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Abstract

Recent studies indicate that DNA methylation can be used to identify transcriptional enhancers, but no systematic

approach has been developed for genome-wide identification and analysis of enhancers based on DNA methylation.

We describe ELMER (Enhancer Linking by Methylation/Expression Relationships), an R-based tool that uses DNA

methylation to identify enhancers and correlates enhancer state with expression of nearby genes to identify

transcriptional targets. Transcription factor motif analysis of enhancers is coupled with expression analysis of

transcription factors to infer upstream regulators. Using ELMER, we investigated more than 2,000 tumor samples

from The Cancer Genome Atlas. We identified networks regulated by known cancer drivers such as GATA3 and

FOXA1 (breast cancer), SOX17 and FOXA2 (endometrial cancer), and NFE2L2, SOX2, and TP63 (squamous cell lung

cancer). We also identified novel networks with prognostic associations, including RUNX1 in kidney cancer. We

propose ELMER as a powerful new paradigm for understanding the cis-regulatory interface between cancer-associated

transcription factors and their functional target genes.

Background

ENCODE and other large-scale efforts have mapped

transcription factor binding sites, histone modifications,

and chromatin accessibility in a common set of cell lines

[1, 2]. Integration of these genome-wide maps has led to

the view that distinct epigenetic marks are not inde-

pendent but rather that chromatin is organized into

discrete functional states marked by particular combina-

tions of individual features [3, 4]. Computational

methods such as chromHMM [5] and Segway [6] have

been developed to identify these states from individual

histone and accessibility features, and the state most

consistently linked to cellular identity is the ‘active enhan-

cer’ state defined by the presence of histone H3 lysine 27

acetylation and low levels of the canonical promoter mark,

H3 lysine 4 tri-methylation [5, 7, 8]. Active enhancers are

enriched for sequences bound by cell-type specific

transcription factors, reinforcing their preeminent role in
encoding the cis-regulatory logic of the genome. Projects
such as the NIH Roadmap [2, 9] and Blueprint [10] have
also mapped histone modifications and chromatin accessi-
bility in primary human tissues, identifying a large set of
enhancers from many different cell types. Others have
employed these datasets to identify large numbers of
enhancer-promoter pairs in 12 human cell types [11, 12].
However, approaches such as ChIP-seq or DNAse hyper-
sensitivity assays require careful tissue handling (to avoid
protein degradation) and relatively large numbers of cells
(106 to 107) and thus have not been applied to the identifi-
cation of enhancers in primary tumor tissues.

Fortunately, enhancers can also be identified using pat-

terns of 5-methylcytosine, an epigenetic mark that is

maintained more stably than protein marks, and can be

detected genome-wide in as few as 1,000 cells [13]. His-

torically, DNA methylation research has focused on gene

promoter regions (reviewed in [14]). While early work

suggested that DNA methylation could mark enhancer

regions of interest [15], this was not widely appreciated

until the first complete and unbiased study of DNA

methylation in human cells revealed enhancer regions as

being unmethylated in a cell-type specific manner [16].

A later study used the same whole-genome bisulfite
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sequencing (WGBS) approach to identify all genomic re-

gions containing little or no methylation; these regions

overwhelmingly corresponded to enhancers and other

distal regulatory elements [17]. Cell-type specific de-

methylation of enhancers was confirmed by targeted bi-

sulfite sequencing in the ENCODE project [1]. More

recently, WGBS data from 30 diverse human cell types

showed that enhancers had highly dynamic methylation

patterns - roughly 30% of the most cell type-specific re-

gions in the genome overlapped known enhancers (com-

pared to 5% that overlapped gene promoters). The

mechanism underlying these correlations is not well

understood, but could involve de-methylation of DNA

initiated by transcription factor binding ([17]; reviewed

in [18]) and maintained by DNA methyltransferase pro-

tection by Histone H3 lysine 4 monomethyl groups [19].

In cancer tissues, recent studies have shown that

cancer-specific enhancers and transcription factor bind-

ing sites can be identified from DNA methylation pro-

files. The first genome-scale analysis of transcription

factor binding sites in cancer found that binding by tran-

scription factors such as Sp1, NRF1, and YY1 could pro-

tect CpG island gene promoters from cancer-specific

hypermethylation [20]. Our WGBS study of a human

colon cancer identified all genomic regions that changed

from a methylated state in the normal colon to an

unmethylated state in the tumor; 90% of these regions

overlapped known enhancers, and a highly dispropor-

tionate number contained binding sites for the AP-1

transcription factor [21]. A more recent study showed that

DNA methylation changes at enhancer elements were sig-

nificantly better than those at promoters for predicting

gene expression changes of target genes in cancer [22].

WGBS was recently used to show that unmethylated re-

gions were enriched for binding sites for subtype-specific

transcription factors in pediatric medulloblastoma (LEF1

for the WNT subtype and GLI2 for the SHH subtype [23]).

Once an enhancer has been identified by DNA methy-

lation, identification of the specific target gene or genes

whose expression is modulated by that enhancer can be

challenging because the target genes can be thousands

to millions of base pairs away from the enhancer. A

study using chromatin conformation sequencing (ChIA-

PET) to study enhancer/promoter interactions found

that the median distance between an enhancer and a

promoter was approximately 50 kb, and that at least 40

% of enhancers skip one or more annotated genes to find

their target promoter [24]. The ChIA-PET dataset was

used in conjunction with DNA methylation and RNA-

seq data from breast cancer cases in The Cancer Gen-

ome Atlas (TCGA) to identify enhancer/promoter pairs

in vivo [25]. Other reports have also shown that methy-

lation of distal regulatory sites is closely related to gene

expression levels across the genome [26]. Here, we

present a statistical framework for identification of

cancer-specific enhancers and paired gene promoters,

and use it to investigate approximately 3,000 cases from

11 tumors types in the TCGA ‘Pan Cancer’ analysis set

[27]. Our R software package, ELMER, uses only methy-

lation and expression data, and does not require any

chromatin conformation or ChIP-seq data. Furthermore,

by identifying transcription factor binding motifs present

within enhancers, and incorporating expression patterns

of upstream transcription factors, ELMER is able to infer

transcription factor networks activated in specific cancer

subtypes. This work suggests a general approach for iden-

tifying in vivo transcription factor networks and the asso-

ciated regulatory control sequences altered in cancer.

Results
Identifying cancer-specific DNA methylation changes in

distal enhancer regions for 10 cancer types

To identify cancer-specific changes in DNA methylation,

we obtained 3,381 DNA methylation datasets for 11

types of primary tumors from the TCGA Pan Cancer

analysis set [27]. The cancer types we included in our

analyses were leukemia (LAML), lung adenocarcinoma

(LUAD), lung squamous cell carcinoma (LUSC), kidney

renal clear cell carcinoma (KIRC), bladder urothelial car-

cinoma (BLCA), uterine corpus endometrioid carcinoma

(UCEC), glioblastoma (GBM), head and neck squamous

cell carcinoma (HNSC), breast cancer (BRCA), colon

adenocarcinoma (COAD), and rectal adenocarcinoma

(READ). Based on previous TCGA studies [28], COAD

and READ are very similar and are often combined for

analyses. Therefore we combined these two cancer types

(indicated herein as CRC), resulting in 10 different pri-

mary tumor types. The TCGA ID numbers for all sam-

ples can be found in Additional file 1.

The DNA methylation datasets were produced using

the Illumina Infinium HumanMethylation450 (HM450)

BeadChip platform. The HM450 array allows the inte-

gration of more than 485,000 methylation sites at single-

nucleotide resolution, covering 96 % of CpG islands and

99 % of RefSeq genes in the human genome. We used

TCGA Level 3 data, which are normalized using

platform-specific internal controls, and mask out probes

for failure/SNP/repeats on the HumanMethylation450

array. Then, because we focused on distal enhancers, we

selected only those probes that are greater than +/- 2 kb

from a known TSS (defined using GENCODE v15 [29],

resulting in a set of 145,265 distal probes. We next

wanted to limit the number of candidate probes tested,

so we filtered based on two large enhancer databases.

While these databases do not include a large number of

primary tumors, they do include cancer cell lines and a

large number of cell types. The largest enhancer set

came from a combination of enhancers from the
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Roadmap Epigenomics Mapping Consortium (REMC) and

the Encyclopedia of DNA Elements (ENCODE) Project, in

which enhancers were identified using ChromHMM [30]

for 98 tissues or cell lines [2, 9, 31]. We used the union of

genomic elements labeled as EnhG1, EnhG2, EnhA1, or

EnhA2 (representing intergenic and intragenic active en-

hancers) in any of the 98 cell types, resulting in a total of

389,967 non-overlapping enhancer regions. A total of

101,918 distal probes from the HM450 array overlapped

with these enhancer regions. We also downloaded from

FANTOM5 enhancers having associated eRNAs for 400

distinct cell types [32]. The set of FANTOM5 enhancers

(43,011) was much smaller than the set of REMC/EN-

CODE enhancers and only added an additional 600

probes, resulting in a total of 102,518 distal probe re-

gions that overlapped with a previously identified en-

hancer region (Fig. 1a). This set of 102,518 distal

enhancer probes (Additional file 2) included at least

one CpG for 15 % of all enhancers in our annotation

set, suggesting that the HM450k array can be used to

sample a meaningful subset of enhancers genome-wide.

It also included the majority (70 %) of all 145,265 distal

probes on the array, so we believe that the analysis de-

scribed below covers the vast majority of identifiable

enhancers based on the HM450k array design. The

ELMER R package also allows a complete search of all

distal probes on the array, without filtering out the 30 %

not associated with any known enhancer.

To identify enhancers that displayed cancer-specific

changes in DNA methylation, we applied a t-test to

identify enhancer probes that were significantly hyper-

methylated or hypomethylated within tumor samples of

each cancer type, relative to TCGA adjacent normal

samples from the same tissue (Fig. 1b; see Methods for

Fig. 1 Identifying cancer-specific DNA methylation changes in distal enhancer regions. a Out of 145,265 distal probes on the HM450k platform,

102,518 were contained within our annotated enhancer regions (with approximately 1/8 of all distal enhancers being covered by at least one

probe). b The statistical method used to identify probes hypomethylated (or hypermethylated) in cancer (see Methods for additional details). The

heatmap in the top panel shows the DNA methylation level at each probe pi for each sample from a particular cancer type (either an adjacent

normal, or a tumor). Each cell is a methylation β value, reflecting the fraction of methylated DNA molecules at each CpG probe. The remainder of

the panel illustrates our statistical test, which compares only the most extreme 20 % of normal samples to the most extreme 20 % of tumor samples,

in order to identify probes hypomethylated in only a subset of tumors. (c) Shown is a histogram representing the number of cancer-specific

hypomethylated (top graph) or hypermethylated (bottom graph) distal enhancer probes identified for each cancer type. The fraction of these

probes shared by one or more other tumor types is indicated by the color bars (1 indicates that the probe is hypomethylated in only that

tumor type, 2 indicates that it is hypomethylated in one other tumor type, and so on)
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details); a list of the identified hypermethylated or hypo-

methylated enhancer probes for each tumor type can be

found in Additional file 3. We identified many more

hypomethylated enhancer probes than hypermethylated

probes for each of the 10 cancer types (Fig. 1c). Interest-

ingly, most of the probes showing DNA methylation

changes were found to have similar changes in DNA

methylation in more than one cancer type. However,

some probes were uniquely hypermethylated or hypo-

methylated in only one of the 10 tumor types. We note

that it is not possible for us to be certain that the adja-

cent tissues collected by TCGA correspond to the same

cell type from which the cancer arose, and therefore

some of these methylation changes may correspond to

tissue-specific differences rather than changes arising in

the cancer. However, these differentially methylated

probes are only candidates, as the next steps of ELMER

(described below) use differences across all normal and

tumor tissues (of the same cancer type) to determine

true regulatory interactions.

Linking methylation-affected enhancers to gene

expression

Although we identified approximately 100,000 enhancer

probes that showed DNA methylation changes, it was

not clear if all of these enhancers were actually involved

in regulating gene expression. Previous studies have

shown that only a portion of genomic regions classified

as enhancers by chromatin marks or recruitment of his-

tone acetyltransferases show activity in various assays

[33, 34]. In addition, it is difficult to know which gene is

regulated by each enhancer since enhancers can work

from a distance, in either orientation, and do not neces-

sarily regulate the closest gene. For example, in a ChIA-

PET study using an antibody for RNA polymerase II, Li

et al. [24] identified approximately 20,000 to 30,000

enhancer-promoter loops in MCF7 or K562 cells. Of

these, more than 40 % of the enhancers skipped over the

nearest gene to loop to a farther one. In order to identify

target genes regulated by the distal regulatory elements,

we analyzed expression data (RNA-seq) for 10 genes up-

stream and 10 genes downstream from each distal regu-

latory element; these 20 nearby genes constituted

candidate gene targets. We preferred this method rather

than those that evaluate all genes within a fixed-length

genomic window, because the statistical power is con-

trolled for the large degree in variation in gene density

across the genome. Because not all TCGA samples had

matched gene expression datasets, we selected the 2,841

TCGA samples that had matched gene expression

(RNA-seq) and HM450k DNA methylation data (in

Additional file 1). Although we realize that this method

cannot identify target genes that are farther than ten

genes away or on different chromosomes, we anticipated

that many of the enhancers would regulate a gene within

this distance [5]. Genes that are positively regulated by

the enhancers should show a negative correlation between

the DNA methylation level of the probe and expression of

a putative target gene. We identified statistically signifi-

cant CpG probe-gene pairs by comparing expression of

the candidate gene in the upper vs. the lower quintile of

samples, as measured by enhancer probe methylation. For

this and all other downstream analyses, we included both

normal and tumor samples, and only included samples

within an individual cancer type (for example, UCEC), to

avoid effects of tissue-specific differences and potential

batch effects. We did not explicitly require expression

changes between normal and tumor samples, because the

number of normal samples with expression data were

often quite limited. However, most genes identified did in

fact show expression changes in the expected direction

(downregulated for hypermethylated enhancers, and up-

regulated for hypomethylated enhancers; see the ‘tumor

vs. normal expression’ worksheet in Additional file 4). To

compare methylation quintiles vs. expression, we used a

non-parametric U test, calculating an empirical P value

using randomly assigned permutations of the methylation

probe tested, and kept all pairs with an empirical P value

<0.001 (Fig. 2a; see Methods for details). An example of

one probe and its relationship to the expression of the 20

nearby genes in UCEC is shown in Fig. 2b. In this case,

the probe showed an inverse correlation of methylation

with expression of TFAP2A, which was the nearest gene

upstream of the probe (approximately 7 kb away). A list of

all putative enhancer-gene interactions can be found in

Additional file 4.

Using this method, we identified a total of 11,972

hypomethylated probe-gene pairs and 2,308 hyper-

methylated probe-gene pairs in the set of 10 tumor types

(Fig. 3a), with the number of hypomethylated probe-

gene pairs ranging from 499 to 3,847 in different tumor

types, and the number of hypermethylated probe-gene

pairs ranging from 119 to 464 (see Additional file 5 for a

breakdown by type). Analysis of the probe-gene pairs re-

vealed that most of the identified pairs were only found

in one cancer type, suggesting that each enhancer regu-

lates a specific gene in a tumor type-specific manner

(Fig. 3a). Because some enhancers contained two or

more probe features, we clustered probes that were

within 500 bp of each other into 6,068 hypomethylated

and 1,288 hypermethylated enhancer regions. Each en-

hancer was associated with an average of 1.0 to 1.7

genes, depending on tumor type, and each gene was as-

sociated with an average of 1.2 to 2.1 enhancers (Fig. 3b).

Our work is consistent with previous studies indicating

that distal elements commonly loop to or are associated

with expression from 1 to 3 promoters [35]. Although

the enhancer-gene pairs that we identified were highly
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specific for a certain tumor type, we found that approxi-

mately 34 % of the genes identified as regulated by a

hypomethylated probe and approximately 17 % of the

genes identified as regulated by a hypermethylated probe

were targets in more than one tumor type (Fig. 3a), sug-

gesting that a gene could utilize different enhancers in

different tumor types for cancer-specific regulation.

To further investigate the relationships between puta-

tive enhancers and linked target genes, we determined

the frequency with which the probe-gene pairs we iden-

tified were separated by specific distances using window

sizes of 50 or 200 kb (Fig. 4a). We found that both hypo-

methylated and hypermethylated probe-gene pairs were

more frequent than random in the first 50 kb window,

with hypermethylated pairs more dramatically so. A pre-

vious study using HiC to identify promoter-enhancer

loops found that approximately 25 % of enhancer-

promoter pairs were within a 50 kb range and

approximately 75 % spanned 100 kb or larger genomic

distance, with a median distance of 124 kb [36], whereas

a recent study using in situ HiC identified contact do-

mains ranging in size from 40 kb to 3 Mb, with a me-

dian size of 185 kb [37]. We then selected the set of

probe-gene pairs where a single enhancer was only

linked to a single gene (the great majority), and deter-

mined how often the linked gene corresponded to the

nearest TSS. In previous studies, enhancers have been

shown to loop to the nearest promoter only 27 % to 40

% of the time, skipping over the nearest TSS to loop to

promoters farther away [24, 35]. We found that only ap-

proximately 15 % to 30 % of the time did the correlated

gene correspond to the nearest TSS, with the percentage

being higher for hypermethylated probe-gene pairs than

for hypomethylated probe-gene pairs (Fig. 4b). This was

significantly higher than the frequency of an enhancer

being linked any other farther away gene (4 % to 8 %);

Fig. 2 Linking differentially methylated probes to expression of nearby genes. a Shown is an illustration of the method used to associate each

differentially methylated enhancer probe with one or more genes based on gene expression (see Methods section for additional details). For

each of n probes identified as hypomethylated in a given cancer type (shown as blue circles), 10 genes upstream and 10 genes downstream

were considered, yielding 20n statistical tests, one for each probe-gene pair. Each statistical test is performed across the complete set of normal

and tumor samples within a particular cancer type. For instance, we show a scatterplot to illustrate such a test across the 258 endometrial (UCEC)

tumor samples and 10 UCEC adjacent normals, showing the desired inverse correlation between methylation (x axis) and expression of the

nearby gene (y axis). A Mann-Whitney U test was then performed, with the null hypothesis that the gene expression of group M samples is less

or equal to that of group U samples. The U group consists of the 20 % least methylated samples for probe Pi, and the M group consists of the

top 20 % most methylated. The raw P value (pr) was compared to a permutation-based distribution of null P values, generated by performing

10,000 U tests between the actual gene Gj and DNA methylation a randomly selected distal non-enhancer probe. The empirical pe value was

calculated by the rank of pr within the 10,000 trials. b Each scatter plot shows the methylation level of an example probe cg09606832 in all UCEC

samples plotted against the expression of one of 20 adjacent genes. Only one gene, TFAP2A, shows a significant pe indicating negative correlation,

and is considered the linked gene
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because there was no selection for our statistical test to

link to the nearest gene, the disproportional number of

first-gene linkages gave us confidence that many or most

of our linkages were true cis-regulatory links, including

those that linked to more distant genes. If the linked

gene did not correspond to the nearest TSS, there was

very little preference to link to a nearby gene; the one

exception was that hypermethylated enhancers were

more likely to link to either the closest or second closest

gene. This analysis is shown individually for each of the

10 tumor types in Additional file 6.

As indicated above, many of the genes that we identi-

fied as linked to enhancers with cancer-associated DNA

methylation differences were actually identified in more

than one cancer type, suggesting that they may have

some common function in tumor initiation or progres-

sion. We selected all genes linked to an enhancer probe

in more than one cancer type and performed a Gene

Ontology enrichment analysis (Fig. 5). The 1,959 genes

linked to hypomethylated (activated) enhancer probes

correspond to genes upregulated in cancer, and the 284

genes linked to hypermethylated (inactivated) probes cor-

respond to genes downregulated in cancer. Interestingly,

we found that genes linked to hypermethylated (inacti-

vated) enhancers were genes involved in development and

differentiation. In contrast, genes linked to hypomethy-

lated (activated) enhancers were classified as involved in

the cell cycle and other cellular processes. Accordingly, we

have identified known tumor suppressors (for example,

TSG1, RBM6, SPRY2, CDKN1A, and UBE4B) in the set of

genes potentially regulated by the hypermethylated en-

hancers and known oncogenes and cancer-associated

genes (for example, MYC, TERT, ERBB3, ERBB4, FGFR3,

VEGFA, CDK7, and CCND1) in the set of genes poten-

tially regulated by the hypomethylated enhancers.

Identification of regulatory TFs in each cancer type

Changes in methylation status of an enhancer region can

be due to gain (for hypomethyated enhancers) or loss

(for hypermethylated enhancers) of site-specific tran-

scription factors. To obtain insight into which site-

specific TFs may be involved in setting the tumor-

specific DNA methylation patterns, we examined the

correspondence between cancer-specific hypermethy-

lated or hypomethylated probes and known regulatory

factor recognition sequence motifs. We used a combined

set of motifs present in the JASPAR-Core [38] and Fac-

torBook [39] datasets. We selected the enhancer probes

that were identified in probe-gene pairs (using a cutoff

of 0.001), then used the +/-100 bp sequence around each

probe to search for instances of the 145 transcription

factor motifs. We calculated the frequency of each motif

within the hypomethylated (or hypermethylated) probe

set for a given cancer vs. the frequency of the motif

within the entire enhancer probe set. An odds ratio

(OR) was calculated from these two frequencies, and

only those motifs with an OR greater than 1.1 (at a con-

fidence interval of 95 %) were selected as enriched

within the given cancer type (motifs with less than 10 in-

stances within the given probe set were excluded). All

enriched motifs are listed in Additional file 7. For hyper-

methylated loci, we found that many of the identified

motifs (such as E2F, EGR1, NRF1, Sp1) were associated

with promoter regions (Additional file 8), suggesting that

many of the hypermethylated loci may actually corres-

pond to previously uncharacterized promoter regions.

This likely accounts for the relatively high percentage of

hypermethylated probe-pairs that showed linkage to the

nearest annotated gene (Fig. 4b), which could reflect

RNA-seq tags from the unannotated transcript isoform.

Because many of the hypermethylated cases might not

represent true distal enhancers, and because some may

in fact be the result of cancer-related CpG Island pro-

moter hypermethylation [14], we focused the remaining

analyses on the 38 motifs found to be enriched within hypo-

methylated loci (Fig. 6a). Some of these motifs were com-

mon to various different cancers, such as AP1, which was

enriched within nine of the 10 cancer types. Many motifs

were more enriched in two or more specific tumor types,

while others were limited to a single type, such as of GATA

in BRCA, TP53/TP63 in LUSC, and HNF1A/B in UCEC.

Different members of a TF family have very similar

DNA binding domains that can bind very similar or

identical motifs. For example, we have previously shown

that GATA1 and GATA2 bind to the same regulatory re-

gions [40] and that members of the E2F family can bind

to the same promoters [41]. Thus, identification of a

motif does not uniquely identify the TF that binds

in vivo to a region containing that motif. However, there

is evidence to support the hypothesis that expression

levels of a particular TF can correlate with levels of de-

methylation and subsequent gene expression [18, 42, 43].

To discover which members of a TF family are likely to be

responsible for binding in vivo to the hypomethylated en-

hancer probes identified above and regulating expression

of their putative target genes, we analyzed the correlation

between the probes containing a particular motif and ex-

pression of all known TFs (Fig. 6b, left). We ranked all the

TFs by the degree to which their expression inversely cor-

related with the methylation status of the enhancers con-

taining the motif (Fig. 6b, right), which allowed us to

determine the family member most likely to be involved

in regulation of the putative target genes in that particular

cancer. For example, the GATA motif was enriched in (ex-

pression-linked) enhancer probes in BRCA samples

(Fig. 6a). There are six members of the GATA family, with

different members being linked to different differentiation

phenotypes. For example, GATA1–3 have been linked to
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Fig. 3 Comparison of probe-gene pairs between the different cancer types. a For the hypomethylated (top) and hypermethylated (bottom)

probe-gene pairs, shown are pie charts that indicate the percentage of probe-gene pairs, probes, and genes that are present in one (purple) or

shared by more than one of the 10 cancer types. b Using all probe-gene pairs, the distribution of the number of genes per enhancer (top) and the

number of enhancers per gene (bottom) is shown for each individual cancer type. The mean of each is shown as a number within the bar plot

Fig. 4 Physical characteristics of the probe-gene pairs. a A histogram of probe-gene distances for all pairs with a hypomethylated (green) or

hypermethylated (yellow) probe. Shown is the distribution of the distance between linked distal enhancer probes and genes. The X-axis shows

distances in bins of 50 kb or 200 kb. The Y-axis shows the proportion of all probe-gene pairs in the category (hyper- or hypomethylated) that fall

into each range. These were compared to randomized datasets (gray bars), which were generated by randomly selecting 1,000 probes from the

full set of 145,265 distal probes, and randomly pairing each with one of its 20 adjacent genes. We generated 1,000 such datasets to generate 95

% confidence intervals for each bin (+/-1.96* SD). b For each probe in a probe-gene pair, the 20 adjacent genes were ranked by distance, and

shown is the proportion of all probes linked to genes of a given rank. For this analysis, probes linked to more than one gene and multiple probes

linked to the same gene, were omitted
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Fig. 5 (See legend on next page.)
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the specification of different hematopoietic cell fates and

GATA4–6 are involved in differentiation of cardiac and

lung tissues [44–49]. GATA3 is one of the most highly

enriched transcription factors in the mammary epithe-

lium, has been shown to be necessary for mammary cell

differentiation, and is specifically required to maintain the

luminal cell fate [48, 49]. Studies of human breast cancers

have shown that GATA3 is expressed in early stage, well-

differentiated tumors but not in advanced invasive can-

cers. In addition, GATA3 expression is correlated with

longer disease-free survival and evidence suggests that it

can prevent or reverse the epithelial to mesenchymal tran-

sition that is characteristic of cancer metastasis [50]. Not

surprisingly, our analysis of the correlation of the methyla-

tion of the GATA motif-containing hypomethylated

probes identified GATA3 as the most likely member of

the GATA family to be responsible for the observed hy-

pomethylation of GATA-containing enhancers in the

BRCA samples (Fig. 6b). Not only was GATA3 the sec-

ond most correlated transcription factor overall, but

the extent of correlation made it easily distinguishable

from other members (GATA3 had a U test P value less

than 10−40, vs. P values greater than 10−5 for all other

GATA family members). Furthermore, expression of

GATA3 and methylation of GATA-containing enhancer

probes were co-linked to breast cancer subtypes. As

shown using color-coding in the Fig. 6b scatterplot, Lu-

minal tumors had high expression of GATA3 and low

methylation of GATA-containing enhancer probes,

while Basal-like subtype tumors showed the converse.

Figure 6c shows an example of one of these GATA-

containing enhancer probes (cg1396202), along with

the target gene (CCND1) predicted by expression to be

regulated by this putative enhancer. ENCODE ChIP-

seq data in the Luminal-subtype MCF7 cell line con-

firm that this putative enhancer region is indeed bound

by GATA3, confirming the relationship between tran-

scription factor binding and demethylation shown in

[25]. This case was among the easier to detect, since

breast cancer has two large subtypes (Luminal and

Basal-like), which are molecularly quite distinct and are

increasingly seen as two different diseases. As with all

cancer genomic approaches, rarer subtypes will require

larger number of samples to be identified by ELMER.

Nevertheless, our results on other more challenging

cancer types were also promising, as described below.

The same correlation analysis was performed for all

motifs enriched in hypomethylated enhancer probes,

and the most highly correlated member of the TF

family expected to bind to each motif was identified

(Additional files 9 and 10). In all, we identified 38

enhancer-TF pairs in the 10 tumor types. Although

some of these TFs have previously been implicated in

tumor development in the cancer type in which they

were identified (for example, GATA3 in BRCA), many

other associations were novel and provide new hy-

potheses regarding basic cancer biology and new po-

tential targets for cancer prevention and treatment. In

order to investigate potential clinical relevance of the

new TF networks identified, we searched for cases

where the TF found to be overexpressed in a subset of

cases was also linked to patient survival. Our TF fam-

ily member analysis showed that RUNX1, RUNX2,

and RUNX3 were all within the top 5 % of TFs corre-

lated with hypomethylation of RUNX-containing en-

hancer probes in clear cell renal carcinoma (KIRC)

(Fig. 7)a, b. Of these, RUNX1 and RUNX2 were very

highly correlated, with RUNX3 being only moderately

so (Fig. 7)a, b. When we investigated patient survival

in KIRC, RUNX1 and RUNX2 had highly significant

associations with poor survival outcome after control-

ling for other co-variates, while RUNX3 was more

marginal (Fig. 7c and Additional file 11A). These re-

sults suggest that the identification of specific TFs

based on enhancer methylation analysis may lead to

new insights into tumor classification and clinical

outcomes (other identified TFs with association to

survival are listed in Additional file 11B).

Discussion

In our studies, we have used tumor-specific changes of

the DNA methylation status within distal enhancer re-

gions to provide insight into the mechanisms of gene ex-

pression, transcription factor networks, and tumor

classification. We have shown that this can be a power-

ful approach for generating hypotheses about master

regulators in cancer, and we propose that ELMER ana-

lysis be applied along with other hypothesis-generating

approaches in high throughput cancer genomics. For the

TCGA Pan-Cancer dataset, we provide to the commu-

nity prioritized lists of putative enhancer-target gene

pairs for future validation, and lists of site-specific

(See figure on previous page.)

Fig. 5 Gene Ontology (GO) enrichment analysis for genes identified in more than one cancer type. All genes identified in more than one cancer

type by probe-gene pairs were analyzed for enrichment in particular GO categories, using the TopGO program. Activated genes (associated with

hypomethylated enhancer probes) are shown in (a) and inactivated genes (associated with hypermethylated enhancer probes) are shown in (b).

All GO categories with an adjusted enrichment P value of less than 0.01 (indicated next to the category name) and fold change more than 1.5

are included in the figure, and categories within the same biological process (color) are ordered by enrichment fold change (shown on the x axis).

The adjusted enrichment P values are labeled in white in the graph
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Fig. 6 Identification of enhancer sets predicted to be co-regulated by the same transcription factor. a For 38 motifs enriched within hypomethylated

probe-gene pairs in one or more cancer types, we calculated the 95 % confidence interval (CI) for the motif enrichment odds ratio; the lower bound

of the 95 % CI is shown for each cancer type in the heatmap. b An illustration of the method for linking sets of enhancers with the same motif to an

upstream TF regulator (see Methods for additional details). For each of the 38 (m) enriched motifs identified in panel (a), the average DNA methylation

at all distal enhancer probes having that motif (in a specific tumor type), was compared to the expression levels of each of 1,777 (k) human

TFs (Additional file 17). One such pair is shown as a scatter plot of all breast cancer (BRCA) tumor and adjacent normal samples, for the GATA

motif and the GATA3 TF. BRCA samples (660) are color coded by integrated molecular subtypes defined by the TCGA Pan Cancer project, and

extremes are selected as the 20% of samples with the lowest methylation (U) and the 20% with the highest methylation (M). A Mann-Whitney

U test was performed to obtain the raw P value (pr). All 1,777 TFs were then ranked by pr (plot at upper right), and the top 5% of the ranked

TFs (dashed blue line) were considered to be significantly associated. The top three ranked TFs, along with each member of the specific DNA-

binding family (in this case, GATAs) are labeled. Additional file 10 contains ranked TF plots for all motifs and all cancer types. c One of the 230

hypomethylated probe-gene pairs in BRCA containing a GATA motif corresponds to a downstream enhancer of the CCND1 gene. ENCODE

ChIP-seq data in the Luminal-subtype MCF7 cell line verify that this enhancer is bound by the ELMER-predicted GATA3 TF
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transcription factors that should be further investigated

for their role in the development and progression of spe-

cific tumor types.

Starting with a set of approximately 100,000 distal en-

hancer probes, we identified tens of thousands of enhan-

cer regions that showed changes in methylation status in

primary human tumors (Fig. 8). We identified many

more hypomethylated (ostensibly activated) enhancers

than hypermethylated (ostensibly deactivated) enhancers

and have focused mainly on the hypomethylated en-

hancers in this study. We identified from 5,147 to

26,787 hypomethylated probes in different tumor types,

corresponding to between 4,841 and 21,374 distinct en-

hancer regions. However, only a smaller subset of these

hypomethylated enhancer probes (a total of 6,559 for all

tumor types combined) could be linked to a putative

target gene (based on expression levels of the 10 nearest

genes upstream and 10 nearest genes downstream of the

enhancer), ranging from a low of approximately 200

enhancer-putative target gene pairs in acute myeloge-

nous leukemia to approximately 4,000 enhancer-putative

gene pairs in lung cell squamous carcinomas. We feel

that the expression filtering step is important for identi-

fying those regions truly associated with enhancer-

specific methylation, as other long-range methylation

changes (such as global hypomethylation [14]) may also

affect enhancer probes.

We found that most of the putative linkages between

enhancer probes and local gene expression were cancer

type-specific and that within each cancer type, most en-

hancers correlated with the expression of only one gene.

In keeping with previous looping studies, we found that

Fig. 7 High RUNX1 expression is associated with poor survival in clear cell renal carcinoma. a Shown are scatter plots for the average DNA

methylation at hypomethylated-paired probes containing a RUNX motif, plotted against expression for RUNX family members RUNX1, RUNX2,

and RUNX3. The number (and percentage) of hypomethylated-paired probes having a RUNX motif in each cancer type is indicated underneath

the name of each cancer type. b The ranked TF plot, as described in Fig. 6, is plotted for the RUNX motif in clear cell renal carcinoma (KIRC);

RUNX1, RUNX2, and RUNX3 are all within the top 5 % (dotted line) of all TFs. (c) Kaplan-Meier survival curves for TCGA KIRC samples, stratified by

expression of RUNX1 (left), RUNX2 (middle), or RUNX3 (right). In each plot, the survival data for patients having tumors with the highest (top 30

%) vs. lowest (bottom 30 %) expression for the given RUNX family member is shown; the Log-Rank test P value between the high and low groups

is indicated
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the putative target gene was typically not the nearest gene.

In fact, the gene identified was the nearest gene in only

approximately 15 % of the hypomethylated enhancer-gene

pairs. As in other studies [51, 52], we found that the set of

all hypomethylated enhancers was composed of similar

proportions of intragenic and intergenic enhancers. We

found that as compared to the intergenic enhancers, intra-

genic enhancers were 75 % more likely to be linked to ex-

pression of the nearest TSS (which in 88 % of the cases

was the gene in which it resided); see Additional file 12.

An intragenic enhancer can loop to regulate the ‘up-

stream’ promoter of the gene in which it resides but could

also act as alternative promoter. Although we have elimi-

nated all known promoters from our set of distal probes,

we cannot eliminate the possibility that some of the intra-

genic enhancers represent as-of-yet unannotated, tumor-

specific alternative promoters for the gene in which they

reside [53, 54].

Our linking method is based strictly on correlation

and therefore cannot absolutely rule out indirect (trans)

interactions. For instance, if the same transcription fac-

tor or set of factors regulate both enhancer X and en-

hancer Y, the methylation patterns of X and Y across

samples may be so similar that we link enhancer X to a

gene that is in fact the direct target of enhancer Y. We

have used high-confidence statistical thresholds in order

to rule out as many of these indirect interactions as pos-

sible. Our search within the nearest 20 genes is un-

biased, so the fact that we disproportionally find linkages

to the gene nearest the enhancer probe provides strong

evidence that we are identifying true direct (cis) interac-

tions. We have provided a robust set of predicted link-

ages that can serve as a starting point for future

experimental validations. Of course, we realize that we

are working under a largely untested assumption that

anti-correlation between an enhancer and expression

level of a nearby gene indicate functional regulation.

While this and prior correlative studies [22, 23, 25] pro-

vide strong supporting evidence for this, further experi-

mental studies (for example, using CRISPR/Cas9 to

Fig. 8 Identification of in vivo TF networks, including upstream TFs and downstream enhancers and gene targets. The innermost black circle

represents the 102,518 distal enhancer probes from the HM450 platform. The next level (labeled Hypo) shows the number of hypomethylated

distal enhancer probes identified in each cancer type. The third level (labeled Paired hypo) shows the number of hypomethylated probes that

were significantly linked to a putative target gene in each cancer type. The number in the outermost level corresponds to the number of putative

target genes (each linked by expression level to a specific hypomethylated enhancer) predicted to be regulated by the indicated TF (fourth level);

where multiple TF family members were identified, only the most strongly associated family member is listed
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delete the enhancers in appropriate tumor cell lines,

followed by RNA-seq) will be needed to determine with

certainty that the enhancers regulate their putative target

genes, and what degree of correlation is required to infer

functionality. Similarly, a comparison between our pre-

dicted enhancer-target pairs and global analysis of long-

range chromatin looping would be of interest. Unfortu-

nately, chromatin conformation assay data are not avail-

able for any of the tumor tissue samples and, in fact,

very few studies of global chromatin looping have been

completed for cancer cell lines. However, we have identi-

fied a set of chromatin loops derived from deep-sequenced

ChIA-PET data from MCF7 cells [24]. Although MCF7

cells are not representative of all breast cancers (and are

cultured cells, not tumor tissues), we did find that 166 of

the 2,038 enhancer probes pairs we identified in breast

cancer tumors (approximately 8%) were also identified as

loops in the MCF7 ChIA-PET data. This was an almost

four-fold enrichment over randomized enhancer probe-

gene pairs (see Additional file 13 for an enrichment ana-

lysis, along with a complete list of BRCA enhancer-gene

pairs falling within loops in MCF7 cells). We note that the

various assays used to study looping are not yet optimized

and do not always identify the same sets of loops [55]; in

addition, some loops may not be related to transcriptional

regulation. Thus, enhancer-gene pairs identified by expres-

sion assays are not necessarily concordant with the sets of

promoter-enhancer loops identified by chromatin confirm-

ation assays. Future comparisons between indirect (that is,

correlative) mapping of enhancer-gene interactions of the

type we described here, with direct physical mapping of

enhancer-gene interactions, will be important to help to re-

solve the different mechanisms involved. However, in

addition to the genome-wide confirmation by ChIA-PET,

we note that at least two of the putative enhancer-gene

pairs from our analysis have been studied in functional

models confirming our results. The putative CCND1 en-

hancer we identified in breast tumors (Fig. 6c) was shown

to directly regulate the CCND1 gene in response to estra-

diol in breast cancer cells [56] and a putative MYC enhan-

cer we identified in colon tumors (Additional file 14) was

shown to be directly responsible for MYC expression in

colon cancer cells [57], and in vivo in a mouse model of

colorectal cancer [58].

We realize that the relationship between TF binding

and DNA methylation can be complex [18]. For ex-

ample, reduced DNA methylation in an enhancer region

in a tumor cell relative to a normal cell could allow a TF

to bind and regulate a target gene in a tumor-specific

manner without changes in the expression level of that

TF in the tumor. However, it is likely that increased

levels of a TF in a tumor can result in higher binding at

a partially methylated enhancer, directly leading to loss

of DNA methylation [17]. Based on this second

mechanism, we have attempted to identify TFs that

regulate the target genes of enhancers that are hypo-

methylated in tumors. First, we identified a list of site-

specific TF binding motifs that are enriched within the

enhancers linked to putative target genes. Then, by

examining the expression patterns of each of the TF

family members expected to bind to these motifs, we

have predicted the TF that regulates specific sets of

genes in the different cancer types (Fig. 8). For example,

in bladder cancer (BLCA) we have provided a list of 65,

208, and 65 genes that may be regulated by POU3F1,

FOXA1, or CEBPA, respectively, by binding to a specific

hypomethylated enhancer. In all, utilizing enhancer

methylation patterns, expression of putative target genes,

motif enrichment, and expression of TF family members

that bind to the motif, we have derived a list of 4,280

enhancer-TF-putative target gene linkages.

Some of the cancer type-specific TF networks we show

in Fig. 8 are already known to have a functional role in

the same tumor type, such as PU.1 in AML [59] and

TCF7L2 in colorectal cancer [28, 60–63]. Two of the

four TFs we identified in squamous cell lung cancer

(LUSC), TP63 and SOX2, are oncogenes that are overex-

pressed in LUSC through genomic amplification [64,

65]. Recently, SOX2 and TP63 were shown to interact

functionally and co-localize to a large number of gen-

omic binding sites in squamous cell lung cancer [66]. In

a number of cases, incorporating TF expression data

allowed us to resolve between different members of the

same family that would be indistinguishable by binding

motif alone. For instance, FOXA1 clearly appears to be

responsible for hypomethylation of FOX-containing en-

hancers in breast (BRCA) and bladder (BLCA) cancers,

while FOXA2 appears to be responsible in endometrial

(UCEC). Other TF networks we identified, such as

RUNX1/2 and its association with poor outcome in kid-

ney cancer, have never been reported and will form the

basis for future studies.

The method we describe herein is based on detecting

methylation and expression differences between samples

of the same tumor type, and is therefore aimed at identi-

fying changes that co-occur within particular subsets of

cases. For instance, we found that GATA-containing en-

hancer hypomethylation occurred primarily in the subset

of breast cancer cases belonging to the Luminal subtype,

which also had high expression of the GATA3 gene

(Fig. 6b, c). While GATA3 is a well-studied case, our

method can be applied to identify, understand, and find

biomarkers for novel molecular subtypes. Understanding

the genome-wide transcriptional consequences of mo-

lecular subtypes will be particularly relevant for those

that are defined by genetic mutation of transcriptional

regulators; indeed, transcription factors make up the lar-

gest functional class within the list of 127 cancer genes
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with so-called ‘driver’ mutations identified by TCGA

[67]. A number of the altered transcription factor net-

works we identified using ELMER (Fig. 8) were also

present within the 30 or so transcription factors in-

cluded in this TCGA driver gene list. These TFs included

FOXA1, FOXA2, GATA3, NFE2L2, and SOX17. Intri-

guingly, ELMER often identified a particular TF in the

same cancer type or types where it is most frequently

mutated. For instance, FOXA1 is most frequently mu-

tated in Breast and Bladder cancer, and ELMER identi-

fied it in these specific cancers. Likewise, FOXA2 and

SOX17 are primarily mutated in endometrial cancers,

and ELMER identified network alterations specifically in

this cancer type (UCEC). NFE2L2 is most frequently

mutated in lung squamous cell carcinoma (LUSC), the

same cancer type where ELMER detected NFE2L2 alter-

ations. It will take additional work to understand the re-

lationship between genetic mutations of TFs and

epigenetic/transcriptomic changes in each of these dif-

ferent examples, but the identification of important can-

cer driver genes underscores the power of studying

enhancers, which sit at the cis-regulatory interface be-

tween transcription factors, epigenetic modifiers, and

downstream effector genes.

We also note that in some cases, transcription factors

that are not expected to bind to the specific motif being

analyzed were identified as being highly correlated with

the degree of enhancer hypomethylation. In all, we iden-

tified 186 TFs frequently correlated with multiple motifs

that do not correspond to the known motif for that TF

family (Additional file 15). These correlations could be

due to indirect effects caused by TF networks. For ex-

ample, transcription factors regulated by GATA3 may

show a similar correlation of expression with the hypo-

methylated probes in BRCA as does GATA3 itself. An-

other possible cause is suggested by the case of AP-1.

Our results indicate that hypomethylation of AP-1-

containing enhancers is a common feature of many or

most cancer types (including nine of our 10 cancer

types, see Fig. 6a); this confirms our earlier whole-

genome observations in colorectal cancer [21]. While

the AP1 motif is classically described as a binding se-

quence for FOS/JUN dimers, it is found to be enriched

in many ChIP-seq datasets, including those using anti-

bodies that recognize factors other than FOS or JUN

family members [68]. Phosphorylation of JUN can lead

to histone acetylation at AP-1 motif-containing en-

hancers by inhibiting their association with the Mbd3

component of the NuRD complex [69]. This could in

turn allow binding of other positive transcriptional regu-

lators, activation of downstream genes, and a prolifera-

tive expression program. Because JUN activity is

regulated post-transcriptionally, it is logical that our

method (which is based on expression) would miss JUN

itself, and instead identify the positive regulators binding

these regions (which are often cell-type specific). For in-

stance, the most strongly associated TF with the AP-1

motif in kidney cancer is RUNX1, while in breast cancer

it is FOXA1, suggesting that many of the AP-1 motif-

containing sites may require AP-1 dependent de-

repression along with positive RUNX1/FOXA activation.

Also included in the list of 186 ‘commonly correlated’

TFs are around 50 zinc finger domain-containing TFs

(known as ZNFs). Although ZNFs are the most abun-

dant class of human site-specific TFs, comprising around

half of all site-specific TFs [70–72], few of them have

been well studied. One of the commonly correlated fac-

tors was ZNF703, which correlated with 16 different mo-

tifs in the BRCA samples. Interestingly, high expression

of ZNF703 has been shown to correlate with poor prog-

nosis in patients with luminal B breast cancer [73]. We

suggest that our analyses can point to a role for other

ZNFs in tumorigenesis. In fact, 11 of the identified ZNFs

showed associations with survival of the cancer in which

they were identified (Additional file 16). For example,

ZNF273 was correlated with four motifs in CRC and

ZNF683 was correlated with nine motifs in KIRC; nei-

ther of these TFs has ever been associated with cancer.

However, there is a strong correlation between high ex-

pression of ZNF273 and ZNF683 with poor survival

rates in colorectal and kidney cancers, respectively. Most

of the time, the 186 ‘commonly correlated’ TFs showed

cancer type-specific correlations. However, one factor

(GRHL2) was identified in the top 1 % of all correlations

for 31 different motifs spread among five of the 10 dif-

ferent cancer types studied. GRHL2 has been shown to

directly bind and activate the hTERT promoter and has

been suggested to be involved in telomerase activation

during cellular immortalization [74]. Perhaps GRHL2

plays an important role in tumor development in many

cancer types.

The results we describe here use motif analysis pri-

marily to help identify the transcription factors respon-

sible for enhancer hypomethylation. However, the most

important output of this work may actually be the iden-

tification of enhancers in which mutations in individual

transcription factor binding sites can be responsible for

cancer risk or cancer progression. A number of studies

have shown that population risk alleles for cancer reside

preferentially in enhancer regions [31, 75–79] and a re-

cent paper demonstrated that these could be identified

in breast cancer by combining DNA methylation and

chromatin conformation capture data to identify puta-

tive enhancers [25]. Somatic enhancer mutations are

predicted to affect cancer progression, although these

have not yet been identified due to the overwhelming

use of exon sequencing as a means to identify new can-

cer mutations. The recent availability of whole-genome
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sequencing of tumors has started to allow the identifica-

tion of non-coding mutations, which have been shown

to affect transcription factor binding sites [80–82].

Methods like ELMER, which can identify in vivo enhan-

cer regions in tumors, will be essential for analyzing

non-coding cancer mutations arising from WGS studies.

Conclusions

Although our study is not comprehensive due to the na-

ture of the DNA methylation platform used by TCGA

(which only contains coverage of 15 % of known en-

hancers) and because enhancers have not yet been

mapped in all normal and tumor cell types, our analyses

have allowed us to identify a number of cancer type-

specific transcriptional regulators, along with the cis-

regulatory sequences mediating effects on target genes.

Large-scale identification of such cis-regulatory regions

will be critical for understanding the effects of non-

coding genetic polymorphisms on cancer risk and non-

coding somatic mutations on cancer progression [28, 59,

60]. Complete tumor methylation profiles using whole-

genome bisulfite sequencing [21, 23, 83] are rapidly be-

coming available, and these will dramatically increase

the power of the ELMER approach to reconstruct

complete transcription factor network and identify im-

portant cis-regulatory regions.

Methods
Availability of source code and R package

All source code is available as an R package, ELMER,

downloadable from the main Bioconductor repository

[84] or from our GitHub repository [85]. Vignettes illus-

trating the use of the functions are available as part of

the BioConductor package, along with an example repli-

cating the results described in this paper using the

ELMER function TCGA.pipe. A user manual and tutor-

ial can be downloaded from the GitHub repository here:

[86], and a full manual can be downloaded here: [87].

DNA methylation and RNA-seq datasets

TCGA level 3 DNA methylation data based on the Illu-

mina Infinium HumanMethylation450 BeadArray plat-

form was downloaded from [88]. Only the samples

whitelisted by TCGA for Pan-Cancer Analysis Working

Group were used in the study. The whitelist can be

downloaded from Sage Bionetworks Synapse [89] with

identifier syn1571603. The version numbers and final

sample IDs for each cancer type are listed in Additional

file 1. The DNA methylation level at each CpG is re-

ferred to as a beta (β) value, calculated as (M/(M+U)),

where M represents the methylated allele intensity and

U the unmethylated allele intensity, which are normal-

ized using the TCGA standard pipeline. Beta values are

in the range of 0 to 1, reflecting the fraction of

methylated alleles at each CpG in the each tumor; beta

values close to 0 indicating low levels of DNA methyla-

tion and beta values close to 1 indicating high levels of

DNA methylation. Since there are no available normal

tissues for acute myeloid leukemia (LAML) and glio-

blastoma multiforme (GBM) in TCGA, we also down-

loaded Infinium HM450K DNA methylation data from

publicly available sources as normal tissue controls for

these two cancer types. A set of 58 sorted glial cell sam-

ples from GEO (accession number GSE41826) was used

as normal reference samples for glioblastoma. A set of

11 sorted blood samples from GEO (accession number

GSE49618) was used for normal reference samples for

leukemia. These data were generated at the USC Epige-

nome Center and were processed through the same data

analysis pipeline that was used to create the TCGA Level

3 data files (all TCGA data were also generated by the

USC Epigenome Center). The sample IDs are also listed

in Additional file 1.

TCGA Level 3 RNA-seq data were downloaded from

[88]. The version number of each package downloaded

is listed in Additional file 1. TCGA uses gene-level ex-

pression values, meaning any alternative isoforms are in-

cluded in a single normalized RSEM expression value.

TCGA data production and analysis pipelines are de-

scribed elsewhere, but a brief description follows: all data

were generated on the Illumina HiSeq platform, with the

exception of UCEC, which was generated on the Illu-

mina GAII platform. Within each cancer type, data were

mapped with MapSplice and quantitated with RSEM

(RNA-seq by Expectation Maximization). RSEM outputs

expression values that are normalized across samples, so

that the third quartile for each sample equals 1,000.

Entrez gene IDs were used for mapping to genomic loca-

tions using GenomicRanges [90]. The final RNA-seq

sample IDs used in our analyses are listed in Additional

file 1.

Selecting enhancer probes

Probes overlapping SNPs are removed as part of the

standard TCGA Level 3 pipeline. Probes located less than

2 kb from an annotated transcription start site in GEN-

CODE v.15 were filtered out to remove promoter regions

from our analysis. ENCODE/REMC chromHMM data

were downloaded from [91] and any HM450 probes fall-

ing within the genomic regions annotated as EnhG1,

EnhG2, EnhA1, or EnhA2 were selected. FANTOM5 data

were downloaded from [92] and any HM450 probes fall-

ing within regions annotated as eRNA were selected. This

resulted in 102,518 enhancer probes, which are listed in

Additional file 2. This functionality is implemented in the

get.feature.probe function of the ELMER BioConductor

package.
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Identifying enhancer probes with cancer-specific DNA

methylation changes

Each of the 10 cancer types was processed independently

to identify cancer-specific DNA methylation changes.

For each enhancer probe, we first ranked tumor samples

and normal samples (within the cancer type) by their

DNA methylation beta values. To identify hypomethy-

lated probes, we compared the lower normal quintile

(20 % of normal samples with the lowest methylation)

to the lower tumor quintile (20 % of tumor samples

with the lowest methylation), using an unpaired one-

tailed t-test. Only the lower quintiles were used because

we did not expect all cases to be from a single molecu-

lar subtype, and we sought to identify methylation

changes within cases from the same molecular subtype.

Twenty percent (that is, a quintile) was picked as a cut-

off to include high enough sample numbers to yield t-

test P values that could overcome multiple hypothesis

correction, yet low enough to be able to capture

changes in individual molecular subtypes occurring in

20 % or more of the cases. This number can be set arbi-

trarily as an input to the get.diff.meth function in the

ELMER package, and should be tuned based on sample

sizes in individual studies. The one tailed t-test was

used to rule out the null hypothesis: μtumor ≥ μnormal,

where μtumor is the mean methylation within the lowest

tumor quintile and μnormal is the mean within the low-

est normal quintile. Raw P values were adjusted for

multiple hypothesis testing using the Benjamini-

Hochberg method, and probes were selected when they

had adjusted P value less than 0.01. For additional

stringency, probes were only selected if the methylation

difference |Δ|= |μnormal - μtumor | was greater than 0.3.

This technique is illustrated in Fig. 1b, and carried out

in the get.diff.meth function of the ELMER package.

The same method was used to identify hypermethylated

probes, except we used upper tumor quintile and upper

normal quintile, and chose the opposite tail in the t-

test. The full set of hypermethylated and hypomethy-

lated probes we identified are provided in Additional

file 3, and can be replicated using the TCGA.pipe vi-

gnette in the ELMER package.

Linking enhancer probes with methylation changes to

target genes with expression changes

For additional stringency and to avoid correlations due

to non-cancer contamination, we selected only those en-

hancer probes that had differential methylation as de-

fined above, and where at least 5 % of all samples

(combining tumor and normal) had beta values >0.3.

Then, for each of these differentially methylated enhan-

cer probes, the closest 10 upstream genes and the closest

10 downstream genes were tested for correlation be-

tween methylation of the probe and expression of the

gene. To select these genes, the probe-gene distance was

defined as the distance from the probe to a transcription

start site specified by the TCGA RNA-seq Level 3 data

files. We used the Level 3 TCGA RNA-seq data files;

these represent expression at the gene level, and merge

any alternate transcript isoforms into a single expression

value for each gene. Thus, exactly 20 statistical tests

were performed for each probe, as follows. For each

probe-gene pair, the samples (all tumors and normals

within a particular cancer type) were divided into two

groups: the M group, which consisted of the upper

methylation quintile (the 20 % of samples with the high-

est methylation at the enhancer probe), and the U group,

which consisted of the lowest methylation quintile (the

20 % of samples with the lowest methylation.) The 20 %

cutoff is a configurable parameter in the get.pair func-

tion of ELMER. We used 20 % as a balance, which

would allow us to identify changes in a molecular sub-

type making up a minority (that is, 20 %) of cases, while

also yielding enough statistical power to make strong

predictions. For each candidate probe-gene pair, the

Mann-Whitney U test was used to test the null hypoth-

esis that overall gene expression in group M was greater

or equal than that in group U. This non-parametric test

was used in order to minimize the effects of expression

outliers, which can occur across a very wide dynamic

range. For each probe-gene pair tested, the raw P value

Pr was corrected for multiple hypothesis using a permu-

tation approach as follows (implemented in the get.-

permu function of the ELMER package). The gene in the

pair was held constant, and 10,000 random methylation

probes were used to perform the same one-tailed U test,

generating a set of 10,000 permutation P values (Pp). We

chose the 10,000 random probes only from among those

that were ‘distal’ (greater than 2 kb from an annotated

transcription start site), in order to make these null-

model probes qualitatively similar to the probe being

tested. We only used non-enhancer probes, as using en-

hancer probes would introduce large numbers of co-

regulated enhancers. An empirical P value Pe value was

calculated using the following formula (which introduces

a pseudo-count of 1):

Pe ¼
num Pp≤Prð Þ þ 1

10001

ChIA-PET analysis

MCF7 ChIA-PET linkage pairs were taken from a previ-

ous publication [24]. The random pairs were generated

by randomly selecting the same number of probes from

the set of distal enhancer probes, and pairing each with

one or more of the 20 adjacent genes; the number of

links made for each random probe was identical to the
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corresponding ‘true’ probe. Thus, the random linkage

set has both the same number of probes and the same

number of linked genes as the true set. One hundred

such random datasets were generated to arrive at a 95 %

CI (+/-1.96* SD).

Gene Ontology (GO) enrichment analysis

Genes associated with hypo- or hypermethylated enhan-

cer probes in more than one cancer type were selected

for GO analysis. GO analyses were performed using the

R package ‘topGO’ [93]. The classic Fisher test was used

to generate enrichment P values. To select the GO terms

that pass a significance cutoff, P values were adjusted

using the Benjamini-Hochberg method; only those GO

terms with a P value <0.01 and a fold change >1.5 are

shown in Fig. 5.

Motif analyses

We used FIMO [94] with a P value <1e–4 to scan a +/-

100 bp region around each probe using Factorbook

motif position weight matrices (PWMs) [39, 95] and Jas-

per core human motif PWMs generated from the R

package MotifDb [96]. For each probe set tested (that is,

the list of gene-linked hypomethylated probes in a given

cancer type), a motif enrichment OR and a 95 % CI were

calculated using following formulas:

p ¼
a

aþ bð Þ

P ¼
c

cþ dð Þ

Odds Ratio ¼
p= 1−pð Þ

P= 1−Pð Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

a
þ

1

b
þ
1

c
þ

1

d

r

lower boundary of 95% confidence interval ¼ exp ln ORð Þ−SDð Þ

where a is the number of probes within the selected

probe set that contain one or more motif occurrences; b

is the number of probes within the selected probe set

that do not contain a motif occurrence; c and d are the

same counts within the entire enhancer probe set. A

probe set was considered significantly enriched for a par-

ticular motif if the 95 % CI of the OR was greater than

1.1, and the motif occurred at least 10 times in the probe

set. As described in the text, ORs were also used for rank-

ing candidate motifs. This analysis is implemented in the

get.enrichmed.motifs function of the ELMER package.

Associating TF expression with TF binding motif

methylation

For each motif considered to be enriched within a par-

ticular probe set, we compared the average DNA methy-

lation at all distal enhancer probes within +/− 100bp of

a motif occurrence, to the expression of 1,777 human

TFs ([97] and with further refinements, see Additional

file 17). A statistical test was performed for each motif-

TF pair, as follows. The samples (all tumors and normal

within a particular cancer type) were divided into two

groups: the M group, which consisted of the 20 % of

samples with the highest average methylation at all

motif-adjacent probes, and the U group, which consisted

of the 20 % of samples with the lowest methylation. The

20th percentile cutoff is a parameter to the get.TFs func-

tion of the ELMER package, and was set to allow for

identification of molecular subtypes present in 20 % of

cases. For each candidate motif-TF pair, the Mann-

Whitney U test was used to test the null hypothesis that

overall gene expression in group M was greater or equal

than that in group U. This non-parametric test was used

in order to minimize the effects of expression outliers,

which can occur across a very wide dynamic range. For

each motif tested, this resulted in a raw P value (Pr) for

each of the 1,777 TFs. All TFs were ranked by the

-log10(Pr), and those falling within the top 5 % of this

ranking were considered candidate upstream regulators.

The best upstream TFs for each of these cases was auto-

matically extracted as high-value candidates, and pre-

sented in Fig. 8. These high-value candidates are also

shown in detail in Additional files 9 and 10.

Survival analyses

A Kaplan-Meier survival analysis was used to estimate the

association of the TF expression with the survival of pa-

tients. For each selected TF and cancer type combination,

tumor samples with the highest (top 30 %) and lowest (bot-

tom 30 %) transcription factor expression were analyzed

using a Log Rank test. Overall survival was calculated from

the date of initial diagnosis of cancer to disease-specific

death (patients whose vital status is termed dead) and

months to last follow-up (for patients who are alive).

Data access

The TCGA samples can be downloaded at https://

tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/

anonymous/tumor/. The whitelist from Pan-Can group

is available on Synapse (https://www.synapse.org/) as

syn1571603. The enhancer genomic coordinates can

be downloaded at http://egg2.wustl.edu/roadmap/data/by

FileType/chromhmmSegmentations/ChmmModels/core-

Marks/jointModel/final/) and http://enhancer.binf.ku.dk/

Welcome.html.

Additional files

Additional file 1: TCGA DNA methylation and RNA-seq sample ID

numbers. The data platform and archive version number are listed in the

sheet named ‘Version number’. The ‘DNA methylation sample ID’ sheet
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provides information concerning the TCGA sample ID, the tissue type

(normal or tumor), and the cancer type for the DNA methylation

datasets. The ‘RNA-seq sample ID’ sheet provides information concerning

the TCGA sample ID, the tissue type (normal or tumor), and the cancer

type for the RNA-seq datasets.

Additional file 2: Distal enhancer probes on the HM450 array. The

chromosomal location and the name of each of the 102,518 distal

enhancer probes used in this study are indicated.

Additional file 3: Hypo- and hypermethylated enhancer probes

identified for each tumor type. Individual worksheets are provided that

list the hypermethylated probes and hypomethylated probes identified

for each specific cancer type.

Additional file 4: Probe-gene pairs showing inverse correlations

between methylation and expression. Individual worksheets are

provided that list all of the significant probe-gene pairs for hypomethylated

probes and hypermethylated probes in each cancer type. Pr represents real

P value from the Mann-Whitney U test for each pair; Pe represents the

empirical P value for each pair; the distance between the probes and the

putative target genes are shown in the Distance column; the ranking based

on the relative distance of the putative target gene among the 20 adjacent

genes (10 on either side of the enhancer) is shown; and the cancer type

(CT) is indicated. The P value for promoter methylation’ column specifies

the anti correlation between methylation at the promoter itself and the

expression level of the gene. This is calculated using the same Mann-

Whitney statistic we use to evaluate enhancer-expression correlation, but

we average beta values within the standard promoter methylation region,

from -300 to +500 bp relative to the transcription start site (TSS). This region

is consistently methylated in all active promoters based on whole-genome

bisulfite sequencing (in cell lines [95] and primary TCGA tumors, manuscript

in preparation). As with our enhancer method, we select for strong

changes in methylation filtering out any case where 95 % of samples

have methylation less than 0.3; in the spreadsheet, these have a P value

of 1.0. The worksheet ‘tumor vs. normal expression’ contains a table

showing that the majority of target genes linked to hypermethylated

enhancers have lower expression in tumors than normal tissues, while

the majority linked to hypomethylated enhancers have higher expression

in tumors. The worksheet ‘promoter methylation’ shows the fraction of

enhancer-linked genes in each cancer type that also have significant

correlation with methylation of the promoter. It is under 10 % of genes for

all cancer types.

Additional file 5: Quantitative summary of links, probes, and genes

for each cancer type. (A) Shown are histograms representing the

number of putative probes-gene pairs, the number of total probes in the

set of paired-probes, and the number of total genes in the set of paired

probes for the set of hypomethylated (top) and hypermethylated (bottom)

probe-gene pairs in each cancer type. For each plot, the number of probes

identified in one or more tumor types is indicated by the colored bars. (B)

Shown is a heatmap illustrating the similarity of probe-gene pairs, probes in

the pairs, and genes in the pairs among the different cancer types. The color

bar indicates the OR for the similarity (overlap) between the indicated

cancer types (a higher OR indicates a more significant similarity).

Additional file 6: Rank of putative target gene according to

distance in the enhancer-gene pairs for each cancer type. (A) Shown

is the distribution for the ranking (by distance) of each putative target

gene linked to an enhancer for enhancers that are significantly associated

with more than one gene. (B) Shown is the distribution for the ranking

(by distance) of each putative target gene linked to an enhancer for each

cancer type. The left panel shows the pairs for which the enhancer is

significantly associated with more than one gene and the right panel

shows the pairs for which the enhancer is significantly associated with

only one gene.

Additional file 7: Summary of enriched motifs for enhancer-gene

pairs with hypomethylated distal enhancers. On the worksheet

entitled ‘Summary’, the fold enrichment of each indicated motif in a

specific cancer type (CT) is shown. Shown in the Enhancer column is the

number of the paired enhancers (after clustering distal enhancer probes

within 500 bp) containing the enriched motif (the percentage of total

paired hypomethylated enhancers in that cancer type containing each

motif is shown in parentheses). For each motif, also shown is the number

of genes linked to the probes containing the motif and the number of

probe-gene pairs. The worksheet entitled ‘Detail’ contains information for

each individual probe linked to a putative target gene via a distal region

containing an enriched motif. Pe represents the empirical P value for each

pair; the distance between the probes and the putative target genes are

shown in the Distance column; the ranking based on the relative distance of

the putative target gene among the 20 adjacent genes (10 on either side of

the enhancer) is shown; and the cancer type (CT) is indicated.

Additional file 8: Motif enrichment heatmaps. (A) Shown are the

heatmaps for motifs that are enriched in the sets of all hypomethylated

probes (top panel) and all hypermethylated probes (bottom panel). (B)

Shown are the heatmaps for motifs that are enriched in the sets of only

those hypomethylated (top panel) or hypermethylated (bottom panel)

probes that are linked to putative target genes (B bottom panel).

Additional file 9: Plots of association between all human TFs and

DNA methylation at enriched motif sites. Shown are TF ranking plots

based on the score (-log10(Pr)) of association between TF expression and

DNA methylation of the motif in the cancer type in which the motifs are

enriched. The dashed blue line indicates the boundary of the top 5 %

association score. The top three associated TFs and the TF family

members (dots in red) that are associated with that specific motif are

labeled in the plot.

Additional file 10: Scatter plots for TF family members significantly

associated with DNA methylation at distal enhancer regions having

enriched motifs. Shown are scatter plots for average DNA methylation

at probes having the indicated enriched motif (x axis, shown on the top

of each set of panels) vs. the expression of the significantly correlated

motif-relevant TF family members (y axis, shown on the right side of each

panel). Each dot represents a different patient sample; red and green

indicate the tumor and normal samples, respectively. Pairs that are within

the top 5 % of TFs linked to a given motif are indicated with a number

inside the cell. The number corresponds to the rank of the given TF

relative to all 1,777 TFs (with ‘1’ being the most strongly correlated).

Additional file 11: Survival plots for TF family members

significantly associated with DNA methylation at distal enhancer

regions having enriched motifs. (A) The output of a Cox model

regression analysis for the effects of expression of RUNX1 on survival

within KIRC samples. Leukocyte methylation signature was calculated as

in (PMID 22120008), and staging information was taken from TCGA

clinical data. Leukocyte methylation signature was included to rule out

RUNX1 expression from contaminating leukocytes, which are the main

source of non-cancer cells in KIRC samples. (B) Kaplan-Meier survival

curves for TF family members significantly associated with DNA methyla-

tion at the distal enhancer regions with enriched motifs in the indicated

cancer type. The survival data for patients having tumors with the highest (top

30%) and lowest (bottom 30%) transcription factor expression are shown; the

Log Rank test P value between the high and low groups is indicated.

Additional file 12: Proportion of intragenic vs. intergenic enhancers

that regulate the nearest gene. Shown are bar graphs indicating the

number of intergenic vs. intragenic enhancers, the number of each

category that is associated with expression of the nearest gene, and the

number of intragenic enhancers associated with expression of the nearest

gene with that gene being the one in which the enhancer resides.

Additional file 13: Overlapping analysis between putative probe-

gene pairs in BRCA and interactions from ChIA-PET data from the

MCF7 breast cancer cell line. A list of putative probe-gene pairs in

BRCA that overlap with interactions from ChIA-PET data from the MCF7

cell line is provided. The bar graph shows the comparison of the number

of probe-gene pairs identified within MCF7 ChIA-PET data using the putative

pairs from BRCA vs. random pairs. The random pairs were generated by

randomly selecting the same number of probes from the set of distal

enhancer probes, and pairing each with one or more of the 20 adjacent

genes; the number of links made for each random probe was identical

to the corresponding ‘true’ probe. Thus, the random linkage set has

both the same number of probes and the same number of linked

genes as the true set. One hundred such random datasets were

generated to arrive at a 95 % CI (+/-1.96* SD).
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Additional file 14: MYC 3’ end enhancer regulates MYC expression

in colorectal cancer tissue. (A) Shown is a scatter plot showing DNA

methylation at probes located at the 3’ end of the MYC gene vs. the

expression of MYC RNA. Each dot represents a different patient sample;

red and green indicate the tumor and normal samples, respectively. (B)

Shown is the location of the MYC 3’ enhancer and the ENCODE ChIP-seq

histone and transcription factor tracks from the University of California,

Santa Cruz genome browser. The green bar indicates the location of

enhancer that has been previously identified to regulate MYC expression

in the HCT116 colon cancer cell line [57, 58].

Additional file 15: Transcription factors significantly associated

with multiple different motifs. Each row represents individual

transcription factors and each column represent different cancer types.

The numbers in the table show the number of enriched motifs that the

transcription factors associate with in each cancer type; the transcription

factor must be in the top 1 % of all ranked TFs for that specific motif in

that specific cancer type to be listed on the table.

Additional file 16: Survival analysis of commonly identified ZNFs.

(A) Shown is a table listing the subset of ZNFs (the entire list can be

found in Additional file 17) which were identified in the top 1 % of

ranked TFs, which were significantly associated with multiple different

motifs in a specific cancer type (the number of motifs with which the TF

was associated is listed in parentheses), and whose expression level

significantly correlates with patient survival. The direction of correlation is

labeled in column labeled ‘Survival’ (red and green color represents high

expression correlated with worse survival or better bad survival, respectively)

and log Rank test P value between the high and low expression groups is

provided in the column labeled ‘logRankP’. (B) Shown are example Kaplan-

Meier survival curves for two ZNFs. The survival data for patients having

tumors with the highest (top 30 %) and lowest (bottom 30 %) transcription

factor expression is shown; the Log Rank test P value between the high and

low groups is indicated.

Additional file 17: List of the TFs used in this study. Shown is the list

of TFs used to compare expression analysis of all TFs to motif

methylation in the different cancer types, taken from [97].
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