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abstract: Propagule pressure is intuitively a key factor in biological
invasions: increased availability of propagules increases the chances
of establishment, persistence, naturalization, and invasion. The role
of propagule pressure relative to disturbance and various environ-
mental factors is, however, difficult to quantify. We explored the
relative importance of factors driving invasions using detailed data
on the distribution and percentage cover of alien tree species on
South Africa’s Agulhas Plain (2,160 km2). Classification trees based
on geology, climate, land use, and topography adequately explained
distribution but not abundance (canopy cover) of three widespread
invasive species (Acacia cyclops, Acacia saligna, and Pinus pinaster).
A semimechanistic model was then developed to quantify the roles
of propagule pressure and environmental heterogeneity in structuring
invasion patterns. The intensity of propagule pressure (approximated
by the distance from putative invasion foci) was a much better pre-
dictor of canopy cover than any environmental factor that was con-
sidered. The influence of environmental factors was then assessed
on the residuals of the first model to determine how propagule
pressure interacts with environmental factors. The mediating effect
of environmental factors was species specific. Models combining
propagule pressure and environmental factors successfully predicted
more than 70% of the variation in canopy cover for each species.
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Many interacting factors determine the range and abun-
dance of an organism at a given locality. Any attempt to
model range or abundance makes various assumptions
depending on the aims of the study and the nature of
available data (e.g., spatial and temporal scale, precision
and accuracy of data). Over large spatial scales (regions
to continents), static approaches have been quite successful
in modeling species distribution (Franklin 1995; Guisan
and Zimmermann 2000 and references therein). Such ap-
proaches rely on observed correlations between the en-
vironment and distribution; they assume that the organism
is in equilibrium with the environment (Higgins and Rich-
ardson 1996). Invasive alien species, especially when the
invasion is still at an early stage, are generally not at equi-
librium with the environment. At this stage, invasions are
frequently more constrained by propagule availability than
by habitat requirements, and correlative approaches
should therefore be used with caution. Over small spatial
scales (stands to landscapes), mechanistic or process-based
models such as individual-based cellular automata models
can integrate biological attributes, space, and environ-
mental stochasticity to model distribution (Higgins and
Richardson 1996). Such models have clear theoretical ad-
vantages but are difficult to parameterize (Higgins and
Richardson 1996) and validate (Higgins et al. 2001). In a
few cases, individual-based models have been successfully
applied for modeling spread of invasive alien plants (Hig-
gins et al. 2000).

Biological invasions provide useful natural experiments
that capture the combined effects of many interacting fac-
tors (Richardson et al. 2004). Considerable understanding
of the ecology of a given invasion episode can be gained
by correlating observed spatial patterns (presence or ab-
sence, abundance, age distribution, etc.) with environ-
mental data (e.g., Higgins et al. 1999; Rouget et al. 2001).
A fundamental understanding of the processes driving in-
vasions demands a more mechanistic approach, adding
biological processes to the modeling procedure. Many re-
cent studies have addressed key issues in invasion ecology
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using formal experiments, for example, to elucidate the
determinants of invasibility. These studies may provide
robust, nontrivial generalizations in the future, but cur-
rently available evidence from such experiments offers lit-
tle practical assistance to managers (reviewed in Rejmánek
et al. 2004). Also, such studies can only practically address
the invasion ecology of short-lived species. For invasions
of trees, shrubs, and other long-lived plants, distribution
and population structure at any time reflects the cumu-
lative effects of numerous factors, some of them rare
events. More attention needs to be given to finding ways
of extracting more information from existing spatial pat-
terns and whatever can be derived from available data on
the processes that produced these patterns.

The invasion process can be conceptualized as a series
of barriers that an invading organism must overcome to
become fully integrated in an ecosystem (Richardson et
al. 2000b). For many invasions, the trajectory of popu-
lation development (population growth or decline; spatial
spread or contraction) can be reconstructed to describe
the eventual outcome of many interacting processes that
mediate the fate of immigrants. The strength of different
barriers depends, to varying degrees in different systems,
on the number of propagules: the greater the number of
propagules, the greater the chance of a barrier being over-
come and therefore invasion. The role of propagule pres-
sure or mass effect is clearly observable in many invasions
(Newsome and Noble 1986; Williamson 1996; Green 1997;
Hutchinson and Vankat 1997; Lonsdale 1999). D’Antonio
et al. (2001) provided a useful conceptualization of the
role of propagule pressure in mediating plant invasions.
They suggest that high propagule pressure can overcome
biotic resistance (to some extent) but that abiotic controls
on invasibility are less open to amelioration by high num-
bers of propagules. Few studies have attempted to quantify
the role of propagule pressure in plant invasions (Wil-
liamson 1996; but see Rejmánek et al. 2004). Clearly, prop-
agule pressure must be built into spatially explicit invasion
models. As Williamson (1996, p. 55) wrote, “Looking for
real differences in invasibility requires looking at the re-
siduals from the relationship between invasion success and
propagule pressure.” A major challenge is to parameterize
models in this regard, particularly for long-lived species.

This article explores the relative importance of factors
driving plant invasions using extremely detailed data on
the distribution and age structure of alien trees and shrubs
on the Agulhas Plain in South Africa’s Cape Floristic Re-
gion. Our aim was to explore the role of propagule pressure
over the full invasion history in landscapes. The temporal
scale under consideration is thus the interval between es-
tablishment of what can now be recognized as invasion
foci and the present. We are thus primarily interested in
exploring the roles of the oldest and now densest stands

in driving subsequent invasions (while fully appreciating
that newer foci and satellite populations themselves act as
secondary foci). We develop spatially explicit models of
the distribution and spread of invasive alien plants that
are tractable, ecologically sound, and accurate over rela-
tively large areas (11,000 km2) and at fine-scale resolution
(≤250 m). To be useful in management, such models must
accurately estimate species canopy cover (abundance). For
invasive alien plant species, percentage cover is largely in-
fluenced by propagule pressure and environmental suit-
ability (Rejmánek et al. 2004). We thus need a simple
model that retains key biological processes (e.g., related to
propagule dispersal) and accounts for environmental het-
erogeneity. We also aimed to tease out the interactions
between invasion and environment using the current pat-
tern of invasion in the Agulhas Plain as a natural exper-
iment. The Agulhas Plain is a superb locality to address
these issues. Many woody alien species have been intro-
duced and subsequently spread over the last century. Be-
cause of the short natural vegetation, invasive woody
plants could be mapped very accurately. Although the
spread of these species is driven by fire, the original in-
vaded stands remain in the landscape (Richardson et al.
1992). Furthermore, good environmental data were avail-
able for this area.

The specific objectives of this article were to test the
ability of correlative approaches to model species occur-
rence and cover at fine spatial scales, to develop a new
approach for modeling cover of long-lived invasive plants
in a heterogeneous environment, and to explore the in-
teractions between the spread of invasive species and the
environment.

Methods

Study Area

The Agulhas Plain lies at the southern tip of the Cape
Floristic Region (South Africa) and covers approximately
2,160 km2. It is one of the centers of plant biodiversity
within the Cape Floristic Province hot spot of plant di-
versity and endemism (Myers et al. 2000). The predom-
inant natural vegetation types are two types of fire-prone
shrublands: fynbos, on sandy, infertile soils, and reno-
sterveld, on more fertile soils (Cowling et al. 1988). About
40% of the area has been transformed by cultivation (Lom-
bard et al. 1997). Almost the entire Agulhas Plain is in-
vaded by woody alien plants to some extent. Alien species
occur in 72% of the total area and in 96% of the remaining
vegetation (cultivated and urbanized areas excluded). The
three most widespread invasive species are (total area in-
dicated in parentheses) Acacia cyclops (113,817 ha), Acacia
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Table 1: Environmental variables used for modeling species distribution and cover

Factors Mean Acacia cyclops Acacia saligna Pinus pinaster

Altitude (m) 105 3 2 1
Land usea 7 1 1
Proximity to cultivated fields (m) 516 1 2 2
Mean annual precipitation (mm) 430 1 1
Annual minimum temperature (�C) 11.1 1 2
Growth days 135.5 1 1
Geologya 13 1 1
Vegetation groupsa 12 2 2 2

Note: The number of times each factor was used for modeling species distribution using classification trees is

indicated.
a The number of categories is indicated for each species.

saligna (89,162 ha), and Pinus pinaster (78,654 ha). These
occur mostly at low percentage cover.

Data Collection

Very detailed field mapping was conducted to map native
vegetation as well as the distribution, percentage canopy
cover, and height (age class) structure of all invasive alien
trees and shrubs for the entire Agulhas Plain. All areas,
whether invaded or not, were surveyed over 6 mo in 1998.
Within each stand of alien trees or shrubs (relatively uni-
form clumps larger than 0.5 ha), the percentage cover and
average height (to the nearest meter) were recorded sep-
arately for each species. Five percentage cover classes were
recognized on the basis of canopy cover: very scattered
(1%–5%), scattered (5%–25%), medium (25%–50%),
dense (50%–75%), and closed (175%). Up to 13 alien
species were recorded in a single stand. This survey pro-
duced probably the most detailed data set on the distri-
bution of invasive plants at the regional scale for any part
of South Africa (and probably the world).

The following environmental factors were available on
a Geographic Information System (GIS): geology, vege-
tation types, land use, topography, and a range of climate
variables (table 1). Vegetation types and land use (scale
1 : 10,000) were mapped during the field survey. Thirty-
six vegetation types, regrouped into 12 vegetation groups,
were identified. These vegetation types were also used to
derive 13 geological types based on the predominant ge-
ology type known to be associated with each vegetation
type (R. M. Cowling, unpublished data). The scale at which
the environmental variables were available determined the
modeling resolution and, to some extent, our ability to
model species distribution. Climatic layers were only avail-
able at a coarse scale, but because of the relatively low
topographical heterogeneity, this was not considered a po-
tential problem.

Building Predictive Models of the Distribution and
Percentage Cover of Alien Invasive Species

Two models were used to quantify the role of propagule
pressure and environment in explaining the distribution
and canopy cover for three of the most widespread invasive
species (A. saligna, A. cyclops, and P. pinaster). First, we
used a correlative model (classification and regression
trees) for predicting presence/absence and percentage
cover. The ability of such a model to predict invasive spe-
cies distribution has been demonstrated at larger spatial
scales in South Africa (Rouget et al. 2002, 2003). Second,
we used a semimechanistic model for predicting species
cover. This new approach simulates, albeit rather simplis-
tically, propagule pressure and incorporates species-
environment interactions. We investigated the model’s
ability to accurately predict canopy cover. This also pro-
vided insights on how each species perceived the natural
environment.

Correlative Model

Sampling Design

The study area was partitioned into cells of 250 m # 250
m (i.e., minimum mapping unit of 6.25 ha) using the GIS
program ArcInfo. A training data set was created by ran-
domly selecting 10,000 cells. For each observation (i.e., cell),
the values of the environmental variables were known, as
were the response variables (distribution and percentage
cover category of each invasive species).

Statistical Analysis

All the observations of the training data set were entered
into classification and regression tree analysis using S-Plus
(Venables and Ripley 1999). These techniques have proved
to be successful in similar studies that attempted to predict
the distribution of plant species (Iverson and Prasad 1998;
De’ath and Fabricius 2000). Recursive partitioning tech-
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Table 2: Definition and characteristics of invasion foci (i.e., sites where invasion
presumably started)

Type Height (m) % cover Number of sites Area invaded (ha)

Acacia cyclops:
1 ≥8 175 12 200 (.17%)
2 6–8 175 54 2,843 (2.5%)

Acacia saligna:
1 ≥8 150 54 1,227 (1.4%)

Pinus pinaster :
1 ≥10 175 76 473 (.6%)
2 ≥10 50–75 46 923 (1.2%)

Note: See text for description of type 1 and type 2 foci. Data shown in the table relate only to

the area occupied by these foci. For each species, the percentage of the total area invaded that is

occupied by the foci is indicated in parentheses.

Table 3: Predictive accuracy of modeling invasive species distribution and cover
using a correlative model (based on environmental correlates) and a homogenous
spread model (based on propagule pressure)

Accuracy Acacia cyclops Acacia saligna Pinus pinaster

Correlative model:
Presence/absence 77.2 71.9 62.1
Kappaa .5 .4 .2
Cover only 35.1 41.0 29.2
Total 12.2 12.2 60.8
Kappab 0 0 .1

Homogenous spread model:
Presence/absence 41.3 35.8 62.9
Cover only 32.4 33.6 32.1
Total 24.3 23.3 55.8
Kappab .1 .1 .2

Note: Percentage of correctly classified cells is indicated for each category. Cover only refers

to percentage cover accuracy for the five categories of percentage cover. Total refers to all correctly

classified cells (absence and five canopy cover categories). Kappa values range from 0 (random

process) to 1 (deterministic process). For each species, the gain in predictive accuracy between

the correlative and the homogenous spread was significantly different (McNemar’s test, P !

)..001
a Refers to presence/absence model only.
b Refers to percentage cover model.

niques make no assumptions of linearity and accommo-
date both categorical and continuous data. They can also
reveal complex interactions among variables (for a detailed
discussion of the properties of classification and regression
trees, see Breinam et al. 1984).

The factors identified in the regression tree analysis were
used to derive potential distribution maps. The signifi-
cance of each factor was evaluated by cross-validation
(Breinam et al. 1984; De’ath and Fabricius 2000). Envi-
ronmental conditions identified as suitable for the estab-
lishment of each species were selected in ArcView to pro-
duce habitat suitability maps of species distribution. The
predictive accuracy of the model was tested using Kappa
statistics on the full data set ( ).n p 33,000

Such correlative models assume that species have had

sufficient time to sample all potentially suitable habitats
and have reached pseudoequilibrium. They therefore ig-
nore the fact that the availability of propagules almost
certainly limits invasion. For invasive aliens, it is unlikely
that all habitats have been adequately sampled, so we de-
veloped an additional approach in which the role of prop-
agule pressure is crudely modeled.

Semimechanistic Model

Conceptual Framework

This new approach models species canopy cover at the land-
scape scale ( -m cell resolution). Canopy cover for25 # 25
each species was modeled as a function of propagule pres-
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Figure 1: Observed and modeled distribution maps for the three most widespread invasive species on the Agulhas Plain. Models were based on
(a) classification trees (based on environmental correlates) and (b) semimechanistic models (based on propagule pressure and environment).

sure (distance to the closest invasion focus) and environ-
mental suitability (fig. A1 in the online edition of the Amer-
ican Naturalist). We aimed to tease out the effect of the two
factors by using a two-stage model. In the first stage, canopy
cover is modeled as a homogenous spread from the invasion
focus. This stage considers the effect of propagule pressure
(approximated by the distance from the invasion focus) as
the only driver of invasion. We call this the homogenous
spread model; all invader-environment interactions are ig-
nored. In the next stage, the influence of environmental
factors is assessed on the residuals of the first model to
determine how propagule pressure interacts with environ-
mental factors. The homogenous spread model is thus ad-
justed by introducing the mediating (facilitating or limiting)
effects of the environment (fig. A1). We call the complete
model semimechanistic because it integrates biological pro-
cesses (propagule pressure) but captures invader-environ-

ment interactions in a static manner using classification
trees.

Identification of Invasion Foci

For each species, probable source populations (invasion
foci) were identified on the basis of stand density and
height (as a surrogate for stand age). Centroids of tall and
dense clumps were assumed to be the foci of invasive
populations. Population growth for each species is driven
primarily by fires that increase local density and stimulate
stratified diffusion (Richardson et al. 1992). Invasion foci
thus remain evident in the landscape. We distinguished
two types of sites of initial introduction on the basis of
height and percentage cover (table 2). Type 1 refers to the
tallest and densest category; type 2 refers to the second
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Figure 2: Local regression models for the spread of Acacia cyclops, Acacia saligna, and Pinus pinaster on the Agulhas Plain. A, Percentage cover of
each species was regressed against the distance to invasion foci (m). B, Predicted cover of each species (based on regression trees; see “Methods”)
was also regressed against the distance to invasion foci (m).

tallest or densest category. For each species, invasion foci
represent !3% of the total invaded area (table 2).

Stage 1: Fitting the Homogenous Spread Model

Locally weighted regression smoothing was applied to
model the percentage cover of invasive species on the basis
of the distance to the nearest site of initial introduction
(fig. A1, stage 1). Local regression is a nonparametric re-
gression technique that relies on the data to specify the
form of the model. A model is fitted to the data points
locally so that at any point the model depends only on
the observations at that point and some specified neigh-
boring points (Chambers and Hastie 1991). This approach
was deemed appropriate for this study because of the na-
ture (semiquantitative cover) and the nonlinear relation-
ship of the data. Local regression has the advantage of

modeling interaction between variables, which generalized
additive models cannot do (Chambers and Hastie 1991).

To fit the local regression model of each species, we used
a stratified random sample of 10,000 random points (1,000
points for each cover category and 5,000 points where the
species does not occur). For each of these 10,000 points,
the Euclidean distance from the nearest invasion foci was
derived on the basis of a -m grid. We modeled25 # 25
cover as a conditional function of two distance variables
(table 2) to consider the interactive effect of neighboring
sites on propagule pressure.

The fitted curve was used as a measure of the intensity
of propagule pressure. This first stage generated a ho-
mogeneous spread model for the entire area, where en-
vironmental factors are assumed to have no effect (i.e.,
invasion is driven exclusively by propagule pressure).
However, this model did not capture the full effect of
propagule pressure for two reasons: not all propagule
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Figure 3: Role of propagule pressure in determining percentage canopy cover of Acacia cyclops. The dotted line shows the predicted percentage
cover based on environmental factors, and the solid line shows the predicted percentage cover based on distance to invasion foci (m; used as a
surrogate for propagule pressure). A, Substantial effect of propagule pressure where canopy cover is higher than would be predicted by environmental
factors. B, Smaller effect of propagule pressure far from invasion foci.

sources were considered, and the model was not fitted
using all available propagules at a site but only those that
were successful in establishment.

Testing Whether Model Outputs Equate
to Propagule Pressure

We tested the ability of our approach to capture the mass
effect due to concentrated sources of propagules at the
landscape scale. We assumed that the intensity of propa-
gule pressure was related to the distance from invasion
foci. But, could this not simply be a spurious measure of
habitat suitability? We regressed the predicted canopy
cover obtained from the correlative approach against dis-
tance to invasion foci using local regression as above. Since
these predictions were based on environmental factors,
they should be independent of the effects of propagule
pressure. We expect the positive effect of propagule pres-
sure to facilitate invasion spread near invasion foci (i.e.,
canopy cover higher than would be predicted by environ-
mental factors). Similarly, we expect the declining influ-
ence of propagule pressure to limit invasion spread far

from invasion foci (i.e., canopy cover lower than would
be predicted by environmental factors).

Stage 2: Modeling Interactions between Propagule
Pressure and Environment

To determine how environmental factors interacted with
propagule pressure and to determine the percentage cover
of invading plants, we analyzed the relationship between
residuals of the homogenous spread model and environ-
mental factors (fig. A1, stage 2). We aimed to explore
situations where a homogeneous spread model fails to
accurately predict species cover. The analysis of residuals
therefore focused on the misclassified cells (i.e., where the
homogeneous spread model is inadequate) with the as-
sumption that environmental heterogeneity would affect
spread (positively or negatively). Regression trees were
used to identify environmental conditions where residuals
are positive (species canopy cover is lower than expected
by homogeneous spread model) or negative (canopy cover
is higher than expected by homogeneous spread model).
The predicted residual values were used to adjust the orig-
inal spread model for the misclassified cells (see fig. A1).
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Table 4: Variation in spread rate explained by environmental factors

Factor Positive effect Negative effect

Acacia cyclops:
Geology Colluvium, wetlands Bokkeveld shale, quaternary sand, Table

Mountain, granite, sandstone
Land use Natural areas Cultivated areas
Altitude (m) !72 172

Acacia saligna:
Altitude (m) !68 168
Geology Alluvium, Bokkeveld shale,

Quaternary sand, wetland
Bokkeveld shale with ferricrete, Table

Mountain, granite, sandstone
Land use Natural areas Cultivated areas

Pinus pinaster :
Growth days (yr�1) 1119 !119
Distance to roads (m) !1,250 11,250
Mean annual precipitation (mm) 1392 and !483 !392 or 1483

Note: For each species, residuals of the spread model (based on propagule pressure) were regressed against environmental factors (one

factor at a time) using regression trees. The three most significant factors are presented. Positive effect means that the spread rate was

higher than expected based on the homogenous spread model. Negative effect means that the spread rate was lower than expected.

The analysis was performed in a stepwise manner to
generate predicted distribution and percentage cover for
each species. The first adjustment to the original homog-
enous spread model generated new residuals, which were
again analyzed with regression trees in search of environ-
mental correlation. A maximum of three adjustments were
performed for each species. Model performance was eval-
uated on the full data set ( ) using the Kappan p 33,000
index. This index compares the agreement against that
which might be expected by chance (Fielding and Bell
1997; Pontius 2000). Kappa can be thought of as the
chance-corrected proportional agreement, and possible
values range from �1 (perfect agreement) via 0 (no agree-
ment above that expected by chance) to �1 (complete
disagreement). For each species, we used McNemar’s test
to establish whether the accuracy gain between two models
was significant (Fielding and Bell 1997).

Results

Correlative Models to Predict Distribution and
Percentage Cover of Invasive Alien Species

Classification trees generated models of species distribu-
tion (presence or absence) with intermediate predictive
power. Total accuracy was around 70% (table 3). Model
accuracy and species range appear to be positively cor-
related. The most widespread species (Acacia cyclops) was
the best-modeled species (Kappa coefficient of 0.5).

Of all environmental factors considered, vegetation
groups were the best predictors of the distribution of in-
vasive species for the three species considered. Next-best
factors for explaining species distribution were climate (for
Pinus pinaster), land use (Acacia saligna), and altitude (A.

cyclops). Potential distribution maps (based on the envi-
ronmental profile of each species) were compared with the
observed distribution for the three species in figure 1.
According to these environmental profiles, 29% of the
Agulhas Plain could still be invaded by P. pinaster (i.e.,
the area is suitable), 20% by A. saligna, and 14% by A.
cyclops. However, between 12% and 31% of the area cur-
rently invaded by each species occurred outside the po-
tential distribution predicted by the model.

The correlative approach failed to adequately model
canopy cover (table 3). Cover was very poorly related to
environmental heterogeneity. Model accuracy was in all
cases lower than 20% except for P. pinaster. Regression
trees could not identify specific environmental conditions
for each cover class. Each model failed to accurately predict
the distribution of dense stands (175% cover). Regression
trees were generally better at predicting low percentage
cover values (percentage cover between 1% and 25%).
Sites where invasive species are absent could not be iden-
tified using regression trees for both Acacia species, which
resulted in Kappa statistics of 0 (table 3).

Semimechanistic Models of Invasive Alien Plant Spread

Testing Whether Model Outputs Equate to Propagule Pres-
sure. Preliminary analysis using regression trees indicated
that distance to invasion foci was the best predictor of
percentage cover and outperformed environmental factors.
The modeled percentage cover for each species as a func-
tion of the distance to invasion foci is shown in figure 2A.
Predicted percentage cover based on environmental factors
(see correlative approach above) is shown in figure 2B.
Although the latter decreased as distance to invasion foci
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Table 5: Classification accuracy of the semimechanistic
model for all three invasive species

Accuracy Loess

Factor

First Second Third

Acacia cyclops:
Total 24.3 63.9 75.8 81.1
Presence/absence 41.3 73.4 80.9 88.0
Percentage cover 32.4 49.4 57.5 70.6
Kappa .1 .4 .6 .7

Acacia saligna:
Total 23.4 59.5 80.4 85.0
Presence/absence 35.8 66.3 83.8 90.0
Percentage cover 33.7 46.9 60.3 70.8
Kappa .1 .3 .6 .7

Pinus pinaster:
Total 55.8 60.5 81.6 88.4
Presence/absence 62.9 67.8 84.5 90.5
Percentage cover 32.1 42.6 61.9 79.0
Kappa .2 .3 .5 .7

Note: Species distribution and percentage cover is first modeled

based on the homogenous spread model (local regression model:

loess) and then adjusted by incorporating interactions between

spread rate and environment (first to third factors). This is the

validation on the full data set ( ) of the spread modeln p 33,000

derived from the training data set ( ). Kappa valuesn p 10,000

range from 0 (random process) to 1 (deterministic process). For

each species, the gain in predictive accuracy between two successive

models was significantly different (McNemar’s test, ).P ! .001

increased, environmental factors failed to model high per-
centage cover near invasion foci (fig. 2B). The role of
propagule pressure is highlighted in figure 3. Near invasion
foci, percentage cover was higher than would be predicted
from environmental factors (fig. 3A). After 2,200 m, per-
centage cover was lower than would be predicted from
environmental factors (fig. 3B). This illustrates the me-
diating effect of propagule pressure (declining with dis-
tance from invasion foci). This also validates our as-
sumption that the effect of propagule pressure is effectively
modeled as the distance from invasion foci.

Modeling Invasion as Homogenous Spread. According to
our homogenous spread model, the two Acacia species
have the potential to spread much further than P. pinaster
(fig. 2A). A predicted cover of 50% was reached at 300 m
from the sites of initial introduction for P. pinaster, 450
m for A. saligna, and 600 m for A. cyclops. This model
predicted a cover of 5% for A. cyclops at 5,000 m from
any sites of initial introduction (fig. 2A).

For A. cyclops and P. pinaster, the model could be im-
proved by using a conditional function (table 2). The ho-
mogenous spread model, using distance to invasion foci
as the unique predictor, produced a reasonable fit of the
species distribution and some indications of the canopy

cover (table 3). The best fit was obtained for P. pinaster,
for which the accuracy of the spread model was 63% for
predicting distribution and 32% for canopy cover. Sur-
prisingly, the level of accuracy of the spread model for
predicting distribution of P. pinaster was similar to the
classification tree based on environmental factors (see table
3). For both Acacia species, the total accuracy of the ho-
mogenous spread model was higher than that of the cor-
relative model. Spread models for Acacia species produced
low fit of species cover (table 3) and generally failed to
accurately model species absence (both species are pre-
dicted to occur at low density [between 1% and 5% cover
throughout most of the Agulhas Plain]).

Modeling Invasion as a Heterogeneous Process (Incorporating
Environmental Factors). The homogenous spread models
partly explained the spatial patterns of distribution and
percentage cover, and a substantial amount of the residual
variance remained unexplained. The analysis of the resid-
ual variance in relation to environmental variables revealed
strong interactions between the environment and the
spread of the three invasive species. Table 4 shows the
three most significant factors explaining variation in re-
siduals of spread model. Each species reacted differently
to environmental heterogeneity. For the two Acacia species,
the residual variance of species cover was correlated with
altitude, geology, and land use. For example, percentage
cover was higher than predicted (from the homogenous
spread model) at low altitudes (!75 m for A. cyclops and
!68 m for A. saligna) and in natural vegetation.

Stepwise analysis on the residuals of the homogenous
spread model considerably improved the prediction of spe-
cies cover. Table 5 shows the increase in predictive power
for modeling species percentage cover. Predictive accuracy
obtained from the homogenous spread model by adjusting
one factor was in all cases higher than those obtained from
the correlative approach (see table 3). Semimechanistic
models with three factors resulted in high predictive ac-
curacy (Kappa statistics 10.7).

Each of these factors can be viewed as an environmental
barrier or facilitator (fig. 4). The factors identified are
species specific, and no hierarchy was found among en-
vironmental factors for the three species studied. Geology,
altitude, and the annual number of growth days were
found to have the strongest mediating effect on the spread
of A. cyclops, A. saligna, and P. pinaster, respectively. Po-
tential distribution maps of the three species are shown
in figure 1B. These are based on the homogenous spread
models adjusted for the environmental factors identified
on the basis of classification trees on the residual variance.
The percentage cover of each invasive species was predicted
with greater accuracy than was achieved in simple cor-
relative models (table 5).
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Figure 4: Semimechanistic model for Acacia cyclops, Acacia saligna, and Pinus pinaster. Homogenous spread models were first derived to predict
species abundance (percentage cover) based on propagule pressure only (model 1); environmental effects were then considered on the residual
variance to model spread-environment interactions (model 2). Each environment factor acts as a successive barrier or facilitator for spread (in
decreasing order of importance from left to right). annual percipitation; minimum temperature.MAP p mean MINTEMP p annual

Discussion

The results demonstrate the value of natural experiments
for elucidating the mechanisms of alien tree invasions.
Spatial patterns of invasion result from many different
interacting factors, including biological attributes of the
invader, species response to the abiotic environment, biotic
interactions, and human activities (success of plant estab-
lishment; Richardson et al. 2004). In most cases, it is dif-
ficult to determine the relative roles of biological attributes
and environmental factors. This study attempted to in-
clude biological processes such as propagule pressure and
plant-environment interactions. Previous studies that have
focused on local seed dispersal using spatial patterns of
juveniles did not always consider the effects of environ-
ment (Schupp and Fuentes 1995). However, statistical
analyses of plant distribution in relation to environmental
factors generally ignore ecological processes such as dis-
persal (Guisan and Zimmermann 2000). Including prop-
agule pressure and environmental determinants provided
more accurate predictions of species cover than when en-
vironmental factors were solely considered.

Our modeling approach has some limitations. Propa-
gule pressure was simply modeled in relation to a limited
number of invasion foci; the correct identification of these
foci is thus crucial. We assumed that the oldest (largest
and densest) stands of trees were the origin of self-sown
populations (table 2). We ignored the role of individual
trees as invasion foci. Also, past alien plant management
and wood harvesting have removed some source popu-
lations. Since substantial clearing operations have only af-
fected a small part of the large study area, the resultant
error due to this factor is probably very small. Finally, our
surrogates for propagule pressure (distance to invasion
foci) and environmental suitability were not completely
independent. The former could not be measured where
invaders did not establish because of limited environmen-
tal suitability, and the latter could not be measured where
invaders did not establish because of lack of propagule.
These factors contribute to some unavoidable and unex-
plained variance in the models. Despite these limitations,
this study brings a deeper understanding of the main driv-
ers of invasion process at a regional scale and provides the
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first quantitative approximation of the role of propagule
pressure in mediating environmental barriers for an in-
vasive species at the regional scale.

Species distribution was modeled with satisfactory ac-
curacy using classification trees (table 3). However, dis-
tance to sites of initial introduction—a surrogate of prop-
agule pressure—was a much better indicator of species
distribution and cover than any environmental factor con-
sidered. Few previous studies have assessed the relative
importance of ecological interactions and propagule avail-
ability in producing observed patterns of species distri-
bution at the local scale (Foster 2001). Propagule pressure
is clearly crucial for accurate modeling of distribution and
cover of invasive alien trees on the Agulhas Plain. We noted
differences among species, and the effect of propagule
pressure was more significant for Pinus pinaster than for
the two Acacia species (table 3). This is difficult to relate
the natural dispersal regimes of the species (Richardson et
al. 1992). It is possibly due to the fact that both Acacia
species have hard-coated seeds that are readily dispersed
in soil.

Several authors have suggested visualizing the invasion
process as a series of barriers that an introduced species
needs to overcome before becoming naturalized or inva-
sive (Richardson et al. 2000b). We have provided a meth-
odology for identifying some of these barriers and quan-
tifying their effects on spread at a regional scale.
Environmental barriers affecting patterns of spread (i.e.,
once propagule pressure has been accounted for) are spe-
cies specific. Barriers could be geology, topography, cli-
mate, or land use without any consistent hierarchy among
the three species (fig. 4). Surprisingly, land use was not
identified as the major barrier to invasion. There were
some indications that spread was reduced in transformed
habitats (notably cultivated fields), but climatic or topo-
graphic factors were always more significant (table 3). The
Agulhas Plain is, however, heavily fragmented, so one
would expect invasive species to respond strongly to land
use changes. Other studies that focused on local dispersal
have shown that landscape structure can affect dispersal
success (Higgins and Richardson 1999; King and With
2002). Modeling studies also suggest that invasive species
might perform better than natives in fragmented ecosys-
tems (Richardson et al. 2000a). Disturbance, natural or
human induced, is often mentioned as a factor promoting
invasion because it exposes bare ground, permitting seed-
ling establishment (Hobbs and Huenneke 1992; Kolar and
Lodge 2001). At a local scale, the spatial configuration of
bare ground (e.g., large or small gaps, randomly or reg-
ularly dispersed gaps) greatly affects the spread of invasive
species (Bergelson et al. 1993). Predictions at the landscape
or regional scale, such as this study, could be improved
by quantifying more rigorously aspects of disturbance re-

gime and intensity and the spatial structure of landscape,
factors that are generally not accounted for in such studies.
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