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Abstract. Let p be a prime and let E(IFp) be an elliptic curve defined
over the finite field IFp of p elements. For a given point G ∈ E(IFp) the
linear congruential genarator on elliptic curves (EC-LCG) is a sequence
(Un) of pseudorandom numbers defined by the relation

Un = Un−1 ⊕ G = nG ⊕ U0, n = 1, 2, . . . ,

where ⊕ denote the group operation in E(IFp) and U0 ∈ E(IFp) is the
initial value or seed. We show that if G and sufficiently many of the most
significants bits of two consecutive values Un, Un+1 of the EC-LCG are
given, one can recover the seed U0 (even in the case where the elliptic
curve is private) provided that the former value Un does not lie in a
certain small subset of exceptional values. We also estimate limits of a
heuristic approach for the case where G is also unknown. This suggests
that for cryptographic applications EC-LCG should be used with great
care. Our results are somewhat similar to those known for the linear and
non-linear pseudorandom number congruential generator.

Keywords: Pseudorandom congruential generators, Lattice reduction, El-
liptic curves.

1 Introduction

For a prime p, denote by IFp the field of p elements and always assume that it is
represented by the set {0, 1, . . . , p− 1}. Accordingly, sometimes, where obvious,
we treat elements of IFp as integer numbers in the above range.

Let E be an elliptic curve defined over IFp given by an affine Weierstrass
equation, which for gcd(p, 6) = 1 takes form

Y 2 = X3 + aX + b, (1)

for some a, b ∈ IFp with 4a3 + 27b2 6= 0.



We recall that the set E(IFp) of IFp-rational points forms an abelian group,
with the point at infinity O as the neutral element of this group (which does not
have affine coordinates).

For a given point G ∈ E(IFp) the Linear Congruential Generator on

Elliptic Curves, EC-LCG is a sequence Un of pseudorandom numbers defined
by the relation

Un = Un−1 ⊕ G = nG ⊕ U0, n = 1, 2, . . . , (2)

where ⊕ denote the group operation in E(IFp) and U0 ∈ E(IFp) is the initial
value or seed. We refer to G as the composer of the EC-LCG.

It is clear that the period of the sequence (2) is equal to the order of G.
The EC-LCG provides a very attractive alternative to linear and non-linear
congruential generators with many applications to cryptography and it has been
extensively studied in the literature, see [4, 17, 22, 23, 25, 26, 42, 43]. A very recent
survey of related problems is the paper [44].

In the cryptographic setting, the initial value U0 = (x0, y0) and the constants
G, a, and b are assumed to be the secret key, and we want to use the output
of the generator as a stream cipher. Of course, if two consecutive values Un are
revealed, it is almost always easy to find U0 and G. So, we output only the
most significant bits of each Un in the hope that this makes the resulting output
sequence difficult to predict. The main result of this paper is that not too many
bits can be output at each stage: the Linear Congruential Generator on Elliptic
Curves is unfortunately polynomial time predictable if sufficiently many bits of
its consecutive elements are revealed. We rigorously demonstrate our approach
in the special case when the composer G is public. We show that if G and
sufficiently many of the most significant bits of two consecutive values Un, Un+1

of the EC-LCG are given, one can recover the seed U0 (even in the case where
the elliptic curve is private) provided that the first coordinate x0 of the former
value Un = (xn, yn) does not lie in a certain small set. Of course, the assumption
that G is public reduces the relevance of the problem to cryptography, but we
believe that the strength of the result we obtain makes this situation of interest
in its own right. We also believe that this approach can be extended to the case
where G is secret and we present a heuristic approach for this case. Concretely,
we show that if sufficiently many of the most significants bits of three consecutive
values Un, Un+1, Un+2 of the EC-LCG are given, one can recover the seed U0 and
the composer G provided that the first value Un for which an approximation is
used does not lie in a certain small set of exceptional values.

This suggests that for cryptographic applications EC-LCG should be used
with great care.

Assume that the sequence (Un) is not known, but for some n, approximations
Wj of two consecutive values Un+j , j = 0, 1 are given. We show that the value Un

can be recovered from this information if the approximations Wj are sufficiently
good.

For the linear congruential generator similar problems have been introduced
by Knuth [32] and then considered in [10, 11, 18, 29, 33]; see also the surveys [12,



34]. The quadratic congruential generator and the inverse congruential generator
have been studied in [5–7, 19, 21]. Several problems of pseudorandom number
generators appear in [39, 40].

On the other hand, our results are substantially weaker than those known
for the linear and nonlinear congruential generators. In some sense, the problem
we solve can be considered as a special case of the problem of finding small
solutions of multivariate polynomial congruences. For polynomial congruences in
one variable such an algorithm has been given by Coppersmith [14], see also [15,
16, 20, 27, 30]. However in the general case only heuristic results are known. Here,
due to the special structure of the polynomials involved, we are able to obtain
rigorous results.

Throughout the paper the term polynomial time means polynomial in log p.
Our results involve another parameter ∆ which measures how well the values Wj

approximate the terms Un+j . This parameter is assumed to vary independently
of p subject to satisfying the inequality ∆ < p (and is not involved in the
complexity estimates of our algorithms).

More precisely, we say that W = (xW , yW ) ∈ IF2
p is a ∆-approximation to

U = (xU , yU ) ∈ IF2
p if there exists integers e, f satisfying:

|e|, |f | ≤ ∆, xW + e = xU , yW + f = yU .

In all of our results, the case where ∆ grows like a fixed power pδ where 0 < δ < 1
corresponds to the situation where a positive proportion δ of the least significant
bits of terms of the output sequence remain hidden.

The remainder of the paper is structured as follows: we start with a short
outline of some basic facts about lattices and the abelian group associated to
an elliptic curve in Section 2. In Section 3 we formulate our main result and
outline the plan of the proof Subsection 3.1, which is given in Subsection 3.2.
Section 4 is dedicated to study the case when G is also private. Then, in Section 5
we discus the results of numerical tests of our approaches. Finally, we conclude
with Section 6 which makes some final comments and poses open questions.
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2 Background

2.1 Integer Lattices

Here we collect several well-known facts about lattices which form the back-
ground to our algorithms.

We review several results and definitions of concepts related to lattices which
can be found in [24]. For more details and more recent references, we also rec-
ommend consulting [1, 29, 37].

Let {b1, . . . , bs} be a set of linearly independent vectors in R
r. The set



L = {c1b1 + · · · + csbs : c1, . . . , cs ∈ Z}
is called (s-dimensional) lattice with basis {b1, . . . , bs}. If s = r, the lattice L is
of full rank.

To each lattice L one can naturally associate its volume:

vol(L) =
(

det (〈bi, bj〉)s
i,j=1

)1/2

,

where 〈a, b〉 denotes the inner product. This definition does not depend on the
choice of the basis {b1, . . . , bs}.

For a vector u, let ‖u‖ denote its Euclidean norm. The first Minkowski
theorem, see Theorem 5.3.6 in [24], gives the upper bound

min {‖z‖ : z ∈ L \ {0}} ≤ s1/2vol(L)1/s (3)

on the shortest nonzero vector in any s-dimensional lattice L in terms of its
volume.

The Minkowski bound (3) motivates a natural question, the Shortest Vector
Problem (SVP): how to find a shortest nonzero vector in a lattice. Unfortunately,
there are several indications that this problem is NP-hard when the dimension
grows. This study has suggested several definitions of a reduced basis {b1, . . . , bs}
for a lattice, trying to obtain a shortest vector by the first basis element b1.
The celebrated LLL algorithm of Lenstra, Lenstra and Lovász [36] provides a
concept of reduced basis and an approximate solution, enough in many practice
applications.

Another related question is the Closest Vector Problem (CVP): given a lattice
L ⊆ R

r and a shift vector t ∈ R
r, the goal consists on finding a vector in the set

t + L with minimum norm. This problem is usually expressed in an equivalent
way: finding a vector in L closest to the target vector −t. It is well known that
CVP is NP-hard when the dimension grows.

However, both computational problems SVP and CVP are known to be solv-
able in deterministic polynomial time provided that the dimension of L is fixed
(see [31], for example). The lattices in this paper are of fixed (and low) dimension.

In fact, lattices in this paper consist of integer solutions x = (x0, . . . , xs−1) ∈ Z
s

of a system of congruences

s−1
∑

i=0

aijxi ≡ 0 mod qj , j = 1, . . . ,m,

modulo some positive integers q1, . . . , qm. Typically (although not always) the
volume of such a lattice is the product Q = q1 · · · qm. Moreover, all the aforemen-
tioned algorithms, when applied to such a lattice, become polynomial in log Q.
If {b1, . . . , bs} is a basis of the above lattice, by the Hadamard inequality we
have:

s
∏

i=1

‖bi‖ ≥ vol(L). (4)



2.2 The Group Associated to an Elliptic Curve

In this subsection we recall some basic facts about the group law on elliptic
curves.

Let E be an elliptic curve defined over IFp given by the affine Weierstrass
equation (1).

The operation ⊕ acts over the points P = (xP , yP ) and Q = (xQ, yQ) of
E(IFp) with P,Q 6= O as follows:

P ⊕ Q = R = (xR, yR)

– If xP 6= xQ, then

xR = m2 − xP − xQ, yR = m(xP − xR) − yP , where m =
yQ − yP

xQ − xP
.

(5)
– If xP = xQ but yP 6= yQ, then P ⊕ Q = O.
– If P = Q and yP 6= 0, then

xR = m2 − 2xP , yR = m(xP − xR) − yP , where m =
3x2

P + a

2yP
. (6)

– If P = Q and yP = 0, then P ⊕ Q = O.

Our context is a pseudorandom number generator which outputs affine points
in an elliptic curve. One obtains recursively them by operating a fixed composer
G to the previous value. So, almost always, the above equations in the first case
(5) will determine the process.

The set E(IFp) of IFp-rational points forms an abelian group satisfying the
Hasse-Weil inequality:

|# (E(IFp) − p − 1) | ≤ 2
√

p. (7)

It is well known that the group E(IFp) is of the form

E(IFp) ∼= ZZ/LZZ × ZZ/MZZ,

where the integers L and M are uniquely determined with M divides L , see [2,
8, 47] for these and other general properties of elliptic curves.

3 Predicting Result for Known Composer

In this section we formulate and prove our main result on predicting the linear
pseudorandom number generator on elliptic curve, when the composer G and
the modulus p are both public.



3.1 Formulation and Plan of Proof

Assume that a, b are unknown, but the prime p and G = (xG, yG) ∈ E(IFp)
are given to us. We show that when we are given ∆-approximations Wn, Wn+1

to (respectively) two consecutive affine values Un, Un+1 produced by the EC-
LCG; we can recover the exact values, provided that the first component xn of
Un = (xn, yn) does not lie in a certain set, whose size is bounded by O(∆6).
Note that once two affine points in a curve as (1) are given, such that their
first component is different, the curve (the parameters a and b) are determined.
Then, after discovering the values Un and Un+1, we can reproduce (backwards
and forwards) the whole sequence. To simplify the notation, we assume that
n = 0 from now on.

We write Wj = (αj , βj), Uj = (xj , yj), for j = 0, 1; and so there exist integers
ej , fj with:

xj = αj + ej , yj = βj + fj

|ej |, |fj | ≤ ∆, j = 0, 1.
(8)

Theorem. With the above notations and definitions, there exists a set U(∆; a, xG, yG) ⊆
IFp of cardinality #U(∆; a, xG, yG) = O(∆6) with the following property: when-
ever x0 6∈ U(∆; a, xG, yG) then, given ∆−approximations W0, W1 to two consec-
utive affine values U0, U1 produced by linear congruential generator on elliptic
curves (2), and given the value of G = (xG, yG), one can recover the seed U0 in
deterministic polynomial time.

An outline of the algorithm given in the proof of this Theorem goes as follows.
The algorithm is divided into two stages.

– Stage 1: We include the value xG in U(∆; a, xG, yG). We construct a certain
lattice L (see (14) below) of dimension 7; this lattice depends on the approx-
imations W0, W1 and the composer G. We also show that a certain vector
E directly related to missing information about U0 and U1 is a very short
vector. A closest vector F is found; see [31] for the appropriate algorithm.

– Stage 2: We show that F provides the required information about E for
all initial values U0 = (x0, y0) except when x0 lies in a certain exceptional
set U(∆; a, xG, yG) ⊆ IFp of cardinality #U(∆; a, xG, yG) = O(∆6) (which is
defined as set of zeroes of a certain parametric family of polynomials).

3.2 Proof

We assume that x0 ∈ IFp is chosen so as not to lie in a certain subset U(∆; a, xG, yG)
of IFp. The cardinality of this set is bounded by O(∆6). It consists of the so-
lutions of a certain polynomial together with two extra values. It is explained
through the proof.

We place the value xG ∈ U(∆; a, xG, yG), so that U0 is not G or −G. Then,
clearing denominators in equations (5), we can translate

U1 = U0 ⊕ G (9)



into the following identities in the field IFp:

L1 = L1(x0, y0, x1) ≡ 0 mod p, L2 = L2(x0, y0, x1, y1) ≡ 0 mod p,

where

L1 = xG
3 + x1xG

2 − x0xG
2 − 2 x1xGx0 − xGx0

2 + x0
3 + 2 yGy0 + x1x0

2 − y2
G − y0

2,

L2 = y1xG − y1x0 − yGx0 + yGx1 − y0x1 + y0xG.

(10)

Using the equalities xj = αj + ej and yj = βj + fj for j = 0, 1, equations
(10) become

–
(

−2xGα0 − 2xGα1 + 3α2
0 + 2α1α0 − x2

G

)

e0+
(

α2
0 − 2xGα0 + x2

G

)

e1+(2yG − 2β0) f0+
+(3α0 + α1 − xG) e2

0 + (2α0 − 2xG) e0e1 + [e3
0 + e2

0e1 − f2
0 ] =

x2
Gα0 − x2

Gα1 + xGα2
0 − α1α

2
0 + 2xGα0α1 − α3

0 − x3
G + β2

0 + y2
G − 2yGβ0,

– (−β1 − yG) e0 +(yG − β0) e1 +(xG − α1) f0 +(xG − α0) f1 − [e0f1 + e1f0] =

β1α0 − xGβ1 + yGα0 − yGα1 + β0α1 − xGβ0.

Now, we linearize this polynomial system. Writing

A0 ≡ x2
Gα0 − x2

Gα1 + xGα2
0 − α1α

2
0 + 2xGα0α1 − α3

0 − x3
G + β2

0 + y2
G − 2yGβ0 mod p

A1 ≡ −2 xGα1 − 2 xGα0 + 3α0
2 + 2α1α0 − xG

2 mod p, A2 ≡ α0
2 + xG

2 − 2 xGα0 mod p,

A3 ≡ 2 yG − 2 β0 mod p, A4 ≡ 0 mod p, A5 ≡ α1 + 3α0 − xG mod p

A6 ≡ −2 xG + 2α0 mod p, A7 ≡ 0 mod p, A8 ≡ 1 mod p

B0 ≡ β1α0 − xGβ1 + yGα0 − yGα1 + β0α1 − xGβ0 mod p, B1 ≡ −β1 − yG mod p,

B2 ≡ yG − β0 mod p, B3 ≡ xG − α1 mod p, B4 ≡ xG − α0 mod p,

B5 ≡ 0 mod p, B6 ≡ 0 mod p, B7 ≡ −1 mod p, B8 ≡ 0 mod p,

(11)

we obtain that vector

E = (∆2e0,∆
2e1,∆

2f0,∆
2f1,∆e2

0,∆e0e1,∆(e1f0 + e0f1), e
3
0 + e2

0e1 − f2
0 ) =

(∆2E1,∆
2E2,∆

2E3,∆
2E4,∆E5,∆E6,∆E7, E8)

is a solution to the following linear system of congruences:

4
∑

i=1

AiXi +
7

∑

i=5

∆AiXi + ∆2A8X8 ≡ ∆2A0 mod p,

4
∑

i=1

BiXi +
7

∑

i=5

∆BiXi + ∆2B8X8 ≡ ∆2B0 mod p,

X1 ≡ X2 ≡ X3 ≡ X4 ≡ 0 mod ∆2,

X5 ≡ X6 ≡ X7 ≡ 0 mod ∆.

(12)



Moreover, E is a relatively short vector. We have:

|Ei| ≤ ∆, i = 1, 2, 3, 4, |Ei| ≤ ∆2, i = 5, 6, |E7| ≤ 2∆2, |E8| ≤ 3∆3; ‖E‖ ≤
√

19∆3.
(13)

Let L be the lattice consisting of integer solutions X = (X1, X2, . . . , X8) ∈ Z
8

of the system of congruences:

4
∑

i=1

AiXi +
7

∑

i=5

∆AiXi + ∆2A8X8 ≡ 0 mod p,

4
∑

i=1

BiXi +
7

∑

i=5

∆BiXi + ∆2B8X8 ≡ 0 mod p,

X1 ≡ X2 ≡ X3 ≡ X4 ≡ 0 mod ∆2,

X5 ≡ X6 ≡ X7 ≡ 0 mod ∆.

(14)

We compute a solution T of the system of congruences (12), using linear
diophantine equations methods. Applying an algorithm solving the CVP for the
shift vector T and the lattice L, we obtain a vector

F = (∆2F1,∆
2F2,∆

2F3,∆
2F4,∆F5,∆F6,∆F7, F8)

satisfying equations (12) and

|Fi| ≤
√

19∆, i = 1, 2, 3, 4, |Fi| ≤
√

19∆2, i = 5, 6, 7, |F8| ≤
√

19∆3

‖F ‖ ≤
√

19∆3.
(15)

Note that we can compute F in polynomial time from the information we
are given. We might hope that E and F are the same, or at least, that we can
recover the approximations errors from F . If not, we will show that x0 belongs
to a subset U(∆; a, xG, yG) ⊆ IFp of cardinality #U(∆; a, xG, yG) = O(∆6). Let
us bound the “bad” possibilities for which this process does not succeed. Vector
D = E − F lies in L:

D = (∆2D1,∆
2D2,∆

2D3,∆
2D4,∆D5,∆D6,∆D7, D8), Di = Ei−Fi, i = 1, . . . , 8.

Bounds (13) and (15) imply ‖D‖ ≤ 2
√

19∆3 and

|Di| ≤ 2
√

19∆, i = 1, 2, 3, 4, |Di| ≤ 2
√

19∆2, i = 5, 6, 7, |D8| ≤ 2
√

19∆3.

(16)

If D1 ≡ 0 mod p and D3 ≡ 0 mod p, then U0 = (x0, y0) = (α0+F1, β0+F3) ∈
IF2

p and we can recover the original values U0 and U1.



By the same argument, if D2 ≡ 0 mod p and D4 ≡ 0 mod p, we have U1 =
(x1, y1) = (α1 +F2, β1 +F4). In order to recover U0 = U1 ⊕ (−G), we need U1 6=

−G. So, let us include the first component of −2G, namely

(

3x2
G + a

2yG

)2

− 2xG

(see equation (6)), in the set U(∆; a, xG, yG).
So, we can assume (D1 6= 0 or D3 6= 0), and (D2 6= 0 or D4 6= 0). Substituting

D in Equations (14) defining lattice L we obtain:

8
∑

i=1

AiDi ≡ 0 mod p,
8

∑

i=1

BiDi ≡ 0 mod p. (17)

Using the definition of Ai, Bi, i = 1, . . . , 9 and after the substitutions αi =
xi − ei and βi = yi − fi, i = 0, 1 in the second congruence of (17), we find

N(x0, y0, x1, y1) = N0 − D4x0 − D2y0 − D3x1 − D1y1 ≡ 0 mod p, (18)

where

N0 = D7 + D4 e0 + D2 f0 + D2 yG + D1 f1 − D1 yG + D4 xG + D3 e1 + D3 xG.

We claim that
F (x0) ≡ 0 mod p (19)

for some nonconstant polynomial of degree at most 18 of the form:

F (X) =
18
∑

i=0

CiX
i,

where the coefficients Ci ∈ IFp[N0, D1, D2, D3, D4], i = 0, . . . , 18. Then, for every
choice of D1, D2, D3, D4, D7, e0, e1, f0, and f1 only a constant number of values
x0 are possible.

In order to proof this last claim, we distinguish two cases: D1 6≡ 0 mod p and
D1 ≡ 0 mod p.

Case: D1 6≡ 0 mod p. From (18) we obtain that

y1 = −−N0 + D2 y0 + D3 x1 + D4 x0

D1

.

Substituting this expression in the following equation:

E1(x1, y1) = y2
1 − x3

1 − ax1 − b

and clearing denominators, we obtain a polynomial E′

1(x0, y0, x1) in the variables
x0, y0 and y1:

E′

1(x0, y0, x1) = E1

(

−−N0 + D2 y0 + D3 x1 + D4 x0

D1

, y1

)

D2
1.



Solving x1 from equation (10), substituting it in E′

1(x0, y0, x1) and clearing
denominators (we note that x0 = xG belongs to the bad set U(∆; a, xG, yG), we
obtain a polynomial A(x0, y0) of degree 6 with respect the variable y0:

A(x0, y0) = E′

1(x0, y0,

(

yG − y0

xG − x0

)2

− x0 − xG)(xG − x0)
6 = −D2

1y
6
0 + · · ·

Let F (x0) be the resultant of A(x0, y0) and the polynomial

E0(x0, y0) = y2
0 − x3

0 − ax0 − b

with respect to the variable y0:

F (x0) = resultanty0
(A(x0, y0), E0(x0, y0)) =

18
∑

i=0

Cix
i
0.

Using Maple we have computed the coefficients Ci explicitly, and we present
some of these expressions below:

C18 = D4
2,

C17 = −2 D2
2

(

6 xG D2
2 + D2

4

)

,

C16 = 2D2
2

(

33 D2
2x

2
G + D2

2a − 4 D3 yG D2 + 2D4 N0 + 12xG D2
4 − 2 xG D3 D4

)

+ D4
4.

(20)

Now, we need to prove that F (x0) is a nonconstant polynomial for every choice
of D1, D2, D3, D4 and N0. Clearly, if D2 6≡ 0 mod p, then degree of F (x0) is 18.
Otherwise, we obtain from bounds in (16) and equation (20) that

C18 = 0, C17 = 0, C16 = D4
4.

Since D2 = 0, then D4 6= 0 and the degree of F (x0) is 16.
Case: D1 ≡ 0 mod p. ¿From (18) we obtain that

x1 = −−N ′

0 + D2 y0 + D4 x0

D3

,

where N ′

0 = D7 + D4 e0 + D2 f0 + D2 yG + D4 xG + D3 e1 + D3 xG. Substituting
this expression in Equation (10): L1(x0, y0, x1), we derive a polynomial B(x0, y0)
of degree 2 with respect the variable y0:

B(x0, y0) = L1

(

x0, y0,−
−N ′

0 + D2 y0 + D4 x0

D3

)

D3 = −D3y
2
0 + · · ·

Let F (x0) be the resultant of B(x0, y0) and E0(x0, y0) = y2
0 − x3

0 − ax0 − b with
respect the variable y0:

F (x0) = resultanty0
(B(x0, y0), E0(x0, y0)) = −D2

2x
7
0 + (4xG D2

2 + D4
2)x6

0 + · · ·



Again, we need to prove that F (x0) is a non constant polynomial for every
choice of D1, D2, D3, D4 and N0. Firstly, we note that the resultant specialize
well, because the leadings coefficients of B(x0, y0) and E0(x0, y0) with respect y0

are non zero. Secondly, if D2 6≡ 0 mod p, then degree of F (x0) is 7. Otherwise,
we have that F (x0) is a polynomial of degree 6 because its leading coefficient is
D2

4 6= 0.
Since F is a non-constant polynomial in x0 of degree at most 18, the congru-

ence (19) can be satisfied for at most 18 values of x0 once Di, i = 1, . . . , 4, and N0

have been chosen. By (16) the total number of possible choices for D1, D2, D3, D4

is O(∆4). On the other hand, N0 can take O(∆2) distinct values, because writing
N0 as:

N0 = D7 + D4 e0 + D2 f0 + D1 f1 + D3 e1 + (D2 − D1) yG + (D3 + D4) xG.

From bounds in (8) and (16) we obtain that D7+D4 e0+D2 f0+D1 f1+D3 e1 =
O(∆2). And fixed D1, D2, D3 and D4 then is fixed D2 − D1 and D3 + D4.
Hence there are only O(∆6) values of x0 that satisfy some congruence (19). We
place these O(∆6) values of x0 in U(∆; a, xG, yG). So all short vectors satisfying
(12) lead to discover the approximation errors whenever x0 6∈ U(∆; a, xG, yG).
Finally, if that is not the case, we can trivially calculated e0, e1 and then Un for
n = 0, 1, . . ., which finishes the proof.

4 Unknown Composer

In the previous section we have provided an upper bound (namely, 1/6) for
the fraction of bits one should hide from each value obtained with EC-LCG in
order to avoid lattice attacks which could reproduce the sequence. However, it
has been assumed that the cryptanalyst has access to the composer G, which
places his task in a quite optimistic frame. So, in this section we suppose that
the parameter G is also private. In this case we require three approximations,
instead of two.

We assume that the sequence (Un) is not known, but for some n, approxima-
tions Wj of 3 consecutive values Un+j , j = 0, 1, 2 are given. We show that the
value Un = (xn, yn) can be recovered from this information if the approximations
Wj are sufficiently good. We can suppose that n=0.

We write Wj = (αj , βj) where ej = xj − αj , fj = yj − βj for j = 0, 1, 2
verifying

|ej |, |fj | ≤ ∆, j = 0, 1, 2 (21)

So, our input of this new algorithm consists of α0, α1, α2, β0, β1, β2 ∈ IFp and
the positive integer ∆.

The first attempt to design a such procedure would be, as in the previous
section, to suppose that U0, U1 6∈ {G,−G} and use the addition formulae (5) to



derive a closest vector problem instance whose solution may lead to recover the
three values, and the secret parameter G.

In that case, the polynomial equations obtained grow significatly in de-
gree and number of monomials involved; so in order to keep dealing with low-
dimensional lattices, we have followed a different approach.

We just consider the information given as approximations to arbitrary points
in the same elliptic curve, in such a way that we are not taking advantage from
the knowledge of the procedure which has generated them. In other words, we
give a method to recover three points lying in an elliptic curve in the form (1),
given corresponding approximations. And we use that method in the frame of
an EC-LCG and three values partially revealed.

The starting point is:

y2
0 = x3

0 + ax0 + b,

y2
1 = x3

1 + ax1 + b,

y2
2 = x3

2 + ax2 + b.

Eliminating the curve parameters a, b and assuming that U0 6∈ {U1,−U1} (that
is, x0 6= x1), we obtain the following equation:

−y2
2x1+y2

2x0+x3
2x1−x3

2x0−x2y
2
0+x2x

3
0+x2y

2
1−x2x

3
1−y2

1x0+x3
1x0+x1y

2
0−x1x

3
0 = 0.
(22)

Following the same process as in Section 3, we substitute xi = αi + ei,
yi = βi + fi for i = 0, 1, 2 in the above equation and obtaining a linear system
of congruence equations:

6
∑

i=1

AiXi +

15
∑

i=7

Ai∆Xi +

21
∑

i=16

Ai∆
2Xi + A22∆

3X22 ≡ A0∆
3 mod p,

Xi ≡ 0 mod ∆3, i = 1, . . . , 6

Xi ≡ 0 mod ∆2, i = 7, . . . , 15

Xi ≡ 0 mod ∆, i = 16, . . . , 21

(23)

with at least a solution bounded by
√

42∆4:

E = (∆3E1, . . . ,∆
3E6,∆

2E7, . . . ,∆
2E15,∆E16, . . . ,∆E21, E22), (24)

which first six components contain the approximation errors, and the other ones
are polynomial expressions on those:

E1 = e0, E2 = e1, E3 = e2,
E4 = f0, E5 = f1, E6 = f2,
E7 = e2

0, E8 = e0e1, E9 = e0e2,
E10 = e2

1, E11 = e1e2, E12 = e2
2,

E13 = f0(e1 − e2), E14 = f1(e0 − e1), E15 = f2(e0 − e1),
E16 = f2

0 − e3
0, E17 = f2

1 − e3
1, E18 = f2

2 − e3
2,

E19 = e2
0(e1 − e2), E20 = e2

1(e0 − e2), E21 = e2
2(e1 − e2),

E22 = e0(f
2
2 − f2

1 + e3
1 − e3

2) + e1(f
2
0 − f2

2 + e3
2 − e3

0) + e2(f
2
1 − f2

0 + e3
0 − e3

1).



The coefficients Ai, i = 1, . . . , 22 describing the system are easily obtained
from the known infomation αi, βi, i = 0, 1, 2 and ∆. Now, we can find a particular
solution T to the system (23) and then apply the CVP algorithm for the shift
vector T and the homogenization lattice obtained from system (23):

6
∑

i=1

AiXi +

15
∑

i=7

Ai∆Xi +

21
∑

i=16

Ai∆
2Xi + A22∆

3X22 ≡ 0 mod p,

Xi ≡ 0 mod ∆3, i = 1, . . . , 6

Xi ≡ 0 mod ∆2, i = 7, . . . , 15

Xi ≡ 0 mod ∆, i = 16, . . . , 21

(25)

Then, we obtain an smaller vector F in polynomial time from the given informa-
tion. We might hope that E and F are the same. This time, we are not giving a
rigorous proof to bound the number of possibilites for which this method could
fail.

The so-called “Gaussian heuristic” suggests that and s-dimensional lattice L
with volume vol(L) is unlikely to have a nonzero vector which is substantially
shorter than vol(L)1/s. Moreover, if it is known that such a very short vector
does exist, then up to a scalar factor it is likely to be the only vector with this
property.

Then, vector E is likely to be the one founded whenever ∆4 < p1/22∆42
1/22

,
this is,

∆ < p1/46 = p0,0217....

5 Empirical results

We have proposed two algorithms to recover a sequence of pseudorandom num-
bers produced by EC-LCG. The input required by both algotirhms include ap-
proximations to some pseudorandom values. The first one requires additionally
precise knowledge of the parameter G. The quality of those approximations is the
measure used to characterise when the algorithms output the expected sequence.

In the first case, a “bad” set of values for the component x0 is described,
proving that whenever that value lies outside the set, the algorithm works cor-
rectly. Furthermore, the size of the set is asymptotically bounded with ∆6. This
means that if ∆ < p1/6 and p is large enough, assuming a uniform distribution
of probabilities for x0 ∈ IFp, the method is unlikely to fail.

However, two aspects must be taken into account before considering p1/6 as
the threshold for the error tolerance upon which the algorithm fails. On the one
side, the constants hidden in the asymptotic reasoning (namely, the size of the
prime p). On the other one, the threshold could be higher, as the “bad” set does
not guarantee that the methods indeed fails.

We have performed some numerical tests with a C++ implementation of the
main Theorem, using NTL library [41]. Firstly, we generate an ellliptic curve over



a prime finite field of a desired size by chosing ramdomly in IFp parameters a, b
to fix Equation (1). Then, we generate randomly points in the curve by choosing
their first coordinate and trying to solve Equation (1). For several pairs of points,
an EC-LCG is simulated, and approximations to some consecutive values are
given as input to our algorithms.

We summarize its results in the following table. We have selected primes of
several sizes, and note the obtained success threshold. As we can see, for the
first method 1/6 appears as the correct threshold:

log2(p) 50 100 500 1000
logp(∆) 0.15 0.156 0.164 0.165

As for the second algorithm proposed, the threshold has been obtained using
the so-called Gaussian heuristic. As the dimesion of the employed lattice is sig-
nificantly bigger, the prime size must be also bigger to obtain results according
our predictions.

6 Remarks and Open Questions

Obviously our result is nontrivial only for ∆ = O(p1/6). Thus increasing the size
of the admissible values of ∆ (even at the cost of considering more consecutive
approximations) is of prime importance.

It would be interesting to provide a proof of the heuristic method for the case
that the composer G is secret. Unfortunately, we do not know how to predict the
EC-LCG when the modulus p is secret as well. Certainly both of these questions
deserves further study.

Finally, it is no clear how to extend these results to the Power Generator on
elliptic curves and to the Naor-Reingold Generator on Elliptic curves, see [35,
38, 45, 46].
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