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1.  ABSTRACT 
 

The discovery of regulatory networks is an 
important aspect in the post genomic research. The process 
requires integrated efforts of experimental and 
computational strategies by employing the systems biology 
approach. This review summarizes some of the major 
themes in computational inference of regulatory networks 
based on gene expression and other data sources, including 
transcriptional module identification, network topology 
inference, and network analysis. Popular solutions to each 
of these problems and their relative merits are discussed. 

 
2. INTRODUCTION 
 

The most important and widespread mechanism 
used by cells to regulate molecular functions or biological 
process is the coordinate transcriptional and post-
transcriptional network of the interacting genes or their 
products. To understand how physiological and 
pathological phenotypes arise from gene regulatory 
networks is a major challenge in post genomic research and 
requires computational systems biology approaches (1-3).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Systems biology is an emergent field that aims at system-
level understanding of biological systems (1, 2). Genes in 
regulatory networks are often connected through 
interlocking positive and negative loops. An intuitive 
understanding of the structure and dynamics of the network 
is difficult to obtain. Using systems’ approaches, such as 
mathematical modeling and in silico simulation study, the 
structure of regulatory networks can be described precisely 
and their dynamic behavior can be predicted in a systematic 
way (4, 5). The systems study on the regulatory network 
can directly benefit the identification of biomarker for drug 
discovery and the development of  effective preventive and 
therapeutic intervention in disease or aging (6-8).  

 
Various high-throughput technologies like 

microarrays (9) and factor-binding profiling (10) provide 
researchers with valuable resources for elucidating how 
genes interact with each other and how a cell’s regulatory 
networks control vast batteries of genes simultaneously. 
Recently, many computational algorithms (6, 11-41) have 
been proposed to unravel regulatory networks from gene
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Figure 1. Flow diagram for inferring regulatory networks. 
 
expression or other “omics” data. The in silico generated 
hypothetical models are further tested against biological 
experiments or published reports. Even though, two major 
challenges remain in inferring regulatory networks from 
large “omics” data sets: the statistical limitations posed by 
these data sets (e.g. few samples but larger number of genes 
in most microarray data sets) and the high computational 
complexity due to large and complex structures of 
regulatory networks. Analysis by integrating multiple data 
sources (e.g. DNA sequences, protein-protein interactions, 
protein structural information, and protein-DNA binding 
data) shows promise to overcome the statistical limitations 
existed in an individual data set (37, 42). On the other hand, 
there is growing evidence that suggests a multi-scale and 
hierarchical modular architecture in biological networks 
(30, 43-46). This is consistent with the fact that many of 
these networks exhibit a scale-free topology (30, 47). In 
the context of genetic networks, this implies that genes 
form small clusters or modules within each of which the 
constituent genes have close interactions; some of these 
clusters form larger ‘meta-clusters’ that themselves 
exhibit interactions and this process may continue on 
several different scales. Therefore, regulatory networks 
may be broken down to sub-network with small number 
of genes, and each sub-network can be separately 
modeled (46). This will decrease the computational 
complexity.  
 

In this review, we summarize some of the major 
themes in inferring regulatory networks, including gene 
module identification, network topology inference, and 
network dynamics analysis. Figure 1 illustrates an overall 

flow diagram for inferring regulatory networks. Important 
aspects of the network inference are discussed in this paper. 

 
3. COMPUTATIONAL APPROACHES FOR 
IDENTIFYING GENE MODULES  
 

Genes with coordinate activities for certain 
biological functions often have tightly regulated 
interactions and form contextual modules. It is important to 
identify such regulatory network structures for 
understanding the biological events associated with 
different experimental conditions and identifying gene 
expression signatures.  
 
3.1. Advanced Statistical Approaches 

Clustering of genes and clustering of experiments 
are unsupervised modeling approaches that are in common 
use for identifying the co-regulated type of local patterns 
(48-50). Clustering methods consider only correlative or 
linear relationships between genes, so that often fail to 
capture the contextual modularity that might result from 
highly nonlinear interactions among genes. Clustering 
methods also partition genes into mutually exclusive 
clusters, but in reality a gene may be parts of several 
different biological processes. More biologically 
meaningful modules can be uncovered by employing more 
sophisticated algorithms recently developed, using multiple 
sources of data, or by integrating the algorithms with prior 
biological knowledge (13, 15, 21, 34, 51, 52).   

 
Segal et al proposed a class of probabilistic 

graphical models, module networks, for inferring 
regulatory modules from gene expression data (13). In this 
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framework, a regulatory module is a set of genes that are 
regulated in concert by a shared regulation program. The 
regulation program specifies the behavior of the genes in 
the module as a function of the express level of regulators. 
Clearly, this approach relies on the assumption that the 
expression levels of regulated genes depend on the 
expression levels of regulators. The method was 
demonstrated for its ability to generate detailed testable 
hypotheses relating to both regulatory modules and their 
control programs. The experimental results supported their 
computationally generated hypotheses, suggesting 
regulatory roles for previously uncharacterized proteins.  

 
Bar-Joseph et al described an algorithm that uses 

genomic expression and transcription factor binding data to 
discover transcriptional modules (15). The algorithm 
performs an efficient exhaustive search over all possible 
combinations of transcription factors implied by the 
protein-DNA interaction data. Once a set of genes bound 
by a common set of transcription factors is found, the 
algorithm proceeds to find a smaller subset of genes that 
are co-expressed. The algorithm then seeks to add 
additional genes to the module that are similarly expressed 
and considered bound by the same set of transcription 
factors. They applied their algorithm to 106 yeast 
transcription factors profiled in rich medium conditions and 
yeast expression data from over 500 experiments. The 
results indicated that the algorithm can assign group of 
genes to regulators more accurately by integrating the 
binding information.  

 
Zhou et al introduced an approach, termed 

second-order expression analysis, for the identification of 
transcriptional modules (34). They defined the first-order 
expression analysis as the extraction of expression patterns 
from one microarray data set. They then proposed the 
second-order expression analysis as a study of the 
correlated occurrences of those expression patterns across 
multiple data sets measured under different types of 
conditions. Using yeast as a model system, they 
demonstrated that the second-order analysis can identify 
genes of the same function yet without coexpression 
patterns. The approach could also reveal network 
relationships among different transcriptional modules.   

 
Wang et al (52-54) developed an algorithm called 

‘visual and statistical data analyzer’ (VISDA) for gene 
cluster discovery and visualization. VISDA uses a 
hierarchical normal mixture model to approximate the 
overall distribution of gene expression data. Based on the 
model, genes can be partitioned into clusters and sub-
clusters hierarchically. VISDA also incorporate human 
interaction into the clustering process that makes it unique 
in comparison with other methods. VISDA has recently 
been adopted as one of the core data analysis components 
by the National Cancer Institute (NCI) of the National 
Institutes of Health (NIH) on its new cancer biomedical 
informatics grid (caBIGTM) initiative (55).  
 
3.2. Matrix Decomposition Approaches   

Matrix decomposition methods have been 
recently introduced for uncovering transcriptional modules 

from microarray data. These methods treat microarray data 
as a mixture of unknown signals that may correspond to 
specific biological sources. These methods do not assume 
that genes with similar expression profiles share the same 
pathway or similar functions. The methods can also 
partition genes to mutually inclusive modules to reflect the 
fact that genes may have multiple functions or are active in 
multiple biological processes. A variety of matrix 
decomposition methods have been proposed for microarray 
data analysis, including singular value decomposition (56, 
57), independent components analysis (58-60), non-
negative matrix factorizations  (61-65), network component 
analysis (28), and probabilistic sparse matrix factorization 
(66).  

 
Alter et al described the use of singular value 

decomposition (SVD) in transforming gene expression data 
from a genes × arrays space to a reduced diagonalized 
"eigengenes" × "eigenarrays" space (56). The eigengenes 
and eigenarrays are orthonormal superpositions of the 
genes and arrays. Sorting the data according to the 
correlations of the genes (and arrays) with eigengenes (and 
eigenarrays) gives a global picture of the dynamics of gene 
expression. With yeast cell-cycle data sets, they showed 
that the SVD method can classify individual genes and 
arrays into groups of similar regulation and function, or 
similar cellular state and biological phenotype, 
respectively. 

 
Independent components analysis (ICA) is a 

statistical method for revealing hidden factors that underlie 
sets of random variables or signals. Lee et al applied ICA 
to project microarray data into statistically independent 
components that correspond to putative biological 
processes, and to cluster genes according to over- or under-
expression in each component (58). The results showed that 
ICA outperforms other clustering methods, such as 
principal component analysis, k-means clustering, in 
constructing functionally coherent clusters on microarray 
datasets from yeast, C. elegans and human. Similarly, 
Frigyesi et al applied ICA to two tumor data sets and one 
time series experiment (60). They used an iterated ICA 
algorithm to estimate independent components and 
proposed a scheme to identify those genes that have 
significant loadings in each component. The results 
demonstrated that ICA can identify gene clusters with high 
biological relevance compared with results based on 
correlated expression. 

 
Non-negative matrix factorization (NMF) is a 

recently developed machine learning technique, capable of 
finding smaller and more localized patterns as well as 
global patterns. The approach can be particularly useful in 
identifying biological subsystems (i.e., sets of genes that 
function in concert in a relatively tightly regulated manner) 
(61, 62). Kim et al (61) applied the NMF approach to a 
large data set consisting of  300 genome-wide expression 
measurements of yeast to identify the cellular subsystems. 
The results showed that local features detected by NMF 
were mapped well to functional cellular subsystems. Most 
recently, Wang et al developed a algorithm, least squares 
non-negative matrix factorization (LS-NMF), for 
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integrating uncertainty measurements of gene expression 
data into NMF updating rules (65). The LS-NMF algorithm 
maintains the advantages of the original NMF algorithm 
but exceeds NMF significantly in terms of identifying 
functionally related genes as determined from annotations 
in the MIPS database.  

 
Dueck et al proposed a probabilistic sparse 

matrix factorization (PSMF) model and variational 
Bayesian learning scheme to cluster microarray data (66). 
PSMF is a probabilistic extension of sparse matrix 
factorization which can account for uncertainties due to the 
different level of noise in the data. The PSMF approach 
model the gene expression as linear weighted combinations 
of a small number of predominant transcriptional 
regulators. The PSMF method is appropriate for modeling 
gene expression data, in which while many genes are 
involved in gene regulation, only a small number of 
regulators (e.g. transcription factors) have predominant 
impact to the expression of the most genes. The results 
demonstrated that PSMF can better recover functionally 
relevant clusters from expression data than standard 
clustering techniques, including hierarchical clustering, k-
means clustering, and self-organizing maps. 
 

Most recently, Li and Zhan presented a new 
method, ModulePro, for transcriptional module discovery 
from microarray data (67). The new method is based on 
two-stage decomposition of microarray data, firstly by 
nonlinear independent component analysis and then by 
probabilistic sparse matrix decomposition. ModulePro 
offers several advantages: a) it takes into account the 
nonlinear structure existed in the data; b) the approach does 
not need the assumption that genes with similar functions 
or of the same pathway share similar expression profiles; 
and c) the method can assign one gene into different 
modules. In comparison with other methods such as 
hierarchical clustering, k-means, self-organizing maps, and 
probabilistic sparse matrix decomposition approach, 
ModulePro leads to a significant improvement in 
uncovering biologically relevant transcriptional modules. 
 
4. COMPUTATIONAL APPROACHES FOR 
INFERRING GENE CONNECTIVITY 
 

Inferring gene connectivity involves the selection 
of a network model and the inference of topology and 
functions of the network from data. There have been 
considerable efforts to build models for mimicking gene 
regulatory networks, covering from fine-scale continuous 
modeling to coarse-scale discrete modeling. By treating 
concentrations of gene products as time-dependent 
variables, three kinds of computational models are 
proposed so far: a) continuous-time and continuous-
variable models (e.g. differential equations); b) discrete-
time and continuous-variable models (e.g. Bayesian 
networks); and c) discrete-time and discrete-variable 
models (e.g. Boolean networks). Learning the connectivity 
and relationship between genes in a network model has 
been studied recently by various signal processing (68), 
pattern recognition (27, 69, 70), and Bayesian approach 
(21, 71, 72). Many of these studies have focused on 

discrete-time networks. Although there have been some 
successes on modeling continuous-time networks (33, 73), 
currently available biological observations often lack 
sufficient richness to identify the parameters of these 
complex structures.  
 
4.1. ODE-based Models 
 Ordinary differential equations (ODEs) have 
been widely used to model the dynamics of genetic 
regulatory systems (74-85). More specifically, if xi(t) 
denotes the state of the ith vertex of the system at time t 
(e.g. the concentration of the particular proteins, mRNAs, 
or small molecules associated with that vertex), then its 
evolution in time, is described by a system of ODEs:  
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ith vertex. The ODEs in Eq. 1 are also known as kinetic 
equations. Due to the nonlinearity of if , analytical solution 
of Eq. 1 is not possible. General-purpose numerical ODE 
solvers, such as Runge-Kutta method (86), are usually 
applied to solve these ODEs. Differential equations can 
describe the dynamic regulatory behavior of cellular 
systems more quantitatively but may require high 
resolution time series data for the inference of its model 
parameters as well as more quantitative and detailed 
information for the parameters, which are not easy to 
acquire (87).  
 
4.2. Bayesian Networks  

A Bayesian network is a representation of a joint 
probability distribution as a directed acyclic graph (DAG) 
(16, 21). The vertices of a DAG correspond to random 
variables [X1 ..., XN] and the edges correspond to parent-
child dependencies among variables. The random variables 
may be either discrete or continuous-valued. In the context 
of gene regulatory networks, Xi may represent the 
expression level of gene i. The joint probability distribution 
can thus be written in the simple product form: 
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Bayesian networks have a number of features 
which make them attractive candidates for modeling gene 
expression data, such as their ability to handle noisy or 
missing data, to handle hidden variables such as protein 
levels which may have an effect on mRNA steady state 
levels, to describe locally interacting processes and the 
possibility of making causal inferences from the derived 
models. Based on Bayesian networks, Friedman and 
colleagues (21) proposed a heuristic algorithm and 
produced networks which appeared biologically plausible 
for the yeast cell cycling array data. Bayesian networks 
have the disadvantage of excluding dynamical aspects of 
gene regulation. To some extent, this can be overcome 
through generalizations like dynamical Bayesian networks, 
which allow feedback relations between genes in a 
network. Murphy and Mian (41) proposed the use of a 



Inferring regulatory networks 

267 

dynamical Bayesian network to model time series gene 
expression data. Lately, many other Bayesian network 
models have been proposed for analyzing gene expression 
data. Most published work to date has considered either 
static Bayesian networks with fully observed data (29) or 
static Bayesian networks which model quantized data but 
incorporate some hidden variables (35, 88).  
 

An understanding of causal relationship in a 
network is crucial in determining the impact of 
interventions at the genetic level and performing 
counterfactual reasoning that leads to finding ‘causes’. In 
general, dependence relations in Bayesian networks do not 
give unique causal inferences. There are multiple graphs 
that yield the same joint distribution. Measurements of 
gene expression, in the absence of interventions, are 
insufficient to uniquely determine the underlying causal 
mechanisms. Recently a few studies provided methods for 
uniquely inferring causal mechanisms for certain cases of 
Bayesian networks based on perturbation data (22, 35, 89). 
Even though, most researches on reverse engineering of 
gene regulatory networks by either Boolean or differential 
equation-based models do not take the ‘causal’ aspect of 
gene connections into consideration (21, 27, 31, 33, 41, 69-
72, 90, 91). How to learn causal relationships between 
genes? In wet-labs, this can be done by knocking out all 
possible subsets of genes of a given set and studying the 
impact on the other genes in the set. This is not often 
feasible when the number of genes in the set is more than a 
handful. An alternative approach is to use time series gene 
expression data. Unfortunately such data can only be 
obtained for cells of particular organisms such as yeast. For 
human tissues, high-throughput gene expression data is 
only available for the steady-state. Therefore, how to infer 
causal relationships between genes from steady-state data is 
an open question for researchers of this field. 

 
4.3. Coexpression Networks 

The study of gene coexpression allows 
exploration of transcriptional responses that involve 
coordinated expression of genes encoding proteins which 
work in concert in the cell. With recent interests in 
biological networks, the study of gene coexpression has 
emerged as a novel holistic approach for microarray data 
analysis (92-95). Most coexpression studies have been 
based on Pearson’s correlation coefficient (19, 92, 93, 96) 
and mutual information measurement (11, 19, 38, 97). 
Butte et al developed a methodology, termed relevance 
network, that computes comprehensive pair-wise mutual 
information (MI) for all gene pairs in a microarray dataset 
(19). By picking only associations at or above the threshold 
of MI, they constructed several relevance networks from a 
public microarray data set and explained the biological 
significance of each relevance network. A recent paper by 
Basso et al. (38) described a statistical algorithm, 
ARACNE, for more accurately inferring pair-wise 
interactions among genes and their protein products. 
ARACNE first identifies statistically significant gene-gene 
coregulation by mutual information, and then eliminates 
indirect relationships. Relationships included in the final 
reconstructed network have a high probability of 
representing either direct regulatory interactions or 

interactions mediated by post-transcriptional modifiers that 
are undetectable from gene-expression profiles. ARACNE 
was used to recover a network from gene expression 
profiles of human B-cell populations. The results suggested 
that the B-cell regulatory network has both a scale-free and 
hierarchical architecture, implying the presence of a few 
'hubs' that are highly connected and preferentially 
connected to one another.  

 
The linear-model-based correlation coefficient 

provides a good first approximation of coexpression, but is 
also associated with certain pitfalls. When the relationship 
between log-expression levels of two genes is nonlinear, 
the degree of coexpression would be underestimated (24). 
Since the correlation coefficient is a symmetrical 
measurement, it can not provide evidence of directional 
relationship in which one gene is upstream of another (16). 
Similarly, mutual information is also not suitable for 
modeling directional relationships. The coefficient of 
determination (CoD), on the other hand, is capable of 
uncovering nonlinear relationship of coexpression and 
measuring the directionality, thus it is particularly useful in 
prediction analysis of gene expression, determination of 
connectivity in regulatory pathways, and network inference 
(6, 12, 23, 32, 98). The CoD is a measure for the relative 
improvement in prediction accuracy owing to the presence 
of the observed variables, i.e., how much better the 
combination of given genes (predictors) predicts the 
behavior of the target gene in comparison to the absence of 
predictors. It is mathematically defined 
as

00 /)( εεεθ optopt −= , where 
optε  is the error for the 

optimal predictors and 0ε  is the prediction error in the 
absence of predictors. Since

0εε ≤opt
 , we 

have 10 ≤≤ optθ .  

 
Recently, Li and Zhan proposed an algorithm, 

CoExPro, which provides a more biologically meaningful 
and comprehensive model for gene coexpression, 
functional relationship, and network structure (99). This 
algorithm is based on B-spline approximation followed by 
CoD estimation.  The new algorithm is capable of 
uncovering both linear and nonlinear relationships of 
coexpression and measuring the directionality. Thus it is 
particularly useful in prediction analysis of gene 
expression, determination of connectivity in regulatory 
pathways, and network inference. The computation by this 
algorithm requires no quantization of microarray data, thus 
avoiding significant loss or mis-presentation of biological 
information, which would otherwise occur in the 
conventional application of CoD (23, 98). The algorithm 
was used in modeling the coexpression patterns and 
exploring biological information from microarray data of 
several cancers and their normal tissue counterparts. The 
algorithm allowed correct identification of coexpressed 
ligand-receptor pairs specific to cancerous tissues and shed 
light on the understanding of cancer development. 
 
4.4. Probabilistic Boolean Networks 

Boolean network models, originally introduced 
by Kauffman (100, 101), can provide useful insights in
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Figure 2. A basic building block of a PBN. 

 
network dynamics at the coarse level. For modeling large-
scale genetic regulatory systems, Boolean networks may 
represent the only practical alternative (5). Recently 
Boolean networks have been extended to Probabilistic 
Boolean networks to cope with the randomness inherent in 
biological systems (32). Microarray data exhibit 
uncertainty on several levels. First, there is biological 
uncertainty in the form of intrinsic and extrinsic noise. 
Second, there is experimental noise due to the complex 
measurement process, ranging from hybridization 
conditions to microarray image processing techniques. 
Third, there may be interacting latent variables, such as 
proteins, various environmental conditions, or other genes 
that we simply do not measure, which are further sources of 
variability in the measurements. To address the uncertainty, 
Shmulevich et al introduced probabilistic Boolean 
networks (PBNs) by associating several predictors with 
each target gene (32). If target gene 

ig′  has l(i) associated 

predictor functions, )(
)(

)(
2

)(
1 ,,, i

il
ii fff K  then at each point in 

time t one of these functions is selected to form the 
transition rule for

ig′  at time t+1. Clearly, if l(i) =1 for all 

ni ,,2,1 K= , the PBN simply reduces to a standard 
Boolean network. The basic building block of a PBN is 
shown in Figure 2. The wiring diagram for the entire PBN 
consists of n such building blocks. Conceptually, the 
probabilistic predictor of each target gene can be thought of 
as a random switch, where at each time point in the 
network, the function )(i

kf  is chosen with probability )(i
kc  

to predict gene
ig′ . One way to assign these probabilities is 

to employ the CoD, normalized such that 1)(
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ig′ relative to the genes used as inputs to 

predictor )(i
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Within the context of PBNs, Hashimoto et al  

have developed a method to grow a network started from a 
smaller number of genes of interest, or seed genes (23). The 
proposed algorithm is flexible and permits various designer 
choices regarding how to proceed such as the measure of 
connection strength between genes, search protocol, and 

stopping conditions. As an example, one can assign the 
CoD (32) as the strength measuring function. Identifying 
the seed genes of interest is a critical step in this algorithm. 
The seed genes are usually selected with the aid of prior 
biological knowledge. They applied the algorithm to a 
melanoma data set and constructed a network that consists 
of only 30 genes.  
 

While good at abstracting uncertainty in 
biological system, the PBN model fails in describing the 
context specific determinism of regulatory systems.  
Context can be defined as a certain condition under which a 
limited number of genes are tightly regulated by each other 
for a specific cellular mechanism or a specific task. This 
specific task can be a different developmental stage, or 
tissue specific function, resulting in a specific cell-type. 
The change of this context will result in the change in the 
set of genes that are highly interactive, and probably their 
connectivity and relationships. Different biological contexts 
can also correlate with different diseases or might be a reason 
why a certain group of patients respond to a therapy while 
others do not. Kim and Li developed a context-sensitive 
Boolean network (cBN) model to describe the behavior of 
cellular systems (102). A cBN can be considered as a 
constrained PBN, where the constraint is the way to assign the 
probability for the model. The rule inference is based on the 
assumption that the inferred rules and the observations are 
consistent within a (given) context. Figure 3 shows an example 
of cBNs that contain two contexts and fifteen genes. 
 
4.5. Inference from Multiple Sources of Data 

Most early researches on automatic learning of 
transcriptional regulatory networks employ only gene 
expression data. Recent simulation studies suggest that 
regulatory networks learned from gene expression data 
alone can be considerably obscured by the recovery of 
spurious interactions when the number of observations is 
small (103). Integrating findings from multiple data sources 
(e.g. DNA sequences, gene and protein expression profiles, 
protein-protein interactions, protein structural information, 
and protein-DNA binding data) can overcome this 
drawback (42). Two major yet related approaches have 
been developed in joint learning transcriptional regulation 
from multiple data sources. In one approach, various types 
of data are used to identify sets of genes that interact 
together in the cell, or are co-regulated in modules (13, 15). 
In the other approach, various types of data are used to 
supplement gene expression data in learning regulatory 
networks (51, 104).  
 

Bernard and Hartemink presented a method for 
jointly learning dynamic models of transcriptional 
regulatory networks from gene expression data and 
transcription factor binding data, based on dynamic 
Bayesian network inference algorithms (104). Results 
obtained from analyzing yeast cell cycle data demonstrate 
that the recovery of dynamic regulatory networks from 
multiple types of data by this joint learning algorithm is 
more accurate than that from each data type alone. 

 
Imoto et al proposed a statistical method for 

estimating a gene network based on Bayesian networks
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Figure 3. An example of cBN with two contexts. 
 

 
Figure 4. The structure of the Markov chain model. 
 
from microarray gene expression data together with 
biological knowledge including protein-protein 
interactions, protein-DNA interactions, transcriptional 
factor binding information, existing literature and so on 
(51). An advantage of the method is that the balance 
between microarray information and biological knowledge 
is optimized automatically by the proposed criterion. Monte 
Carlo simulations showed the effectiveness of the proposed 
method in extracting more information from microarray 
data and estimating the gene network more accurately.  

 
Yeang et al developed a framework for inferring 

transcriptional regulation (105). The models they 
developed, called physical network models, are annotated 
molecular interaction graphs. The attributes in the model 
correspond to verifiable properties of the underlying 
biological system such as the existence of protein–protein 
and protein–DNA interactions, the directionality of signal 
transduction in protein–protein interactions, signs of the 
immediate effects of these interactions, etc. Possible 
configurations of these variables are constrained by the 
available data sources. Application of this algorithm on 
datasets related to the pheromone response pathway in 
yeast demonstrated that the derived model was consistent 
with previous knowledge of the pathway.  

 

5. NETWORK ANALYSIS IN SILICO 
 
 In silico network analysis involves studying the 
long run behavior of the system (steady-state analysis), 
observing the effects caused by perturbation in the network 
structure (perturbation analysis), and predicting what 
changes in the network structure or functions should be 
imposed to achieve desired effects (intervention analysis). 
In silico simulation has been particularly important in 
network analysis since network activity is constrained by 
the various complex forms of interactions (4, 5). Various 
algorithms have been employed in examining dynamic 
behaviors of biological networks in silico, including the 
Markov chain (6, 12) and probabilistic Boolean network (7, 
8). Here, we describe steady-state analysis and intervention 
analysis to show how a network analysis is formulated.  
 
5.1. Steady State Analysis by Markov Chain Simulation 

Mathematical modeling that allows estimation of 
steady state behavior in biological systems is useful for 
examining two ubiquitous forms of biological system 
behavior. The first is homeostasis, the ability of cells to 
maintain their ongoing processes within a narrow range 
compatible with the survival. The second is a switch-like 
functionality, which allows cells to rapidly transit limited 
process segments between metastable states. Kim et al 
proposed a finite-state Markov chain model and explored 
whether the mode can capture the biological behavior 
above described (12). The proposed model contains n 
nodes, each of which represents one of the n genes selected. 
Each gene has a ternary value, which is assigned from 
over-expressed (1), equivalently-expressed (0), and under-
expressed (-1). The state space of the Markov chain has 3n 
states. For capturing the dynamics of the network, they 
consider a “wiring rule” such that the expression state of 
each gene at step t + 1 is predicted by the expression levels 
of the other genes at step t in the same network. For each 
target gene, a set of three predictor genes is chosen with the 
highest CoD value. Instead of using many possible Boolean 
functions that are independent of the state of the system, as 
in the PBN model, they use the state of three predictor 
genes at step t and the corresponding conditional 
probabilities, which are estimated from observed data, to 
derive the state of the target gene at step t + 1. Eq. (3) 
describes the definition of the Markov chain between a 
state at step t and the state at step t + 1.  
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The transition rule is depicted in Figure 4. In the 
simulation, gene perturbation is added to guarantee the 
chain converge to be a steady-state distribution (7). 
Considering gene perturbation, the transition probability is 
generalized as follows: 
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where p is the perturbation probability  for each gene, 
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 is the number of genes to be perturbed, 
p0 = 1/(q-1), and q is the level of gene expression.  
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Figure 5. The topology of leukemia-related BCR-ABL 
pathway. The arrows represent the directions of the causal 
relationships among genes. BCR are ABL are linked to the 
cytoplasm as a part of a large signaling complex with a 
variety of cellular substrates, related to the development of 
leukemia. The drug Gleevec is a selective BCR-ABL 
inhibitor in this pathway. 
 
In a steady state analysis using Markov chain simulation on 
the gene expression profiles of 31 melanoma cell lines, 50 
genes capable of both predicting other genes as well as 
being predicted by other genes with high CoDs were 
chosen out of all genes (12). From the 50 genes, 10 genes 
were further selected based on their roles in classifying 
malignant melanoma and known biological functions (106). 
The results indicated that the steady state distributions 
produced approximate the initial observations. Only a 
limited number of states possessed significant probability 
of occurrence. These behaviors are congruent with 
biological behaviors, as cells appear to occupy only a 
negligible portion of the state space available to them. The 
transition rules generated for the model produces localized 
stability. The study suggests that, in the limited context, 
Markov chain simulation emulates well the dynamic 
behavior of a small regulatory network. By systematically 
examining the characteristics of the rules and 
interconnections that lead to stabilization and switch-like 
transitions, we may gain a better understanding of 
biological regulation.                   
 
5.2. Intervention Analysis by Markov Chain Model 

Intervention analysis can not only open up a 
window on the biological behavior of an organism and 
disease progression, but also translate into accurate 
diagnosis, target identification, drug development, and 
treatment. Shmulevich et al (7) used a PBN model to study 
gene perturbation and intervention, and developed several 
computational tools based on first-passage times in Markov 
chains. Pal et al treated intervention with external control 
variables in a context-sensitive PBN (8). They applied the 
control theory to find optimal strategies for manipulating 
external control variables that affect the transition 
probabilities of states in the network. However, few studies 
have so far demonstrated a systematic understanding of the 
dynamic behavior of a regulatory network in response to 
each internal gene intervention or external perturbation in a 
one-to-one relationship.  

Recently, Li and Zhan developed a algorithm, 
PathwayPro, to mimic the behavior of a biological pathway 
through a series of interventions made in silico upon each 
gene or gene combination (6). The inputs to the algorithm 
are experiment-specific regulatory pathways and gene 
expression data. The outputs are the estimated probabilities 
of a network transit across different cellular conditions 
under each transcriptional intervention. The algorithm can 
provide answers to two questions. First, whether or how 
much a gene or external perturbation contributes to the 
transition behavior of a regulatory pathway in instances 
such as disease development or recovery, aging process, 
and cell differentiation. Second, in what specific ways is 
this contribution manifested. The first-passage times allow 
capturing the goals of intervention by a quick transition to 
(or avoiding) certain states or by maximizing the 
probability of reaching certain states before a certain time. 
They are thus used to decide which genes are the best 
candidates for intervention. The first passage time from 

state x to state y can be defined as the probability ),( yxFk  
that, starting in state x, the first time the network will reach 
a given state y will be at step k. It is easy to see that for 

k=1, ),(),(1 yxAyxF = , which is just the transition 

probability from x to y. For 2≥k , ),( yxFk satisfies (107) 
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In Eq. 5, each element ),( yxA  of the transition matrix A 
can be computed using Eq. 4.  For a fixed K, a Kn ×3  
matrix F can be created in which each column contains the 

probability ),( yxFk  from all possible starting states x to a 
given target state y at k steps.  One can then use 

),(),(
1

yxFyxH
K

k
kK ∑

=

=
 as a measurement index. In 

PathwayPro, the intervention information matrix H is 
constructed by fixing 3=K . In this matrix, each 
row :),(3 xH  represents the probability that the network, 
from a starting state x, will visit all desired ending states 
before step 3=K . Each column )(:,3 yH  represents the 
probability that the network, starting in all possible 
intervened states, will visit state y before step K=3.  To 
simulate a simple stimulus, the expression level of one 
gene, two genes, or three genes is mathematically changed 
each time while the rest of the genes are kept unchanged 
for a starting state x. For a ternary expression, 33 3×nC  
intervened states are generated for intervening one, two, 
and three genes, including the original state x.  
 
PathwayPro was used for analyzing the leukemia-related 
BCR-ABL pathway (6). The analysis profiled the dynamic 
behavior of the pathway in response to leukemia 
development and identified possible disease and drug 
targets. Figure 5 shows the network topology of the ABL-
BCR pathway. In silico simulation was conducted by 
transcriptional intervention on each gene (referred to as 
single-gene intervention), each combination of two genes 
(double-gene intervention), and each combination of three
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Table 1. Probabilities of network transition by serial interventions on genes in the ABL-BCR pathway of human 
Gene Transcriptional Intervention Transition Probability 
(A) Transition from normal to CML states by single-gene interventiona 
BCR 0 => -1 => 1 0.00639 
(B) Transition from CML to normal states by single-gene interventionb 
ABL1 1 => 0 => -1 0.000299 
(C) Transition from the normal to CML states by double-gene interventionc 
BCR ABL1 0 -1 => 1 1 => 1 1 0.0109 
BCR BAD 0 1 => -1 0 => 1 0 0.00639 
BCR MYC 0 -1 => -1 0 => 1 0 0.00639 
BCR BAD 0 1 => -1 -1 => 1 0 0.00639 
BCR MYC 0 -1 => -1 1 => 1 0 0.00639 
BCR STAT5A 0 1 => -1 -1 => 1 1 0.00639 
BCR STAT5A 0 1 => -1 0 => 1 1 0.00639 
BCR STAT1 0 0 => -1 1 => 1 0 0.00639 
BCR STAT1 0 0 => -1 -1 => 1 0 0.00639 
BCR CRKL 0 -1 => -1 1 => 1 0 0.00539 
BCR CRKL 0 -1 => -1 0 => 1 0 0.00399 
BCR PIK3CG 0 -1 => -1 0 => 1 -1 0.00384 
BCR JAK2 0 0 => -1 1 => 1 0 0.00224 
BCR AKT1 0 0 => -1 -1 => 1 0 0.00107 
(D) Transition from the CML to normal states by double-gene interventiond 
ABL1 AKT1 1 0 => 0 1 => -1 0 0.00185 
ABL1 AKT1 1 0 => 0 -1 => -1 0 0.00179 
BCR ABL1 1 1 => 0 -1 => 0 -1 0.00111 
(E) Transition from normal to CML states by triple-gene interventione 
BCR ABL1 BAD 0 -1 1 => 1 1 0 => 1 1 0 0.0109 
BCR ABL1 MYC 0 -1 -1 => 1 1 0 => 1 1 0 0.0109 
BCR ABL1 BAD 0 -1 1 => 1 1 -1 => 1 1 0 0.0109 
BCR ABL1 MYC 0 -1 -1 => 1 1 1 => 1 1 0 0.0109 
BCR ABL1 STAT5A 0 -1 1 => 1 1 0 => 1 1 1 0.0109 
BCR ABL1 STAT5A 0 -1 1 => 1 1 -1 => 1 1 1 0.0109 
BCR ABL1 STAT1 0 -1 0 => 1 1 -1 => 1 1 0 0.0109 
BCR ABL1 STAT1 0 -1 0 => 1 1 1 => 1 1 0 0.0109 
(F) Transition from CML to normal states by triple-gene interventionf 
BCR ABL1 AKT1 1 1 0 => 0 -1 1 => 0 -1 0 0.00684 
BCR ABL1 AKT1 1 1 0 => 0 -1 -1 => 0 -1 0 0.00662 
ABL1 CRKL AKT1 1 0 0 => 0 -1 1 => -1 -1 0 0.00297 
ABL1 CRKL AKT1 1 0 0 => 0 -1 -1 => -1 -1 0 0.00288 
BCR ABL1 AKT1 1 1 0 => -1 -1 1 => 0 -1 0 0.00274 
BCR ABL1 AKT1 1 1 0 => -1 -1 -1 => 0 -1 0 0.00265 
ABL1 CRKL AKT1 1 0 0 => 0 1 1 => -1 -1 0 0.00250 
ABL1 CRKL AKT1 1 0 0 => 0 1 -1 => -1 -1 0 0.00242 

The gene expression profile of each state is presented as:  initial state (e.g. normal state) => state after intervened => end state 
(e.g. disease state).  Transcriptional intervention is presented as: initial state (e.g. normal state) => state after intervened => end 
state (e.g. disease state). In each state, expression levels of each gene are presented by ternary values. aProbability cutoff 1E-4; 
bProbability cutoff 1E-4; cProbability cutoff 1E-3; dProbability cutoff 1E-3; eProbability cutoff 1E-2; fProbability cutoff 2E-3. 

 
genes (triple-gene intervention). In each intervention, the 
observed expression of a gene was altered to the opposite 
direction or remained unchanged. The transition 
probabilities of the BCR-ABL pathway were measured 
between the normal condition and leukemia state under a 
series of transcriptional interventions. The probability of 
the network transitioning from normal to leukemia states 
reveals disease susceptibility of genes involved. The higher 
the probability is, the more likely a gene or gene 
combination under a certain intervention is responsible for 
the development of the disease. On the other hand, the 
probability of the transition from leukemia to normal states 
is a measure of the potential usefulness of a drug or 
therapeutic intervention. The analysis showed that more 
genes and gene combinations had high probabilities to 
contribute to regulatory network transitions from normal to 
leukemia states than from leukemia to normal states (Table 
1). The result suggests that the chance is higher for a 

human to develop leukemia than to recover from the 
disease. The importance of BCR and ABL to the network 
transition was further illustrated by the single-gene 
intervention, where both BCR and ABL were associated 
with the highest transition probability (Table 1). Moreover, 
BCR and ABL showed high frequencies in all of their 
partnerships with other genes in the double or triple 
interventions positive for network transition. As illustrated 
in Figure 5, BCR and ABL were on the top by the 
frequency of partnership with other genes in the normal to 
leukemia transition, while BCR and ABL, along with AKT 
and CRKL, were on the top in the leukemia to normal 
transition in the triple-gene invention. These results suggest 
that BCR and ABL are the most contributive genes to the 
network transition between the normal condition and the 
leukemia state, and therefore the most susceptible for the 
development of the CML leukemia as well as the recovery 
from the disease to a normal condition. The two genes can 
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thus serve as good drug targets for the treatment of CML 
leukemia. This result, reached independently by 
computational analysis, is in agreement with the conclusion 
of previous laboratory-based studies. It has been shown that 
CML is associated in most cases with the fusion of the 
genes ABL and BCR, and the activation of BCR-ABL 
represses apoptosis and allows transformed cells to divide, 
resulting in the development of CML (108-110). The drug 
Gleevec is a selective BCR-ABL inhibitor, effective in the 
treatment of CML (111). PathwayPro not only correctly 
identified the drug targets, but further indicated that BAD 
and MYC played critical roles in leukemia development 
while AKT appeared important in the leukemia recovery to 
normal. The results provide new insights into our 
understanding of the leukemia disease. 
 
6. CLOSING REMARKS  
 

Systems biology is aimed at elucidating how 
genes interact to each other to perform specific biological 
processes or functions, and how disease or cellular 
phenotypes arise from networks of genes and their 
products. Multidisciplinary efforts have been made for 
modeling and inferring regulatory networks from 
microarray or other data sources. These studies facilitate 
our understanding of cellular systems. The generated 
hypotheses can be further tested via independent biological 
experiments. The studies can eventually open up a window 
for in silico development of systematic approaches for 
effective preventive and therapeutic intervention in disease.  
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