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Abstract

The comparative genomics revolution of the past decade has enabled the discovery of functional elements in the human genome via

sequence comparison. While that is so, an important class of elements, those specific to humans, is entirely missed by searching for

sequence conservation across species. Here we present an analysis based on variation data among human genomes that utilizes a

supervised machine learning approach for the identification of human-specific purifying selection in the genome. Using only allele

frequency information from the complete low-coverage 1000 Genomes Project data set in conjunction with a support vector

machine trained from known functional and nonfunctional portions of the genome, we are able to accurately identify portions of

the genome constrained by purifying selection. Our method identifies previously known human-specific gains or losses of function

and uncovers many novel candidates. Candidate targets for gain and loss of function along the human lineage include numerous

putative regulatory regions of genes essential for normal development of the central nervous system, including a significant enrich-

ment of gain of function events near neurotransmitter receptor genes. These results are consistent with regulatory turnover being a

key mechanism in the evolution of human-specific characteristics of brain development. Finally, we show that the majority of the

genome is unconstrained by natural selection currently, in agreement with what has been estimated from phylogenetic methods but

in sharp contrast to estimates based on transcriptomics or other high-throughput functional methods.
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Introduction

Although computational and experimental approaches have

identified the majority of protein-coding genes in humans,

these coding sequences only account for ~1% of the

genome. Determining the extent to which the remaining

~99% of the genome may be functional remains a major

challenge for biology. To this end, recent experimental

advances have facilitated the identification of regulatory

regions (Johnson et al. 2007), noncoding RNAs (Guttman

et al. 2010), histone modifications (Barski et al. 2007), and

accessible chromatin (Boyle et al. 2008). Collectively, these

experiments suggest that a substantial number of functional

genomic elements reside in noncoding regions.

Although these experimental approaches represent a

promising avenue toward identifying noncoding functional

elements in the genome, many of the putatively functional

noncoding regions they identify may be inconsequential to the

organism. For example, the ENCODE project (Dunham et al.

2012) integrated data from a variety of genome-wide

experiments assessing expression, transcription factor binding,

and other biochemical activities and concluded that 80.4% of

the human genome is functional. However, if we define func-

tion as biochemical activity with fitness consequences for the

organism, then evolutionary analyses tell a very different story

(Graur et al. 2013). Under this definition, which we adopt

here, functional regions of the genome will experience puri-

fying (or negative) selection, which removes deleterious mu-

tations from populations. Comparative genomic studies have

identified regions of the human genome where substitutions

occur less often than expected in the absence of selection, and

have concluded that on the order of 5% of the human

genome is functional (Chinwalla et al. 2002; Siepel et al.

2005; Lunter et al. 2006; Birney et al. 2007; Pollard et al.

2010)—far less than estimated by ENCODE. This disparity

demonstrates that knowledge of purifying selection is essen-

tial for identifying functional regions of the genome.

One limitation of purely comparative genomic approaches

to detect purifying selection is that selective constraint may
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not be detected if it is present in only a small portion of the

phylogenetic tree being examined. A particularly interesting

class of elements is therefore missed by these techniques:

Elements that have acquired selective constraint only recently

in a single species (e.g., human-specific gains of function

[GOFs]). Conversely, genomic regions experiencing a recent

loss of selective constraint in only a single lineage may be mis-

identified as conserved throughout the phylogeny (e.g.,

human-specific losses of function [LOFs]). Identifying these spe-

cies-specific gain and loss of function events is critical to illumi-

nating the genetic bases for species-specific biology. Yet while

comparative genomic data may not be able to detect these

events, population genetic data can be used to infer the current

action of purifying selection within a single species. Within a

population, purifying selection will confine deleterious muta-

tions to relatively rare allele frequencies or eliminate them alto-

gether. This process will also reduce variation at linked sites via

background selection (Charlesworth et al. 1993). Together neg-

ative and background selection decrease the number of poly-

morphisms and the average derived allele frequencies of

polymorphisms within and surrounding functional elements

(fig. 1). Indeed, the marked reduction in diversity seen within

and around coding regions in the human genome is consistent

with the effects of background selection (McVicker et al. 2009;

Hernandez et al. 2011; Lohmueller et al. 2011).

Here we describe a method exploiting the impact of neg-

ative selection on genetic diversity within populations to iden-

tify functional regions of the human genome. Although recent

studies have been able to leverage population genetic data to

identify differences in the amount of purifying selection acting

on different classes of sites (Pierron et al. 2012; Ward and

Kellis 2012; Somel et al. 2013), we attempt to classify individ-

ual genomic regions as constrained or unconstrained by selec-

tion. In principle, this could be accomplished by comparing

observed patterns of diversity with theoretical expectations.

However, these expectations depend on the demographic

history of the populations examined as well as the distribution

of selection coefficients encountered by new mutations.

Given that there is considerable uncertainty surrounding

these selective and demographic parameters (Marth et al.

2003; Stajich and Hahn 2005; Eyre-Walker and Keightley

2007; Boyko et al. 2008), and given the extensive heteroge-

neity in recombination rates (McVean et al. 2004), as well as

variation in mutation rate and data quality across the genome

(Green and Ewing 2013), here we adopt a supervised machine

learning approach to classification—where genomic windows

of known class (i.e., functional or not) are used to algorithmi-

cally learn a set of criteria to predict the classes of genomic

windows whose class membership is unknown.

In particular, we use a support vector machine (SVM)

approach to classify sliding windows of the human genome

as either experiencing purifying/background selection or as

unconstrained based on the density and allele frequencies of

single nucleotide polymorphisms (SNPs) in the 1000 Genomes

data set (Altshuler et al. 2012). SVMs are trained by finding

the hyperplane that optimally separates two classes of data

points from a training set (where the true class of each datum

is known) (Vapnik and Lerner 1963), with each data point

represented by a vector of multiple measured attributes or

“features.” The SVM can then be used to classify data

points whose classes are not known a priori according to

the side of the hyperplane on which their feature vectors

are located. This classification is often performed after implic-

itly mapping feature vectors to a higher dimensional space

where the two classes are easier to separate (the “kernel

trick”; Aizerman et al. 1964; Boser et al. 1992), allowing for

nonlinear discrimination. Modern SVMs can also learn hyper-

planes that do not perfectly separate the entire training set

(Cortes and Vapnik 1995)—a necessity when some of the

training data themselves may have been misclassified. SVMs

have proven highly effective in a variety of biological applica-

tions (Byvatov and Schneider 2003), yet have only begun to be

applied to evolutionary questions (Pavlidis et al. 2010; Lin et al.

2011; Ronen et al. 2013; Schrider et al. 2015).

Because we use genomic variation data (shaped by demo-

graphic history) to train our classifier, it will be robust to

nonequilibrium demographic events provided they typically

have a similar effect on patterns of variation in constrained

and unconstrained regions. Thus, this supervised machine

learning approach allows us to sidestep the problem of learn-

ing a parameter-rich model of demography and selection. This

is a particular strength of our method in that we can use the

most comprehensive data set on genomic variation, the 1000

Genomes collection, without having to fit a model consisting

of dozens if not hundreds of parameters. Importantly, using

real population genetic data to train our classifier will expose it

to heterogeneity in mutation rate, recombination rate, and

read depth.

Our resulting SVM is very effective on both simulated data

and human population genetic data. Examining regions clas-

sified with high confidence, we find that the majority of the

genome is unconstrained. Finally, by contrasting our classifi-

cations with phylogenetic conservation (fig. 1), we identify

regions that appear to have experienced human-specific

changes in selective constraint. Such regions are dispropor-

tionately found near genes involved in the development of

the central nervous system (CNS), and may point to important

regulatory changes affecting the human brain. These results

underscore the utility of population genetic data for revealing

function within the human genome.

Methods

Single Nucleotide Polymorphism Data

We downloaded SNP genotypes from Phase 1 of The 1000

Genomes Project (Altshuler et al. 2012); we ignored SNPs

discovered in the exome and/or trio data but not the
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low-coverage whole-genome data in order to minimize vari-

ation in read depth across the genome, which affects the

probability of discovering a polymorphism (Ajay et al. 2011).

This data set contains 1,092 low-coverage genomes; how-

ever, 28 pairs of individuals in this set are close relatives to

one another. We removed one individual from each of these

28 pairs leaving a set of 1,064 unrelated individuals. These

individuals and their populations of origin are listed in supple-

mentary table S1, Supplementary Material online.

Genomes, Gene Annotations, and Other Genomic
Features

For the purposes of counting SNPs and monomorphic sites in an

unbiased manner, creating training sets, and performing various

downstream analyses, we downloaded a variety of data from

version hg19 of the UCSC Genome Browser database (Kent

et al. 2002; Meyer et al. 2013). These data included version

GRCh37 of the human genome (Lander et al. 2001; Collins

et al. 2004) with bases masked by RepeatMasker (http://www.

repeatmasker.org) appearing in lower case, the UCSC gene an-

notation (Hsu et al. 2006), human–chimpanzee and human–

macaque pairwise whole-genome alignments generated by

BLASTZ (Schwartz et al. 2003), “mappability” scores for 50bp

reads (Derrien et al. 2012), regulatory regions from ORegAnno

(Montgomery et al. 2006; Griffith et al. 2008), transcription

factor binding sites from ENCODE (Dunham et al. 2012),

lincRNAs (Trapnell et al. 2010; Cabili et al. 2011), small noncod-

ing RNAs from miRBase (Griffiths-Jones et al. 2006; Lestrade

and Weber 2006), gene-disease associations from the Genetic

Association Database (Becker et al. 2004), disease-associated

SNPs from genome-wide association studies compiled by

Hindorff et al. (2009), and phastCons elements (Siepel et al.

2005). We also used phastCons elements called from an align-

ment of 29 mammalian genomes but ignoring the human state

(Lindblad-Toh et al. 2011). Most of these data were down-

loaded using the UCSC Table Browser (Karolchik et al. 2004).

We also downloaded the GENCODE v7 annotation including

noncoding RNAs (Harrow et al. 2012) from www.gencode-

genes.org, and Gene Ontology (GO) data from www.geneon-

tology.org, and used the set of regulatory elements inferred to

be gained or lost on the human lineage by Cotney et al. (2013).

Inferring Ancestral States and Removing Uninformative
Sites

Because we sought to use the derived (or “unfolded”) site

frequency spectrum (SFS), we attempted to determine the

ancestral state of each site containing an SNP. This was

done by parsimony using whole-genome alignments of

human and chimpanzee (Mikkelsen et al. 2005) and human

and rhesus macaque (Gibbs et al. 2007). For each SNP, we

FIG. 1.—Using phylogenetic and population genetic data to find lineage-specific changes in selective constraint. In a genomic region (black bar)

experiencing a lineage-specific loss of function (left), the presence of purifying selection in the majority of the phylogeny reduces divergence (short

branch lengths). However, because the genomic region no longer performs a function with fitness consequences in one species, population genetic

data from this species shows no reduction in diversity (as measured by nucleotide diversity, p) in this region. In the case of a lineage-specific gain of

function, the majority of the phylogeny has experienced no purifying selection, and therefore divergence is higher (long branch lengths). In the species

experiencing the gain of function, purifying selection reduces genetic variation in the functional region (red portion of the black bar), and background

selection lowers diversity at flanking sites.
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compared the chimpanzee and macaque genomes. If both

genomes exhibited the same nucleotide as one another and

as one of the two human alleles, we inferred that this nucle-

otide was the ancestral state. Otherwise, we considered the

ancestral state to be ambiguous and ignored the SNP. If only

one of the chimpanzee or macaque genomes had a base call

at the site, we inferred that this base was the ancestral state if

it agreed with either human allele and considered the ances-

tral state to be ambiguous otherwise. We also considered the

ancestral state to be ambiguous if neither chimpanzee nor

macaque had a base call at the site. All SNPs whose ancestral

state could not be inferred unambiguously according to these

rules were considered as uninformative. Although our ances-

tral state inferences may contain errors, our machine learning

strategy should be robust if such misorientation errors also

appear in our training set.

We aimed to use not only SNP allele frequencies, but also

the fraction of monomorphic sites in a given region in order to

classify it as constrained or unconstrained. Thus, eliminating

biases affecting the fraction of sites within a genomic region

inferred to be polymorphic was essential for our analysis.

Because we eliminated SNPs with ambiguous ancestral

states, we therefore eliminated monomorphic sites with

ambiguous ancestral states to prevent the failure of ancestral

state reconstruction from biasing the density of polymor-

phisms. This was done by attempting to infer the ancestral

state at each site in the genome using rules similar to those

used for SNPs as described above, but with no requirement

that the sole human allele equal the chimpanzee/macaque

allele(s). We considered sites where chimpanzee and macaque

alleles were both found but differed from one another, or

where neither were found, as having ambiguous ancestral

states and therefore uninformative.

In order to prevent biases related to accuracy of mapping

short-read sequences from affecting our analysis, we exam-

ined “mappability” scores calculated by Derrien et al. (2012).

The mappability score for a given site is 1/n, where n is the

number of distinct positions in the genome from which a read

mapped to this site could be derived (allowing two mis-

matches). For example, a site lying in a sequence motif occur-

ring three times in the genome would have a score of 1/3,

while a site in unique sequence would have a score of 1. We

examined all adjacent 1 kb windows across the human

genome and found a significant positive correlation with

average mappability score and the number of SNPs called

from the 1000 Genomes data (r= 0.068; P<2.2�10�16).

Windows in the lowest mappability score bin contained 7.9

SNPs on average, while windows with a mappability score of

one averaged 13.6 SNPs (supplementary fig. S1,

Supplementary Material online). The lack of SNP calls within

regions of low mappability shows that poor mapping quality

prevents high-confidence SNP detection—this underscores

the importance of accounting for mappability when examin-

ing the density of SNPs or other polymorphisms. We therefore

considered only sites with mappability scores of 1 to be infor-

mative. Similarly, sites masked by RepeatMasker were consid-

ered uninformative. All uninformative sites were ignored

when calculating the SFS for a given window as described in

the following section, and therefore had no impact on SVM

training or classification.

Estimating a Modified Site Frequency Spectrum in
Genomic Windows

Our goal in this study was to accurately classify genomic win-

dows of a given size as constrained or unconstrained by

purifying selection. The practical utility of this approach de-

pends on the size of the windows: Small windows may be

difficult to classify accurately as they have fewer informative

sites, while larger windows provide lower resolution. To find

an appropriate balance between accuracy and resolution, we

attempted to train classifiers using 5, 10, and 20 kb windows;

windows of these sizes contain 65, 130, and 260 SNPs and

2,176, 4,352, and 8,703 informative sites on average in the

1000 Genomes data, respectively.

We represented each window with the same modified ver-

sion of the SFS used for simulated data set (as described in

supplementary text S1, Supplementary Material online):

x= [�0 �1 �2 . . . �n�1], where �i is the fraction of informative

sites in the window having an SNP whose derived allele is

present in i chromosomes, and n is the number of chromo-

somes in the sample (i.e., twice the number of diploid individ-

uals). As with the simulated data, sites containing a fixed

derived allele were included in �0, as our goal was to use

only polymorphism data to perform classification. However,

we did experiment by including derived fixations during train-

ing (as described below), finding that the gains in accuracy

were quite modest (typically on the order of 1% or less; sup-

plementary table S2, Supplementary Material online).

We estimated the modified SFS for each window only from

informative sites as defined above. As a consequence, for

some windows the SFS was estimated from only a small

number of sites. To prevent elevated uncertainty around

these SFS estimates from confounding our classifier, we arbi-

trarily removed windows comprised of �25% informative

sites. We refer to the remaining windows as informative

windows.

Because SVMs allow for a large number of features, we are

able to use the complete SFS rather than a small number of

summary statistics to perform classification—this is an impor-

tant advantage of our method insofar as condensing the

entire SFS into a summary statistic such as Tajima’s

D (Tajima 1989) might remove valuable information.

However, the full SFS in the 1000 Genomes data is quite

sparse, containing 2,128 frequency bins but only ~130 SNPs

per 10 kb window on average. We therefore experimented

with grouping the SFS into different numbers of bins: 10, 25,

50, 100, 250, 500, 1,000, and 2,128 (no binning), in addition
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to the different genomic window sizes listed above. We found

that classification was most effective with 1,000 bins, and that

10 kb windows yielded a good balance between resolution

and accuracy (supplementary table S2, Supplementary

Material online).

Training a Support Vector Machine Classifier

For the purposes of extracting a training set from the human

genome, we subdivided the genome into adjacent windows.

We then labeled windows as constrained if they were com-

posed of >25% sites conserved across vertebrates according

to phastCons (Siepel et al. 2005), or unconstrained if they

contained zero base pairs within vertebrate phastCons ele-

ments, GENCODE v7 exons including noncoding RNAs

(Harrow et al. 2012), UCSC exons (Hsu et al. 2006),

ENCODE transcription factor binding sites (Dunham et al.

2012), or ORegAnno regulatory elements (Montgomery

et al. 2006; Griffith et al. 2008). Although the >25%

phastCons cutoff for functional training data is arbitrary,

only ~5% of the human genome is conserved across species;

windows that are 25% conserved according to phastCons are

thus very likely to encode important functions. Because the

amount of observed divergence on the human branch will

correlate with the amount of observed polymorphism within

humans due to ascertainment bias (Kern 2009), when building

our training set we used phastCons conserved elements

obtained from examining only nonhuman mammals

(Lindblad-Toh et al. 2011). The 25% conserved sequence

cutoff was adjusted for 5 and 20 kb window sizes to achieve

appropriate sized training sets (supplementary table S2,

Supplementary Material online). To construct an unbiased

training set, we included the same number of conserved

and unconserved windows. Because for each training set

examined below there were more unconserved than con-

served windows, windows meeting the unconserved criteria

were randomly selected until a set matching the conserved set

in size was obtained (i.e., a balanced training set). For 10 kb

windows, this training set contained 1,482 windows in total—

741 windows met the criterion for inclusion in the functional

set, and 741 of the 11,439 that met the nonfunctional criteria

were randomly selected for inclusion in the nonfunctional set.

For each combination of bin size and window size, we

conducted a grid search of the C and g hyperparameters

and assessed the accuracy of the resulting SVMs in the

same manner as for our simulated data sets. The results of

these grid searches are shown in supplementary table S2,

Supplementary Material online. Prior to training the SVM,

we used LIBSVM’s svm-scale to rescale the training data

(with default parameters), saving the scalars for reuse prior

to prediction. We then used LIBSVM’s svm-train to learn an

SVM from the entire training data set using the optimal

number of bins (1,000) for 10 kb windows. The -b 1 option

was used to allow estimation class membership probabilities

during prediction. We used LIBSVM’s plotroc.py python script

to generate the receiver operating characteristic (ROC) curve

(supplementary fig. S2, Supplementary Material online) for

this SVM using 10-fold cross-validation. We also used plo-

troc.py to generate the ROC curve on a balanced independent

test set and calculated the area under the curve. For this test

set windows with between 20% and 25% phastCons ele-

ments were labeled as functional, while only windows with

no phastCons conservation were labeled as nonfunctional.

Predictions and Element Calls

After training the SVM, we formatted all overlapping 10 kb

windows (100 bp step size) for classification, and rescaled

these windows using the same scalars used for the training

set. We then used svm-pred to perform classification, using

the -b 1 option to perform class probability estimates for each

window. Next, we then combined all overlapping windows

assigned to a given class with probability >0.95; LIBSVM cal-

culates these probability estimates using Algorithm 2 from Wu

et al. (2004). We refer to these regions as popCons elements

when made up of windows classified as constrained, and as

popUncons elements when made up of windows classified as

unconstrained. We imposed this 95% probability cutoff in

order to focus on windows classified with high confidence.

Finally, we removed elements having �20% of informative

sites masked by the 1000 Genomes Project for having ele-

vated or reduced read depth or low mapping quality in

order to limit the effect of these sources of error on our pre-

dictions. This was done using the strictMask files which

impose stringent filters devised for population genetic analysis

(available at http://www.1000genomes.org/). Note that be-

cause we performed classification on overlapping windows,

it was possible for popCons elements and popUncons ele-

ments to overlap.

Searching for Evidence of Human-Specific Gain and Loss
of Function

In order to find genomic regions experiencing gain or loss of

selective pressure in humans only, we contrasted phylogenetic

evidence for selective constraint from phastCons with popu-

lation genetic evidence from popCons and popUncons ele-

ments. To find human-specific LOFs, we examined

popUncons elements made up of at least 15% vertebrate

phastCons elements and cross-referenced this list with

UCSC genes (Hsu et al. 2006) to search for compelling candi-

dates. For human-specific gains of selective constraint, we

examined popCons elements composed of <1% vertebrate

phastCons elements, cross-referencing this list with UCSC

genes and ORegAnno elements to find candidate regions.

For this analysis, we only included elements with informative

windows (on which classification was performed) within at

most 100 kb of the element in each direction. Thus, the ele-

ment must be flanked by regions that contain enough
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informative sites to be classified but do not exhibit a strong

enough signal of selective constraint to be classified as

popCons elements. This step is necessary to ensure that the

target of purifying selection resides within the GOF candidate

element itself rather than some flanking functional element

lacking enough informative sites to be classified. Candidate

GOF regions singled out in the text were also examined man-

ually via the UCSC Genome Browser (Kent et al. 2002) to

ensure that no flanking, but unclassified element, appeared

to be the true target of selection. Patterns of phylogenetic

conservation among primates, mammals, and vertebrates

were examined using the phastCons (Siepel et al. 2005) and

Genomic Evolutionary Rate Profiling (GERP; Davydov et al.

2010) tracks in the UCSC Genome Browser.

Testing for Enrichment of Element Calls with Various
Genomic Features

To ask whether popCons elements overlapped more often

than expected by chance with exons and other features

listed in supplementary table S3, Supplementary Material

online, we first counted the number of base pairs lying

within both a popCons element and within one of the fea-

tures being tested for enrichment. Next, we permuted the

popCons coordinates such that no two elements in the per-

muted data set overlapped (just as in the true set). For our

popCons permutations, we ensured that every permuted ele-

ment consisted entirely of windows that were classified one

way or another by our SVM (i.e., “informative windows”); this

step ensures that any systematic differences between infor-

mative and uninformative regions (e.g., repeat content or read

mappability) will not produce spurious enrichment/depletion

results. We were unable to meet this constraint when permut-

ing popUncons elements, as our permutation algorithm of

randomly placing the largest remaining element in an unoc-

cupied portion of the genome and repeating would run out of

available room to randomly place elements before terminat-

ing. Fortunately, this limitation likely makes our depletion

results conservative, as our informative windows are enriched

for many of the functional annotation categories listed in

supplementary tables S3 and S4, Supplementary Material

online. For both popCons and popUncons permutations, we

also ensured that no permuted elements had fewer than 80%

of base pairs passing the 1000 Genomes Project’s coverage

and quality cutoffs in the same manner as described above for

our filtering of popCons and popUncons elements.

We constructed 1,000 such permuted data sets, and then

compared each of these permuted sets with each of the data

sets listed in supplementary table S3, Supplementary Material

online. For each comparison we counted the total number of

base pairs lying within both sets. The P-value for each enrich-

ment test was simply the number of permuted data sets

exhibiting equal or greater overlap with the genomic fea-

ture being examined than the real popCons data set.

For popUncons elements, we performed a similar test but

counted permuted data sets exhibiting lesser or equal overlap

to obtain a P-value for depletion.

We performed similar tests for GOF and LOF candidate

regions and sets of genomic features listed in supplementary

table S4, Supplementary Material online. These sets were ob-

tained by applying the phastCons cutoffs we used to define

GOF and LOF regions to our permuted sets. Specifically, each

permuted GOF set was constructed by removing all elements

from the corresponding permuted popCons set except those

with<1% phastCons bases. Similarly, each permuted LOF set

was constructed by removing all elements from the corre-

sponding permuted popUncons set but those with >15%

phastCons bases. In each case, the permuted set yielded

more regions than the true candidate set, so we randomly

sampled permuted sets of the correct size. Before testing

our GOF candidates for enrichment of the genomic features

in supplementary table S4, Supplementary Material online, we

removed from these sets of features all elements comprised of

�1% phastCons bases. Similarly, we removed all genomic

features comprised of �15% phastCons bases before testing

for LOF candidates for enrichment.

We also used version 2.0.2 of GREAT (McLean et al. 2010)

to ask whether GOF and LOF elements were preferentially

located near genes of particular functional categories, relative

to the set of all popCons or popUncons elements, respectively.

We then repeated these tests on our permuted data, asking

how often terms significantly enriched in our true data were

enriched in the permuted data sets.

Synonymous and Nonsynonymous Variation within
PopCons and PopUnCons Elements

For orthogonal evidence that popCons and popUncons ele-

ments were correctly classified as conserved or unconserved,

respectively, we examined coding SNPs within genes found in

these regions. We counted the number of nonsynonymous

and synonymous SNPs in each gene using the GENCODE an-

notation. Singleton SNPs were omitted from this analysis to

limit the influence of sequencing/genotyping error.

Recombination Rates in PopCons Elements, PopUncons
Elements, and Training Data

We downloaded sex-averaged recombination rates calculated

by Kong et al. (2010) from the UCSC Genome Browser

Database (Meyer et al. 2013). These data show the average

recombination rates within 10 kb windows. These rates are

adjusted so that a rate value of 1 is the genome-wide average.

We calculated the average rate for each element as the sum of

the rates of each 10 kb window overlapping the element, with

the rate of each window weighted by the fraction of the el-

ement overlapped by the window.
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Human-Specific Substitutions from a Four-Way Ape
Whole-Genome Alignment

To locate human-specific substitutions and indels we first ob-

tained an alignment consisting of human (hg19), chimpanzee

(panTro2), gorilla (gorGor1), and orangutan (ponAbe2). To do

this we obtained the multiz46way alignment from the UCSC

genome browser (http://genome.ucsc.edu) and then

extracted only these four sequences. Using this four-way

alignment we then located human-specific changes using par-

simony criteria requiring invariance in the other three great

apes. To obtain counts of substitutions or indels per window

of a given size throughout the genome, we used the

featureBits tool from the Kent source tree available from the

UCSC Genome Browser group.

Data Availability

Our popCons, popUncons, GOF, and LOF predictions are

available in BED format on GitHub (https://github.com/kern-

lab/popCons). We have also made these data accessible as a

UCSC Genome Browser track hub (http://kerndev.rutgers.

edu/~dan/popCons/hub.txt).

Results and Discussion

Detecting Negative Selection in Simulated Data

We assessed the effectiveness of our SVM-based approach to

detect selective constraint by performing forward simulations

of functional 10 kb windows containing constrained elements

of various sizes, and experiencing varying strengths of nega-

tive selection, as well as nonfunctional 10 kb windows evolv-

ing entirely under drift. Each simulation utilized one of the

three different mutation and recombination rates (supplemen-

tary text S1, Supplementary Material online). These simula-

tions were performed under the demographic model

learned from Tennessen et al. (2012) as described in the sup-

plementary text S1, Supplementary Material online. This sce-

nario models the divergence of Europeans and Africans and

their subsequent population size dynamics. This demographic

model is not meant to perfectly match the demographic his-

tory of our data set, which contains samples from a variety of

subpopulations across the globe. Rather, it was chosen simply

because it models some events common to many human sub-

populations (e.g., migration out of Africa, and recent expo-

nential population size expansion). For the purposes of

training and testing our SVMs, we represented the output

from each simulation by a feature vector consisting of the

window’s SFS (supplementary text S1, Supplementary

Material online).

After training, we assessed the accuracy of each SVM using

an independent test set; this estimate typically closely matched

that obtained from cross-validation during the grid search

(1.6% lower on average; supplementary table S5,

Supplementary Material online), showing that our grid

search does not lead to substantial overfitting. This important

result implies that our cross-validation accuracies estimated

from real data (see below) are probably reliable indicators of

our method’s effectiveness, even though the demographic

and selective history of the 1000 Genomes population

sample differs from that of our simulated populations.

Moreover, we found that after imposing a >95% posterior

probability cutoff (as we did when calling putative constrained

and unconstrained elements from the 1000 Genomes data as

discussed below), classification accuracy typically well ex-

ceeded 95% (supplementary table S5, Supplementary

Material online).

Next, we assessed the effectiveness of a single SVM classi-

fier on test sets with varying selection coefficients, selected

element lengths, mutation rates, and recombination rates. For

this analysis, we used the classifier learned from regions evolv-

ing under drift from those with 75% of sites under selection

with a selection coefficient of 2Ns of 100, and with variable

mutation and recombination rates; we chose to test the

classifier learned from these data because this SVM’s cross-

validation accuracy closely mirrored that of the SVM we

learned from real genomic data (see below). Perhaps unsur-

prisingly, we found that accuracy with which we could dis-

criminate between simulated functional and nonfunctional

windows varied according to the fraction of the 10 kb

window experiencing selective constraint. When a 2.5 kb

subset of the region was under negative selection, accuracy

was quite low, ranging from 50% to 60% and varying only

slightly according to the strength of selection (supplementary

fig. S3A, Supplementary Material online). When the entire

window was constrained accuracy was much higher (supple-

mentary fig. S3A, Supplementary Material online), typically

~90% or greater (supplementary table S6, Supplementary

Material online), with the one exception being cases where

the mutation rate was low—in these cases unselected regions

were often misclassified as selected. However, for these and

other parameter combinations, the number of unselected

regions misclassified as constrained decreases dramatically

after imposing a 95% confidence cutoff (supplementary

fig. S3B, Supplementary Material online). On the other

hand, we find that regions with a smaller number of se-

lected sites may often be classified as unconstrained even

after imposing this cutoff (supplementary fig. S3C,

Supplementary Material online). Thus, it may be difficult,

using our approach, to confidently assert that a genomic

window contains no functional sequence—a window

experiencing selection at relatively few selected sites will be

difficult to distinguish from an unconstrained window.

Because our SVM classifies every genomic window as either

evolving under selective constraint or under drift, we reasoned

that regions experiencing positive selection might be classified

as constrained, as positive selection reduces diversity at linked

sites (Maynard Smith and Haigh 1974). We thus simulated

regions experiencing adaptive mutations (supplementary text
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S1), and asked how often each SVM described above classi-

fied such regions as experiencing selective constraint. The frac-

tion of positively selected regions classified as constrained

exhibited considerable variation across SVMs, governed in

part by the extent to which diversity within the negatively

selected regions used to train the SVM mirrored that within

positively selected simulations: The absolute difference in

average p in the positively and negatively selected simulations

was negatively correlated with the fraction of positively

selected regions classified as constrained (Spearman’s

r=�0.87; P< 2.2�10�16). Thus, it appears that, depending

on the strength and amount of negative selection acting on

putatively functional windows used to train our SVM and the

strength of recent selective sweeps occurring in the human

genome, positively selected regions may often be classified as

constrained.

In summary, extensive forward population genetic simula-

tions show that our SVM approach is able to detect negative

selection even in the face of the confounding effects of

nonequilibrium demography. Although we have greater abil-

ity to classify as functional those windows composed of a

greater number of selected sites and sites under stronger se-

lection, we have very high specificity when detecting func-

tional windows after imposing a strict 95% posterior

probability cutoff, although we may classify windows with

smaller numbers of functional base pairs as unconstrained.

With these encouraging results in hand, we turn attention

to empirical human data.

Accurate Classification of Functional and Nonfunctional
Windows

We trained an SVM to classify 10 kb genomic windows as

either constrained or unconstrained according to the same

modified SFS used to classify simulated data (see Methods)

using LIBSVM (Chang and Lin 2011). For this we used data

from 1,064 unrelated whole-genome sequences included in

Phase 1 of the 1000 Genomes Project (http://www.

1000genomes.org; Altshuler et al. 2012; see Methods). This

data set contains one SNP every 76.9 bp on average—we

hypothesized that this high density of polymorphism would

allow for the detection of regions under purifying selection at

high enough resolution to be of practical utility. We then

trained our SVM as described in the Methods section.

Because cross-validation accuracies achieved on the X were

relatively low, perhaps due to limited training data (supplemen-

tary table S2, Supplementary Material online), we only per-

formed classification on the autosomal portion of the genome.

The optimal hyperparameter combination (C = 2;

g= 0.125) from the autosomal grid search resulted in a

cross-validation accuracy of 87.79% (supplementary table

S2, Supplementary Material online; area under ROC

curve = 0.94; supplementary fig. S2, Supplementary Material

online). The full results of this grid search are shown in

supplementary figure S4, Supplementary Material online.

That many of the other parameter values neighboring the

optimal combination were nearly as accurate suggests that

we did not significantly overfit our training data. Moreover,

we achieve high accuracy on an independent test set not used

in the selection of hyperparameter values or training (area

under curve = 0.88). Furthermore, simulation results (see

above) demonstrate that cross-validation accuracy for our

SVM is reflective of true accuracies under a broad range of

models, suggesting that we are not dramatically overestimat-

ing our accuracy due to overfitting. Moreover, we achieve

these high accuracies despite the fact that levels of genetic

diversity are impacted by forces other than natural selection

such as drift and variation in mutation and recombination

rates, supporting the notion that population genetic data

can be used to distinguish constrained from unconstrained

DNA (Schrider and Kern 2014).

We then used the optimal hyperparameters to train an

SVM from the entire training set; this SVM was in turn used

to classify every 10 kb window (with 100 bp step size) in the

genome comprised of at least 25% informative sites as either

constrained or unconstrained. Of 22,358,126 such genomic

windows covering a total of 86.5% of the genome, the ma-

jority (16,836,483 or 75.3% of windows) were classified as

unconstrained, in general agreement with comparative geno-

mic studies (Shabalina et al. 2001; Chinwalla et al. 2002;

Siepel et al. 2005; Lunter et al. 2006; Birney et al. 2007;

Pollard et al. 2010). LIBSVM can be used to estimate posterior

probabilities for classifications according to the distances be-

tween the classified feature vector and the discriminating hy-

perplane during cross-validation. In order to focus on windows

classified with high confidence, we imposed a 95% probabil-

ity cutoff for windows assigned as constrained or uncon-

strained, a cutoff that we show to be quite conservative in

our simulation study (see above). Overlapping windows clas-

sified as constrained with high confidence were merged to-

gether into regions we refer to as popCons elements, and

overlapping high-confidence unconstrained windows were

merged into popUncons elements.

Because we trained our SVM to discriminate between

regions with a fairly large fraction of conserved sites according

to phastCons (>25%) and regions with zero conservation

according to phastCons, regions with lower levels of conser-

vation may not be properly classified. Indeed, this appears to

often be the case in simulated data as discussed above. We

therefore sought to directly assess our method’s accuracy on

regions with fewer functional sites by constructing several test

sets with different amounts of selective constraint. We found

that windows with between 0% and 5% conserved sites

according to phastCons are classified as popUncons elements

by our classifier 33.2% of the time, while 16.4% of windows

with 5–10% conservation are classified as popUncons ele-

ments, versus 8.9% of windows with 10–15% conservation

and 5.3% of windows with 15–20% conservation (table 1).
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These results imply that many of our popUncons elements

may have a relatively small number of selected sites.

Although we do not have power to classify 10 kb windows

as completely unconstrained by negative selection, the results

from table 1 imply that our popCons elements probably con-

tain a substantially greater density of selected sites than

popUncons on average.

Crucially, we sought to minimize the impact of variation in

read depth and mapping quality on our predictions. We there-

fore only retained elements for which>80% of all informative

sites met the strict read depth and mapping quality constraints

imposed by the 1000 Genomes Consortium (Altshuler et al.

2012) for population genetic analyses using these data (see

Methods); these criteria enforce both strict minimum and

maximum read depth as well as minimum mapping quality

thresholds. This step may not be sufficient to completely elim-

inate the impact of variation in read depth on our predictions

(Green and Ewing 2013). Such variation may thus contribute

to the error rates that we have measured in our empirical test

data sets.

We examined the amount and spectrum of genetic varia-

tion found in popCons and popUncons elements. Consistent

with purifying and background selection acting on popCons

elements, popCons elements exhibit a much greater skew in

the SFS toward lower frequency variants than do popUncons

elements (fig. 2A, Supplementary Material online) as well as

much lower nucleotide diversity (p= 4.02� 10�4 in popCons

elements and p= 1.12� 10�3 in popUncons elements; fig.

2B). Thus, our classifier is segmenting the genome based on

the amount and spectrum of genetic diversity, as expected.

PopCons Elements Are Enriched for Features Indicative of
Functionality

To test if our predictions recover previously known functional

elements, we asked whether popCons elements were

enriched for various genomic features that may experience

selective constraint, including coding sequences, phylogenet-

ically conserved regions of the genome (phastCons elements),

regulatory elements gained or lost in the human lineage, tran-

scription factor binding sites and other oRegAnno regulatory

elements, small noncoding RNAs, lincRNAs, disease-associ-

ated genes, and candidate SNPs from GWAS studies (see

Methods). The results of these enrichment tests are shown

in supplementary table S3, Supplementary Material online.

After Bonferroni correction, PopCons elements were signifi-

cantly enriched for, and popUncons elements depleted of, all

these features except of lincRNAs, GWAS SNPs, and regula-

tory elements lost in humans. These results show that our

classifier correctly identifies constrained and unconstrained

genomic regions as expected from current annotations, pro-

viding further evidence that our approach is not severely con-

founded by nonselective factors that impact genetic diversity.

Moreover, these results confirm that our predictions have

practical utility despite their relatively coarse resolution in com-

parison with phylogenetic methods such as GERP (Davydov

et al. 2010) and phastCons (Siepel et al. 2005).

As stated above, many more genomic windows were clas-

sified as unconstrained than constrained. When using only

high-confidence windows, more than half of the genome

lies within popUncons elements (50,378 elements; 53.8%

of the autosomes); far more than in popCons elements

(17,551 elements; 11.1% of the autosomes). popUncons

elements are also much larger than popCons elements on

average (28,695.2 vs. 16,999.4 bp; P< 2.2� 10�16; Mann–

Whitney U-test; fig. 2C). At face value this result seems to

strongly reject the possibility that 80% of the human

genome is functional (Dunham et al. 2012). However, our

classifier does not have enough resolution to predict precisely

which base pairs are functional and which are not—

popUncons elements may be experiencing purifying selection

weak enough to go undetected, and popCons elements prob-

ably contain many base pairs not directly under purifying se-

lection but instead linked to sites undergoing negative

selection (or recent positive selection; see simulation results).

Nonetheless, our results suggest that only a small fraction of

the genome is experiencing strong purifying selection, again in

general agreement with comparative genomic analyses

(Shabalina et al. 2001; Chinwalla et al. 2002; Siepel et al.

2005; Lunter et al. 2006; Birney et al. 2007; Pollard et al.

2010; Gulko et al. 2015).

Identifying Human-Specific Loss of Function

Comparative genomic studies have identified many genes lost

in humans but present in other primates (Wang et al. 2006);

Table 1

SVM Accuracies When Discriminating between Simulated Constrained and Unconstrained Genomic Regions in Independent Test Sets

Fraction of

Selected Sites

Overall Accuracy Accuracy of

popCons Calls

(95% confidence)

Fraction of Unconstrained

Windows Classified as

popCons Elements

Accuracy of popUncons

Calls (95% confidence)

Fraction of Constrained

Windows Classified as

popUncons Elements

0–5% (n = 2000) 54.45% 29/46 = 63.04% 17/1,000 = 1.70% 495/827 = 59.85% 332/1,000 = 33.20%

5–10% (n = 2000) 62.70% 54/67 = 80.60% 13/1,000 = 1.30% 475/639 = 74.33% 164/1,000 = 16.40%

10–15% (n = 2000) 69.45% 114/125 = 91.20% 11/1,000 = 1.10% 472/561 = 84.13% 89/1,000 = 8.90%

15–20% (n = 2000) 76.25% 184/201 = 91.50% 17/1,000 = 1.70% 477/530 = 90.00% 53/1,000 = 5.30%

20–25% (n = 1652) 81.17% 219/231 = 94.81% 12/826 = 1.45% 385/413 = 93.22% 28/826 = 3.39%
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these loss events are typically caused by a missense or other

inactivating mutation and leave behind a pseudogene rem-

nant (Schrider et al. 2009). It has been hypothesized that these

loss of function events often confer fitness advantages (Olson

1999), and there are several examples of putative adaptive

losses occurring since the human–chimpanzee split

(Hayakawa et al. 2006; Wang et al. 2006; Xue et al. 2006).

Using evidence of phylogenetic conservation in conjunction

with our population, genetic-based predictions of conserva-

tion should allow for discovery of LOF events in the genome.

That is, LOF events should have strong signatures of phyloge-

netic conservation but also reside within popUncons elements.

Indeed, our classifier was able to recover several previously

identified cases of putatively adaptive pseudogenization

events. For example, MYH16, which encodes a protein that

is found in the temporalis and masseter muscles and increases

bite strength, has been inactivated in the human lineage

(Stedman et al. 2004). It has been hypothesized that the

loss of this protein has allowed for cranial expansion in

humans (Stedman et al. 2004). This gene exhibits strong phy-

logenetic evidence for conservation within primates according

to phastCons, but is largely contained within a popUncons

element, consistent with human-specific loss of selective

constraint. Additional human-specific losses of CASP12

(Fischer et al. 2002) and CMAH (Chou et al. 1998; Irie et al.

1998), both of which appear to have been fixed by positive

selection (Hayakawa et al. 2006; Wang et al. 2006; Xue et al.

2006), occur in regions conserved across species according to

phastCons but are contained entirely in popUncons elements.

Perhaps the most striking pattern to emerge from studies

of human-specific pseudogenization events is the large

number of nonfunctional olfactory receptors (ORs) in the

human genome (Rouquier et al. 1998). ORs appear to have

experienced diminished selective constraint in primates

(Rouquier et al. 1998; Young et al. 2002; Zhang and

Firestein 2002), perhaps due to reduced dependence on

olfaction after the gain of trichromatic vision (Gilad et al.

2004). This reduction appears to be particularly pronounced

in humans (Gilad et al. 2003), with roughly two-thirds of

human ORs being pseudogenes (Glusman et al. 2001).

Many of these inactivation events are still segregating in

human populations (Menashe et al. 2003), suggesting that

the loss of these genes is ongoing.

We asked whether there was greater than expected over-

lap between popUncons elements and OR genes and found

substantial and significant enrichment (1.23-fold enrichment;

FIG. 2.—Reduced genetic variation in popCons versus popUncons elements. (A) SFS of popCons (white) and popUncons elements (black). The bars show

the fraction of SNPs in a given element type found within each derived allele frequency bin. (B) Histogram of values of p within popCons (white) and

popUncons (black) elements. (C) Histogram of lengths of popCons (white) and popUncons (black) elements.
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P<0.001, one-tailed permutation test; see Methods). In fact,

272 of the 395 autosomal ORs not annotated as pseudogenes

by GENCODE were contained entirely within a popUncons

element (versus 144.25 expected; P<0.001; one-tailed per-

mutation test), while only 17 OR genes reside even partially

within popCons elements (versus 46.43 expected; P< 0.001;

one-tailed permutation test). Given that background selection

may cause a gene to exhibit reduced diversity even if it is not

itself the target of purifying selection, our results imply that

vast majority of OR genes in the human genome are currently

experiencing little if any selective constraint. This is consistent

with the elevated fraction of nonsynonsymous SNPs predicted

to disrupt protein function in OR genes recently observed by

Pierron et al. (2012).

We searched for previously unknown cases of human-

specific LOF by examining popUncons elements with strong

phylogenetic evidence for conservation. We identified a total

of 496 popUncons elements of which at least 15% was con-

served across vertebrates according to phastCons; we refer to

this set of elements and candidate LOF regions. This heuristic

cutoff of 15% conservation is three times the genome-wide

average and four times the average within popUncons ele-

ments (supplementary fig. S4A, Supplementary Material

online), implying that these regions were subject to consider-

able selective constraint for the majority of vertebrate evolu-

tion. As discussed above, many of our popUncons elements

may contain a small fraction of sites under selective constraint.

This hinders our ability to detect complete loss of function with

high confidence. However, given that we have defined LOF

candidates as having >15% conservation across vertebrates

(and they exhibit 18.56% conservation on average; supple-

mentary fig. S4B, Supplementary Material online), and that

our classifier labels <5% of regions with this level of conser-

vation as popUncons elements (table 1), many of our 496 LOF

candidates may have lost selective constraint at some of these

previously conserved sites. This finding suggests that the loss

of selective constraint on the human branch may have been a

common occurrence, as suggested by Olson (1999).

Because we defined LOF candidates as regions where phy-

logenetic and population genetic signatures of purifying selec-

tion disagree (phastCons and popCons, respectively), they

may be enriched for false positives, especially if functional

turnover is a rare event. It is necessary to seek orthogonal

evidence that these candidates may represent true losses of

functional constraint. For this reason, we asked whether these

candidates were enriched for any ontology categories. Such

information can also aid in the separation of biologically

meaningful candidates from spurious ones (i.e., candidates

associated with an enriched functional category may more

often represent true positives). This same line of reasoning

also holds for gain of function candidates (discussed below).

First, we used GREAT (McLean et al. 2010) to determine

whether these candidate LOF regions were enriched for par-

ticular functional categories compared with the set of all

popUncons elements (although the results described below

hold qualitatively when using the entire human genome as

a background). Because GREAT examines genes and their

flanking regions, it is able to identify the enrichment of ele-

ments within cis-regulatory regions of genes with a particular

annotation (McLean et al. 2011) as well as the genes them-

selves. Using GREAT, we found that a variety of annotation

terms were significantly enriched after correcting for multiple

testing using q-values (false discovery rates). However, the

most striking result was the enrichment of candidate LOF

regions near genes expressed in the nervous system during

various developmental stages in mice, including the develop-

ing forebrain, telencephalon, diencephalon, medulla oblon-

gata, and optic stalk (all enriched structures shown in

supplementary table S7, Supplementary Material online). We

repeated this analysis on our permuted data sets (see

Methods) and found that most of these terms very rarely, if

ever, exhibited significant enrichment (at q<0.05) in the per-

muted data (supplementary table S7, Supplementary Material

online). The enrichment of these categories is driven largely by

a set of transcription factors annotated with the zinc finger,

C2H2-type/integrase, DNA-binding InterPro domain, which is

also enriched for the presence of nearby LOF candidates (2.27-

fold enrichment; false discovery rate q = 2.54�10�4). This

result suggests that changes in the transcriptional regulation

of genes may have been a common feature on the lineage

leading to humans (King and Wilson 1975), with regulators of

brain development playing an especially important role. We

also found that LOF candidates were significantly depleted of

various genomic features, including exons, disease-associated

mutations, noncoding RNAs, and transcription factor binding

sites (supplementary table S4, Supplementary Material online;

Methods). Together these results provide additional evidence

that at least a portion of sites within many of our LOF candi-

dates have recently lost selective constraint.

Several interesting candidate loci emerged from the

GREAT analysis. For example, we found a LOF candidate lo-

cated <150 bp downstream of the homeobox gene EMX2

(fig. 3A). This gene is expressed in the cerebral cortex during

embryonic development in mice (Simeone et al. 1992), where

it is required for the proper assignment of area identity to

neocortical cells, as is PAX6 (Bishop et al. 2000), another ho-

meobox gene which itself has two upstream LOF candidates.

EMX2 also plays a role in the development of the sensory and

motor regions (Hamasaki et al. 2004). The gene is one of the

two human homologs of the Drosophila gene empty spiracles

(or ems) which is required for development of the head as well

as the posterior spiracles (Walldorf and Gehring 1992). We

also find a LOF candidate region overlapping the 30 exon of

SIM1 (fig. 3B), the homolog of sim (single-minded), which is

essential for proper neurogenesis in Drosophila (Thomas et al.

1988). SIM1 is associated with obesity in humans (Holder et al.

2000) and in mice (Michaud et al. 2001) where it is required

for the development of the paraventricular nucleus, which is
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responsible for appetite regulation among other functions

(Michaud et al. 1998). Another candidate LOF region lies

7.5 kb downstream of NR4A2 (also known as NURR1), a tran-

scription factor expressed in the brain (Law et al. 1992) where

it is involved in the production of dopamine neurons in mice

(Saucedo-Cardenas et al. 1998). Mutations in this gene have

been implicated in schizophrenia (Chen et al. 2001),

Parkinson’s disease (Le et al. 2002), and bipolar disorder

(Buervenich et al. 2000). Intriguingly, NR4A2 has experienced

a human-specific change in the expression pattern it exhibits

over the course of the lifespan in the lateral cerebellar cortex

(Liu et al. 2012), which may be involved in language and other

cognitive functions (Rilling 2006).

Additional transcription factors expressed in the mouse

brain and involved in nervous system development and that

are flanked or overlapped by candidate LOF regions include

two zinc finger homeobox genes involved in neuronal differ-

entiation, ZFHX3 (Miura et al. 1995), whose first coding exon

overlaps a LOF region, and ZFHX4 (Hemmi et al. 2006); myelin

transcription factor 1 (MYT1), which is important for oligoden-

derocyte differentiation (Nielsen et al. 2004); LMX1B, which

plays a role in hindbrain roof plate development (Mishima

et al. 2009); NEUROG3, a gene that is important for neuronal

determination (Sommer et al. 1996); and PAX2, which can

result in brain defects in mice when deleted (Favor et al. 1996),

and whose first three exons are contained within a LOF can-

didate. The presence of LOF candidate regions near these

transcription factors suggests recent functional turnover at

their regulatory regions. NR4A2’s human-specific expression

pattern in the brain is consistent with this hypothesis.

One notable LOF candidate region not associated with an

enriched category is found within the protocadherin b
(PCDHB) cluster on chromosome 5, containing most of

PCDHB14 and PCDHB18 pseudogene. In addition to this

LOF region, the PCDHB cluster contains four additional

popUncons elements, three of which contain a fair amount

of conserved sequence according to phastCons, although less

than our 15% cutoff for LOF candidates: One element con-

taining PCDHB4 is made up of 10.3% conserved sequence

(across vertebrates); a second element encompassing PCDHB6

and PCDHB17 pseudogene is 8.3% conserved; and a third

element covering most of PCDHB15 is 7% conserved. In

total, 6 of the 19 PCDHB genes are mostly contained within

these 5 popUnCons elements which encompass over one-

third of the nearly 200 kb gene cluster.

Protocadherin genes, including the PCDHB cluster, encode

cell–cell adhesion molecules that are believed to play a role in

the formation of synaptic connections (Frank and Kemler

2002). The large number of and functional diversity among

these genes may contribute to the complexity of the network

of synapses in the human brain (Shapiro and Colman 1999).

Despite strong phylogenetic evidence of purifying selection—

each of the 19 PCDHB genes is largely composed of vertebrate

phastCons elements—there is a fairly high rate of gene turn-

over in this cluster among mammals (Vanhalst et al. 2001).

Indeed, 3 of the 19 genes in this cluster in humans are known

to be pseudogenes. The prevalence of popUncons elements

and pseudogenes among the PCDHB genes implies that their

selective constraint is considerably reduced in humans. Such a

change in selective pressure may have allowed for changes to

the neural network in the human brain.

Candidate Human-Specific Gain of Function Events

As our extensive simulation and cross-validation experiments

show, we should have excellent specificity for detecting

human-specific gains of function. We use a complementary

approach to that described above to find GOFs—by searching

the genome for those regions that show no signs of phyloge-

netic conservation but are contained within popCons ele-

ments. Unfortunately, there are relatively few well-studied

examples of previously nonfunctional sequences acquiring

function recently in humans. We examined three known

human-specific de novo genes identified by Knowles and

FIG. 3.—Candidate LOF regions. (A) A diagram of EMX2 and the downstream flanking region generated by the UCSC Genome Browser shows a

popUncons LOF candidate region (large blue bar) with a strong phylogenetic signal of conservation (high phastCons posterior probabilities, green). (B) A

diagram of SIM1 and its downstream flanking region.
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McLysaght (2009), CLLU1, C22orf45, and DNAH10OS, to see

if our approach could identify these candidates. Two of these

genes, C22orf45 and DNAH10Os, were largely contained

within popCons elements. However, these genes are found

on the opposite strand of more ancient and conserved genes,

thus negative selection on these older genes may be respon-

sible for the popCons classification. Interestingly, the other

gene, CLLU1, was found within a popUncons element and

exhibits a ratio of nonsynonymous to synonymous SNPs in

the 92nd percentile among all genes (see Methods), suggest-

ing that it may not be experiencing strong selective constraint.

Although there are not enough known examples of de

novo human functional elements for us to systematically

assess our strategy, we can identify candidate GOF regions

in a similar vein as our search for LOF regions. To this end

we searched for popCons elements with little phylogenetic

evidence of conservation and found 700 popCons elements

that composed of <1% of base pairs within phastCons ele-

ments. On average, 0.54% of nucleotides within these

regions are conserved across vertebrates versus 9.54% of

nucleotides lying within the full set of popCons elements

(supplementary fig. S5C and D, Supplementary Material

online). These candidate GOF regions are enriched for pro-

moters/enhancers identified by Cotney et al. (2013) as present

in humans but absent from mice, as well as small noncoding

RNAs, with the latter remaining significant after Bonferonni

correction (supplementary table S4, Supplementary Material

online; see Methods).

As before for LOF regions, we ran GREAT to identify func-

tional categories of genes either overlapping or neighboring

candidate GOF regions more often than expected by chance

(using the set of all popCons elements as the background,

though again we recover similar terms when using the

whole genome as the background). Here we found a striking

pattern: We observed significant enrichment of genes anno-

tated with the GO molecular function term “extracellular

ligand-gated ion channel activity” (false discovery rate

q = 0.045). Indeed all enriched molecular function terms

were related to GABA (g-aminobutyric acid) or other neuro-

transmitters. This enrichment was driven primarily by GOFs

near genes annotated with the GO molecular function

“GABA-A receptor activity” (q = 0.022). GABA is the nervous

system’s primary inhibitory neurotransmitter (Petroff 2002),

and GABA receptor expression patterns are known to play a

key role in brain development (Lujan et al. 2005). As for LOFs,

we found that these two terms were enriched at q<0.05 in

only a small fraction of our permuted data sets (0.3% and

2.2% of permuted sets, respectively). Human-specific changes

in function affecting either GABA sequences themselves or

their flanking regions could thus have profound effects on

the CNS. We therefore examined these GOF candidates

more closely for evidence that they may have affected the

human CNS after the split with chimpanzees.

We found five GOF regions within a cluster of three GABA

receptor subunit genes (GABRB3, GABRA5, GABRG3) on

chromosome 15. Three of these GOF candidates are located

downstream of GABRB3, which Liu et al. (2012) identified as

having evolved a human-specific temporal expression pattern

in the prefrontal cortex (PFC) after the human-chimpanzee

divergence. GABRB3 alleles have also been associated with

autism (Buxbaum et al. 2002; Kim et al. 2007), savant skills

(Nurmi et al. 2003), and epilepsy (Tanaka et al. 2008). The

other two GOF candidates are located within introns of

GABRG3. These GOFs contain several transcription factor

binding sites identified by ENCODE ChIP-seq, including one

~400 bp peak observed in brain cancer cell lines among other

tissues and containing 7 human-specific substitutions in an

alignment of great apes (see Methods). This is a relatively

high density of changes occurring on the human branch:

Fewer than 2.5% of adjacent 500 bp windows in a whole-

genome great ape alignment exhibit seven or more human-

specific substitutions or indels. We also observed three GOF

regions within a cluster of four GABA receptors on chromo-

some 5. One of these appears within an intron of GABRB2,

while the other two flank either side of GABRG2, which

evolved a novel temporal expression pattern in the human

PFC according to Liu et al. (2012). Dysfunction of GABRG2

appears to play a role in epilepsy (Hirose 2006; Tanaka et al.

2008) and alcohol dependence (Radel et al. 2005). Another

GOF candidate is located upstream of GABRA2 on chromo-

some 4, which like GABRG2 and GABRB3 experienced a

human-specific change in PFC temporal expression pattern

(Liu et al. 2012). GABRA2 is also upregulated following neu-

ronal stimulation via exposure to potassium chloride (Liu et al.

2012), and has been associated with alcohol dependence

(Edenberg et al. 2004; Dick et al. 2006). It is also worth

noting that we found a LOF candidate within an intron of

GABBR2, also singled out by Liu et al. (2012) as having evolved

a human-specific expression pattern in the PFC.

The proximity of GOF and LOF candidates around GABA

receptor genes implies that these candidate regions may be

the site of regulatory turnover responsible for human-specific

expression patterns of these genes in the prefrontal cortex.

Moreover, the association of these genes with neurological phe-

notypes such as autism suggests that they play a crucial role in

CNS development. Thus our findings, combined with Liu et al.’s

(2012) observation that GABA receptors have experienced an

unusually high rate of such changes in expression, strongly sug-

gest that human-specific changes in selective pressure in these

candidate regions may underlie important developmental dif-

ferences between the brains of humans and chimpanzees.

The signal of GOFs near neurotransmitter receptors is not

limited to GABA receptors—we also find several GOFs near

subunits of receptors of glutamate, the primary excitatory

neurotransmitter in the CNS. Glutamate is a GABA precursor

(Petroff 2002), and glutamate signaling is vital for CNS devel-

opment (Lujan et al. 2005). For example, we observe a GOF
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candidate upstream of GRIK1 which encodes a glutamate

receptor subunit. This gene has been associated with autism

(Haldeman-Englert et al. 2010), Down syndrome (Ghosh et al.

2009), and juvenile absence epilepsy (Sander et al. 1997), and

its expression levels are altered in patients with schizophrenia

and bipolar disorder (Woo et al. 2007). We also find a GOF

region within an intron and another downstream of GRIK2, a

glutamate receptor subunit (fig. 4A). GRIK2 has been linked to

mental retardation (Motazacker et al. 2007), autism (Jamain

et al. 2002), and schizophrenia (Bah et al. 2004), suggesting

an important developmental role in the CNS. In addition, we

find five GOF candidates in the vicinity of GRID2 (two up-

stream and three intronic; fig. 4B), another glutamate recep-

tor subunit which interacts directly with GRIK2 (Kohda et al.

2003). Deletions in GRID2 can result in cerebellar ataxia and

related motor deficits (Utine et al. 2013) and delays in cogni-

tion and speech (Hills et al. 2013). Both GRID2 and GRIK2

were identified by Liu et al. (2012) as evolving a human-

specific temporal expression profile in the lateral cerebellar

cortex.

Although zinc finger genes were not enriched for GOF

candiates according to GREAT, two GOFs located upstream

of the brain-expressed ZNF131 (Trappe et al. 2002) are nota-

ble because they harbor regulatory elements that may mod-

ulate its expression (fig. 5). The GOF candidate closest to the

gene, ~9 kb upstream, encompasses a 1,051 bp ORegAnno

element. Examining the great ape alignment we find 11

human-specific substitutions or indels within the ORegAnno

element—this number is within the upper 2.5% tail of the

empirical distribution of all adjacent 1 kb windows in the

genome. These substitutions may have created regulatory fea-

tures unique to humans. A second GOF element is located

another 19 kb further upstream containing another

ORegAnno element along with two noncoding RNAs with

no annotated function. In addition, ZNF131 is predicted by

UNIPROT to function in the brain.

Overall, our results suggest the possibility that a substantial

number of regions flanking or overlapping genes functioning

in the CNS may have gained selective constraint specifically in

humans. We see this pattern from not only the compelling

individual cases presented above, but also from genome-wide

enrichments of our predicted GOF elements. This pattern

could result from the gain or modification of regulatory re-

gions bringing about novel expression patterns. Such changes

could in part be responsible for the dramatic differences in

structure and function between the human brain and that of

other primates. The fact that many of these genes have

recently changed expression patterns in the human brain,

combined with the significant enrichment of our GOF candi-

dates for human-specific regulatory elements, shows the

power of our approach of contrasting phylogenetic and pop-

ulation genetic data to find human-specific change of

function.

Concluding Remarks

Understanding which portions of the human genome are

functional is a central goal in modern biology. Here we

have developed a supervised machine learning framework

to detect purifying selection from population genetic data

alone. Because our approach does not examine phylogenetic

evidence for sequence conservation, it can be used to detect

recent lineage-specific changes in selective pressure. We

found through extensive simulations and cross-validation

on the 1000 Genomes data set that our method is highly

accurate and can be used to identify candidate regions

experiencing either gain or loss of function occurring after

the human–chimpanzee divergence, successfully recovering

known examples of the latter. Moreover, because our super-

vised machine learning approach does not depend on heavily

parameterized models of human demographic history and

selection, we are able to leverage all available human se-

quence data in our search.

Although it has many advantages, our method does come

with some caveats. Because we utilize the fraction of segre-

gating sites in a region as well as their allele frequencies, var-

iation in the spontaneous mutation rate across the genome

could impact predictions. However, because we used super-

vised learning our classifier should be robust to such variation

if it is well represented in our training set or if its effect is

modest compared with the impact of purifying selection.

Our high accuracy rates show that this is the case.

On the other hand, our method does appear to be con-

founded by balancing selection, which is expected to increase

variability within the population. For example, the HLA loci,

the ABO locus, and the hemoglobin HBB gene, which are all

highly polymorphic and believed to be experiencing balancing

selection (Allison 1954; Hedrick and Thomson 1983; Saitou

and Yamamoto 1997; Stajich and Hahn 2005), are all classi-

fied as unconstrained by our method. This limitation of our

method is probably a minor one, as balancing selection in the

human genome appears to be the exception rather than the

rule (Bubb et al. 2006; Leffler et al. 2013).

Our method may also be confounded by selective sweeps,

which we suspect will be classified as constrained because

sweeps reduce the number of segregating sites and skew

the SFS away from intermediate-frequency variants (although

an excess of high-frequency variants is also observed at flank-

ing sites; Fay and Wu 2000). This issue may not greatly affect

accuracy as regions experiencing selective sweeps must con-

tain functional DNA, and as with balancing selection, such

sweeps seem to have little impact on human polymorphism

genome wide in any case (Hernandez et al. 2011; Lohmueller

et al. 2011). However, strong selective sweeps can reduce

diversity in large regions, potentially greatly inflating the in-

ferred size of the functional region. Given sufficient numbers

of examples of targets of positive or balancing selection, one

could in principle train an SVM to identify these types of loci as
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well. Finally, our approach may not be able to differentiate

recent changes in selective pressure affecting multiple lineages

(e.g., occurring prior to the human–chimpanzee split) from

truly lineage-specific changes. Dense polymorphism data

from multiple species would allow us to discriminate between

these two cases.

Despite these limitations, our approach appears to be quite

useful for identifying candidate human-specific gains and

losses of function. Indeed, while we cannot directly show

that these candidate regions have experienced recent changes

in selective constraint, the clustering of such candidates in loci

affecting CNS development and exhibiting novel expression

patterns in the human brain suggest that many of these can-

didates represent true gains or losses of function responsible

for key human-specific traits, and that such functional turn-

over is common on evolutionary timescales. Furthermore, our

method is complementary to previous strategies for identify-

ing lineage-specific changes in selective pressure. For example,

searches for sequences highly conserved in other species but

evolving rapidly in humans reveals regions likely responsible

for important human-specific adaptations (Pollard, Salama,

King, et al. 2006; Pollard, Salama, Lambert, et al. 2006;

Kostka et al. 2012); however, the acquisition of new func-

tional elements need not occur in previously conserved regions

or be accompanied by a burst of substitution. Our approach

does not depend on either of these two assumptions.

Unfortunately, our resolution is currently limited by the rela-

tively low density of polymorphism in humans. Nonetheless,

the results presented here demonstrate the promise of

leveraging population genetic data to detect selective con-

straint, an approach whose power will improve as more

human genomes are sequenced.

Supplementary Material

Supplementary figures S1–S5, text S1, and tables S1–S7 are

available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).

FIG. 4.—GOF candidates near glutamate receptor genes. (A) A diagram of GRIK2 and its downstream flanking region generated by the UCSC Genome

Browser. PopCons GOF candidate regions, shown in red, show little evidence for selective constraint across vertebrates (low phastCons posterior proba-

bilities, green). (B) A diagram of GRID2 and its upstream region.

FIG. 5.—GOF candidates upstream of ZNF131. A diagram of ZNF131 and its upstream flanking region generated by the UCSC Genome Browser.

PopCons GOF candidate regions are shown in red. Each of these GOF regions contains an ORegAnno regulatory element, with the element closer to ZNF131

having a high density of human-specific substitutions (red tick marks). ChIP-seq peaks indicative of transcription factor binding sites are also shown (black and

gray bars), as are H3K27Ac peaks (blue graph), both from ENCODE.
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