy ta slipand any shifting in their placement is negligible. We furtfied
Thus itis possible to experimentally study partially tfamsied ~ that the FWHM is 0.059 for the integépeaks and 0.058 for the
crystals. half-integert peaks. All of this is consistent with deformation

This martensitic transformation can be modeled in a sttaigh faulting of the 2H structure.
forward fashion (Varn & Crutchfield, 2004). We note that an Employing spectral reconstruction, we find the= 3 e-
undefected 2H Crysta| can be represented by the antifegomamaChine shown in Flg 19. We notice that the CS architecture
netic phase of a linear chain of Ising spins and a 3C crystdpetween the twe-machinesappearsto be rather different. We
is just the ferromagnetic phase. Let us make four assungptioncompare the theoretical and experimental CFs in Fig. 20. The
(i) Deformation faulting is the primary mode of transforioat ~ agreement is excellent. There is, however, some discrgpanc
In terms of spins, this corresponds to flipping a single spinin the range 10< n < 30, where the theoretical CFs have
i.e. Glauber dynamics (Glauber, 1963). (ii) Only interactionsslightly stronger oscillations. Similarly, we compare thfrac-
between neighboring spins are important. (iii) A spin cap fli tion spectrain Fig. 18. Here we also find excellent agreement
only if it is energetically favorable to do so. (iv) The trémsna-  €videnced by th&-factor between the two spectra®f= 8%.
tion happens slowly. Putting this all together, let us beuithn Given such good agreement between the theoretical andiexper
an antiferromagnetic chain. We visit a spin random|y (bNBne mental diffraction spectra and CFs, we are led to ask howghis
more than once) and flip this spin only if it is antiparallel to Possible when their respectivemachines seem to be so differ-
bothof its neighbors. We call the fraction of spins so visited theent. We find however, the differences are indeed more apparen
faulting parameter fDue to its formal similarity to elementary than real.
cellular automaton rule 232, except that here the updageisul Let us follow the same kind of analysis as we performed ear-
applied asynchronously to only a fraction of spins, this glod lier (Varn & Crutchfield, 2004), where one begins in one of the
is called ACA 232. While much simpler that other models CSs that is part of the 2H crystal structure and then follows a
of solid-state transformations (Kabra & Pandey, 1988; Enge path of CSs associated with faulting. First we note that tita b
1990; Shrestha & Pandey, 199&hresthat al., 1996; Shrestha e-machines have CSCs that generate the 2H stacking structure
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[AB] in the experimentad-machine and$,Ss] for the theoret-  cal e-machine so that the CSs occupy the same position as their
ical one. They even have nearly the same CS transition probanalogous states on the experimentadachine. We call this the
bilities connecting themTﬁf”_}B =090~ T'<505)*>52 = 0.92 and ‘“reduced” theoreticat-machine and it is shown in Fig. 21. The
T, = 090~ TE o = 088 Thus these two CSCs per- o™ty between e recucednachine and the expermental
form equivalent functions on their respectizenachines. For one, F1g. 17,15 Striking. e architectures are neaei

small faulting as is the case here, the remainder of the CSs q l, the only difference being that ti andsS; on the reduced

eache-machine describe deviations from this crystal structure! eoretlpale—machlne have a self-stgte tran5|t|op onaoand1
espectively, whereas on the experimentahachineF and E

As noted elsewhere (Varn & Crutchfield, 2004), the three spir{ - ) .
sequence 100 necessarily places the experimemtachine in tranS|t|on_ _to d|fferent_ .C.SS on a 0 and 1 respectively. Fmr_the
D. Thus S, in the theoreticak-machine (which by definition the traqg_uon probab|lmgs bgtween CSs and the asynup@s
assumes the three spin history of 100) is analogol itothe propablhtles are nearly |d§nt|cal. . i
experimentat-machine (at least for length-3 spin histories). we GVen that the theoretica-machine and the experimental
find that transitions out of these two CSs are identic){p) —  One are indeed so similar, we can ask wiySR didn't find
P(0|Ss) = 1 and R1|D) = P(1|Ss) = 0. This demonstrates the experlmentai—machme. As WIFh Example D, we can trace
that the theoreticai-machine also prohibits the 1001 stack- (N€ reasons to two difficulties: (i) errors in sequence proba
ing sequence just as the experimentahachine does. After bilities as found by solving the spectral equations, anjl (ii

the sequence history 1000 the experimentaiachine is inF the state labeling s_cheme. We compare the prqbabilities for
and the theoretical-machine is inSy. We find that transitions €N9th-4 sequences in Table 4. The spectral equationsthegeo

out these two CSs are equal (to within the numerical accul® Sequence probabilities from the experimentahachine

racy of solving the spectral equations)OfF) = 0.096 ~ reasonably well. For sequences appearing only rarely, how-
P(0|So) = 0.10 and R1JF) = 0.904 ~ P(1|S;) = 0.90. Even there are some relatively large deviations. Notabhly,
However, the destination CSs after these latter transitam S€duences 1100 and 0011 each occur with a frequency of 0.004
not appear to be analogous on the twmachines. A 1 on the in the experimentat-machine, but the theoreticalmachine
experimentak-machine returns the-machine toA, i.e. it has assigns them probabilities of 0.014 and 0.000 respectivéig,

now returned to AB] or the 2H structure. The theoretical along with the error in the probabilities for the 1101 and @01
machine however advancesdp, rather tharss, the CS analo-  S€duences, gives transition_ probabilities outSpfand Sg that
gous toA on the theoretica-machine. The transition probabili- Prévent these CSs from being merged wiand S, respec-
ties for the next spin are a little different for the twanachines: ~ UVvely. Thus the theoreticatmachine makes distinctions about
P(OJA) = 0.90 # P(0|S;) = 1.00. But if we do follow this pasts that the experimental one does not. The second difficul
transition on 0, we will find each-machine back into/4B] lies with the state labeling scheme. Since each state is ini-

or [S»Ss] associated with 2H structure. We find then that for tially labeled by the last three spins se€,and Sy necessar-
[BDFA] on the experimental-machine we have an analogous ily have self-state transitions. So the kind of CS architeet

CSC, [S2848051], on the theoretical-machine;f we allow S on the experimentalmachine that generates the infinite range
to play a similar role tes. In fact, Sy andSs have nearly iden- Memory—that bouncing between CSs, such as that betiveen

tical futures. Each transitions & on a 0, and had the spectral 2ndD that prohibits even spin domains while allowing odd spin
equations not found a vanishing probability for the seqaenc domains of any size—can never be realized if states are thbele

0011,S; would transition to ta3 on a 1, just as’s does. Indeed, Y finite histories. _ o

had the conditional probabilities out ¢ andSs been equal,  Returning our attention to the theoreticamachine in Fig.
the equivalence relation, Eq. (11) of (Vaehal, 2005), would 19, we examine how its CS archltectgre reveals information
have required the merger of these two CSs to form a single C&Pout the stacking structure. As previously noted, theelarg
The spin sequence associated WBDFA] and [S;SsSoS1]is ~ @Symptotic state probe_lbllltles féb andSs, Pr(S2) = Pr(Ss) = N
just 0100010, where the first three spins can inferred assnece?-37: as well as their large casual state cycle probability,
sary to fix eache-machine intoB or S,. The interpretation is  Fesc([S25s]) = 0.81, indicate that this is crystal is predom-
clear: these two CSCs represent a single, isolated defiamat |n.antly 2H. 'The remaining CSCs give the faulting structure.
fault of the 2H structure. This exercise strengthens therint Since there is no CS transition from eiti&rto S or from S; to

pretation of the CS structure of weak deformation faultimy o S4 We See that stacking structure associated with both growth
anr = 3 e-machine in a 2H crystal given i§3.2.2 of (Varn and layer displacement faults is absent. Further, thessaié

et al, 2005). transition probabilities foS; andS; are likewise small, so we

o conclude that there are no large regions where the crystal ha
We can further demonstrate the similarity between the expek,ansformed to the 3C structure.

imental and theoreticalmachines with the following exercise. This e-machine can be approximately broken down into FM

Since theS; gnd Ss dg have nearly identical fgtqres, let us structural components using Eq. (24) of (Vatral, 200%&) and
merge them in to a single CS, and callS{;s. Similarly, let

we find:
us also mergeS, and Sg and label the resulting CSy,6. To
find the transition probabilities for these new states, wst ju 2H 66%
take a weighted average of the transition probabilitiestlier Deformation fault 31%

old states. Further, we can rearrange the CSs on the theoreti Other 3%.
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This then is consistent with 2H crystal that has been weaklyesulting CSs are nattrongly connectedand thus the result
deformation faulted. We also note tHault probability (Varn ~ may not be interpreted as a singlenachine.

et al, 2005%), i.e. the probability that upon scanning the crys- Step 4 There are no difficulties here.

tal one finds a particular kind of fault, can also be approxi- ) ) . ) .

mated directly from the theoreticaimachine. For this weakly St€P Sltis possible thatone is required to go torahat is cum-
faulted crystal we take$,Ss] as the parent crystal structure. PE€rSOme to calculate. In this case, one terminates theguoee
The probability of leaving$,Ss] averaged over the CSC is just tfough practicality.

(1/2){P(1|S5) + P(0|S2)} = (1/2){0.12 + 0.08} = 0.10. This
is the quantity usually reported in the literature. Sinceréhis
but a single parent structure with one kind of fault, findihg t
fault probability here is unambiguous. For multiple crylsta

We find that the roots of these difficulties can be ultimately
traced to four problems: (i) excessive error in the diffiact
spectrum, (ii) the process has statistics that are too autpl
> . . be captured by a finite-range Markov process, (iii) the mgmor
and fault structures, this kind of simple analysis may nqiée length approximation is not satisfied, and (iv) the initssamp-

sible. . . . tions of polytypism are violated. We are likely to discoviiirg

_ Wefind by direct calculation from ACA 232 that it has a con- step 1. For (ii) and (jii), we find no difficulties at step 1, but
figurational entropy ofy, = 0.42 bits/spin, a statistical cOm- yather at steps 2, 3, and 5. For (iv), we have not examined this
plexity of C, = 1.86 bits, and an excess entropy®f= 101 ¢a5e in detail. However, we expect that if the assumptiotiseof
bits. The reconstructed-machine gives similar information- stacking of MLs [se&2.1 of (Varnet al, 2005)] are not met,
theoretic quantities. We find a configurational entrdpy = then since Eq. (1) of (Varet al, 200%) is no longer valid, the
0.42 bits/spin, a statistical complexity &}, = 2.26 bits, and  cFs found by Fourier analysis will not reflect the actual lsitag

an excess entropy & = 0.9 bits. Thus we find the recon- propapilities. This will likely be interpreted as poor figsrof-
structede-machine ismore complexhan the original process, merit, andeMSR will terminate at step 1.

[C(theory) = 2.26 bits as compared 10, (experiment — Of the four possible difficulties only (i) and (jii) shouldeb

1.86 bits] but equally predictivef,(theory) = 0.42 bits/spin  ¢onsidered to be inherent #MSR. It is satisfying thatMSR

as compared tby, (experiment = 0.42 bits/spin]. can detect errors in the diffraction spectrum and then stop,
For comparison we list each example’s information-théoret that it does not generate an invalid representation thaplgim

properties in Table 5. describes “error” or “noise”.

3.6. Anticipated Difficulties with Applying eMSR 4. Characteristic Lengths in CPSs

We have considered five examples that demonstrate succesge now return to one of the mysteries of polytypism, namely
ful applications ofeMSR. We have found instances, however, that of the long-range order which they seem to possess. It is
when theeMSR has difficulties converging to a satisfactory of interest, then, to ask what, if anything, the spectragiyon-
result. We now analyze each stepcMSR as given in Table 1 structede-machine indicates about the range of interactions
of (Varn et al, 200%) and discuss possible problems that maybetween MLs. In this section, we discuss and quantify sévera
be encountered. characteristic lengths that can be estimated from reasctstl

e-machines.
Step 1 Several problems can arise here. One is that the figures- _ . .
of-merit, 3 and-~, are sufficiently different from their theoret- () Correlation Lengthc. From statistical mechanics, we have
ical values over all possibleintervals thateMSR should not ~the notion of a correlation length, (Binney al, 1993; Yeo-
even be attempted. Even if one does find an interval such th&#ans, 1992) which is simply the characteristic length soaée
they indicate satisfactory spectral data, it is possib the ~ Which “structures” are found. The correlation functid@s(n),
CFs extracted over this interval are unphysical. That isreth Qa(n), and QS(n) are known_ to decay to 1/3 for many dis-
is no guarantee that all of the CFs are both positive and lesyrdered s_tacklng%.For the disordered cases considered here,
than unity. In such a case, no stacking of MLs can reproduc&XPonential decay to 1/3 seems to be the rule. We therefore
these CFs. Finally, if error ranges have not been reporté wi define thecorrelation length) as the characteristic length over

the experimental data, it may not be possible to set the errd¥hich correlation information is lost with increasing segiaon
threshold" . n. More precisely, let us defirné,(n) as

Step 2 The Rw") solutions to the spectral equations are not Wo(n) =3, 1Qa(n) — 3|, 4)
guaranteed to be either real or positive fop 3. If this is so,

then no physical stacking of MLs can reproduce the CFs fromso that¥,(n) gives a measure of the deviation of the CFs from
the spectrum. their asymptotic value. Then we say that

Step 3 Given Rw") that satisfy the elementary conditions of Wy(n) = F(n) x 27" | (5)
probability (.e., there is no difficulty at step 2), step 3 will return
a machine that generate&P). It is possible, however, that the whereF (n) is some function of.

6 There are some exceptions to this. See Kabra and Pandey (¥988j1 Canright (1996), and Varn (2001) for some examples.
7 The exponential decay of correlations is discussed by Gfield & Feldman (2003).
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For those cases where the CFs do not decay to 1/3, we saljstance over which one might need to look to obtain informa-
that the correlation length is infinite. We find that expofednt tion to predict a spin’s value.
decay is not always obeyed, but it seems to be comframg For periodic, infinitely correlated systems spins at large-s
the correlation length thus defined gives a useful measuteof aration carry information about each other, as seen inalsyst
rate of coherence loss asncreases. Our definition of correla- But this information is redundant. Outside a small neighbor
tion length is similar to theharacteristic length Ldefined by  hood one gets no additional information by knowing the orien
Shrestha and Pandey (Shrestha & Pandey, 4,996restha & tation a spin assumes. Notice that one can have an infinite mem
Pandey, 1997). ory length with a relatively small correlation length, asiséor

(i) Recurrence Length?. For an exactly periodic process, the _the even system (Example D) and ACA 232 (Example E). That

period gives the length over which a template pattern respeafs’ even though oaveragethe I_<now|<l-:-dgelone has qbout a spin
itself. We can generalize this for arbitrary, aperiodicqasses MY decay, there are still configurations in which distaséipa-
in the following way. Let us take theecurrence lengthP as rated spins carry information about each other that is moedt

the geometric mean of the distances between visits to each g the intervening spins._ :
weighted by the probability to visit that CS: If we know thee-machine for a process, then we can directly

calculate)\¢, P, andr,. How, then, do these relate to the interac-
P = H TP 6) tion lengthr,? Infi.nite correlation !engths can be achieved thh

very smallr|, as in the case of simple crystals. So correlation
lengths alone imply little about the range of interactidps: a
whereT, is the average distance between visits to a CSpaigl ~ periodic system in the ground state, the configuration’soger

SieS

the probability of visiting that CS. Then, puts a lower bound on the interaction length s&ia> log, P—
barring fine tuning of parameters, such as found at the mul-
P = H (209 Tiyp tiphase boundaries in the ANNNI model (Yeomans, 1988) or
SEeS those imposed by symmetry considerations (Canright & Wat-
_ H >—pilog, p son, 1996; Yi & Canright, 1996, Varn & Canright, 2001). The

most likely candidate for a useful relation betwegnand a

sies quantity generated from themachine isr,. Indeedr, sets a
— 2 2sesPilogp lower bound orry, if the system is in equilibrium. For poly-
— 2L @) types, the multitude of observed structures suggests that m
are not in equilibrium but rather trapped in nonequilibrium
where we have used the relatiGn= 1/p;. metastable states, and, consequently one does not know what

For periodic processe§,, = log, P and soP is simply a the relation between, andr, is. It is conceivable, especially
process’s period. For aperiodic procesBegives a measure of in the midst of a solid-state phase transition, that small
the average distance over which thmachine returns to a CS. could generate larga (Varn & Crutchfield, 2004). While an
Notice that this is defined as the average recurrence léngth e-machine is a complete description of the underlying stack-
the Hagg notation For cubic and rhombohedral structures, foring process, one must additionally require that the mdtesia
example, this is one-third of the physical repeat distanadé  in equilibrium in order to make inferences concernmgThis
absolute stacking sequence. reflects the different ways in which a Hamiltonian andean

(i) Memory Length, &t Recall from §3.7 of (Varn et al, machine describe a material.

200%) that thememory lengtlis an integer which specifies the 5. Conclusions

maximum number of previous spins that one must know in thye have demonstrated the feasibility and accuraeyroéichine
worsht case to make an optimal prediction of the next spin. Fogeciral reconstruction by applying it to five simulatedrelif-
anr-order Markov process this is tion spectra. In each case, we find thsISR either reproduces
(iv) Interaction Length, . Theinteraction lengthis an integer ~ the statistics of the stacking structure, as for Examplesié a
that gives the maximum range over which spin-spin intesasti C, or finds a close approximation to it. Elsewhere we apply
appear in the Hamiltonian. the same procedures to the analysis of experimental diffrac
spectra from single-crystal planar faulted ZnS, focusindhe
We calculated thé\;, P, andr, (in units of MLs) for Exam-  novel physical and material properties that can be diseaver
ples A-E as well as for three crystal structures. The resuitss  with this technique (Varet al,, 2005).
displayed in Table 6. We see that each captures a differpaths It is worthwhile to return one final time to hoeMSR dif-
of the system. The correlation lengthsets a scale over whicha fers from other spectral inference algorithms—particylanie
process is coherent. For crystals, as shown in Table 6aihighh ~ FM—and discuss howMSR gives an improved framework
is infinite. For more disordered systems, this value deeseas in which to discover and understand disorder and structure i
The generalized perio® is a measure of the scale over which planar faulted crystals. (fMSR makes no assumptions about
the pattern produced by the process repeats. The memotthlengeither the crystal or faulting structures that may be presen
ri is most closely related to what we might think as the maxi-Instead, using correlation information as inpakSR con-
mum range of “influence” of a spin. That is, it is the maximum structs a model of the stacking structure—in the form of an
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e-machine—that reproduces the observed correlations. There Even with these advantages, howew|SR as practiced
fore, the algorithm need not rely on the experience or ingenuhere is not without its shortcomings. Perhaps most reistict
ity of the researcher to make priori postulates about crystal is thateMSR is limited to Markov processes, and has only been
or fault structure. (ii) As the analysis of Example A shows, worked out for -order Markov processes. Since the maximum
eMSR is able to detect and describe stacking structures thatumber of terms in the spectral equations grows as the expone
contain multiple crystal and fault structures. Indeed,&gbe  tial of an exponential in the memory length, the task of wti
A represented a crystal that was predominately 2H, but a@do h out the higher order spectral equations quickly becomes pro
significant portions of 3C crystal structure. Additionaltwo  hibitively difficult. We believe that the = 4 case is almost cer-
faulting structures, growth and deformation faults werentit  tainly tractable, but the case of> 5 is probably not. Although
fied. (iii) SinceeMSR doesn’t need to assume any underlyingr = 3 e-machines certainly identify much of the structure in
crystal structure, it can detect and describe even higtdgrdi  higher order processes, we found two difficulties. (i) Apgpro
dered structures. Example C has significant disoralg~(0.67  imations made in the derivation of the spectral equatioms ca
bits/ML8) and doesn'’t contain any readily identifiable crystal result in sequence probabilities that differ from those hu t
structure. NeverthelesdyISR is capable of finding and describ- true process. As was shown in Example E this could interfere
ing the statistics of even such highly disordered stackingcs  with the identification of stacking histories that have eglent
tures. (iv) In contrast to many other techniquedSR uses all  futures. (ii) The state labeling scheme imposes a CS amchite
of the information available in diffraction spectrum. Bytén  ture on the reconstructedmachine that may be too restric-
grating the diffraction spectrum over a unit interval inipgo-  tive. The e-machines in Examples D and E both belonged to
cal space to find the CFeMSR makes no distinction between a class of processes, formally known as sofic processes, that
diffuse scattering and Bragg-like peaks. Each is treatedlg  have a special kind of infinite range memory. The CSs on the
Indeed, even though Example B shows both Bragg-like peaksmachines that describe these processes can not be specified
as well as considerable diffuse scattering between pesl&R by any finite history. So the scheme of labeling states by the
naturally captures the information contained in both bggnat-  lastr-spins seen, as is done here, is inadequate. Since the range
ing over the entire spectrum. (v) Itis advantageous nomoke  of interaction between MLs in some materials, e.g. SiC (@hen
a more complicated explanation than is necessary to uradherst et al, 1987; Chenget al, 1988; Shaw & Heine, 1990; Cheng
experimental data. By initially assuming a small memorgtén  etal, 1990), is calculated to lre= 3 and numerical simulations
and incrementing this as needed to improve agreement betweef martensitic transformations in ZnS suggest that theceffe
theory and experiment, as well as merging stacking “his&dri  tive memory length is infinite (Varn & Crutchfield, 2004),exi
with equivalent “futures”,eMSR builds the smallest possible nate methods of inferring such long range structure froncspe
model that reproduces the experimentally observed diftrac  tral data are needed. Reverse Monte Carlo techniques (Keen &
spectrum without over-fitting the data. Example C shows howMcGreevy, 1990) have been applied to a wide range of disor-
eMSR is able to find this minimal expression for the stackingdered materials, and may be useful here. This is a current sub
structure. (vi) Finally, the resulting expression of thacking  ject of research. Additionally, we are investigating aitive
structure, the processismachine, allows for the calculation of techniques to the direct solution of the spectral equations
parameters of physical interest. For each example, we é#e a  Finally, we stress that there is a difference between struc-
to find the configurational entropy associated with the Stk - tyre and mechanism in disordered stacking sequencese-The
process and the statistical complexity of the stackingeiire.  machine describes the structure, but has little to say aimut
In & companion paper (Varet al, 200%), we show how the  the material came to be stacked in this fashion. While it is pos
average stackiqg energy and hexagonality may be calculateghye to formally identify CSCs with “faulting structurea’ we
from thee-machine. have done here, this can be misleading. It is certainly ptessi
Additionally, we have identified three length parametess th that the cumulative effects of repeated faulting by a pafdic
are calculable from the-machine: the correlation length,; ~ Mechanism may lead to a structure that is different from a-cry
the recurrence lengti®; and the memory length,. Each mea-  tal simply permeated with that kind of fault. That is, for hig
sures a different length scale over which structural omgtion ~ fault densities, adjacent faults may be produced in the same
appears. New to this work i®, which is a generalization of Way, butthe close proximity of the faults may cause us tainte
the period of a periodic proces®. is a measure of the aver- Pret the structure differently—e.g., as a small segment of-co
age length between visits to each CS. As such it quantifies tHlex crystal.
average distance over which the pattern repeats itself ot In order to determine the mechanism of faulting in, say, an
periodic and aperiodic patterns have a characteristittestgle annealed crystal undergoing a solid-state phase tramsitio
after which they begin to repeat. More importantly howeiger, is desirable to begin with many (identical) crystals andsirr
r;, the distance over which a ML can carry nonredundant inforthe solid-state transformation at various stages. By r&coct-
mation about the orientation of another ML. Thisis mostelps ing the e-machine after different annealing times, the route to
related to the,. If the assumption of equilibrium can be made disorder can be made plain. The result is a picture of how
for polytypesy, places a lower bound am. But the assumption structure [as captured by intermediatenachines] changes
of equilibrium is critical, and not likely met by many polytgs.  during annealing. This change in structure should givectlire

8 For comparison, a completely random stacking of MLs for CPSdavbaveh,, = 1 bit/ML.
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insight into the structure-forming mechanisms. This stioul Roth, W. L. (1960)Faulting in ZnS Tech. Rep. 60-RL-2563M. Gen-
be compared with the numerical simulation of faulting in eral Electric Research, Schenectady, New York.

a crystal (Kabra & Pandey, 1988; Engel, 1990; Shrestha &ebastian, M. T. (1988). Mat. Sci. 23, 2014-2020.

Pandey, 1998 Shrestha & Pandey, 1997; Gosk, 2000; Gosk,Sebastian, M. T. & Krishna, P. (1984hilos. Mag. A 49, 809-821.
2001; Gosk, 2003; Varn & Crutchfield, 2004). We note thatSebastian, M. T. & Krishna, P. (1994Random, Non-Random and
in such simulations, the-machine can be directly calculated Periodic Faulting in CrystalsGordon and Breach.

from the sequence to high accuracy. Some experimental workhalizi, C. R. & Crutchfield, J. P. (2001). Stat. Phys 104, 817-881.
on solid-state phase transitions has been done (SebastianSaw, J. J. A. & Heine, V. (1990J. Phys. Cond. Mat2, 4351-4361.
Krishna, 1994), but we hope that this improved theoreticalShrestha, S. P. & Pandey, D. (1896Europhys. Lett.34(4), 269-274.

framework will stimulate additional effort in this direoti.
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Table 1
The frequencies of length-3 sequences obtained from ExaBigled thee-
machine reconstructed at= 3.

Sequence Example B ¢eMSR || Sequence Example B eMSR

111 0.318 0.324(| 011 0.091 0.070

110 0.091 0.081|| 010 0.000 0.026

101 0.000 0.027(| 001 0.091 0.076

100 0.091 0.076|| 000 0.318 0.322
Table 2

The frequencies of length-4 sequences obtained from ExaBgled thee-
machine reconstructed at= 3.

Sequence  Example B ¢eMSR || Sequence Example B eMSR
1111 0.227 0.300|| 0111 0.091 0.025
1110 0.091 0.024|| 0110 0.000 0.045
1101 0.000 0.029|| 0101 0.000 0.000
1100 0.091 0.052|| 0100 0.000 0.026
1011 0.000 0.027|| 0011 0.091 0.046
1010 0.000 0.000(| 0010 0.000 0.030
1001 0.000 0.049|| 0001 0.091 0.026
1000 0.091 0.027|| 0000 0.227 0.296
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Table 3
The frequencies of length-4 sequences obtained ##8R and SMM for the
even process, Example D. At most, they differh9.01.

Sequence eMSR  SMM || Sequence e¢MSR  SMM
1111 0.24 0.25| 0111 0.09 0.08
1110 0.09 0.08 || 0110 0.07 0.08
1101 0.09 0.08 || 0101 0.00 0.00
1100 0.08 0.08 || 0100 < 0.01 0.00
1011 0.08 0.08 || 0011 0.08 0.08
1010 0.00 0.00 || 0010 < 0.01 0.00
1001 0.04 0.04 || 0001 0.05 0.04
1000 0.04 0.04 || 0000 0.04 0.04
Table 4

The frequencies of length-4 sequences obtained from ExaBphCA 232)
and thee-machine reconstructed at= 3.

Sequence Example E eMSR || Sequence Example E eMSR
1111 0.009 0.005|| 0111 0.041 0.043
1110 0.041 0.043|| 0110 0.000 0.000
1101 0.037 0.029|| 0101 0.331 0.336
1100 0.004 0.014|| 0100 0.037 0.029
1011 0.037 0.043|| 0011 0.004 0.000
1010 0.331 0.322|| 0010 0.037 0.043
1001 0.000 0.000|| 0001 0.041 0.043
1000 0.041 0.043|| 0000 0.009 0.005
Table 5

Measures of intrinsic computation calculated from the psses of Examples
A, B, C, D and E and theirr(= 3) reconstructed-machines. For Examples
A, B, C and E the reconstructeemachines give good agreement. For Example
D, however, the reconstructeemachine requires more memory and still has a
entropy densityh,, significantly higher than that of the even process. The last

column givesA = C, — E —rh,, as a consistency check derived from Eq. (23)
of (Varn et al, 200®), which describes ordarMarkov processes. Recall that
the even process of Example D and ACA 232 of Example E are notte-fini
processes and so Eq. (23) of (Vatal,, 2005) does not hold. All one can say
is thatE < C,,, which is the case for both Examples D and E.
System Range h, [bits/ML]  C, [bits] E [bits] A
Example A 3 0.44 2.27 0.95 0.00
e-machine 3 0.44 2.27 0.95 0.00
Example B 4 0.51 2.86 0.82 0.00
e-machine 3 0.54 244 0.83 -0.01
Example C 1 0.67 0.92 0.25 0.00
e-machine 1 0.67 0.92 0.25 0.00
Example D oo 0.67 0.92 0.91
e-machine 3 0.79 2.58 0.21 0.00
Example E o 0.42 1.86 1.01
e-machine 3 0.42 2.26 0.99 0.01

Table 6

The three characteristic lengths that one can calculate kiowledge of the
e-machine: the correlation lengtt, the recurrence lengtR, and the memory
lengthr;. For comparison, we also give these quantities for seveyataitine
structures.

System Ac P r
Example Ar =3 ~74 4.8 3
Example Br = 4 ~ 78 7.3 4
Example C, Golden Mean ~ 45 1.9 1
Example D, Even Process ~ 17 1.9 o0
Example E, ACA 232f = 0.10 ~ 39 3.6 00
3C 00 1 0
2H 00 2 1
6H 00 6 3

110.92

Figure 1

Ther = 3 theoretical and experimentaimachine for the Example A process.
The nodes represent CSs and the directed arcs are trag$ititween them. The
edge labels|p indicate that a transition occurs between the two CSs on sym-
bol swith probability p. The asymptotic probabilities for each CS are given in
parentheses. The large CSC probabilities for $1¢ CSC Pcs([S7]) = 0.92)

and the §,Ss5] CSC (Pesc[S285]) = 0.81) suggest that one think of these
cycles as crystal structure and everything else as faulting

12 T T T T T T T T T T
0 —— Example A
= - N e-Machine
[=}
=
s & 7
—
&
g 6 .
R=
iy
.5 4 — —
=]
g
g 2 x /A
=

0 1 1 | ! | !

0 0.1 0.2 03 04 05 06 0.7 0.8 09 1 1.1
l
Figure 2

A comparison between the diffraction spedi{lg generated by Example A and
by ther = 3 spectrally reconstructedmachine. The differences between the
diffraction spectra for Example A and the= 3 reconstructed-machine are
too small to be seen. We calculd®= 2%, but this is largely due to numerical
error. (See text.) The peak late 1/3 corresponds to the 3C structure and the
two peaks at ~ 1/2 and = 1 to the 2H structure.
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1 T T T T T T T T T

—— Example A
e-Machine -

0.8 -

0.6

Qs(n)

0.4

0.2

Figure 3

A comparison of the CFQs(n) between the Example A process andthe 3

reconstructed-machine. As with the diffraction spectra, the differencestao

small to be seen on the graph. As an aid to the eye, here anden giépphs
showing CFs, we connect the the values of adjacent CFs witigbt lines. The
CFs, of course, are defined only for integer values.of

08010

Figure 4

The experimentat-machine for Example B. Since it has a memory 0¥ 4,
we label the states with the last four spins observed:lRgz, means that 1100
were the last four spins. The CSU84s] and [Ro] give rise to 3C structure and
the CSC R1R3R7R14R12Rs] generates 6H structure.

110.92
26010

Figure 5
The reconstructed (theoreticabmachine at = 3 for Example B.

1 T T T T T T T T T

—— Example B
o8&y === e-Machine -

0.6

Qs(n)

0.4

0.2

Figure 6

A comparison of the CFQs(n) generated by the= 3 reconstructed-machine

(dashed line) and generated by Example B (solid line). Theeagent is excel-
lent.
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Figure 7

A comparison of the diffraction specttd) betweenr = 3 reconstructed-

machine and the process of Example B. The agreement is sugbyigjood;

we calculate a profil&R-factor of R = 12%. The small peaks &t~ 1/6 and
| = 5/6 correspond to the 6H structure. The= 3 e-machine has difficulty
in reproducing these because the 6H and the 3C structuresbatie theS;

andSp CSs and so require aamachine reconstructed at= 4 to properly
disambiguate them.

01172

11172

Figure 8

The recurrent portion of themachine for the golden mean process, Example
C. The process has a memory lengthr 6f 1, and so we label each CS by the
last spin seen.
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1 T T T T T T T T T 110.50

—— Example C

o8+ T e-Machine ]
111.00

010.50

Figure 12

The recurrent portion of themachine for the even process, Example D. Since
the CSs cannot be specified by a finite history of previousspia have labeled
themSevenandS,yqg. We find that this-machine has a statistical complexity of
C,, = 0.92 bits.

Figure 9

A comparison of the CFQs(n) generated by the= 1 reconstructed-machine
and the golden mean process of Example C. The CFs decay quickheit
asymptotic value of 1/3.
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Ther = 3 reconstructed-machine for the even process of Example D. Since
the even process forbids the sequen¢@s®+10,k = 0,1,2,...} and all
sequences containing them, it is satisfying to see that 0X6risdden by

Figure 10 . . . )
A comparison of the diffraction spectra for Example C and tleomnstructed ::he Le;osnsstk;::gted-machme, as evidenced by the missigCS. We find that
r = 1 e-machine. The agreement is excellent. One finds a pr&fifactor of we '
2% between the experimental spectrum, Example C, and the thabspec-
trum calculated from the reconstructednachine.
1 T T T T T T T T T
—— Example D
o8&y === e-Machine -
—~ 06 -
E
S o4l
0.2 -
0
0

Figure 11

Ther = 2 reconstructed non-minimalmachine for the golden mean process, Figure 14

Example C. Applying the equivalence relation, Eq. (11) ofr(Met al, 200%), A comparison of the CF@s(n) generated by the= 3 reconstructee-machine
we find thatS; andS3 have the same futures, and thus should be collapsed intaand the even process of Example D. The CFs decay quickly toakginptotic
a single CS. Doing so gives tliemachine in Fig. 8. value of 1/3.
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110.83

Figure 15

Thee-machine inferred from the exact sequence frequencies. diEatstates
are labeled with the (possibly several) histories that ead to them. We find

thatC,, = 1.92 bits.
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Figure 16
A comparison between the diffraction spedtia generated by the= 3 recon-

structede-machine and by the even process of Example D. The agreement is
good (R = 8%) except in the region.® < | < 0.9. Notably, the diffraction

spectra for the even process has an isolated zdre-i/6.

110.904 110.100

A
(0.410)

011.000
000°TIT

Figure 17
The recurrent portion of the-machine for Example E, ACA 232, witli =

12 T T T T T T T T T T

Example E
e-Machine

Intensity in arb. units

Figure 18

A comparison between the diffraction spediila generated by the= 3 recon-
structede-machine and by Example E, ACA 232, with= 0.10. We calculate

a profileR-factor of R = 8% between the experimental and theoretical diffrac-
tion spectra.

Figure 19

0.10. Thise-machine is sofic, as it prohibits spin domains with an even num-Ther = 3 reconstructed-machine for Example E, ACA 232, with = 0.10.

ber of spins. This-machine should be compared to the 10 stateachine
that describes ACA 232 for an arbitrary amount of faulting.f of (Varn &
Crutchfield, 2004). For small amounts of faulting, we find tthet €Sd, J, G

andH of this lattere-machine collapse in to the C8s F, C andE respectively.

The large asymptotic state probabilities 8 andSs, as well as their large
casual state cycle probabilitges([S2Ss]) = 0.81, indicate that this is crystal
is predominantly 2H.$>S54S5051] and [Ss5S3S57S6] are characteristic of defor-
mation faulting of the 2H crystal structure.
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1 T T T T T T T T T

Example E
skl e-Machine —

Figure 20
A comparison of the CFs(n) generated by the= 3 reconstructed-machine
and Example E, ACA 232.

011.00
0011

Figure 21

The reduced theoreticatmachine for Example E. Thismachine should be
compared to the experimentamachine given in Fig. 17. The CS architecture
is nearly identical as are the CS probabilities and tramsitbetween CSs.



