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Abstract

Since the start of the coronavirus disease-2019 (COVID-19) pandemic, there has been interest
in using wastewater monitoring as an approach for disease surveillance. A significant uncer-
tainty that would improve the interpretation of wastewater monitoring data is the intensity
and timing with which individuals shed RNA from severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) into wastewater. By combining wastewater and case surveillance data
sets from a university campus during a period of heightened surveillance, we inferred that
individual shedding of RNA into wastewater peaks on average 6 days (50% uncertainty inter-
val (UI): 6–7; 95% UI: 4–8) following infection, and that wastewater measurements are highly
overdispersed [negative binomial dispersion parameter, k = 0.39 (95% credible interval: 0.32–
0.48)]. This limits the utility of wastewater surveillance as a leading indicator of secular trends
in SARS-CoV-2 transmission during an epidemic, and implies that it could be most useful as
an early warning of rising transmission in areas where transmission is low or clinical testing is
delayed or of limited capacity.

Introduction

Since the onset of the coronavirus disease-2019 (COVID-19) pandemic, there have been over
170 million known severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections
[1]. From early on in the pandemic, reporting delays and changes in testing effort and capacity
have made timely surveillance difficult [2–5]. This led to an interest in using the concentration
of SARS-CoV-2 RNA in wastewater as a tool for COVID-19 surveillance and to monitor for
secular trends. In the past, this type of surveillance has been used to provide early warnings of
polio outbreaks [6] and to monitor for antimicrobial-resistant pathogens [7]. The initial hope
that wastewater could be used as a leading indicator of SARS-CoV-2 transmission has led to
mixed results [8, 9].

Understanding how temporal patterns in the incidence of new infections relates to the observed
concentration of SARS-CoV-2 RNA in wastewater is key to interpreting wastewater surveillance
data. These two quantities can be linked by the distribution, relative to the time of infection, of
individual shedding of viral RNA into the wastewater system. This is analogous to the way in
which the incidence of infection is linked to the timing of symptom onset by the incubation period
in epidemiology. SARS-CoV-2 RNA has been observed in stool samples as early as a few days after
hospital admission [10] and within a week of symptom onset [11], and as late as 5 weeks after
respiratory samples are no longer positive for SARS-CoV-2 RNA [12]. The intensity with
which SARS-CoV-2 is shed across this wide range of times relative to infection is presently unclear.

The primary objective of the present study was to use data from a COVID-19 outbreak on a
university campus [13] to infer the shedding distribution of SARS-CoV-2 in wastewater rela-
tive to the time of infection. To do this, we utilised daily COVID-19 case notifications and
daily measurements of SARS-CoV-2 RNA in the university sewage system. As approximately
85% of students live on campus [14], the sewage system is largely representative of the student
body as a whole, which, when coupled with intense on-campus case surveillance and an out-
break with two distinct temporal peaks, makes this an ideal dataset for estimating the shedding
distribution. As secondary objectives necessary to estimating the shedding distribution, we first
estimated the time series of infections from the case notification time series, and described
some pertinent aspects of the epidemic at the University.

Methods

Campus data

All case data come from the Fall semester in 2020 (10 August – 4 December inclusive).
Approximately 7000 undergraduate students live on the University campus, about 85% of
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the total undergraduate population, although this may have been
reduced during the pandemic. Early in the semester, the majority
of cases were notified through screening of individuals with symp-
toms (Fig. 1a); there was initially no universal surveillance testing.
The population used in this study was undergraduate students
diagnosed through symptomatic testing (i.e., individuals who
reported to the University health services with symptoms of
COVID-19) via RT-PCR processed at an off-campus facility, in
the Fall semester. This included those who lived both on- and off-
campus, and excluded on-campus staff. We do not include those
tested through asymptomatic screening or contact tracing, as these
two routes were not consistently applied throughout the semester.

Symptomatic screening proceeded throughout the semester, while
a very limited amount of asymptomatic screening began on 21
August following the first peak, and proceeded through to the
end of the semester. A recent study estimated the sensitivity
and specificity of the RT-PCR tests to be 0.859 (95% CrI:
0.547–0.994) and 0.998 (95% CrI: 0.992–0.999) respectively
[15]. Students arrived back on campus in time for the start of
classes on August 9; most students arrived back in the final
week before classes started, i.e. beginning on 2 August.
Following high incidence in the first weeks back, the University
underwent a 2-week period of online classes, starting on 19
August and ending on 2 September. Following notification,

Fig. 1. In all panels, the shaded blue region indicates a period of online instruction, where students remained on campus but did not have in person instruction,
and the vertical dashed line indicates the start of classes (August 9); the majority of students arrived in the week preceding this date. (a) notified cases among
students on the University campus in the fall semester, delineated by whether the case was found due to symptomatic screening or not. (b) the estimated time-
series of infections (purple line), alongside the actual (bars) and implied (green dashed line) distributions of symptomatic case notification dates. (c): wastewater
measurements by date. Open circles indicate the daily mean of three recovery-corrected RNA measurements, and whiskers indicate the smallest and largest mea-
surements on that day.
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cases that lived on campus entered an isolation period, which typ-
ically lasted 10 days. While some of these cases were isolated in
on-campus facilities, some cases were isolated off-campus, mean-
ing they would not have been shedding into the campus waste-
water system for that period. Additionally, on-campus contacts
of notified cases were required to enter a period of quarantine
of variable length dependent on test results [16].

Wastewater data

From 3 August to 30 November 2020, 24-h time-based composite
wastewater samples were collected each day from the manhole
receiving all of the University wastewater. The wastewater system
collects sewage from residence halls and facilities ranging from
approximately 1600 to 5800 feet in the linear distance along the
sewer lines and the average daily flow during the monitoring per-
iod was 3.29 million litres per day (S.D. ± 0.29). The low coefficient
of variation (8%), coupled with the fact that storm water is col-
lected via a separate system, suggests that the variation associated
with wastewater flow rate would be small compared with other
sources of variation. Sampling was interrupted from 1
September to 9 September due to a breakdown of the composite
sampler. Full procedures for the processing of the wastewater
samples has been detailed elsewhere [17]. Briefly, the composite
sample was programmed to collect one 50 ml sample every
hour, 24-h per day, throughout the sampling period. The waste-
water composite sample from each day was mixed well and a
100 ml aliquot was removed, spiked with a process control
(bovine respiratory syncytial virus; BRSV), which has been
observed to mimic the recovery of SARS-CoV-2 from wastewater
[18], and filtered using an electronegative membrane. After filtra-
tion, the membranes were aseptically rolled into bead tubes and
homogenised using a bead beater, and the resulting liquid was
extracted using a Qiagen PowerViral DNA/RNA kit. As detailed
elsewhere [18], the resulting purified nucleic acids were assayed
in triplicate for SARS-CoV-2 RNA using the N1 assay and for
the process control RNA in single reactions via RT-ddPCR.
During the period of 21 September to 11 October, Qiagen
PowerViral DNA/RNA kits were not available and an alternative
extraction method was used; however, the resulting RT-ddPCR
data from this interval did not pass quality assurance protocols
and were removed from the resulting dataset. Given the recovery
of BRSV was previously observed to reflect that of SARS-CoV-2 in
municipal wastewater (efficiency mean: 4.0% ± S.D.: 12%) [18], the
SARS-CoV-2 RNA concentrations in wastewater were recovery-
corrected to account for the measured process efficiency as sug-
gested during a previous method comparison [19]. We calculated
the cross-correlation of the recovery-corrected RNA concentra-
tion time series with the case notification time series at lags of
up to 17 days (Fig. S2).

Infection timing estimation

To estimate the incidence of new infections, we deconvolved the
symptomatic case notification time series with the distribution
of the time from symptom onset to testing. We estimated the dis-
tribution of time from infection to testing as the convolution of
the incubation period and a delay from symptom onset to testing.
We approximated the incubation period as a log-normal distribu-
tion with parameters μ = 1. 621 and σ = 0.418, according to Lauer
et al. [20], and the delay between symptom onset and testing as a
Poisson distribution (see Table 1 for a summary of all parameters

used). In the baseline scenario, we used a mean delay from symp-
tom onset to testing of 2 days, but also tried 0, 1 and 5 days in
sensitivity analyses (Figs S5–S7). We then deconvolved this distri-
bution from infection to testing from the case notification time
series by maximum-likelihood deconvolution, using the
backprojNP function in the R ‘surveillance’ package version
1.18.0 [21–23]. This algorithm seeks to estimate the infection
time series with the highest likelihood of reproducing the
observed case series, using knowledge about the distribution of
the delay from infection to case notification. The algorithm
works by proposing an initial distribution of infection times,
and then sequentially adjusting this estimate to maximise the like-
lihood of reproducing the notified cases. It uses a Poisson likeli-
hood for the number of infections in a day, and makes no
assumption on the temporal pattern of infections. We set the
smoothing parameter k = 10 and used default settings for all
other parameters. Setting the smoothing parameter to a relatively
high value such as this helps ensure that the algorithm captures
the features of the infection time series without overfitting the
noise in the case notification time series.

Shedding distribution inference

We modelled the individual shedding distribution, σ(t), as a
gamma distribution with the shape α and rate β, with the origin
being the date of infection for that individual. We then adjusted
this for entry and exit from isolation using the probability that
the individual had entered isolation t days after infection, penter(t),
the probability they had exited isolation by t days after infection,
pexit(t), the probability that they are reported, pr and the propor-
tion of reported cases entering isolation on day s of the epidemic,
pi(s). The parameter penter(t) was given by the cumulative prob-
ability that the incubation period and delay from symptom
onset to testing (described in the previous section) had been com-
pleted by day t, and pexit(t) was just this lagged by 10 days – i.e.

pexit(t) = penter(t − 10) if ≥ 10

pexit(t) = 0 otherwise.

We estimated pi(s) by fitting a generalised additive model with a
logit link to the proportion of infections entering isolation on day
s, using the mgcv package (version 1.8–31) in R [25] (Fig. S1). We
estimated the fraction of infections reported, pr, in the calibration
(see below), assuming that it did not vary through time. In a sen-
sitivity analysis, we set pr = 0.24, to reflect the number of infec-
tions per reported case used by the CDC [24]. Given all these
parameters, the individual shedding distribution adjusted for iso-
lation was

si(t) = (1− prpi(s0 + t)( penter(t)− pexit(t)))s(t),

where s0 is the day of the epidemic on which the individual was
infected. Note that as pexit(t) ≤ penter(t)∀t, it follows that σi(t)≤
σ(t).

The number of new infections per day, I(t), was found by div-
iding the number of infected individuals on a given day that were
ultimately reported, I’(t), by the proportion of infections that were
reported, such that I(t) = I

′
(t)/pr. We then estimated the expected

temporal pattern of SARS-CoV-2 RNA in the wastewater over
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time by summing the shedding distribution for each individual
infected on a given day through time. We then multiplied this
by a scaling constant, θ, to capture the magnitude of shedding.
This yielded the reconstructed mean RNA concentration,

Cm(t) = u
∑t

s=−1
I(s− t)si(s).

We fitted Cm(t) to the observed RNA concentration in waste-
water, Cd(t), for each of the three daily replicate subsamples,
using Markov chain Monte Carlo methods in the BayesianTools
(version 0.1.7) R package [26], with a negative binomial likeli-
hood, for which the dispersion parameter, r, was also fitted.
When the RNA concentration in the wastewater was below the
95% limit of detection, we use the cumulative distribution func-
tion of the negative binomial distribution to determine the prob-
ability of observing data below that threshold. The baseline 95%
limit of detection was 220 GC / l, which was then recovery-
corrected, D95(t), and so varies through time (Fig. 2c). As a result,
there were five free parameters: α, β, θ, r, and pr, with their like-
lihood given by

L(a, b, u, r|Cd(t)) = Cd(t)+ r − 1
Cd(t)

(1− p)rpCd(t) ifCd (t).D95(t)

L(a, b, u, r|Cd(t)) =
∑D95(t)

c=0

c+ r − 1
c

(1− p)rpC otherwise,

where p = Cm/Cm + r. We used default settings from the
BayesianTools package, and a uniform prior on all parameters
with the following ranges: α∈ (1, 103), β∈ (0, 103), θ∈ (0, 105),
r∈ (0, 105) and pr∈ (0, 1). We insisted that the shape parameter
α was greater than 1 so that σ(0) = 0; i.e., people are not shedding
at the moment they are infected. The MCMC chains and posterior
parameter densities are shown in Fig. S9 and correlations between
parameters are shown in Fig. S10. There were strong positive cor-
relations between α and β and between θ and pr. In the former
case, this was likely due to the fact that the mean of the gamma

distribution was α/β. In the latter case, this was likely due to
the fact that θ and pr appear as a ratio in the equation for
Cm(t), although pr does also appear in the isolation adjustment
of the shedding distribution, so the two parameters could be sep-
arately identified. See Fig. S3 for examples of how different
gamma distributions and delays from symptom onset to testing
translate into different temporal patterns of viral RNA measure-
ments in wastewater.

Results

The majority of students arrived on campus in the week 3–9
August for the start of classes on 10 August. Soon after students
arrived, there was a large number of reported COVID-19 cases
among students, peaking at 177 cases reported on 17 August
(Fig. 1a). In response to this, the University underwent a short
period of online instruction from 19 August to 2 September,
while students remained on campus. Case notifications declined
thereafter and remained at a lower level, until rising again in
October and November. In total, there were 2263 cases among
students between the start and end of the semester (20
November). In the earlier part of the semester, the majority of
notified cases were symptomatic when notified, though some
asymptomatic and pre-symptomatic cases were detected through
contact tracing and limited surveillance testing in specific groups,
such as athletes. During the semester, surveillance testing capacity
was substantially increased, and hence later in the semester, the
majority of cases notified were not symptomatic at the time of
detection (Fig. 1a). Throughout the semester, a proportion of stu-
dents were isolated off campus for 10 days following a positive test
result (Fig. S1). This proportion declined slightly over the semes-
ter, with about 25% of cases isolated off-campus over the entire
semester.

From the time series of notified cases, we estimated the time
series of infection incidence by deconvolving the case notifica-
tions with the distribution of the time between infection and test-
ing (Fig. 2b) When we used this infection time series to project
back the case-notification time series from which it was derived,
we were able to recover the timing of peaks in notifications,
although the height of the initial peak was underestimated. This

Table 1. Summary of parameter. Where the symbol column is empty, there was no symbol used for that parameter

Parameter name Symbol Value Notes

Delay mean 1/λ 2 days Assumed, and varied in sensitivity analysis
to 0, 1 and 5 days

Incubation period meanlog Μ 1.621 From Lauer et al. [20]

Incubation period sdlog Σ 0.418 From Lauer et al. [20]

Smoothing parameter 10 Assumed

95% Limit of detection 220 N1 GC/l

Quarantine length 10 days Taken from University protocols [16]

Shedding distribution shape Α Estimated

Shedding distribution rate Β Estimated

Proportion of infections detected pr Estimated Estimated in baseline. Set to 0.24 in a
sensitivity analysis, as used by the CDC [24]

Negative binomial size R Estimated

Shedding distribution scaling parameter Θ Estimated
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underestimate in the peak is in part due to the smoothing step in
the deconvolution algorithm, and in part due to the very steep
nature of the peak, which is unable to be explained by the
imposed distribution of time from infection to notification. This
very steep peak may be simply due to chance, or due to a report-
ing artefact which meant notifications were clustered on a particu-
lar day. We estimate that a bare minority of transmission relating
to the first large peak occurred prior to classes starting, as stu-
dents were arriving back on campus, and that transmission was
already rapidly declining when online classes began (Fig. 1b).
Pre-arrival testing of all students, whether on-campus or not,
ascertained 33 cases out of 11 836 tests.

Throughout this period, we collected one 24-h time-based
composite sample per day, 7 days per week, from a manhole col-
lecting all the wastewater produced on campus with no other
inputs (storm water is collected via a separate system) and

evaluated the concentration of SARS-CoV-2 RNA in these sam-
ples (Fig. 1c). As expected, the RNA concentration showed a simi-
lar temporal pattern to cases, though substantially more noisy.
The cross-correlation function of RNA concentration and case
notifications was highest at a lag of 7–9 days and was not signifi-
cant at the 95% level at lags less than −1 days, implying that the
wastewater was likely not a leading indicator of trends in case
numbers in this context of relatively rapid case notifications
(Fig. S2).

The shedding distribution we inferred rises rapidly following
infection and through the incubation period, peaking at around
6 days (50% uncertainty interval (UI): 6–7; 95% UI: 4–8) follow-
ing infection (Fig. 2a, Fig. S4A). The estimated genome concen-
tration in a given sample was highly overdispersed, with only
28% of predicted samples being above the 95% limit of detection
at the predicted peak SARS-CoV-2 RNA concentration (Fig. 2b,

Fig. 2. (a) Implied shedding distribution and 95% credible interval. The vertical dashed line indicates the day of peak shedding (8 days). The red line indicates the
average shedding distribution of someone who enters isolation (b) Distribution of predicted daily recovery-corrected measurements at the peak intensity (August 16)
implied by the negative binomial likelihood. The red shaded bar shows the range in which the predicted mean measurement fell (c) Mean predicted RNA concentration
(red line), 95% prediction interval (light grey line). White open circles and whiskers indicate the daily mean measurements and minimum/maximum values respectively.
The dashed line indicates the recovery-corrected 95% limit of detection. Data points below the 95% limit of detection are plotted as the midpoint of 0 and the 95%
limit of detection for that day.
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Fig. S4B). This is likely a combination of overdispersion in indi-
vidual shedding and overdispersion from sampling due to the
sewage not being well mixed at the point of sample collection.
The maximum a posteriori estimate of the dispersion parameter
was 0.393 (95% Credible Interval: 0.317–0.478).

To evaluate the fit of our inferred shedding distribution, we
reconstructed the predicted concentration of SARS-CoV-2 in
the wastewater (Fig. 2c, Fig. S4C). The mean predicted concentra-
tion captures the trends in viral concentration, though it peaks
slightly too early – the peak in the mean predicted concentration
occurred on 18 August, while the highest data point was recorded
on 31 August and the highest daily mean and median on 27
August. The predicted time series were also very noisy, implying
that it is necessary to average multiple replicates of each daily
sample to gain an impression of temporal trends. This effect is
partly due to variability in composite subsampling, and is likely
to be heightened when the number of infections is small leading
to more heterogeneity between replicates. The upper bound of our
95% prediction interval (i.e., the 97.5th percentile) was greater
than 96.6% of measured values, and the upper bound of our
50% prediction interval (i.e., the 75th percentile) was greater
than 81.6% of measured values. The Spearman’s rank correlation
coefficient of the mean predicted concentration and the mean
daily estimated concentration was 0.51 (95% prediction interval:
−0.01 to 0.54). When we increased or decreased the mean delay
from symptom onset to testing, the predicted peak in the shed-
ding distribution was a similar amount of time later or earlier
respectively, but the overall shape of the distribution remained
the same, and in particular its long tail (Figs S5–S7). The deviance
information criterion (DIC; a measure of relative model quality,
where lower values imply a better model) decreases as we increase
the mean delay, with the lowest DIC occurring when the mean
delay is 5 days. This implies that our baseline scenario of 2 days
is perhaps more likely to give an underestimate of the timing of
peak shedding than an overestimate. When we fix the proportion
of infections that are detected to pr = 0.24, we find that the timing
of the peak is unaffected (Fig. S11). However, the mean magni-
tude of shedding is reduced, as this value of pr is less than our
mean estimated value of 0.57. The uncertainty in the shedding
intensity is also substantially reduced, reflecting that a large part
of the uncertainty in our estimate of shedding intensity arises
due to our lack of knowledge about the true number of infections.

Discussion

The shedding distribution that we inferred peaks on average
around 6 days after infection, before the onset of symptoms in
35% (95% credible interval (CrI): 15%–73%) of patients that
become symptomatic [20]. Following this peak, the shedding
intensity decays approximately exponentially, though at a lower
rate than the initial increase. This slow decay means that, on aver-
age 77% (95% CrI: 44%–95%) of shedding occurs after the end of
the incubation period. This early peak and slower exponential
decay is broadly in line with measurements taken from stool sam-
ples by Wölfel et al. [11] and a meta-analysis of shedding in stool
by Cevik et al. [27]. The early peak and slower decline indicate
one reason why it can be difficult to use wastewater data as a lead-
ing indicator in certain circumstances: while some recent infec-
tions will be shedding, that signal may be masked by a large
number of older infections. This is not a consequence of the sen-
sitivity of the assays used to measure viral RNA in the wastewater,
which have been shown to be remarkably sensitive [19, 28], but

rather is due to the timing of that shedding. This is particularly
the case in a period of declining or stable transmission, when
the day-6 peak and the long tail in shedding suggest that much
of the RNA measured may come from people infected some
time ago, masking recent transmission. It is also important to
consider that there is typically an additional delay in the analysis
and reporting of wastewater data [29]. For these reasons, waste-
water surveillance may be most useful to detect increased trans-
mission in an area where there has recently been little or no
transmission, or where there are greater testing delays and/or lim-
ited testing capacity [30]. One can observe this early warning in
data from the end of July in our data set, where positive waste-
water samples were recorded in advance of an increase in cases
(Fig. 1a and c). If incidence stabilises at a relatively high level fol-
lowing an initial outbreak, the long tail in the shedding distribu-
tion implies that we may counterintuitively continue to see rising
RNA concentration measurements for several weeks after case
numbers have declined (see Fig. S8 for examplar incidence curves
and the associated predicted mean wastewater measurements).
Some studies have found that RNA concentrations do provide a
short lead time on case data [8, 9]. This could be because the
delay from infection to testing was longer in those studies than
in ours, or because the shedding distribution peaks sooner in dif-
ferent age groups. Additionally, several authors have highlighted
the complexity of the term ‘leading indicator’, as the lead time
depends both on the type of application in question, and on the
delay in processing and analysis of wastewater [29, 31].

A modelling study by Huisman et al., whose aim was to esti-
mate the reproduction number over time (Rt) directly from waste-
water data, also estimated which shedding distribution minimised
the error between estimates of Rt based on wastewater and that
based on cases [32]. Their inferred distribution had a much
sharper peak, but also peaked around 6 days following infection.
However, that study used data from larger populations and catch-
ment areas and had a different and less direct calibration proced-
ure, which may explain the discrepancy in shedding distribution
shape. Using an approach originally described by Teunis et al.,
a study by Miura et al. attempted to estimate the shedding distri-
bution directly from faecal samples rather than from case data
[33, 34], They found a similarly prolonged period of shedding,
albeit with an earlier peak. However, there were no faecal samples
from the first 3 days following infection, and the highest concen-
trations occurred 9 days following infection, so their data are also
consistent with a later peak in shedding. Data from studies like
ours and that of Miura et al. highlight the importance of under-
standing the shedding distribution when seeking to estimate pat-
terns of infection from wastewater samples. Another study
(Schmitz et al. [35]) attempted to estimate individual shedding
using data from a different university campus, finding that the
mean shedding rate was 6.84 log10 N1 GC per gram of faeces.
However, it is difficult to compare this directly to our estimates,
as the Schmitz et al. study does not have a temporal component
and is per gram of faeces, where ours is per litre of wastewater
and agnostic to shedding route, i.e. it includes viral RNA shed
through other routes [36]. While SARS-CoV-2 RNA load is usu-
ally dominated by shedding via faeces, shedding via saliva, spu-
tum, or urine may make important contributions to the total
load when the number of infections is low [36].

Our study has several limitations. First, we assumed that the
distribution of testing delays was the same through time. In real-
ity, there may have been longer delays earlier in the semester
when testing capacity was lower and the number of cases was
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higher. Second, underreporting of cases means that our infection
time series may not reflect the true magnitude of infections. If
underreporting was constant through time, then we would still
capture the temporal patterns in new infections, and hence the
temporal distribution of shedding intensity would be correctly
inferred, though if under-reporting increased over time this
would lead to incorrect inference. We estimated the proportion
of cases that were detected through symptomatic testing, assum-
ing this was constant through time, to be 0.57 (95% CrI: 0.11–
0.98). The high degree of uncertainty on this parameter estimate
leads to great uncertainty in the magnitude of individual shed-
ding. Third, our population was predominantly students, most
of whom were between the ages of 18 and 22, and so extrapola-
tions to other age groups may not be appropriate. For instance,
in older populations or in the general population, there are likely
to be fewer asymptomatic infections and consequently higher
shedding rates. It is unclear whether or how the timing of shed-
ding would differ in different age groups, but the comparability
in the timing of our study and other studies not primarily focused
on the 18–22 age group suggests that the timing of peak shedding
may be robust to the age of the individual infected. There are also
other factors that have changed since our study and which may
also affect the shedding distribution, most importantly the emer-
gence of new variants and vaccination. Finally, our inferred shed-
ding distribution reflects the contribution each infected individual
makes per litre of sampled wastewater, rather than per litre of
wastewater produced by that individual. It, therefore, includes
the effect of dilution. While this makes it difficult to estimate
the magnitude of individual shedding, it should not affect our
estimate of its temporal distribution.

In summary, we have estimated that infected individuals likely
shed SARS-CoV-2 RNA into the wastewater for a prolonged period,
peaking at around 6 days after infection, longer than the incubation
period for COVID-19. This implies that wastewater data may be
most useful to detect new outbreaks when incidence is low, when
testing capacity is low, or when test results are substantially delayed.
It also highlights that care must be taken when interpreting waste-
water data during an ongoing period of high incidence.

Supplementary material. The supplementary material for this article can
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