
ORIGINAL RESEARCH
published: 02 September 2020
doi: 10.3389/fvets.2020.00518

Frontiers in Veterinary Science | www.frontiersin.org 1 September 2020 | Volume 7 | Article 518

Edited by:

André Mendes Jorge,

São Paulo State University, Brazil

Reviewed by:

Mohamed E. Abd El-Hack,

Zagazig University, Egypt

Yosra Ahmed Soltan,

Alexandria University, Egypt

*Correspondence:

Poonam Sikka

drsikapunam@gmail.com

Abhigyan Nath

abhigyannath01@gmail.com

Specialty section:

This article was submitted to

Animal Nutrition and Metabolism,

a section of the journal

Frontiers in Veterinary Science

Received: 26 March 2020

Accepted: 06 July 2020

Published: 02 September 2020

Citation:

Sikka P, Nath A, Paul SS,

Andonissamy J, Mishra DC, Rao AR,

Balhara AK, Chaturvedi KK, Yadav KK

and Balhara S (2020) Inferring

Relationship of Blood Metabolic

Changes and Average Daily Gain With

Feed Conversion Efficiency in Murrah

Heifers: Machine Learning Approach.

Front. Vet. Sci. 7:518.

doi: 10.3389/fvets.2020.00518

Inferring Relationship of Blood
Metabolic Changes and Average
Daily Gain With Feed Conversion
Efficiency in Murrah Heifers: Machine
Learning Approach

Poonam Sikka 1*, Abhigyan Nath 2*, Shyam Sundar Paul 3, Jerome Andonissamy 1,

Dwijesh Chandra Mishra 4, Atmakuri Ramakrishna Rao 4, Ashok Kumar Balhara 1,

Krishna Kumar Chaturvedi 4, Keerti Kumar Yadav 5 and Sunesh Balhara 1

1 Animal Biochemistry, Division of Genetics and Breeding, Central Institute for Research on Buffaloes (ICAR), Hisar, India,
2Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Pt. Deendayal Upadhyay Memorial Health

Sciences and Ayush University of Chhatisgarh, Raipur, India, 3 Poultry Nutrition, Directorate of Poultry Research (DPR), ICAR,

Hyderabad, India, 4 Indian Agricultural Statistics Research Institute, Indian Council of Agricultural Research, New Delhi, India,
5Department of Bioinfromatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar,

Patna, India

Machine learning algorithms were employed for predicting the feed conversion efficiency

(FCE), using the blood parameters and average daily gain (ADG) as predictor

variables in buffalo heifers. It was observed that isotonic regression outperformed

other machine learning algorithms used in study. Further, we also achieved the best

performance evaluation metrics model with additive regression as the meta learner and

isotonic regression as the base learner on 10-fold cross-validation and leaving-one-out

cross-validation tests. Further, we created three separate partial least square regression

(PLSR) models using all 14 parameters of blood and ADG as independent (explanatory)

variables and FCE as the dependent variable, to understand the interactions of blood

parameters, ADG with FCE each by inclusion of all FCE values (i), only higher FCE

values (negative RFI) (ii), and inclusion of only lower FCE (positive RFI) values (iii). The

PLSR model including only the higher FCE values was concluded the best, based on

performance evaluation metrics as compared to PLSR models developed by inclusion of

the lower FCE values and all types of FCE values. IGF1 and its interactions with the other

blood parameters were found highly influential for higher FCE measures. The strength of

the estimated interaction effects of the blood parameter in relation to FCE may facilitate

understanding of intricate dynamics of blood parameters for growth.

Keywords: buffalo, blood, feed conversion efficiency, partial least square regression, prediction models

INTRODUCTION

Feed efficiency is a multifactorial functional trait reflecting the energy balance of a particular
animal, which determines its overall productivity. Feed cost constitutes 70% of total input of
production system profits; thus, improvement in feed utilization capacity of an animal would
be very profitable (1). Expensive feed costs for milk/beef producers can be minimized by
increasing feed efficiency. Beef cattle, utilizing feed efficiently, showed substantially curtailed feed
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consumption for comparable productive performance in
contemporary animals (2). Residual feed intake (RFI) has been
an accepted measure of feed utilization efficiency of animals,
which defines the differences in actual and expected feed
intake due to the different background energy requirements
of different animals (3). Feed-efficient animal displays lower
RFI, an attribute inscribed with moderate heritability of 0.15
and repeatability as 0.53 (4) and is also being used in selection
programs (5). It is having limited use in industry due to its
time-consuming monitoring and heavy capital investment,
consequently emphasizing on the need to explore alternate
approach to infer feed efficiency, as blood parameters.

The knowledge of different sources of variation that cause
physiological differences among animals in terms of feed
efficiency, mainly residual feed intake (RFI), is still incomplete.
Variations in blood parameters and metabolic characteristics
reflect appreciably a part of total feed efficiency variation in
animals (6, 7). A thorough study of all possible processes related
to this variation, if it does not lead to an efficient early selection,
at least would be useful for deducing genotypes selectively
for RFI/FCE. Blood metabolic markers associated with feed
conversion efficiency were earlier used to enhance profitability
(7, 8) of yearling beef bulls (9) and crossbred heifers (10), wherein
the level of FCE was extrapolated on the scale of energy substrates
as blood metabolite(s), i.e., glucose, triglycerides, urea, creatine
phosphokinase as protein metabolite, total plasma protein, and
aspartate aminotransferase, which in turn are influenced by the
hypothalamus–pituitary–adrenal axis (11, 12). Several types of
potential proxies for RFI, using energy metabolism (13), hepatic
mitochondrial function (14), and visceral organ metabolism (15),
have been identified to monitor feed efficiency in other species.
Change in urea level has been associated with RFI (16), which is
attributed to the rate of degradation or synthesis of protein (17),
reflecting liver function and metabolic activity of the digestive
tract while generating almost 40 to 50% of the total energy
channeling 1.45% in animal body weight (18, 19).

An insight into the relationship of various blood parameters
with ADG with FCE can shed light on physiological dynamics
underlying the metabolic changes, using machine learning
approaches (20–22). The biological closeness between feed
efficiency and the animal’s ability to convert feed nitrogen (N)
into animal protein, i.e., N-use efficiency or N partitioning
and protein turnover across individuals (23), has been used for
predicting RFI in growing cattle due to the difference in rates of
amino acid transamination (24).

Studies in Indian Bubalus bubalis to this effect are scanty.
Exploring indirect markers as discriminatory change in blood
attributes would be useful to frame predictive models to establish
genetic markers for optimization of multifunctional complex
traits as FCE. It will help in selecting efficient buffalo aptly
christened “Black Gold” (25, 26), which contribute more than
22% toward worldwide demand of milk, meat, and hide (27). The
mathematical model enabling the user to explore the relationship
between nutrition (glucose, insulin, and IGF1 system) and
reproduction is recently developed (28) for cattle as an early
attempt toward developing in silico feeding strategies, which may
reduce animal experiments eventually.

The present study is an attempt to deduce the intricate
relationship between the changing dynamics of circulatory
metabolites and the level of feed, utilizing efficiency in order to
find out proxy indicators other than RFI and developing best-
fit models to predict feed efficiency by machine learning. Blood
parameters and ADG remained as predictor variables and FCE as
the response variable to obtain models. Least square means were
used to develop partial least square regression (PLSR) models for
FCE predictions.

MATERIALS AND METHODS

Ethical Statement
All animal experiments were performed under permission and
review of the Institutional Animal Ethics Committee (IAEC)
(Reg. No. 406/GO/RBI/L/01/CPCSEA). Experimental heifers (n
= 42) used in the present study were selected at ICAR-Central
Institute for Research on Buffaloes Hisar, Haryana, Govt. of
India, buffalo farm to determine the levels of variation in RFI
over animals under study of more than 100 days. RFI was
determined as the difference in actual and predicted dry matter
intake (DMI).

Animals and Samples
Forty-two growing Murrah female buffalo calves (initial weight,
155 ± 4.6 kg; initial age, between 9 to 11 months) were utilized
for the study. The buffaloes were vaccinated and treated to
eliminate external and internal parasites before initiation of the
study. The buffaloes were fed individually on diets comprising
ad lib (allowing residues approximately at 10% of total daily dry
matter intake) green Jowar (Sorghum vulgare) fodder and a fixed
quantity of concentrate mixtures (50% of expected dry matter
intake of individual animal). The diet was formulated to meet
nutrient requirements as per buffalo feeding standards developed
by Paul and Lal (29).

The quantities of offered fodder and concentrate were
adjusted at fortnightly intervals depending on dry matter intake
of the preceding fortnight. The residual fodder and feed were
removed, weighed, and sampled for dry matter (DM) estimation
before offering the next day’s concentrate allowance. The DM
of offered and residue fodder samples was estimated on a daily
basis. The offered and residue samples of feeds and fodders
were pooled at monthly intervals for chemical analysis (Table 1).

TABLE 1 | Chemical composition of feedsa (g/kg).

Concentrate mixtureb Jowar fodder

Organic matter 865 943

Crude protein 241.5 60.7

Ether extract 42.9 29.9

Crude fibee 94.5 322

aValues represent hexaplicate assays of each material.
b Ingredient composition of concentrate mixture: maize grain, 175 g/kg; barley grain, 175

g/kg; wheat bran, 270 g/kg; mustard cake, 200 g/kg; cotton seed cake, 150 g/kg; mineral

mixture, 20 g/kg; common salt, 10 g/kg.
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Daily concentrate and fodder DM intake were recorded for
each calf. Body weight changes were recorded every 2 weeks.
The feeding trial continued for 96 days. One digestibility trial
(comprising a 6-day collection period) involving four animals
was conducted after about 65 d of feeding trial to ascertain the
nutritive value of diet. The offered feeds and residues of the
previous day were recorded; samples of both were collected daily
and pooled throughout the experimental periods per animal for
analysis. The feces voided was immediately collected and placed
in covered bins animal-wise. The amounts of feces voided daily
were weighed and thoroughly mixed in a pail, and an aliquot
(1 g per kg fresh feces) was mixed with 15ml of 20% H2SO4

and kept for N estimation. Another portion of the aliquot (30 g
per kg (minimum of 100 g) fresh feces) was kept for drying at
70◦C in a hot air oven for the estimation of dry matter and
other proximate composition. Representative samples of feed
offered, residues left, and feces voided were analyzed to determine
nutrient digestibility. Feed and fecal samples were analyzed for
dry matter (proc. # 930.15), ash (proc. # 942.05), crude protein
(proc. # 988.05), and fat (proc. # 920.39) by procedures of
AOAC (1990).

Methodology for Measuring Residual Feed
Intake (RFI) in Buffalo Calves
The BWs of individual animals, recorded at the time of initiation
and completion of the trial, were compared to determine the
average daily weight gain (ADG):

Average Daily Gain = Total weight gain during trial

÷No. of days

Daily feed intake was recorded for each animal, and body weight
was taken fortnightly. The average DMI for the 112-day feeding
period was regressed on average metabolic body weight (BW
0.75) and average daily gain (ADG) (30). RFI was computed for
each animal and was assumed to represent the residuals from a
multiple-regression model regressing dry matter intake (DMI)
on ADG and average metabolic BW (MBW) (BW 0.75). The
actual DMI minus the predicted DMI corresponds to the RFI.
The base model used was Yj = β0 + β1MBWj + β2ADGj +
ej, where Yj is the DMI of the jth animal, β0 is the regression
intercept, β1 is the regression coefficient on MBW, β2 is the
regression coefficient on ADG, and ej is the uncontrolled error
of the jth animal (RFI). A more efficient animal has a negative
RFI (observed feed intake is less than predicted feed intake), and
a less efficient animal has a positive RFI (observed feed intake
is greater than predicted feed intake). The allocation of animals
over the two subgroups of low and high conversant was based
on estimated RFI. High and low feed conversant animals were
identified based on residual feed intake (RFI) as a measure FCE.
The relation between blood analytes and feed efficiency in terms
of RFI assigned to individual heifer was established. The study
hypothesized low dry matter intake, translated into low residual
energy intake, as indices of high energy conversant and so the
productivity of an animal.

Sampling
Blood samples (10mL) were collected at each instance of
initiating the trial (day 0), followed by days 30, 60, and
90 of the 96-day feeding trial at h 9.00 from 42 growing
heifers in the study during July to October from the jugular
vein in a serum clot-activated vacutainer (VACUETTE R©).
After collection, samples were centrifuged at 3,000 rpm, 4◦C
for 15min. Serum was separated and stored at −20◦ C
until analyzed. Blood serum estimates of urea, total protein,
albumin, cholesterol, low-density lipoprotein (LDL), high-
density lipoprotein (HDL), triglycerides, lactate dehydrogenase,
serum glutamate oxaloacetate transaminase (SGOT), serum
glutamate pyruvate transaminase (SGPT), and phosphorus were
computed using an automated biochemical analyzer (Coralyzer
200, Tulips Diagnostics, India) and commercial kits (Coral
Clinical Systems, India). Serum insulin-like growth factor-1
(IGF1), triiodothyronine (T3), & thyroxine (T4) levels were
estimated using ELISA kits (Sincere Biotech Co., Ltd. Beijing).
The intra-assay and inter-assay coefficients of variation were
≤9% and≤15%, respectively.

Blood Parameter Dataset
Blood parameters were measured in all the samples collected
from 42 heifers at four different intervals, i.e., at start of the trial
(day 0), followed by three more collections on the 30th, 60th,
and 90th days of the feeding trial. Day-wise outlier detection
for every blood parameter was applied using the box and
whisker plot method in R statistical language (31), picking 32
observations out of 42. In box and whisker plots, the central
mark is the median (q2); the edges of the box were the 25th
q1 and 75th q3 percentiles. Points were drawn as outliers if
they were larger than q3+W (q3-q1) or smaller than q1-W (q3-
q1), where W = 1.5 (three states of vectors q1, q2, q3). Means
over 4 intervals of each of the blood parameters were employed
including the values of outliers imputed by the Markov chain
Monte Carlo (MCMC) method (32) for 32 out of 42 animals
in trial, with their corresponding age and ADG to compute the
potential of feed utilization function in altering intermediary
metabolic differences of high and low feed conversant based
on the RFI (−0.437 to 0.359) determined in this study. The
difference in average DM intake between the heifers of two
energy-utilizing subgroups was recorded as 100 g per day. The
av. body weight (BW) gain over 42 heifers was 45 kg during the
feed trial with an average initial BW of 155 kg ranging between
96 and 214, attaining final BW as 200 kg (ranging between 147
and 254 kg). The average daily weight gain (ADG) remained
590 g/day, ranging between 382 and 807 g/day. Ten animals
were selected in each of the high and low feed conversant
subgroups, based on daily DMI (between 3.3 and 6.0 kg) to
analyze the variation in blood attributes over two feed utilizing
levels in heifers.

Machine Learning Platform
All the machine learning algorithms were implemented using
the Java-based Waikato Environment for Knowledge Analysis
(WEKA) data mining software package (33) available as an open
source. Machine learning models can account for complexity
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of predictor and response variable relationship over correlation
analysis, infested with the limitation of determining only
linear relationship positive, negative, or none between variables,
without showing causation. An individual heifer with a set of
14 blood parameters and estimated value of RFI (FCE) was
described as the response variable.

SMO reg uses support vector machines for regression (34).
IBK assigns an outcome value as the nearest neighbor-based
algorithm, by taking the average of the numerical target of the
K nearest neighbor (35). Locally Weighted Learning (LWL)
algorithm uses an instance-based algorithm to assign instance
weights, which are then used by a base classifier for prediction
(35). Random Forest (RF) is an ensemble learning algorithm
consisting of a number of individual decision trees. At each
node of the decision tree, a bootstrapped sample of training
instances is evaluated along with a random subset of features
followed by combination of decision outcome of individual
decision trees 23 (36).

Isotonic Regression is a repressor for a dataset of low-level
oscillations (noise), enabling capture of the internal dynamics
contrary to obtaining false high scores by considering the
slope as a straight line in linear regression. It minimizes
the function

f (x) =

n
∑

i=1

Wi

(

Yi − Ŷi

)2

where Yi = y1, y2,. . . . . . ..,yn are observed responses and 1,2,. . . . . . ,
n are the unknown response values and Wi are the positive
weights, fit for the least square method for monotonically
increasing/decreasing functions (35).

Additive Regression has been used to generate accurate
regression (37, 38) at each iteration, the residuals left over as a
meta-classifier in the preceding iteration, to fit the model.

Partial Least Square Regression (PLSR) (39, 40) is a
multivariate statistical procedure to build explanatory and
predictive models to analyze multiple-response (dependent)
and multiple explanatory (independent) variables, where high
multicollinearity in small sample size ceases reliable conclusions
due to classical regression solution. The algorithm was applied
using XL stat (trial version).

Performance Evaluation Parameters
Performance of the machine learning algorithms was evaluated
using 10-fold cross-validation and leave-one-out cross-validation
methods. The dataset was divided into ten equal divisions in 10-
fold cross-validation, where 9 divisions are used for training and
the one left division is used for testing. This process is repeated till
each fold is used once for testing. Leave-one-out cross-validation
(LOOCV) is a special case of K-fold cross-validation, where
each sample is used once for testing. LOOCV is considered to
be the most objective test and is preferred for small data-set
instances (41–46). The performances of the machine learning
algorithms are further evaluated using performance evaluation
metrics—correlation coefficient, mean absolute error, and root
mean square error.

Mean Absolute Error (MAE)
The mean absolute error (MAE) is defined as the
difference between values predicted by a model and the
values actually observed from the real environment. It is
derived from the unaltered magnitude (absolute value) of
each difference

MAE =

∑n
i=1 |Xobs,i − Xmodel,i|

n
Where, n = the number of samples

Xobs,i = observed value of FCE

Xmodel,i = predicted value of FCE

RootMean Square Error (RMSE) is also known as the rootmean
square deviation, calculated as the difference between the values
predicted by a model and the values actually observed from the
real environment (FCE) that is being modeled.

RMSE =

√

∑n
i=1 (Xobs,i − Xmodel,i)

2

n

Xobs,i = observed value of FCE

Xmodel,i = predicted value of FCE

Model Quality Indices for PLSR
The quality of the PLSR model was evaluated by the three model
quality indices, i.e., Q2 cumulated (Q2 cum), R2Y cumulated
(R2Y cum), and R2X cumulated (R2X cum). Q2 cumulative
gives global goodness of fit and the predictive accuracy of the
first components.

Q2cum(h) = 1−
h

∏

j=1

∑N
k=1 PRESSkj

∑N
k=1 SSEk(j−1)

The index involves the calculation of PRESS statistic (using cross-
validation) and the sum of squares of errors (SSE) with one
less component. R2Y cum gives the correlation between the
explanatory (independent) variables with the components and
R2X cum correspond to the correlations between the dependent
variables with the components.

RESULTS AND DISCUSSION

The objective of the present study was to have an insight into
physiological dynamics involving “pattern change” in various
blood parameters in respect of average daily weight gain (ADG)
and feed conversion efficiency (FCE) depicted as residual feed
intake (RFI). The latter was estimated as the difference of actual
and predicted DM intake (DMI) for each individual animal.
Variation over mean BW, ADG, DMI, and residual feed intake
was determined in heifers.

Blood Attributes
Repeated-measure ANOVA estimates of all the blood parameters
covered under the study are depicted in Table 2. Levels of total
protein, triglycerides, SGOT, and phosphorus in blood serum
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TABLE 2 | Descriptive statistics of all blood parameters, ADG along with FCE (n = 32).

Blood parameters Minimum Maximum Mean Std. deviation Individual variation (F-value, P ≤ 0.05)

Urea (mg/dl) 14.400 29.250 22.861 2.653 0.31, 1.000

Total Protein (g/dl) 4.725 6.700 5.705 0.506 0.89, 0.638

Albumin (g/dl) 1.575 2.550 2.026 0.208 0.73, 0.837

Cholesterol (mg/dl) 53.000 80.725 63.706 7.026 0.85, 0.684

LDL (mg/dl) 17.575 43.825 30.643 5.657 0.99, 0.488

HDL (mg/dl) 42.350 61.675 51.931 4.723 0.35, 0.999

TG (mg/dl) 31.900 46.200 38.605 3.110 0.78, 0.780

LDH (U/l) 676.400 1221.725 827.352 105.570 0.20, 1.000

SGOT (U/l) 52.250 87.850 66.127 8.183 0.22, 1.000

SGPT (U/l) 35.175 50.100 42.125 3.504 0.15, 1.000

Phosphorus (mg/dl) 5.100 6.700 5.875 0.408 0.62, 0.934

IGF-1 (ng/ml) 96.535 183.234 127.335 20.232 0.40, 0.997

T-3 (ng/ml) 1.432 1.952 1.639 0.128 0.46, 0.990

T-4 (ng/ml) 44.597 160.357 103.794 26.210 1.69, 0.029*

ADG (kg) 0.369 0.729 0.549 0.097

FCE (RFI) −0.204 0.359 0.008 0.133

*Significant at p < 0.05.

are comparable with earlier reports (47). The level of albumin
and cholesterol in serum of heifers was estimated to be lower,
but LDH and SGPT levels were higher than corresponding
values reported in adult buffaloes. Higher energy status of
heifers than adult buffaloes corroborates with higher energy
status during active growth. Significant individual variation was
recorded in respect of blood thyroxin, a growth regulator in
these animals.

Variation in Levels of Blood Attributes and
Their Test of Significance Over Feed
Utilizing Efficiency
The two-sample t-test was carried out on estimated mean
values of each of the blood attributes to record the variation in
circulatory levels in respect of the difference in two subgroups,
each having ten animals bearing extremely high or low feed
conversion efficiency, i.e., residual feed intake (RFI). Equality
of the estimated means was derived from samples collected on
the initial day (day 0) followed by the 30th, 60th, and 90th
days of the feeding trial, for every blood attribute tested in the
study by the two-sample t-test, comparing two categories of
high and low feed utilization efficiency animals (Table 3). Blood
urea and SGPT levels differed in animals of high and low feed
conversion efficiency subgroups initially at the time of initiating
the trial, which was recorded non-significant later during the
trial, indicating the uniform dietary status of study animals
under institute management during the trial. However, total
serum protein differed between animals of two feed efficiencies
significantly on day 1 (<0.05) and day 90 (<0.001) of the
trial, indicative of different pathways of protein utilization
for the same productivity in two subgroups of heifers. While
comparing the serum level of blood attributes between low and
high feed conversant heifers, significant elevation was recorded,

TABLE 3 | Test of significance (computed t stat values) of blood metabolite(s) over

different feed utilizing heifers (n = 20).

Period during feed trial Zero d 30 d 60 d 90 d

Urea (mg/dl) 0.315 2.078* 1.573 1.547

Total protein (g/dl) 2.171* 0.886 0.619 4.596**

Albumin (g/dl) 0.698 0.211 1.582 2.028*

Cholesterol (mg/dl) 0.265 0.455 1.938* 3.182**

LDL (mg/dl) 0.650 0.245 1.191 0.196

HDL (mg/dl) 0.279 1.358 1.136 4.444 **

TG (mg/dl) 0.709 0.305 3.152** 0.775

LDH (U/l) 0.341 0.131 2.232* 1.833*

SGOT (U/l) 1.344 0.985 2.098* 3.123**

SGPT (U/l) 2.995** 0.925 1.4631 1.506

Phosphorus (mg/dl) 1.702* 0.810 1.857 1.072

IGF-1 (ng/ml) 0.734 0.146 2.449** 0.111

T-3 (ng/ml) 1.096 2.203* 0.300 −0.377

T-4 (ng/ml) 0.607 2.454** 0.775 0.775

*Significant at (p > 0.05).
**Significant at (p > 0.001).

Bold values indicates the significant.

respectively, in albumin 1.8/2.1 (p < 0.05); cholesterol, 47.9/60.8
(p < 0.001); LDH, 534/721 (p < 0.05); SGOT, 35.7/46.8 (p <

0.001); T3, 1.5/1.8 (p < 0.05) on day 90; and T4 (p < 0.001) on
day 30 of the feeding trial.

Total protein was found significantly higher (<0.05) in
animals of the higher-efficiency subgroup. Insulin is known to
diverge from IGF-I along with growth hormone (GH), where the
function of these hormones is known to link the regulation of
both nutrient availability and its repletion, continuing to provide
adequate signals and substrate for growth (48). Pro-insulin

Frontiers in Veterinary Science | www.frontiersin.org 5 September 2020 | Volume 7 | Article 518

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Sikka et al. Machine Learning Models FCE Prediction

and IGF1 modulate carbohydrate metabolism, which stimulates
glucose transport and inhibits insulin sensitivity. Low IGF I
estimated in efficient conversant is found to be associated with
metabolic deviations related to lower cholesterol at day 60
(p < 0.05) and day 90 (p < 0.001) and lower triglycerides
on day 60 (p < 0.001) during the feed trial in the present
study (Table 2) instead of hyperlipidemia and hyperinsulinemia
reported in other studies (49). A higher level of IGF1 in the
subgroup of less efficient energy-utilizing animals indicates a
higher stimulus to body for making metabolic changes for
growth; however, secretion of higher IGF1 in circulation might
also suggest inhibitory feedback influence on the GH/pituitary
axis, thus affecting feed utilization efficiency. Significantly low
(p < 0.001) SGPT (59.5 ± 0.64 U/L) was recorded in less
efficient animals compared to efficient animals having a higher
level of 67.72 ± 0.78 U/L, which corroborates with other
reports in cattle (7, 24), further indicating gluconeogenesis as
the preferred energy pathway in efficient animals. A significant
(p < 0.05) difference in serum urea level of less efficient vs.
highly efficient animals, i.e., 23.83 ± 0.35 vs. 20.94 ± 0.51
mg/dl (on day 30 of trial), indicates the effect of change in
season during this particular period of July to August months
covered during the trial in the present study. Onset of rains
in the month of August may influence the dietary patterns in
animals along with climate change. Also, downregulation of
different transaminases with corresponding lowering in serum
urea levels was reported by other researchers (24) in cattle.
Contrary to earlier studies (7) performed in beef cattle, serum
SGOT levels were recorded to be higher in efficient buffalo
heifers than in the inefficient subgroup of animals in the
present study. The difference between the species in respect of
SGOT levels in two feed efficiency subgroups of buffalo heifers
may be attributed to the difference in rumen microbiota and
functioning of liver of both species (50). Efficient heifer calves
also tended to have a lower concentration of T3 during the
performance evaluation (p < 0.05), compared to the efficient
heifer calves as reported earlier (23). It is also documented
that during growth, T3 has a synergistic relationship with the
growth hormone in heifers (51), supporting the argument of
metabolic rate differences between heifer calves of distinct feed
efficiency classifications.

Relationship of Blood Parameters and
Average Daily Gain With Feed Conversion
Efficiency
The study of the interaction of the blood parameter in relation
to FCE may facilitate understanding of intricate dynamics of
intermediary metabolism during growth. A vast variation in
physiological levels of blood attributes was observed in heifers.
The correlation matrix (Table 4) depicts a linear relationship
of blood attributes and average daily weight gain [ADG] with
feed conversion efficiency [FCE]. Total protein and albumin
were observed to have a significant positive correlation (p <

0.05) with FCE, while albumin was correlated only with ADG.
Triiodothyronin (T3), a growth moderator, and thyroxin (T4)
showed a negative correlation with ADG, with its optimum T
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TABLE 5 | Performance evaluation matrices of machine learning algorithms

developed for the prediction of FCE using blood parameters and ADG as

predictor variables.

Classifiers Cross-validation

Correlation

coefficient

(CC)

Mean

absolute

error (MAE)

Root mean

squared

error (RMSE)

10-fold Leave

one

out

10-fold Leave

one

out

10-fold Leave

one

out

RBF network 0.31 0.48 0.009 0.09 0.12 0.117

Isotonic regression 0.58 0.55 0.089 0.09 0.10 0.115

SMO Reg (RBF

kernel)

0.23 0.16 0.100 0.10 0.13 0.130

IBK 0.30 0.29 0.108 0.11 0.14 0.139

LWL 0.53 0.47 0.09 0.09 0.11 0.118

RF 0.35 0.27 0.09 0.10 0.12 0.127

Additive regression

(isotonic

regression)

0.60 0.45 0.09 0.11 0.12 0.150

Bold values indicates the significant.

level in circulation in efficiently feed-utilizing heifers, which
corroborates with an earlier study (10). A significant positive
correlation of LDH and SGOT with FCE indicates that feed
utilization is an energy-dependent function, which requires
higher reducing power for optimum productivity of the animal.
IGF 1 and its interaction with the other blood parameters
were observed to be highly influential in high FCE animals,
corroborating with earlier findings (52).

Physiological Model
The objective of developing the machine learning model was to
capture the dynamics of blood parameters and ADG in relation
to FCE to establish performance evaluation matrices of the tested
machine learning algorithms on 10-fold cross-validation and
leave-one-out cross-validation for the feed conversion efficiency
trait in heifers (Table 5).

Isotonic regression and LWL (locally weighted learning)
performed better than all other machine learning algorithms,
when blood parameters and ADG were used as predictor
variables for FCE (response variable) (Table 5). The performance
of isotonic regression is further increased by using it as a base
classifier with a meta-classifier (additive regression).

We further ranked the blood parameter variables as per their
importance in respect of predicting FCE, using the Relieff feature
ranking algorithm (53). The Relieff algorithm works by assigning
higher and lower weights to the different predictor variables
based on their importance in predicting the response variable.
The order of ranking in respect of predictor variables, i.e.,
blood parameters in relation to FCE, as response variable using
Relieff algorithm, was urea >TP >albumin >cholesterol >5-
LDL>HDL>triglyceride>LDH>SGOT>SGPT>phosphorus
>IGF-1 >T3 >T4 >ADG in the present study.

Further, to understand the possible higher or lower
interactions between the dependent and independent variables

TABLE 6 | Goodness-of-fit statistics for the three PLSR models.

Goodness-of-fit statistics over different models (variable FCE)

Observations All FCE Low FCE

(positive RFI)

High FCE

(negative RFI)

31.0000 16.0000 15.0000

Sum of weights 31.0000 16.0000 15.0000

DF 28.0000 13.0000 12.0000

R² 0.7638 0.9068 0.9423

Std. deviation 0.0671 0.0220 0.0262

MSE 0.0041 0.0004 0.0005

RMSE 0.0637 0.0198 0.0234

Where, DF= the no. of degrees of freedom of the selected model.

R² = coefficient of determination, interpreted as proportion of variability of the dependent

variable as explained by the model.

Bold values indicates the significant.

for getting insights into the possible physiological indicators
of FCE, PLSR models (Figure 1) were developed as a more
descriptive modeling technique. Three separate models were
developed using blood parameters and ADG as the independent
variable and FCE (RFI) values as the dependent variable,
considering all positive and negative RFI values as model (i),
only higher FCE (negative RFI) values as model (ii), and only
lower FCE (positive RFI) as model (iii), respectively. Two
components in the model gave better evaluation indices for the
three separate models. The best PLSR model obtained was that
for higher FCE (negative RFI) values (Figure 1B). The quality
of the model was evaluated on the basis of Q2-cumulated (Q2

cum), R2Y-cumulated (R2Y cum), and R2X-cumulated (R2X
cum) values (Figure 1); two component (new predictor variables
which are constructed using the linear combinations of the
original predictor variables, also known as latent variables)
models are better than one-component model. The higher the
Q2 cum, R2Y cum, and R2X cum, the better is the quality of
the model.

As per the goodness-of-fit statistic, the coefficient of
determination (R2) values of the model considering all FCE
values is least depicting as compared to the other two models
(Table 6). The PLSR model for the higher FCE values was the
best based on performance evaluation metrics (R2 0.90680) over
lower FCE (R2 0.9423) and all FCE (R2 0.7638) in the present
study, based on the criteria of the qualifying PLSR model having
R2 > 0.7 andQ2 > 0.4 (54). For all the three PLSRmodels, plots of
observed and predicted values are shown in Figure 2. Most of the
predicted values were recorded within a 95% confidence interval.

This study indicates that variation in blood parameters
and metabolic characteristics, if it does not lead to a more
efficient and early selection, at least would be useful for selective
genotyping for RFI/FCE through identified physiological and
genetic markers.

The two horizontal lines on the VIP bar charts (Figure 3)
represent the two thresholds at 0.8 and 1. The variables having
moderate influence depicted as VIP score between >0.8 &
<1. Those highly influential variables have a VIP score >1.
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FIGURE 1 | Model quality by number of components (A) all FCE, (B) higher FCE, (C) lower FCE).

VIP-values >0.8 are significant (55) for blood parameters and
ADG which differ in respect of all the three PLSR models. In
the higher FCE group, IGF1 and its interaction were highly

influential, while in the lower FCE group, albumin and its
interaction were more influential (Table 7). IGF1 is known to
regulate the levels of blood glucose, mostly (up to 90%) by
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FIGURE 2 | Observed and predicted FCE values for All FCE (A), higher FCE/negative RFI (B), and lower FCE/positive RFI (C).
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FIGURE 3 | Variable importance for the projection (VIP) for the two components for the three PLSR models: all FCE (A); high FCE (B); low FCE (C).
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TABLE 7 | Significant interactions among blood metabolic indicators based on

VIP charts emerged from PLSR models.

Blood attribute interactions

Using all RFI Negative RFI/higher

FCE subgroup

Positive RFI/lower

FCE subgroup

LDH*SGOT Phosphorus*IGF-1 Albumin*LDH

TP*LDH Albumin*IGF1 Albumin*SGOT

Phosphorus*T4 IGF1*ADG LDH

Urea*LDH Urea*Cholesterol Phosphorus*T4

Albumin*TG T4*ADG TP*Albumin

LDH*Phosphorus HDL*T4 Urea*HDL

HDL*IFG-1 HDL*Phosphorus LDH*T3

Phosphorus*ADG SGPT*T4 Albumin*T4

Urea*SGOT SGOT*T4 HDL*LDH

LDH*SGPT IGF1 LDL

Albumin SGOT*IGF1 Albumin*Phosphorus

Cholesterol*LDH Cholesterol*SGOT HDL

LDH*T3 Cholresterol*HDL UREA*IGF1

LDH*AFG SGPT*IGF1 SGOT*Phosphorus

Albumin*Phosphorus SGOT*SGPT TG

Urea*Albumin Cholesterol*IGF1 Urea*TP

TP*HDL TG*SGOT TP*SGOT

Urea TG*SGPT TP

Triglyceride HDL*T3 Urea*Albumin

SGOT*T4 TG*T4 T4

TP*SGPT Urea*LDL Albumin*HDL

Albumin*HDL Cholesterol*SGPT Urea

T3*T4 SGOT*ADG Urea*ADG

Triglyceride

Albumin*SGOT

TP*TG

HDL*TG

Albumin*TG

Albumin*Phosphorus

gluconeogenesis, using non-carbohydrate entities as amino acid
metabolism (28, 56). This study reveals the relation between IGF1
and FCE in growing young female buffalo calves corroborating
with earlier reports (57).

CONCLUSIONS

Blood parameters depicting intermediary metabolism were
recorded for buffalo heifers, maintained at the Govt. Livestock
farm. Their interactive influence along with ADG over FCE has
been established using the machine learning approach in the
present study. Blood analyses are known to reflect the status
of energy metabolism and some attributes were related to feed
efficiency of heifers.

We developed machine learning models using blood
parameters and ADG as the predictor variable and FCE as the

response variable. PLSR models were developed separately for
all animals, only efficient (negative RFI), and inefficient animals
(positive RFI), to facilitate understanding of blood parameter
interaction with ADG and FCE. The machine learning model
based on isotonic regression outperformed other machine
learning algorithms used for modeling in the present study.
Further, the predictive accuracy of isotonic regression was
enhanced using additive regression. The developed machine
learning models are found effective in predicting FCE accurately.
Further, the ranking of predictor variables was evaluated
to predict FCE. It may facilitate understanding of intricate
dynamics of blood parameters underlying growth.

As deduced from the VIP charts of PLSR, FCE is affected by
IGF1 and its interactions with other blood parameters in the
higher FCE group. IGF1 regulates the blood glucose level, amino
acidmetabolism, and protein synthesis. IGF1 has also been found
related with FCE in growing heifers.

The predictive accuracy of the machine learning models can
be further increased by the inclusion of a broader range of blood
parameters, which can then be used as a phenotypic marker
for selection of efficient animals. To the best of our knowledge,
this is the first report of modeling of blood attributes and ADG
with FCE in Bubalus bubalis. Our study is the first to show
that a machine learning predictive model based on blood tests
alone can be successfully applied to predict FCE in heifers and
could open up unprecedented possibilities in feed trial-based
cumbersome diagnosis.
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