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Abstract
Motivation: Inferring genetic network architecture
from time series data of gene expression patterns is an
important topic in bioinformatics. Although inference
algorithms based on the Boolean network were proposed,
the Boolean network was not sufficient as a model of a
genetic network.
Results: First, a Boolean network model with noise is
proposed, together with an inference algorithm for it.
Next, a qualitative network model is proposed, in which
regulation rules are represented as qualitative rules and
embedded in the network structure. Algorithms are also
presented for inferring qualitative relations from time
series data. Then, an algorithm for inferring S-systems
(synergistic and saturable systems) from time series data
is presented, where S-systems are based on a particular
kind of nonlinear differential equation and have been
applied to the analysis of various biological systems.
Theoretical results are shown for Boolean networks with
noises and simple qualitative networks. Computational
results are shown for Boolean networks with noises and
S-systems, where real data are not used because the
proposed models are still conceptual and the quantity and
quality of currently available data are not enough for the
application of the proposed methods.
Contact: takutsu@ims.u-tokyo.ac.jp

Introduction
Recently many studies have been performed in order
to develop computational methods for reconstructing
underlying genetic networks from time series data of
gene expression patterns, which are obtained by the DNA
microarray technology (DeRisi et al., 1997).

Several studies have been carried out using the Boolean
network, where a gene takes one of two states (ON
or OFF), and a gene regulation rule is given as a
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Boolean function. Liang et al. (1998) developed the
algorithm REVEAL (reverse engineering algorithm) for
inferring genetic networks from state transition tables,
which correspond to time series data of gene expression
patterns. We proved that O(log n) expression patterns are
necessary and sufficient to identify the underlying Boolean
network of n genes correctly with high probability if the
maximum indegree is bounded (Akutsu et al., 1999).

Since the Boolean network is not realistic, other mod-
els have been proposed. Thieffry and Thomas (1998)
proposed a qualitative model, which was similar to our
model. However, they did not give a concrete infer-
ence algorithm. Although other hybrid models were
proposed (McAdams and Shapiro, 1995; Yuh et al.,
1998), inference methods were unclear. Arkin et al.
(1997) proposed a statistical method to infer chemical
networks. Chen et al. (1999) and D’haeseleer et al.
(1999) proposed inference methods based on linear
differential equations. However, no method seems to be
sufficient.

In this paper, we propose a qualitative network model,
which is different from the model proposed by Thieffry
and Thomas (1998). This new model can be considered
as an intermediate model between the Boolean network
model and the differential equation model. This model
can also be considered as a combination of the Boolean
network and qualitative reasoning (de Kleer and Brown,
1984). In this model, regulation rules are represented
as qualitative rules and embedded in network structures.
We also present inference algorithms for this model.
Although the algorithms are based on linear differential
equations, they can be applied to nonlinear models to
some extent. One of the algorithms can be applied to
the inference of S-systems (Irvine and Savageau, 1990;
Savageau, 1991; Tominaga and Okamoto, 1998), where
S-systems are based on a particular kind of nonlinear
differential equation and have been successfully applied
to the analysis of various biological networks.
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Incidentally, it is also important to develop inference
algorithms robust for noises. Thus, we propose a robust
algorithm for a Boolean network model with noises, where
the technique can also be applied to qualitative networks.

The organization of the paper is as follows. First we
present a robust algorithm for Boolean networks with
noises. Next we present a qualitative network model and
inference algorithms. Then we show computational results
using artificial data, and finally we conclude with future
work.

Identification of Boolean networks with noises
Boolean network and its identification
Here we briefly review the Boolean network model and
our previous result on its identification (Akutsu et al.,
1999).

A Boolean network G(V, F) consists of a set
V = {v1, . . . , vn} of nodes representing genes and a list
F = ( f1, . . . , fn) of Boolean functions, where a Boolean
function fi (vi1, . . . , vik ) with inputs from specified nodes
vi1, . . . , vik is assigned to each node vi . An expression
pattern ψ is a function from V to {0, 1}. That is, ψ

represents the states of nodes (genes), where each node is
assumed to take either 0 (not-express) or 1 (express) as its
state value. Expression pattern ψt+1 at time t + 1 is de-
termined by Boolean functions F from expression pattern
ψt at time t (i.e. ψt+1(vi ) = fi (ψt (vi1), . . . , ψt (vik ))).

In the identification, we are given a set of IN-
PUT/OUTPUT pairs {(I1, O1), . . .,(Im, Om)}, where each
I j corresponds to ψt at some time t and each O j corre-
sponds to ψt+1. We assume that OUTPUT patterns are
generated from corresponding INPUT patterns according
to Boolean functions in the underlying Boolean network.
The identification problem is, given n and {(I1, O1),

. . . , (Im, Om)}, to find the original (underlying) Boolean
network.

We say that a Boolean network is consistent with
INPUT/OUTPUT patterns if O j (vi ) = fi (I j (vi1), . . . ,

I j (vik )) holds for all vi and for all (I j , O j ). We say that the
Boolean network is identified if an identification algorithm
finds that there is only one consistent Boolean network.

In most of this paper, we assume that the indegree (i.e.
the number of input nodes) of each node is bounded by a
constant K , because it has been proved that exponentially
many patterns are required if K is not bounded (Akutsu
et al., 1999). The importance of the constraint on the
indegree is also pointed out in several papers (Liang et al.,
1998; Chen et al., 1999). Although we assume that the
maximum indegree is bounded by K , all algorithms in this
paper can be applied to Boolean (or qualitative) networks
whose maximum indegree is not bounded: the algorithms
correctly identify Boolean (or qualitative) functions
assigned to all nodes whose indegrees are at most K .

In our previous work, we developed an identification
algorithm (denoted by BOOL-1) for Boolean networks.
BOOL-1 is quite simple: it examines for each node inde-
pendently whether there exists a unique Boolean function
consistent with given patterns. Moreover, we proved the
following theorem, where log(x) ≡ log2(x) in this paper.

THEOREM 1 (AKUTSU et al., 1999). If O(22K ·(2K+
α) · log n) INPUT patterns are given uniformly randomly,
BOOL-1 correctly identifies the underlying Boolean net-
work of maximum indegree ≤ K with probability at least
1− 1

nα , where α > 1 is any fixed constant.

Noisy Boolean network and its identification
Since real expression patterns may contain noises, we
define a noisy Boolean network. Let G(V, F) be a
Boolean network. Then, a noisy Boolean network consists
of G(V, F) and pnoise, where pnoise is a constant such
that 0 ≤ pnoise < 1. There is only one difference between
the standard Boolean network and the noisy Boolean
network: O j (vi ) = fi (I j (vi1), . . . , I j (vik )) holds for each
node in a standard Boolean network, whereas O j (vi ) �=
fi (I j (vi1), . . . , I j (vik )) holds with probability ≤ pnoise
for each node in a noisy Boolean network, where the
probability is taken over all possible INPUT patterns I j .

The identification algorithm (denoted by BOOL-2) for
noisy Boolean networks is obtained by slightly modifying
BOOL-1. In BOOL-1 each Boolean function inconsistent
with at least one INPUT/OUTPUT pattern is discarded,
but in BOOL-2 each Boolean function inconsistent with
at least θ · m patterns is discarded. In this paper, we
use θ = 1

22K+1 for theoretical analysis, where other
appropriate values can be used in practice. The following
is a PASCAL-like code of BOOL-2.

for i = 1 to n do
count ← 0;
for all combinations of K nodes (vi1 , . . . , viK ) do

for all Boolean function f with K inputs do
mismatch ← 0;
for j = 1 to m do

if O j (vi ) �= fi (I j (vi1), . . . , I j (viK )) then
mismatch ← mismatch + 1;

if mismatch < θ · m then
output f (vi1 , . . . , viK ) as a function
assigned to vi ; count ← count + 1;

if count �= 1 then
output “NOT IDENTIFIED” and halt;

It is easy to see that BOOL-2 works in O(nK+1m) time,
which is the same order as in BOOL-1. On the number of
expression patterns, we can prove the following theorem
(see the Appendix for the proof).

THEOREM 2. Assume that p < 1
e·22K+2 . If O

(
22K ·(α+

K + 1) ·
(

1+ 1
log 1

p−log e−(2K+2)

)
· log n

)
INPUT patterns
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are given uniformly randomly, BOOL-2 correctly identifies
the underlying Boolean network with maximum indegree
K with probability at least 1 − 1

nα , where α > 1 is any
fixed constant.

Although the assumption on p is too strong in the above,
it seems that a similar property will hold for much larger
p (see Computational results).

Inference of qualitative networks
Qualitative network model
Qualitative reasoning has been studied in Artificial Intelli-
gence (de Kleer and Brown, 1984). Theories of qualitative
reasoning were developed for predicting and explaining
the behavior of physical mechanisms in qualitative terms.
In qualitative reasoning, instead of real-valued variables,
each variable is described quantitatively: taking on only
a small number of values, usually +, −, or 0. Instead of
differential equations, qualitative equations are also used.

Based on the concept of qualitative reasoning, we
define a qualitative network model. A qualitative net-
work is a directed graph G(V, E), where each node in
V = {v1, . . . , vn} corresponds to a gene or a chemical
substance, and each directed edge (v j , vi ) ∈ E has
a label: either activation or inhibition. In this paper,
v j → vi denotes an activation edge (from v j to vi ) and
v j � vi denotes an inhibition edge (from v j to vi ). The
meanings of activation and inhibition depend on kinds of
differential equation used in kinetic models representing
genetic networks and/or metabolic pathways. Qualitative
networks based on linear differential equations and
inference algorithms for these networks are presented
in this section. An inference algorithm for qualitative
understanding of S-systems is presented in the next
section.

It should be noted that we intend to use qualitative
networks not for simulation, but to represent biological
knowledge. Thus, we do not need to know precise values
of parameters but we need to know topologies of networks.
Exact fitting of parameters does not seem to be realistic
because it is very difficult to make precise quantitative
models of complex biological systems.

Simple qualitative networks
For ease of explanation, we begin with a simplest model,
to be extended to more realistic models later. Let Xi (t) be
the value (expression level of a gene or concentration of a
chemical substance) of vi at time t , where we sometimes
omit ‘(t)’. We assume that time series data of a biological
system are produced according to the following simple
system of linear differential equations:

d X1

dt
= a1 X j1,

d X2

dt
= a2 X j2, . . . ,

d Xn

dt
= an X jn .

v1 v2

Fig. 1. Qualitative network corresponding to
{

d X1
dt = X2,

d X2
dt = −X1

}
.

Then, the qualitative network corresponding to this linear
system is defined by V = {v1, . . . , vn} and E = {v ji →
vi | ai > 0} ∪ {v ji � vi | ai < 0}.

For example, consider a case of n = 2, j1 = 2, j2 = 1,
a1 = 1 and a2 = −1 (i.e. X1(t) = sin(t + θ) and
X2(t) = cos(t + θ) where θ is determined from the initial
values). Then, E = {v2 → v1, v1 � v2} (see Figure 1).

The task of an inference algorithm is, given n and
Xi (t), to infer a qualitative network G(V, E) consistent
with Xi (t). The inference algorithm (denoted by QNET-
1) is given below. QNET-1 is similar to BOOL-1 and
BOOL-2. It examines all possible edges and discards
edges inconsistent with given data. Note that we assume
that values of Xi (t) are given for t = t1, t1 + �, t1 +
2�, t1+3�, . . . , t1+m�. Note also that we approximate
d Xi (t)

dt by �Xi (t)
�

, where �Xi (t) denotes Xi (t+�)−Xi (t).

E ← {v j → vi , v j � vi | i = 1 . . . n, j = 1 . . . n};
for i = 1 to n do

for j = 1 to n do
for t = t1 to t1 + (m − 1)� do

if �Xi (t) · X j (t) < 0 then delete v j → vi from E ;
if �Xi (t) · X j (t) > 0 then delete v j � vi from E ;

if indegree(vi ) > 1 then
output “NOT IDENTIFIED” and halt;

In practice, ‘> 0’ and ‘< 0’ in the above should be
replaced by ‘> ρ’ and ‘< −ρ’ using an appropriate
threshold value ρ.

It is easy to see that this algorithm works in O(n2m)

time. Here, we briefly discuss input time series data. It is
easy to see that correct edges are not deleted under the
assumption that sign

(
�Xi (t)

�

) = sign
( d Xi (t)

dt

)
. However,

wrong edges may remain if sufficient data are not given.
In most cases, time series data beginning from only one
set of initial values (i.e. f (t1)) are not sufficient because
time series data may fall into attractors. In such a case,
time series data beginning from other sets of initial values
are required. The importance of using time series data
beginning from multiple sets of initial values is discussed
by Akutsu et al. (1999). The following theorem holds
regardless of the existence or sizes of attractors.

THEOREM 3. Assume that initial values are chosen
from {1,−1} uniformly randomly. Then, QNET-1 identifies
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the correct qualitative network with probability at least
1 − 1

nα , if time series data beginning from O(α · log n)

sets of initial values are given, where α > 1 is any fixed
constant.

Note that ±1 in the above can be replaced by other
appropriate values. It seems that similar results still hold
if initial values are chosen near uniformly randomly.

We can extend QNET-1 to equations of the form dXi
dt =

ai X ji + bi . Let

X (−,max)
i, j = max{X j (t)|�Xi (t) < 0},

X (−,min)
i, j = min{X j (t)|�Xi (t) < 0},

X (+,max)
i, j = max{X j (t)|�Xi (t) > 0},

X (+,min)
i, j = min{X j (t)|�Xi (t) > 0}.

Then, X (−,max)
i, j < − bi

ai
< X (+,min)

i, j holds if ai > 0, and

X (+,max)
i, j < − bi

ai
< X (−,min)

i, j holds if ai < 0. Based on this
observation, we obtain the following inference algorithm
(QNET-2):

E ← {v j → vi , v j � vi | i = 1 . . . n, j = 1 . . . n};
for i = 1 to n do

for j = 1 to n do

if X (−,max)
i, j ≥ X (+,min)

i, j then delete v j → vi from E ;

if X (+,max)
i, j ≥ X (−,min)

i, j then delete v j � vi from E ;

if indegree(vi ) > 1 then
output “NOT IDENTIFIED” and halt;

Although we assumed linear differential equations,
QNET-2 can be applied to differential equations of the
form dXi (t)

dt = f (X j (t)) if f (x) is a monotonically
increasing or decreasing function.

For the size of time series data, we have not proved any
theoretical result in this case. However, it seems that the
correct network will be determined if sufficient data are
given. At least, it is guaranteed that correct edges are not
deleted.

Qualitative networks based on linear differential
equations
Although the maximum indegree is assumed to be 1 (i.e.
K = 1) in QNET-1 and QNET-2, we can develop an infer-
ence algorithm (denoted by QNET-3) for networks with no
constraint on indegrees, using LP (linear programming).

In general, a linear differential equation has the follow-
ing form:

dXi (t)

dt
= ai,1 X1(t)+ ai,2 X2(t)+ · · · + ai,n Xn(t)+ bi .

In this case, the corresponding qualitative network is
defined by V = {v1, . . . , vn} and E = {v j → vi |ai, j > 0}
∪{v j � vi |ai, j < 0}.

D’haeseleer et al. (1999) used the linear regression
method in order to determine the parameters. However,
for that purpose, we should know precise values of dXi (t)

dt .
Therefore, instead of linear regression, we use linear
programming (LP).

For each Xi , we make a set of linear inequalities as
follows. If dXi (t)

dt > ρ where ρ is some constant, we make
the following inequality:

ai,1 X1(t)+ · · · + ai,n Xn(t)+ bi > 0.

If dXi (t)
dt < −ρ, we make the inequality in which ‘> 0’

is replaced by ‘< 0’. Next, solving the set of linear
inequalities by LP, we determine values of ai, j and bi .
Then, we let v j → vi if ai, j > 0 and we let v j � vi if
ai, j < 0.

This LP-based method can also be applied to the case
where the maximum indegree is bounded. For example,
in the case of K = 2, we examine differential equations
of the form dXi (t)

dt = ai, j X j (t) + ai,k Xk(t) + bi for
all triplets (i, j, k). Although much longer time may be
required, the values of ai, j and bi will be determined more
precisely. It should be noted that the time complexity is
still O(nK+1m) by using linear time algorithms for LP in
fixed dimensions (Motowani and Raghavan, 1994).

In the noisy case, the LP solver may fail to determine the
values of ai, j and bi since there may be no feasible solu-
tion. In such a case, robust LP (Bennett and Mangasarian,
1992) might be useful.

Inference of S-systems
The S-system (synergistic and saturable system) has been
developed for modeling various biological systems (Irvine
and Savageau, 1990; Savageau, 1991). S-systems have
been successfully applied to the analysis of biochemical
pathways, genetic networks and immune networks. For
example, the well known Michaelis–Menten equation,
which expresses enzymatic reaction involving one sub-
strate and one product, is obtained from an S-system
using equilibrium state approximation.

An S-system is a set of nonlinear differential equations
of the form

dXi (t)

dt
= αi

n∏
j=1

X j (t)
gi, j − βi

n∏
j=1

X j (t)
hi, j

where αi and βi are multiplicative parameters called rate
constants and gi, j and hi, j are exponential parameters
called kinetic orders.

Since S-systems are nonlinear, we can not apply lin-
ear regression to inference of S-systems. Tominaga and
Okamoto (1998) applied a GA (genetic algorithm) to in-
ference of S-systems with a few parameters. However, it
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is unclear whether their method can be extended for large
S-systems.

Using the idea of the LP-based method, we developed
a simple method (denoted by SSYS-1) for inference of S-
systems. Assume that dXi (t)

dt > 0 at time t . By taking ‘log’
of each side of αi

∏
X j (t)gi, j > βi

∏
X j (t)hi, j , we have

log αi +
n∑

j=1

gi, j log X j (t) > log βi +
n∑

j=1

hi, j log X j (t).

Since X j (t) are known data, this is a linear inequality if
we treat log αi and log βi as parameters. In the case of
dXi (t)

dt < 0, we can obtain a similar inequality. Therefore,
solving these linear inequalities by LP, we can determine
parameters.

However, parameters are not determined uniquely even
if many data are given, because the inequality can be re-
written as (log αi − log βi )+∑

(gi, j − hi, j ) log X j (t) >

0. Therefore, only relative ratios of log αi − log βi and
gi, j − hi, j are determined. However, this information is
useful for qualitative understanding of S-systems. Since it
seems that gi, j �= hi, j holds for most (i, j), the fact that
|gi, j −hi, j | is not small means that Xi is influenced by X j
(i.e. v j → vi or v j � vi ).

Computational results
We have implemented BOOL-2, QNET-1 and SSYS-1
using C language. Since we did not have an appropriate
data set (see Discussion for the reason), we used artificial
time series data. Since QNET-1 is too simple and SSYS-1
is much more complex than QNET-1, we show results on
BOOL-2 and SSYS-1.

Results on noisy Boolean networks
We performed computational experiments on BOOL-2,
using a Sun Ultra Enterprise 10000 (with 64 CPUs). Since
the result of preliminary experiment showed that pnoise
did not strongly affect the number of INPUT/OUTPUT
patterns if pnoise < 1

2θ , we examined cases of n =
10, 20, 40, 80, 160, θ = 0.08, 0.10, 0.12, where K = 2
and pnoise = 0.04 were fixed. Note that these values of θ

and pnoise are larger than those in Theorem 2.
Figure 2 shows the number m of INPUT/OUTPUT

patterns required to identify the underlying Boolean
network uniquely, where the average number over ten
randomly generated Boolean networks is shown for each
case. It is seen that the numbers are proportional to log n.
Although the numbers are larger than those in the noiseless
case (Akutsu et al., 1999), the ratios are not large (less than
three).

Results on S-systems
We performed computational experiments on SSYS-1,
using a Sun Ultra-2 Workstation (with one CPU). In

10 20 40 80 160

20

60

100

#patterns

#nodes

=0.08θ

=0.10θ
=0.12θ

140

Fig. 2. Result on the number of expression patterns required to
identify the noisy Boolean network of K = 2 correctly. Note that
the X -axis is log scaled.

order to solve LP, we used commercial software SOPT
(SAITECH Inc., 1998).

First we examined the following simple cases of n = 2,
where case (A) was examined by Tominaga and Okamoto
(1998) too.

i αi gi,1 gi,2 βi hi,1 hi,2

(A) 1 3.0 0.0 −2.5 3.0 0.125 0.0
2 3.0 2.5 0.0 3.0 0.0 0.125

(B) 1 3.0 0.0 −2.5 3.0 1.25 0.0
2 3.0 2.5 0.0 3.0 0.0 1.25

Time series data beginning from randomly generated
initial values in [0.5, 2.0] were used as input data. The
Euler method was used to generate the time series data,
where �t = 0.02 was used. Since SSYS-1 could only
compute relative values of gi, j − hi, j , we compared the

ratios r1 = g1,1−h1,1
g1,2−h1,2

and r2 = g2,2−h2,2
g2,1−h2,1

. Table 1 shows the
result, where average values and standard deviations over
20 trials are shown. m denotes the total number of time
points in the data, where 50 point data are generated from
each set of initial values.

In each case, parameters were inferred within 1 s, which
was much faster than the GA-based methods (Tominaga
and Okamoto, 1998). On the other hand, the errors (in
case (A)) were larger than those inferred by the GA-based
method, but this is not a serious problem because we do
not aim at determining precise values. We only want to
know whether each |gi, j − hi, j | is relatively large or
small. Note that the errors are small for m = 50 in case
(B), whereas the errors are not small even for m = 500
in case (A). This observation suggests that good values
are not inferred if parameters in the different levels are
included (note that g2,1 = 2.5 whereas h1,1 = 0.125 in
case (A)).
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Table 1. Ratios of parameters inferred by the LP-based method for S-systems with two variables.

Correct m = 1× 50 m = 5× 50 m = 10× 50

(A) (r1, σ ) (0.05, -) (0.129, 0.032) (0.081, 0.009) (0.077, 0.011)
(r2, σ ) (-0.05,-) (-0.261,0.232) (-0.086,0.023) (-0.085,0.011)

(B) (r1, σ ) (0.5, -) (0.653, 0.099) (0.598, 0.054) (0.574, 0.040)
(r2, σ ) (-0.5,-) (-0.648,0.108) (-0.568,0.032) (-0.538,0.029)

Table 2. Average ratios of correctly identified nodes for randomly generated
S-systems with 10 variables

m 25× 20 50× 20 100× 20

K = 2 30% 86% 100%
K = 4 26% 69% 87%

Next we examined whether or not qualitative relations
are correctly inferred, by applying SSYS-1 to the case
of n = 10 and K = 2 and the case of n = 10 and
K = 4. Note that only the case of n = 2 was examined
by Tominaga and Okamoto (1998). In these cases, we
did not try to infer precise values of parameters, but
we tried to infer whether or not Xi is influenced by
X j . We say that the set of input nodes {vi1, . . . , viK } to
vi is correctly inferred if SSYS-1 outputs the same set
for vi , where we say that v j is an input node to vi if
hi, j �= 0 and gi, j �= 0 hold in the original S-system.
We inferred the input nodes by the following rule: v j is
an input node to vi if ri, j > 0.1, where ri, j is defined
byri, j = |ĝi, j − ĥi, j |/max{|ĝi, j ′ − ĥi, j ′ | | j ′ = 1, . . . , n},
and ĝi, j and ĥi, j denote the values of parameters inferred
by SSYS-1. We counted the number of nodes for which
the sets of input nodes were correctly inferred. The result
is shown in Table 2. In the table, the average ratios (%)
of correctly inferred nodes over ten randomly generated
S-systems are shown, where the following values were
used: �t = 0.01, αi = βi = 3.0, 0.5 < |gi, j | < 3.0,
0.5 < |hi, j | < 3.0. Even in the case of m = 100 × 20,
each inference was made within 30 s (CPU time). From
Table 2, it is seen that the sets of input nodes are correctly
inferred for most nodes if m is large enough.

Finally, we examined the case of n = 100, K = 4, and
m = 1000 × 20. In this case, SSYS-1 inferred the sets of
input nodes correctly for 96 nodes using less than 5 h (with
one CPU), where �t = 0.005. This result demonstrates
the power of SSYS-1 because we are tackling a very hard
problem, inference of nonlinear systems with more than
100× 100× 2 parameters.

Discussion
In this paper, we proposed novel methods that might
be useful for inferring qualitative relations in genetic
networks and metabolic pathways from time series data.
The most important feature of the methods is that they can
be applied to nonlinear systems to some extent.

However, as shown in computational results, the
proposed methods require many time series data be-
ginning from different sets of initial values, where
different sets correspond to different environments or
different conditions. For example, it is estimated from
Figure 2 that the number of INPUT/OUTPUT patterns
(i.e. the number of time points) required to identify
a noisy Boolean network of 6000 nodes is approxi-

mately 245
(
≈ 60 + (140 − 60) · log(6000)−log(10)

log(160)−log(10)

)
in the case of θ = 0.12. More data must be re-
quired in a practical case because time series data are
not randomly generated. For inference of S-systems,
many more data are required although we do not have
a concrete method to estimate the size of data. Recall
that 1000 × 20 point time series data (20 point data
beginning from 1000 different sets of initial values) were
required even for qualitative inference of an S-system
with 100 nodes. Since time series data of 7 or 17 points
beginning from a few different sets of initial values
were only available (DeRisi et al., 1997; Cho et al.,
1998), we could not apply the proposed methods to
real data. However, many biological experiments are
currently being performed using gene disruptions and
gene overexpressions, and it is expected that a large
number of more precise data will be available in the
near future. For example, several hundreds of disruptants
of Saccharomyces cerevisiae are being made by the
group to which the third author of this paper belongs. If
we could collect all time series data in the world, many
more data would be available. Therefore, the assumption
of existence of times series data beginning from many
initial value sets will become realistic in the future. Of
course, if we focused on a part of the network, the number
of time series data required for the inference could be
reduced.
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Inferring qualitative relations

Even if we have enough data, it seems difficult to
apply the proposed methods to real data for the following
reasons.

1. Regulation rules of genes may be much more
complex than linear differential equations and S-
systems although S-systems are based on the power-
law formalism describing mass action in chemistry
(Savageau, 1991).

2. The formalism using differential equations implic-
itly assumes that concentration of transcription
factors (i.e. proteins made from mRNA) can be
observed, but it is much more difficult to monitor
the concentration of proteins, and there may be
a long delay of hours (for eukaryotes) between
mRNA and protein.

3. The proposed methods for differential equations are
not robust for noises.

4. The proposed methods, especially the method for
S-systems, are not fast enough for handling many
genes (e.g. n > 1000).

Although these are serious problems, there is much
room for improvements in the proposed methods. For
example, the differential equations might be modified
so that the effect of time delay is taken into account.
This modification might be useful against item 2 of the
above list and should be studied. As previously mentioned,
robust LP (Bennett and Mangasarian, 1992) might be
useful for handling noisy data.

It seems that the computation time is not a serious
problem (at least for low indegree nodes) since the
average computation time will be reduced significantly by
using various heuristics and massively parallel computers.
Although it may be still impossible to handle all genes
simultaneously, it will be possible to handle several
hundreds of genes. Handling of several hundreds of genes
could be useful if we focused on a part of the network
in which we were interested, or we grouped the genes
into operons, and considered bacteria only (on average
an operon contains three genes in bacteria, and these
organisms have a few thousand genes).

Another drawback of the proposed methods is that
complex enzymatic reactions (for example, three-stage
enzymatic reactions) can not be handled directly: these
reactions can not be represented exactly in the form of the
S-system (Savageau, 1991). Therefore, development of the
methods to infer complex enzymatic reactions is important
future work.
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Appendix
Proof of Theorem 2
Since the algorithm tries to identify a Boolean function as-
signed to each node independently, we consider each node
independently. We consider the probability that the algo-
rithm does not output the correct Boolean function for a
fixed node vi . There are two cases where the algorithm
makes an error: (A) the correct Boolean function is dis-
carded, (B) an incorrect Boolean function is not discarded.

First we consider Case (A). Let fi (vi1, . . . , viK ) be
the correct Boolean function assigned to vi . Let M be
the value of variable mismatch for this function. Since
incorrect OUTPUT values are generated with probability
p, the expectation of M is pm. From the Chernoff bound
Prob(M > (1 + δ)µ) <

( e
1+δ

)(1+δ)µ (see Motowani
and Raghavan, 1994) and µ = pm where µ denotes the
expectation of M and 0 < δ ≤ 1, the probability of (A) is

Prob

(
M >

m

22K+1

)
< (e · p · 22K+1)

m
22K+1 ,

by letting δ = 1− 1
p·22K+1 .

Next we consider Case (B). For any Boolean function
gi (v

′
i1
, . . . , v′iK

) different from fi (vi1, . . . , viK ), we con-
sider the probability that this function is not discarded.
Since the expected value of mismatch for gi is at least

m
22K in the noiseless model (Akutsu et al., 1999), the prob-
ability is at most the sum of the probabilities of the follow-
ing two cases: (B1) the number of INPUT patterns where
the value of fi does not coincide with the value of gi is
less than 3

4 · m
22K , (B2) the number of OUTPUT patterns

such that O(vi ) �= fi (I j (vi1), . . . , I j (vik )) is greater than
1
4 · m

22K = m
22K+2 .

As in Case (A), the probability of (B2) is bounded above

by (e · p · 22K+2)
m

22K+2 for p < 1
e·22K+2 . Let X be the

number of INPUT patterns considered in (B1). From the

Chernoff bound Prob(X < (1−δ)µ) < e−
µδ2

2 and the fact
that µ ≥ m

22K , the probability of (B1) is bounded above by

Prob

(
X <

3

4
· m

22K

)
< e
− 1

32 · m
22K ,

where we let δ = 1
4 .

Since Case (A) is included in Case (B1) and there are
at most 22K · nK Boolean functions gi (v

′
i1
, . . . , v′iK

), the
probability that the correct Boolean function is not output
for node vi is bounded above by

(e · p · 22K+2)
m

22K+2 + 22K · nK · e− 1
32 · m

22K .
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Therefore, the total probability that correct Boolean func-
tions are not identified for at least one node is bounded
above by n times this value. Solving n(e·p·22K+2)

m
22K+2 <

1
2nα , we have

m >
22K+2(1+ (α + 1) log n)

log 1
p − log e − (2K + 2)

.

Solving 22K · nK+1 · e− 1
32 · m

22K < 1
2nα , we have

m >
32 · 22K

log e

(
(K + α + 1) log n + 2K + 1

)
.

Combining these conditions, we have the bound in the
theorem.

Proof of Theorem 3

First note that sign
(

�Xi (0)
�

) = sign(X ji (0)) if ai > 0,

sign
(

�Xi (0)
�

) = − sign(X ji (0)) if ai < 0, other-

wise �Xi (0)
�

= 0. Note also that the value of �Xi (0)
�

depends only on the value of X ji (0). Then, by re-
garding (X1(0), . . . , Xn(0)) as an INPUT pattern and(

�X1(0)
�

, . . . ,
�Xn(0)

�

)
as an OUTPUT pattern, the iden-

tification of a simple qualitative network is almost the
same as the identification of a Boolean network of K = 1.
Since initial values are chosen from {1,−1} uniformly
randomly, the assumption in Theorem 1 is still valid in
this case. Therefore, by letting K = 1 in Theorem 1, we
obtain an O(α · log n) bound, where a constant factor is
hidden by the ‘O’ notation.
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