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Overline: Computational Biology 

One sentence summary: Bayesian inference-based modeling identifies the most likely 

paths through a signaling network. 

 

Editor's Summary: 

Picking the Right Path 

Signaling networks have become increasingly complex as large-scale analysis and 

experiments in multiple systems add new potential connections and players. Xu et al. 

present a mathematical approach to rank the possible paths through a signaling pathway 

in order to develop hypotheses that can be rationally tested. They call their approach 

BIBm for Bayesian inference-based modeling and apply BIBm to explore the signaling 

pathways by which epidermal growth factor (EGF) stimulates extracellular signal-

regulated kinase (ERK).  Using a limited set of biochemical experiments, the authors test 

four models and find that the one that relies on two Raf family members to rank the 

highest. This model was then experimentally validated in two cell lines to show that both 

Raf-1 and B-Raf contribute to ERK activation in response to EGF.   
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ABSTRACT 

The specification of biological decisions by signaling pathways is 

encoded by the interplay between activation dynamics and network 

topologies. Although we can describe complex networks, we cannot 

easily determine which topology the cell actually uses to transduce a 

specific signal. Experimental testing of all plausible topologies is 

infeasible due to the combinatorially large number of experiments 

required to explore the complete hypothesis space.  Here, we 

demonstrate that Bayesian inference-based modeling provides an 

approach to explore and constrain this hypothesis space permitting the 

rational ranking of pathway models. Our approach can use 

measurements of a limited number of biochemical species when 

combined with multiple perturbations. As proof-of-concept, we 

examined the activation of the extracellular signal-regulated kinase 

(ERK) pathway by epidermal growth factor (EGF). The predicted and 

experimentally validated model shows that both Raf-1 and, 

unexpectedly, B-Raf are needed to fully activate ERK in two different cell 

lines. Thus, our formal methodology rationally infers evidentially 

supported pathway topologies even when a limited number of 

biochemical and kinetic measurements is available.  

 

 

INTRODUCTION 

Mathematical modeling in biology has a long and illustrious history, of 

providing physical explanations of biological phenomenon-- think of Hodgkin & 
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Huxley’s model of neuronal action potential propagation (1). A major tenet of 

systems biology is to interpret and inform experimental work through an 

iterative process of mathematical modeling and experimental validation. When 

considering the structure of signaling pathways, experimental evidence 

reveals functional or physical interactions that give rise to hypotheses 

suggesting how a signal is transduced through the pathway. However, 

experiments done under different experimental conditions typically suggest 

several plausible pathway topologies, and it becomes difficult to distinguish 

which connections cells actually use as the number of potential connections 

grows. The comprehensive map of the epidermal growth factor (EGF) 

signaling network illustrates this problem, because when  all possible 

connections are described (2), it is impossible to tell which ones are realized 

in a particular situation. It was demonstrated by Wilkinson (3) that, in principle, 

competing mathematical models of biochemical pathways can be evidentially 

ranked in an objective manner using experimental data. Thus, we suggest 

and employ a Bayesian Inference-Based modeling (BIBm) approach, founded 

on Wilkinson's assumption, that provides the means to rank alternative 

hypotheses about pathway structures on the basis of the evidence provided 

by experimental data.  

BIBm takes a number of working hypotheses about the structure and 

dynamics of a biological process, which have attached to them preliminary 

levels of confidence in their validity. These levels of confidence, or prior 

probabilities, are informed by existing knowledge and can be formally 

represented as a calibrated probability distribution over all hypotheses under 

consideration (4). An abstracted mathematical model explicitly capturing all 
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assumptions and describing the main phenomena of the system then formally 

represents each hypothesis (5). Unlike other computational systems biology 

modeling approaches in which a single model is considered and subsequently 

refined, BIBm considers all of the plausible enumerated hypotheses in the 

form of mathematical models based on the amount and quality of evidential 

support for each of the instantiated models. This formalizes the ‘exploration of 

hypothesis space’ in that different plausible alternatives are evaluated in 

terms of confidence based on the strength of evidential support for each one 

(5). Thus, the Bayesian probabilistic framework (3-5) provides a rigorous 

formal methodology for characterizing and propagating uncertainty based on 

experimental data during model evaluation and provides the means to update 

the levels of confidence in each hypothesis in light of the information content 

of experimental data (see Supplementary Material, sections 1 and 4). 

Furthermore, the Bayesian hypotheses testing methodology used in the BIBm 

framework accounts for model complexity (6). We do not take a single optimal 

point of the likelihood, i.e. a single plausible value, but rather integrate 

(marginalize) over all of the model parameters taking into account their likely 

distribution as measured or estimated based on prior knowledge (prior 

distribution) and the likelihood. Thus, overly complex models are automatically 

penalized, and BIBm assigns the highest ranking to the simplest model(s) that 

suffice to explain the experimental evidence. The updated probabilities 

(posteriors) may re-rank and select between prior hypotheses, or suggest 

further experimentation, if preconceived models have similar weights of 

posterior probability (5, 6). This procedure is iterated until the obtained 

inferences allow to draw conclusions in respect to the original hypothesis 
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about the biological system closing the cycle of hypothesis generation, model 

development, model assessment, and experimental validation (Fig. 1). Thus, 

BIBm permits evaluation of pathway models based on a limited set of 

measurements and multiple perturbations, and it accommodates dynamic 

models within a probabilistic framework. 

 

We tested BIBm on the real biological network of the activation of the 

extracellular signal-regulated kinase (ERK) pathway by EGF, with ERK 

activation as the readout. We perturbed the pathway by pharmacologically 

inhibiting or activating adenosine 3',5'-monophosphate (cAMP) signaling, 

which has several points of crosstalk with the EGF-mediated activation of 

ERK (7, 8). The ERK pathway is activated by surface receptors, such as the 

EGF receptor (EGFR), which activate a Ras family guanosine triphosphatase  

(GTPase) at the cell membrane by recruiting guanine nucleotide exchange 

factors (GEFs) that exchange GDP for GTP (9). Ras-GTP binds to and 

initiates the activation of kinases of the Raf family. Raf then phosphorylates 

and activates mitogen-activated protein kinase kinase (MEK), and MEK 

phosphorylates and activates ERK (9-11). ERK participates in the regulation 

of fundamental cellular processes (12), and its deregulation is implicated in 

the pathogenesis of many diseases, especially cancer (10). Deregulation 

typically occurs at the level of Ras and Raf activation, a complex part of the 

pathway with many possible isoforms and regulatory inputs. Ras activates all 

three Raf isoforms A-Raf, B-Raf, and Raf-1, whereas B-Raf can also be 

activated by another GTPase Rap1 (8, 13). However, activation of EPAC, a 

Rap1 GEF, by the cAMP analog 8CPT-2Me-cAMP did not activate ERK (14), 
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and it is unclear which growth factors and under what conditions Rap1 

activates B-Raf (15). cAMP signaling can inhibit Raf-1 and activate B-Raf (7) 

confounding the analysis of cAMP effects on ERK activity in cells where both 

Raf-1 and B-Raf are present. Exploring all possibilities experimentally would 

require a prohibitively large number of experiments. Thus, we used BIBm to 

analyze the most plausible pathway topologies based on a limited, and hence 

feasible, set of experimental measurements.  

 

RESULTS 

Application of BIBm to analyze the EGF activated ERK pathway 

 

On the basis of the published literature, we selected four different 

equally plausible pathway topologies for EGF-mediated activation of ERK 

(Fig. 2A). Model details are described in section 3 of the Supplementary 

Materials. In Model 1, activation of ERK proceeds through  Ras (16, 17) and 

the model includes the possibility that Ras activates both Raf-1 and B-Raf 

(18). In Model 2, two branches of ERK activation occur through Ras and Rap1 

(8, 13). Models 3 and 4 correspond to Models 1 and 2, but include EGFR 

desensitization, which may critically regulate ERK activity (19).  

By assessing the informativeness of measurements of different species 

in the pathway, we found that ERK activity provided the most informative data 

with an eigenvalue of 0.2127, which was 0.57 times greater than the next best 

data set (MEK, with an eigenvalue of 0.1216) (see Materials and Methods and 

Supplementary Materials, section 1). Therefore, we measured the kinetics of 

ERK activation in PC12 cells under 11 distinct conditions and perturbations, 
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which represented a total of 168 experimental measurements (Supplementary 

Materials, section 2.3). Each time point and each replicate is considered a 

separate measurement. To perturb the pathway, we used drugs affecting the 

activity of the cAMP signaling system, which has multiple points of crosstalk 

with the EGF-stimulated ERK activation pathway (Fig. 2A and Fig. S1). We 

targeted protein kinase activated by cAMP (PKA) with the cAMP analog 6-

Benz-cAMP, EPAC with the cAMP analog 8pMeOPT-2-O-cAMP, and 

phosphodiesterase 3 (PDE3) with cilostamide, which we determined was the 

most active PDE in PC12 cells (Fig. S2D). We simulated model dynamics with 

ordinary differential equations (ODEs; Supplementary Materials, section 3) 

with the following simplifications: (i) The manipulation of the abundance of 

cAMP by different means is considered as perturbations that are not part of 

the topology models; (ii) Cilostamide was modeled as direct ‘activator’ of both 

EPAC and PKA because it increases cAMP by inhibiting PDE3 (20); (iii) The 

activation processes from receptor to adaptors to effector proteins were 

defined as EGFR→GRB2→SOS→Ras and EGFR→CRK→C3G→Rap1 

pathways (16). 

 To rank the four alternative hypotheses, we computed the posterior 

probability of every model given the experimental data (Figs. 2C and 2D; and 

Supplementary Materials, section 4) to obtain the Bayes' factors. The resulting 

Bayes’ factors are the ratio of likelihoods that a given model is consistent with 

observed experimental data, and hence can be used for model ranking. The 

Bayes’ factor is a summary of the evidence provided by the data in favor of 

one scientific hypothesis, represented by a mathematical model, in 

comparison to another. Posterior odds for preferring one model to another can 
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be obtained by multiplying the Bayes’ factor by the prior odds. Thus, we can 

base our ranking on probability distributions, which give us exact information 

on the probability that our conclusions are correct.. Comparing the four 

alternative models gave Bayes’ factors of 

log10 B2,1  7.45  2.60 , log10 B2,3  23.611.47 , and log10 B2,4  4.56 1.81. We  

used the mean ± standard error format to report the estimated values of the 

Bayes’ factor, which indicated a significant preference (6) of the two-branched 

model 2  over model 4 and the single branch models. Model 2 is about 100 

times more likely than Model 4, >3 million times more likely than Model 1, and 

>1022 more likely than Model 3 (Fig. 2D). Thus, the Bayes’ factors show that 

EGF uses both Raf-1 and B-Raf to activate ERK, and that EGF receptor 

desensitization is a minor contributor to ERK activation kinetics in response to 

EGF and cAMP signaling. Only the experimental data from the 168 

perturbation measurements of ERK phosphorylation were used to compute 

the marginal likelihoods of the alternative models, and these were sufficient to 

select Model 2 as the most plausible one for the structure of the signaling 

pathway (Figs. 2C and 2D).  

 

Experimental validation of BIBm predictions 

These predictions of pathway topology were validated by siRNA 

experiments in PC12 and HEK293 cells. Both Raf-1 and B-Raf are present in 

both of these cell lines, and the cells share a similar regulation of ERK 

activation kinetics in response to EGF (21). Due to the low transfection 

efficiency of PC12 cells, we used HEK293 for the detailed mechanistic 

experiments (Figs. 3 and 4), and validated salient results in PC12 cells (Fig. 
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5).  In HEK293 cells (Fig. 3), knocking down either the GRB2 adaptor protein 

(by ~70%), which mediates Ras activation, or the CRK adaptor protein (by 

~50%), which mediates Rap1 activation, significantly attenuated EGF-

stimulated ERK activation compared to control cells. Knocking down both 

GRB2 (by ~80%) and CRK (by ~40%) further reduced ERK activation and 

was slightly, but significantly, more efficient than the single knockdowns (Fig. 

3B-D).  

We also knocked down Raf-1 and B-Raf, which are the relevant Ras 

and Rap1 effectors (Figs. 3E-H).  Knocking down Raf-1 (by ~80%) 

significantly attenuated EGF-stimulated ERK activation at all timepoints, 

whereas knocking down B-Raf (~90%) had no significant effect on ERK 

activation (Fig. 3F and G). However, the B-Raf knockdown significantly 

enhanced the effects of the Raf-1 knockdown at all timepoints tested (Fig. 

3G). These results suggest that Raf-1 is the main transducer of EGF-

mediated ERK activation with an additional contribution from the Rap1 - B-Raf 

branch. These experimental results are consistent with a B-Raf function for 

which Raf-1 is rate limiting, such as the formation of Raf-1- B-Raf 

heterodimers that enable B-Raf to signal through Raf-1 (22, 23). In fact, we 

observed that a small proportion of Raf-1 and B-Raf coimmunoprecipitated in 

unstimulated cells and that EGF increased the Raf-1 – B-Raf interaction (Fig. 

4A). To explore the role of heterodimerization, we knocked down upstream 

components and measured dimer formation and ERK phosphorylation. 

Knockdown of either GRB2 or CRK reduced Raf-1 – B-Raf heterodimer 

formation and the amount of phosphorylated ERK (Fig. 4B). The double 

knockdown had a stronger effect on both parameters, suggesting that 



 11

mechanistically the contributions of the Ras and Rap1 branches converge on 

Raf-1 – B-Raf heterodimerization and subsequent ERK activation. Therefore, 

we also assessed the activation of Raf-1 and B-Raf by EGF with antibodies 

against critical activating phosphorylation sites, S338 and S445, respectively 

(11, 24). Both the CRK, as well as the GRB2, knockdown reduced the 

activation of Raf-1 and B-Raf with the double knockdown having a stronger 

effect (Fig. 4C). Raf-1 activation was more severely affected than B-Raf 

activation by the single and double knockdowns. These results are consistent 

with observations that Raf-1 is strongly activated by heterodimerization with 

B-Raf (22, 23), and indicate that Raf-1 serves as the rate-limiting enzyme that 

determines the output of the heterodimer towards ERK activation.   

Rap1 was reported to selectively activate B-Raf (25), but either to not 

affect (15) or even inhibit (26) Raf-1 in Rat-1 cells. Therefore, it was surprising 

that the CRK knockdown interfered with Raf-1 activation. However, a 

dominant-negative Rap1 mutant also reduced Raf-1 activation by EGF, 

confirming the siRNA results (Fig. 4D). In addition, activation of endogenous 

Rap1 by a constitutively active EPAC mutant did not interfere with Raf-1 

activation (Fig. S3). Therefore, the negative effects of silencing the CRK 

branch on Raf-1 activation are most likely due to the interference with Raf-1 - 

B-Raf heterodimerisation rather than a direct negative effect of Rap1 on Raf-

1. 

Using confocal microscopy and biochemical cell fractionation, we 

examined whether knocking down GRB2 or CRK, or both, would alter the 

subcellular localization and EGF mediated membrane recruitment of Raf-1 

and B-Raf, but no significant changes were observed (Fig. S4).  This apparent 
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lack of effect on localization could be because these techniques fail to capture 

changes in transient relocalization events, or because Raf proteins may have 

alternative modes of associating with membranes, for example through lipid-

binding domains, which are independent of the activation of Ras and Raf (27-

29). This two-branched pathway topology would not have been revealed by 

experiments with individual siRNA knockdowns of Raf-1 or B-Raf, this dual 

use of the Raf proteins was revealed from analyzing the plausibility of the 

models.  

To validate the predicted branched pathway model in PC12 cells we 

nucleofected PC12 cells with siRNAs targeting Raf-1 and B-Raf (Fig. 5). In 

these cells, downregulation of either Raf isoform reduced EGF-stimulated 

ERK activation with B-Raf having a more pronounced effect. The double 

knockdown did not further enhance the effect of the B-Raf knockdown, 

suggesting that in terms of EGF-stimulated ERK activation B-Raf is the rate-

limiting Raf isoform in PC12 cells. These results are consistent with the  B-Raf 

having greater kinase activity than does Raf-1 (18). Despite differences in the 

mechanistic details between EGF-stimulated ERK activation in HEK293 and 

PC12 cells, BIBm correctly identified the most likely hypothesis in terms of 

pathway structure. Furthermore, BIBm highlighted a non obvious pathway 

topology and produced predictions that could guide experimental analysis.  

 

DISCUSSION 

The results that the EGFR uses at least two different complexes of 

adaptor proteins and GEFs and two different Raf isoforms to activate ERK 

was unexpected. The prevalent opinion in the field is that B-Raf is the major 
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activator of the ERK pathway, although data from Raf isoform knockout mice 

have shown that  either Raf-1 or B-Raf may function, depending on cell type 

and context (30). Our method provides a rational and tractable framework for 

capturing such complex relationships. For instance, the cAMP crosstalk with 

the EGF-activated ERK pathway is highly specific. In PC12 cells, PKA 

activation slightly inhibits ERK activation, whereas EPAC activation, or even 

more efficiently, PDE3 inhibition increases ERK activation by EGF  (Fig. 2B). 

Although PKA is distributed throughout the cell, PDE3 resides at the 

membrane and hence has a localized effect on cAMP abundance (31). Thus, 

increases in cAMP can have entirely different effects, depending on how and 

where it is generated (32, 33). This intricate functional differentiation could be 

implicitly captured by BIBm analysis. 

 The technical demands of Bayesian inference for large-scale ODE 

models are particularly challenging. and pose questions regarding efficient 

posterior sampling and computation of marginal likelihoods. Firstly, for a fixed 

computational resource such as compute time, it is difficult to construct a 

Markov Process that will converge to the actual posterior distribution and then, 

secondly, explore the parameter space according to this distribution. Thirdly 

obtaining unbiased low-variance estimates of the marginal likelihood which 

appears in the expression for the Bayes factor is notoriously challenging in 

general. This difficulty arises due to the high dimensionality of the parameter 

space and the complex likelihood function induced by the dynamics of the 

ODE model, see (34) for examples. To overcome these practical issues in this 

work we have employed new methods, presented in the supplementary 

material and for further analysis see (34). These are based on Population-
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based Markov Chain Monte-Carlo sampling integrated with Stratified Path 

Sampling of the Thermodynamic Integral which provides the means to 

simultaneously obtain unbiased estimates of the marginal likelihood and 

perform posterior sampling. 

  As this study demonstrates, methods to reduce the computational load and 

focus on informative parameters enabled the application of a consistent 

Bayesian inferential framework to model-based reasoning and effective 

design of investigative experimental strategies. Inferring signaling networks is 

one of the biggest challenges in systems biology due to the complexity and 

dynamic nature of these networks. Identifying the correct network topology is 

also constrained by the usually limited data sets available, and the effort and 

resources needed to provide accurate biochemical readings at various time 

points and conditions. Thus, the development of enhanced analysis methods 

allows more targeted biochemical experimentation. In this study, weakly 

informative prior distributions over kinetic model parameters were employed 

to reflect the uncertainty about plausible parameter values. However, the 

proposed methodology also permits the use of more confident priors in 

situations when prior experimental evidence about plausible parameter values 

is available.  

Another approach to infer network topology is Modular Response 

Analysis (MRA) (35), which employs systematic perturbations of every 

network component to reconstruct the network topology. Although powerful 

when applied to small networks (36), the experimental work can become 

unfeasible, as every single component needs to be perturbed. Whereas BIBm 

is based on probabilistic evaluation, MRA lacks probabilistic semantics and 
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cannot provide measures of uncertainty with which to reason. Both methods 

require prior knowledge of network components. Although MRA can infer 

network topologies independent of an extensive prior knowledge of 

connectivity, the large number of perturbations required makes it 

experimentally costly, especially for larger networks. BIBm requires 

preconceived models, that is hypotheses, to compare, but can do so with a 

limited number of experimental observations. This ability of BIBm to use a 

limited type of experimental data is particularly relevant because it is 

compatible with high-throughput assay platforms, which typically measure a 

single output under multiple perturbation conditions. Thus, MRA and BIBm 

seem highly complementary, and it will be interesting to explore whether they 

can be combined for enhanced pathway mapping. 

 

MATERIALS AND METHODS 

Implementation of BIBm 

The statistical and technical challenges in computing the probabilities 

of the dynamical system models are formidable, especially when only sparse 

data sets are available (3, 5, 7). BIBm overcomes this problem with a 

combinatorial strategy that is briefly described here and fully described in the 

Supplementary Materials, sections 1 and 4. BIBm first assesses the 

informativeness of measured biochemical species by calculating the 

sensitivity of the potential data sets to small parameter variations within the 

plausible parameter range (Supplementary Materials, section 1). The inner 

product of these sensitivity matrices is an approximation of the Fisher 

Information matrix conditional on the corresponding data set. Then we 
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evaluated eigenvalues of this Fisher Information matrix. The largest 

eigenvalues correspond to the most informative set of species to be 

measured.  

At the next stage, we employed Markov Chain Monte Carlo (MCMC) 

sampling on models of biochemical systems described by Ordinary 

Differential Equations (ODEs) to compute Bayes’ factors (5, 6) as ratios of 

marginal likelihoods (MLs) for any possible couples of models. For a 

mathematical model Si , the marginal likelihood to reproduce the empirical 

data D is 
p(D Si)  p(D Si,)p()d

 where   is a vector of all unknown model 

values and parameters. Nonlinear systems of ODEs are used to define 

mathematical models of biochemical systems, and, therefore, the likelihood 

function p(D Si,) is a nonlinear function that cannot be evaluated analytically. 

We employed methods based on thermodynamic integration to obtain stable 

low variance estimates of the marginal likelihoods, as well as samples from 

the posterior of plausible parameter values that explain the empirical data. 

The starting point for this work is the thermodynamic integral that defines the 

logarithm of the marginal likelihood in terms of a series of intermediate 

canonical distributions interpolating between the prior distribution of the model 

parameters and the posterior distribution using an inverse temperature 

parameter  0,1  such that 

I  log p(D Si)  E D, log p(D Si,) d
0

1


 

where the expectation is taken with respect to the power-posterior 

p( D,Si,) 
p(D Si,) p()

p(D Si,) p()d . 
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We developed a MCMC procedure based on a Stratified Path 

Sampling strategy to estimate the thermodynamic integral (Supplementary 

Materials, section 4). We converted the unit interval for   into N-1 

subintervals such that 
n

n1

N1 1
 where each n  n1 n  . Then we 

obtained a stratified path sampling estimate by making Mn  draws from each 

of the n strata such that 
˜ n ~ pn () and m

n ~ p( D,Si,
˜ n )  where pn () denotes 

the sampling density of the n’th stratum: 

ˆ I S 
1

Mnn1

N1

 log p(D Si,m

n )

pn ( ˜ m )
m1

M n


. 

Setting each of the sampling densities of the strata to be uniform, 

pn () U n ,n1  n

1

 the estimator becomes  

ˆ I S 
n

Mn

log p(D Si,m

n )
m1

M n


n1

N1


.  

Samples m

n ~ p( D,Si,
˜ n )  were obtained using MCMC based on the 

Metropolis-Hastings scheme.   

 

Mathematical models and Bayesian inference 

Detailed mathematical descriptions of the four ODE models are presented in 

the Supplementary Materials, section 3. Most of the reactions are described 

by the Michaelis-Menten kinetic law either directly or in a modified form where 

the enzyme concentration is taken into account similar to the modeling 

approach employed by Brown et al.(16). There are about 20 species and 50 

parameters involved in the considered models. We formulate our prior 

distributions of model parameters on the presumption that all the biochemical 
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processes are slow enough to be observed. Thus, the value for the limiting 

rate should be small, and the value for the Michaelis constant should be on 

the same scale as our initial concentrations. Because rate parameters are 

strictly positive, we employ the Gamma distribution for the limiting rate of the 

reaction(1.1,9.0), where (a,b) denotes a Gamma distribution (37) with 

shape and inverse scale parameters a and b, respectively. To keep the 

reactions slow enough the Michaelis constant should be on the scale of 

substrate concentration. Therefore, we assume a (2.0, 3333.0) prior 

distribution. The prior distribution over alternative models was uniform, 

reflecting no a priori preference for any of the hypotheses. The choice of 

Gamma prior distributions also shifts the weight of the a priori belief for the 

reaction rates away from zero, therefore inducing an assumption that all of the 

reactions have a noticeable contribution to the dynamics of the model, and 

preventing reduction of Models 3 and 4 to Models 1 and 2, respectively, by 

penalizing an assignment of the receptor desensitization rate to zero. Our 

choice of priors for this work was based on general assumptions about 

desirable properties of the models, such as reaction rates being non-zero and 

contributing to the output of the model. More informative priors may be used 

within the described framework when additional information is available. For 

example, kinetic rates of some reactions may be estimated with in vitro 

assays. In such a case, an informative prior can be defined as centered at the 

estimated value for a kinetic rate parameter and having appropriate variance 

to express the confidence about such estimates. We did not have such 

detailed information available a priori, and, therefore, weakly informative 

priors with large variance were employed. The choice of weakly informative 
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priors causes larger variance of the posteriors to be obtained at the parameter 

inference stage of the study. These variable posteriors correspond to the 

multitude of possible alternative solutions of the inference problem. It is very 

important that we integrate over all of the possible solutions when estimating 

the marginal likelihoods, because otherwise model uncertainty would not be 

taken into account properly. Therefore, BIBm integrates over all of the 

possible solutions when ranking alternative hypotheses.  

 We performed Bayesian model comparison to assess the proposed 

hypotheses about the pathway structure embodied in models 1, 2, 3 and 4. 

We describe a Stratified Path Sampling strategy with Population MCMC, 

which was used to obtain estimates of the required marginal likelihoods (see 

Supplementary Materials. Section 4.1 for details). 

Perturbation analysis in PC12 cells  

The experimental data were measured as relative concentrations of double 

phosphorylated, i.e. activated ERK (ERK-PP) in comparison to the total ERK 

(Supplementary Material, section 2). Absolute protein concentrations for many 

of the species cannot be measured easily and reliably. In fact, the vast 

majority of biochemical data represents relative values describing changes of 

rates or concentrations. This motivated our choice of the initial concentrations 

for the species of the mathematical models. We used arbitrary concentration 

units similar to the Brown et al. model (17). Attention was paid to ensure that 

relative sizes of protein pools are preserved, i.e. that Raf-1 is less abundant 

than ERK. All of the model predictions were also produced on the scale of 

relative concentrations preventing possible errors due to the choice of initial 

concentrations. 
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We performed 168 individual experiments with PC12 cells in 11 different 

conditions Supplementary Materials, section 2.3). Activation of ERK was 

quantified from the amount of activating phosphorylation detected by Western 

blotting. Cells were grown to ~80% confluency in normal growth medium 

(Dulbecco’s Modified Eagle’s Medium containing 10% horse serum and 5% 

foetal bovine serum) before being serum starved for 3 hours prior to any of 

the experiments. Cells were then pre-treated for 10 minutes with cAMP 

analogues: 10 M 8pMeOPT-2′-O-Me-cAMP (Biolog), and 10 M 6-Benz-

cAMP (Biolog) to activate specifically EPAC or PKA, respectively. Cilostamide 

(Sigma) was applied at 10 M to inhibit PDE3. Following pretreatment, the 

cells were stimulated with 100 ng/ml EGF for 0, 2, 5, 10, 20 and 40 minutes, 

and then the cells were lysed in lysis buffer (25 mM Hepes, 50 mM NaCl, 10% 

glycerol, 1% Triton containing protease and phosphatase inhibitors). Cell 

debris was removed by centrifugation. The protein concentration of each cell 

lysate was measured and normalized to the same concentration in each 

experiment in order to load the same amount of protein in each gel. Proteins 

were separated by NuPAGE®Novex 4-12% Bis-Tris gels electrophoresis and 

transferred on nitrocellulose membranes. The membranes were 

immunoblotted with specific antibodies directed against phosphorylated 

(mouse monoclonal Phospho-p44/42 MAPK (Thr202/Tyr204), Cell Signaling 

Technology) or nonphosphorylated ERK (rabbit polyclonal ERK1/2 antibody, 

Cell Signaling Technology). Primary antibodies were detected with fluorescent 

secondary antibodies (AlexaFluor® 680 Anti-Rabbit or Anti-Mouse IgG 

Molecular Probes; IRDyeTM 800 Anti-Rabbit or Anti-Mouse IgG, Rockland 
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Inc.). Fluorescence associated with the nitrocellulose membranes were 

analyzed with an infrared scanner (LICOR, ODYSSEY).  The two different 

antibodies were simultaneously quantified on the same gel by scanning two 

different wavelengths simultaneously, allowing a relative ratio of 

phosphorylated ERK to total ERK to be calculated.  

  

Antibodies, cells, and siRNAs for biochemical validation experiments 

 Monoclonal antibodies for GRB2, CRK, and Raf-1 were from BD. 

Monoclonal C3G and -actin antibodies were from Santa Cruz. Polyclonal B-

Raf antibody was from Millipore. Monoclonal p44/42 MAPK (ERK1/2), 

phosphorylated 44/42 MAPK (phospho-ERK1/2), phospho-Raf-1 (Ser338), and 

phospho-B-Raf (Ser445) antibodies were from Cell Signaling Technology 

(Hitchin, Hertfordshire, UK). Lipofectamine 2000 transfection reagent was 

from Invitrogen and used according to manufacturer’s instructions. Human 

EGF was from Promega. cAMP analogues were from Biolog. All other 

materials were supplied by Sigma. 

 HEK293 cells were maintained in Dulbecco's modified Eagle's medium 

supplemented with 0.292 g/liter L-glutamine and 10% (v/v) newborn calf 

serum at 37°C in a 5% CO2 humidified atmosphere. PC12 cells were 

maintained in RPMI-1640 plus 10% horse serum and 5% FBS. 

 Small interfering RNA duplex oligonucleotides targeting human GRB2 

and CRK for use in HEK293 cells were purchased from Ambion. The 

sequence of the siRNA targeting GRB2 was GGUUUUGAACGAAGAAUGU-

dTdT. The sequence of the siRNA targeting C3G was 

GGGAAAACCAGCUGAGGUG-dTdT. The sequence of the siRNA targeting 
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CRK was GGGAUAGGUAUCUUGCCUC-dTdT. The Silencer control siRNA1 

from Ambion was used as negative control. Each siRNA (100nM final 

concentration) was transfected into HEK293 cells using Lipofectamine 2000 

reagent (Invitrogen) according to Invitrogen’s instructions. 36 hours after 

transfection, cells were serum starved for 12 h before treatment with 10 ng/ml 

EGF.  

 The RNA oligonucleotides targeting human Raf-1 and B-Raf were from 

Thermo Scientific. The siGENOME SMARTpool Raf-1 siRNA sequences were 

GCACGGAGAUGUUGCAGUA, GCAAAGAACAUCAUCCAUA, 

GACAUGGAAAUCCAACAAUA, and CAAAGAACAUCAUCCAUAG. The ON-

TARGETplus SMARTpool B-Raf siRNA sequences were 

CAUGAAGACCUCACAGUAA, UCAGUAAGGUACGGAGUAA, 

AGACGGGACUCGAGUGAUG and UUACCUGGCUCACUAACUA. HEK293 

cells were transfected as above and serum starved 48 hours later.  

 For rat PC12 cells, smart-pool siRNAs (Dharmacon) were used to 

knockdown Raf-1 and B-RAF, and a nonTargeting siRNA pool (Dharmacon) 

was used as control. 40 pM siRNA oligonucleotides were introduced into 

PC12 cells by nucleofection (Amaxa Biosystems, Germany) according to the 

manufacturer’s instructions. Cells were seeded on collagen, 24h later serum 

starved overnight, and then stimulated with 20 ng/ml EGF.  

 

ERK1/2 phosphorylation assay in validation experiments 

Hek 293 cells transfected with siRNA were rendered quiescent by serum 

starvation for 6 or 12 hours prior to stimulation with 10 ng/ml EGF for 0, 2, 5, 

10, 20, or 40 minutes. These periods of serum starvation gave identical ERK 
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activation profiles in response to EGF stimulation, and therefore were used 

alternatively depending on logistical requirements. After stimulation cells were 

immediately placed on ice and solubilized directly in Laemmli loading buffer. 

The samples were sonicated and then heated for 15 min at 100°C. ERK1/2 

phosphorylation was detected by protein immunoblotting with the phospho-

ERK1/2-specific antibody. After phospho-ERK1/2 detection the nitrocellulose 

membranes were stripped of immunoglobulins and reprobed with the ERK1/2 

antibody to normalize the loading of proteins. The same set of samples were 

separated on SDS-PAGE and blotted with different antibodies to examine the 

efficiency of the knockdowns. 

 

Raf-1 – B-Raf coimmunoprecipitation experiments  

Cells were lysed in immunoprecipitation buffer (150 mM NaCl, 0.01 mM 

NaPO4, 2 mM EDTA, 1mM Na3VO4, 0.5% Triton X-100 and 5% glycerol plus 

protease inhibitor cocktail tablets). Samples were then centrifuged for 15 

minutes at 20,000g at , and the supernatant was transferred to a fresh 

tube with Protein G beads (Sigma) to preclear the samples. After incubation 

on a rotating wheel for 1 hour at , the samples were re-centrifuged at 

20,000g at  for 1 min, and the protein concentration of the supernatant 

was determined. Samples containing equal amounts of protein were 

incubated for 1 hour with the Raf-1 antibody (BD Bioscience) and Protein G 

for another 2 hours at  on a rotating wheel. Samples were then washed 

four times with immunoprecipitation buffer and resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies. 
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Figure Legends 

Fig. 1.  Outline of the Bayesian Inference-Based modeling (BIBm) 

approach. BIBm uses prior knowledge and experimental data (A) to 

formulate alternative working hypotheses (B). These working hypotheses are 

then formally defined using mathematical models (C), and ranked according 

to a Bayesian inferential framework that extracts the information from 

experimental data and consequently derives plausible distributions of model 

parameters. Alternative models then can be compared by the weight of 

evidence from the experimental data supporting them (D). This comparison 

and ranking of alternative models by evidence support allows refinement of 
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the set of working hypotheses, and selection of the most probable hypotheses 

for experimental validation (E). The cycle of formulating and formalizing 

hypotheses, evaluating evidential support, and refining the set of hypotheses 

may be repeated several times until a validated model is found (F). 

 

Fig. 2. BIBm evaluation of the EGF-mediated ERK activation and 

crosstalk with the cAMP signaling system. (A) Schematic representation of 

the topology of the four plausible pathway models (hypotheses) and the 

cAMP-mediated input. Black arrows represent stimulatory inputs and dashed 

red lines represent inhibitory inputs. (B) Experimental ERK activation data 

observed in response to perturbations of the cAMP signaling system. (C) 

Prediction of models matched to the experimental data. The depicted graph 

demonstrates the predictions made using Model 2, but all models were 

matched to the data similarly (see Figs. S13-S16). (D) BIBm analysis based 

on these data selected the dual-path structure of Model 2 as the significantly 

most plausible one.  

Fig. 3. Experimental validation of the BIBm analysis in HEK293 cells by 

knocking down critical components predicted by BIBm of the ERK-

activating pathways. HEK293 cells were transfected with the indicated 

siRNAs and serum starved prior to stimulation with 10 ng/ml EGF for 5 min. 

ERK-PP is phosphorylated ERK1 and 2 detected with a phosphorylation-

specific antibody, and ERK is total ERK1 and 2 detected with an antibody that 

recognizes all ERK1/2. (A) Scheme of siRNA knockdowns of EGFR-mediated 

signaling complexes. (B) Knocking down GRB2, CRK, or both reduces ERK 

activation. Protein loading was monitored by reprobing the same membrane 
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with the ERK1/2 antibody. Co, control siRNA. (C) Bar graph depicting the ratio 

of P-ERK1/2 to ERK1/2 in cells with the indicated molecules knocked down. 

Data shown represent the mean ± standard deviation from at least 5 separate 

knockdown experiments. Asterisks denote statistical significance as 

measured by t-test (p<0.0012) (D) The knockdown efficiency was detected by 

blotting the same set of ERK activation samples shown in (B) with the 

respective antibodies. Protein loading was monitored by blotting for -actin. 

(E) Scheme of siRNA knockdowns of Raf isoforms. (F) ERK activation in Raf-

1, B-Raf, or double knockdown cells was examined by blotting for P-ERK1/2 

in cells transfected with siRNA and stimulated as indicated.Potein loading was 

monitored by reprobing the same membrane with ERK1/2 antibody. (G) Bar 

graph depicting the ratio of P-ERK1/2 to ERK1/2 in cells transfected with the 

indicated siRNAs and then exposed to EGF for various times. Data shown 

represent the mean ± standard deviation from at least 6 separate experiments 

(*p<0.05, **p<0.01). (H) The knockdown efficiency of Raf-1 and B-Raf as 

detected by Western blotting. Protein loading was monitored by reprobing with 

the -actin antibody. 

Fig. 4. Dual input through CRK and GRB2 is required for EGF-induced 

Raf-1 and B-Raf heterodimerization and activation.   (A) HEK293 cells 

were serum starved overnight and stimulated with 10 ng/ml EGF for the time 

indicated. Endogenous Raf-1 was immunoprecipitated (IP) and blotted (IB) for 

the presence of B-Raf. Whereas little B-Raf coimmunoprecipitated with Raf-1 

in the absence of EGF, EGF transiently increased Raf protein 

heterodimerization. Lysates were blotted for B-Raf to assure that the 

abundance of B-Raf did not change during the experiment. (B) HEK293 cells 
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were transfected with GRB2 and CRK siRNAs for 36 hours, serum starved, 

and stimulated with EGF for 5 minutes. Raf-1—B-Raf heterodimerization was 

assayed as in (A). The amount of phospho-ERK (ERK-PP) correlated with the 

extent of Raf protein heterodimerization. (C) Cells were transfected with 

siRNAs targeting GRB2 and CRK, serum starved, and stimulated with EGF as 

in (A). Lysates were blotted with the indicated antibodies that detected the 

indicated proteins or phosphorylated proteins. (D) Cells were transfected with 

activated (Rap1b-V12) or dominant-negative (Rap1b-N17) Rap1 mutants and 

analyzed as in (C). 

 

Fig. 5. Experimental validation of the BIBm analysis in PC12 cells. PC12 

cells were transfected with control (Cont) and siRNAs as indicated. Twenty-

four hours later cells were serum starved overnight and stimulated with EGF. 

(A) Cell lysates were Western blotted with antibodies to detect the indicated 

proteins and quantified with fluorescent secondary antibodies and a LICOR 

scanner. (B) The graph represents the average of three independent 

experiments. Error bars indicate standard deviation. 
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