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1 Network basics

Networks have been an important field of study since Euler and the solution of the Königsberg bridge problem (1735).

During the 20th century and before the World Wide Web era, sociologists used the network paradigm to model human

interactions with the most popular studies being Granovetter’s “Strength of weak ties” (1973) [7] and Milgram’s “Small-

world” experiments (1967) [11]. In recent years, the field of network analysis has undergone an explosive growth [2] as

theoretical and computational advances have allowed the study of large scale complex systems such as the World Wide

Web, Social Media, scientific collaboration patterns, animal societies and protein interactions [4, 13]. One of the most

fascinating findings of these studies is that real-world networks exhibit a staggering amount of similarity, allowing us to

study a wide and diverse range of complex systems under a single conceptual framework [8].

In mathematics, a unipartite graph G1(V,D) is comprised of a set V of N nodes or vertices, connected together by a

set D of M edges or links. The overall connectivity profile can be described by using the adjacency matrix A ∈ R
N×N ,

so that if aij 6= 0 then nodes i and j are linked together 1. An example graph is shown in Fig. 1.

Figure 1: An example graph of N = 8 nodes and M = 11 edges. Edge widths represent varying connection strengths.

The above network can be described by an 8 × 8 adjacency matrix A, where each element aij denotes the connection

strength between i and j.

Additionally, a two-mode or bipartite graph G2(V,U,D) has two sets V,U of nodes, N and K in number and the

M links from D are allowed to connect vertices only of different type, as shown in Fig. 2. The connectivity profile is

described by the incidence matrix B ∈ R
N×K , so that if bik 6= 0 then the node i from V is connected to node k from U.

Similar to the unipartite case, the values of bik can be Boolean or quantify connection strength.

Very commonly we use the term network to describe the simplified version of the pattern of interactions in a system

(for example an Online Social Network), where nodes are individual entities and edges represent some form of association,

interaction, similarity, commodity flow or correlation between nodes. Similar to the way a map is a simplified (though

useful) version of a landscape, a network describes the topology of a real-world system by focusing on the connectivity

∗ioannis.psorakis@eng.ox.ac.uk
1aij can be a simple Boolean value (unweighted edge), a real value (weighted edge) or a signed value (directed edge). In this work we will not cover

directed graphs, so A ∈ R
N×N
+

.
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Figure 2: An example bipartite graph of N = 6 nodes of type 1 and K = 4 nodes of type 2. Edge widths represent

varying connection strengths. The above network can be described by an 6 × 4 incidence matrix B, where each element

bij denotes the connection strength between i and j.

patterns of its individual components [16]. Although strictly speaking, the term “graph” denotes the abstract mathematical

structure described by G(V,D) and A ∈ R
N×N , in some very influential works in the literature such as [13], the terms

“graph” and “network” are used interchangeably.

The exponentially increasing popularity of network analysis in the scientific literature [2] is not only a result of

the computational advances in data gathering, storage and processing technology of recent decades [16]. We have also

realised that systems in nature are complex, i.e they are made up of a large number of entities interacting in such a

way that their collective behaviour is not merely a simple combination of their individual behaviours [12]. The network

paradigm is therefore a very appropriate and flexible tool to describe a system at a macroscopic scale, as nodes and edges

can represent any sort of entity of association. This contrasts with the traditional reductionist viewpoint of breaking down

a system into its parts and focusing on each component separately [16], as networks omit the individual characteristics of

each node and describe our data in a relational form. The key idea of this framework is that the connectivity patterns in

the data have a big effect on the behaviour of the network as a system [13].

The fact that networks have been so popular in describing real-world systems has led Buchanan and Caldarelli to ask

“why Nature is so fond of networks?” [2]. This question is based on the relatively recent findings that networks that

describe complex systems possess a significant amount of similar statistical and topological properties, regardless of the

application domain.

2 Details on data collection and experiment set-up

The work described here is part of an ongoing study of social behaviour in a population of great tits Parus major at

Wytham Woods, near Oxford, which have been the subject of a long-term population ecological study (e.g. see [10]

and [1] for details). In each year from 2007-2009, each nestling great tit born on the study site, and each captured adult

great tit breeding there, were ringed with a plastic colour ring (CoreRFID Ltd) as shown in Fig. 3, which contained a 125

Hz RFID tag.

Figure 3: Birds are “ringed” with a harmless RFID device that generates a sensor observation when the bird comes to the

close proximity of one of the 16 loggers placed across Wytham woods, Oxfordshire.

The majority of the birds were marked in the breeding season, which occurs in May-June each year. Each autumn

and winter (beginning in August and ending in early March), we deployed bird feeders, baited with sunflower seeds, at 67

locations, which were spaced regularly on a 250m grid throughout the 385 ha of the study site, shown in Fig. 4.
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Figure 4: A grid of sixty-seven feeding location spread across Wytham woods, Oxford. At each one of the sixty-seven

locations in the forest, there is a feeder that acts as an attraction point for foraging individuals. By placing appropriate

logging hardware at the feeder, we are able to record the presence of each individual bird. Due to equipment constraints,

there were only 16 loggers available at any time, and these were thus rotated around the 67 locations following a structured

randomised design, so that each of 8 approximately equally-sized sections of the site always had two active loggers in it.

The feeders were equipped with two antennae (Francis Instruments Ltd, Cambridge) which logged visits of RFID-

tagged great tits to collect sunflower seeds, and recorded the time of the visit to the nearest 15 seconds. The 16 loggers

available at any time, were rotated around the 67 locations following a structured randomised design, so that each of

8 approximately equally-sized sections of the site always had two active loggers in it. Rotation happened on a 4 day

schedule, and feeders were refilled with sunflowers each time they were moved. The data analysed here are taken from

the first two winters of this project, 2007-8 and 2008-9, in which there were 548,709 records of 770 individuals and

484,088 records of 753 individuals respectively; in total over the two winters there were 1,032,797 records of 1,217

different individual great tits.

3 Details on the clustering scheme

3.1 Generative model

We consider the activity profile shown in Fig. 5, where each “burst” signifies a foraging event. We identify such regions

of increased observation density by partitioning our data {bz, tz}
Z
z=1 based on their timestamp tz , where a given subset

[Z1, Z2] denotes a series of bird appearances {bz, tz}
Z2

z=Z1
that occurred in close temporal proximity.

To address this one-dimensional clustering problem, we model each timestamp tz in the data stream as a draw from a

mixture of Gaussian distributions:

P (tz) =

K
∑

k=1

πkN (tz|µk, β
−1
k ) (1)

The above equation denotes that there are K “centres of mass” in the data stream, shown as vertical dashed lines in

Fig. 5, around which observations are concentrated. Each k of those lines or centroids is placed in the data stream with

a timestamp µk. The precision term βk controls how “dense” each gathering event is in terms of the temporal distance

of observations around it. Each cluster corresponds to a different Gaussian component k that is weighted by a mixing

coefficient πk, for which
∑K

k=1 πk = 1. Our is to infer:

1. The effective number of clusters K in the data stream.

2. The position µk of each one of their respective centroids, along with the “density” parameter βk.

3. The mixing coefficients πk.

4. The assignment of each observation z to one of the K clusters or “events”.
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Figure 5: We plot bird arrivals as recorded at a specific location over the course of 3-hour period. We can see that the

visitation profile is temporally focused, consisting of “bursts” of bird activity. Our goal is to identify such regions of

increased observation density and examine which individuals participate in these gathering events.

Towards the above goals, we consider the generative model of Fig. 6, where the observed variable tz denotes the

timestamp of a given observation z. We assume that for each tz in the data there is an associated “hidden” or latent binary

vector yz , for which
∑K

k=1 yzk = 1, where yzk = 1 denotes the observation tz was generated from mixture k. Thus we

can write the likelihood of a single observation timestamp tz , given the values of yzk, µk, βk, as:

tzyz

πk µk

Z

K

βk

Figure 6: The graphical model denoting the generation of an observation tz via a mixture of K Gaussians. The member-

ship of tz to a particular mixture is controlled by the latent 1×K binary vector yz . Constant terms that parameterise the

priors have been omitted.

P (tz|yz,µ,β) =

K
∏

k=1

N (tz|µk, β
−1
k )yzk (2)

where the exponent yzk denotes that mixture k is activated only if yzk = 1. We consider each yk as drawn from a

multinomial distribution P (yz|π) = M(yz;π) parameterised by the mixing coefficients πk as seen in our model of Fig.

6. Because
∑K

k=1 πk = 1 and based on our generative model, we consider these coefficients a draw from a Dirichlet

distribution:

P (π) = Dir(π;λ0) =
Γ(kλ0)

Γ(λ0)k

K
∏

k=1

πλ0−1
k (3)

where Γ(.) the gamma function. Additionally, we place a Gaussian distribution over each centroid µk:

P (µk) = N (µk;m0, υ0) =
1

√

2πυ−2
0

exp

(

−υ2
0

2
(µk −m0)

2

)

(4)

and a Gamma prior over the corresponding precisions βk:

P (βk) = G(βk; a0, b0) =
ba0

0

Γ(a0)
βa0−1
k e−b0βk (5)
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where the hyper-hyperparameters a0, b0,m0, υ0 that control the priors on Eq. (4) and (5) are fixed.

Let us now define a vector t ∈ R
Z×1 that contains all the observation timestamps from our data stream, along with a

matrix Y ∈ R
Z×K where each row yz is the latent variable denoting the mixture membership of observation z. Based on

the generative model of Fig. 6, the joint distribution over all variables factorises as follows:

P (t,Y,µ,β,π) = P (t|Y,µ,β)P (Y|π)P (β)P (µ) (6)

what we are interested in, is the posterior distribution of the model parameters Y,µ,β,π given the data stream t and

the prior structure denoted by our graphical model in Fig. 6.

3.2 Variational approximation

The proposed distribution q(Y,µ,β,π) that approximates the posterior over the model parameters, is:

q(Y,µ,β,π) = q(Y)q(µ)q(β)q(π). (7)

The Variational Bayes (VB) framework seeks to maximise the negative free energy term:

F = EY,µ,β,π

(

log
P (t,Y|µ,β,π)

q(Y)

)

−KL(q(µ,β,π)||p(µ,β,π)) (8)

where the first term corresponds to an average likelihood and the second term is the KL divergence between the priors and

the posteriors. This objective function can be maximised via and EM scheme, where in the E-step the distribution over

the mixture assignments q(Y) is updated according to:

q(Y) ∝ exp[I(Y)] (9)

where

I(Y) = Eµ,β,π(logP (t,Y|µ,β,π)) (10)

For the precisions we have q(β) =
∏

k q(βs) and Gamma densities:

q(βk) = G(βk; ak, bk) (11)

For the centroids µk, we have q(µ) =
∏

k q(µk) and Normal densities:

q(µk) = N (µk;mk, υk) (12)

and for the mixing coefficients we have a Dirichlet:

q(π) = Γ

(

∑

k′

λk′

)

K
∏

k=1

πλk−1
k

Γ(λk)
(13)

For the indicator posteriors we have q(Y) =
∏

z q(yz) and we write γnk = q(ynk = 1). This quantity, termed the

responsibility of cluster k for explaining data point tz can be seen as a membership score of observation z to the event k.

3.2.1 E-step

The E-step consists of updating the indicator posterior according to:

γ̃zk = π̃kβ̃
1/2
k exp

[

−
1

2
β̃k(t

2
z +m2

k + υk − 2mktz)

]

(14)

where

log π̃k = Ψ(λk)−Ψ(
∑

k′

λk′) and log β̃k = Ψ(bk) + log ak (15)

and Ψ(.) is the digamma function. We normalise the responsibilities for a given data point tz:

γzk =
γ̃zk

∑

k′ γ̃zk′

(16)

thus obtaining is the probability that component k is responsible for explaining data point tz .
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3.2.2 M-step

In the M-step we define the following variables for our update equations:

π̃k =
1

Z

Z
∑

z=1

γzk (17)

Z̃k = Zπ̃k (18)

t̃k =
1

Z

Z
∑

z=1

γzktz (19)

t̃2k =
1

Z

Z
∑

z2=1

γzkt
2
z (20)

in which π̃k is the proportion of data in component k and Z̃k is the number of observations associated with component k.

The quantities t̃k and t̃2k are the weighted data values and weighted squared data values respectively.

We then update the hyperparameters as follows. The mixing hyperparameters are updated by adding the data counts

to the prior counts:

λk = Z̃k + λ0 (21)

If we define the average variance of component k as:

σ̃2
k = t̃2k + π̃k(m

2
k + υk)− 2mk t̃k (22)

then the hyperparameters for the precisions are updated as:

1

ak
=

Z

2
σ̃2
k +

1

a0
(23)

bk =
Z̃k

2
+ b0 (24)

3.3 Initialisation

For the means µk governed by a Gaussian prior with mean m0 and precision υ0 we initialise using the corresponding

global dataset statistics. For the precisions βk we place uninformative priors by setting a = 103 and b = 10−3. The mixing

coefficients πk, governed by a Dirichlet distribution, are parameterised with λ0 = 5, once more giving an uninformative

prior. The VB equations are applied iteratively until a consistent solution is reached. Convergence is measured by

evaluating the negative free energy F , where minimal improvement (< 10−3) defines our termination criterion.

4 GMMEvents as a clique percolation process

Let us assume that the ground truth network is known to us, and one of its communities is shown in Fig. 7. We seek to

address the issue of how can the proposed model, which forces connections between all individuals that participate in the

same gathering events, give rise to network communities where not all node pairs are connected.

Consider the data stream shown in Fig. 8, where our algorithm has identified various gathering events. As already

discussed, in our model all individuals that participate in the same event are connected, therefore such observation-dense

regions correspond to fully-connected subgraphs or cliques in the network. Due to the fact that many gathering events

in the data stream can have common members (as individual birds do not have a fixed set of companions that join them

during every single feeder visitation) our model naturally extracts a series of fully-connected subgraphs that share nodes.

The whole network is then reconstructed as an aggregation of such partially overlapping or adjacent cliques.

Community structure in such process arises naturally, as there can be collections of fully-connected subgraphs that

share members. In fact, Palla et al. in their 2005 paper [14] have shown that network communities can be seen as aggre-

gations of adjacent cliques. The way our algorithm in Fig. 8 performs multiple “partial observations” of the community

in Fig. 7 (one per gathering event), corresponds to what the authors in [14] describe as a “clique rolling process”, which

they use to identify communities.

In both cases, nodes do need to be directly connected in order to be assigned to the same community. What matters is

their common position in a node neighbourhood that consists of many overlapping, strongly connected cliques.

Note that normally a data stream such as the one shown in Fig. 8 will be corrupted by noise; there can be individuals

that appear in gathering events coincidentally, without having any social connection with any of the other members. Such
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Figure 7: An example community of 6 nodes. Dashed lines represent links that allow connections with the rest of the

network.
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Figure 8: An example data stream of 4 gathering events. Each gathering event with k participants corresponds to a

k-clique (fully connected subgraph with k nodes), which can be seen as a “partial view” of the overall community.

co-occurrences are usually removed by our significance testing scheme. In Fig. 8 we have chosen the noiseless case in

order to illustrate how can individuals belong to the same community without a direct connection.

As a final note, by employing a probabilistic viewpoint we can regard communities not only as social circles, but

also as node classes where individuals are most likely to interact. In fact, we have shown in previous work [15] that if

nodes belong to the same social circles, the expected connectivity weight (under a Poisson noise model) between them

increases. This implies that even if we have not observed a direct link between members of the same community, the fact

that they are positioned in the same node neighbourhood increases the probability (our “posterior belief” in a Bayesian

context) that either i) they are indeed connected, but we have missed the link due to incomplete data or ii) they are not

directly linked yet, but there exists a pressure or bias for them to be connected because of their common social circle (this
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is similar to transitivity [7] and graph densification [9]).

5 Application to artificial data streams

We performed a series of simple “sanity checks”, in order to examine if, given a data stream {bz, tz}
Z
z=1, our approach

captures the relationships among individuals that are in consistently close temporal proximity. This can be accomplished

by generating artificial data streams from a fully observed graph and compare the extracted topology versus the original.

Consider a network of N nodes with a given adjacency matrix A. We require that closely connected individuals in A

will appear frequently together in the corresponding data stream. Additionally, we want our overall visitation profile to

consist of clusters, such as the ones in Fig. 5, that denote “bursts” of social activity.

Based on the requirements stated above and given our adjacency matrix A, we create our artificial data stream

{bz, tz}
Z
z=1 as follows:

1. We set our first observation z = 1 and our clock t1 = 1.

2. We set bz = one random node in the network.

3. We perform a random walk in the network neighbourhood around bz . For each node i we visit, we increment our

observation counter z = z + 1 and then set bz = i and tz = tz−1 + 1.

4. The random walk stops after a certain number of visitations, controlled by a Poisson random variable λr. This

sequence of observations defines a cluster or “burst” of social activity among closely connected individuals in the

network.

5. We increment z = z + 1 and set tz = tz−1 + λt, where λt a Poisson random variable that controls the temporal

distance between clusters.

6. Return to step 2 or terminate if z > zmax and all graph nodes appear in the stream.

The above algorithm defines a scheme where nodes that form closely connected subgraphs (such as cliques) appear

closely together in a data stream. In order to effectively explore such subgraphs, we have to define an appropriate random

walk strategy:

• Consider a given node i in the network. We require that a random walker will traverse the network around this focal

node, in a way that favours adjacent nodes who have a) strong connection weight and b) many common neighbours

with i.

• Starting from i, we assign each adjacent node j a visitation probability p(j|i) = aij/si, where si =
∑N

j=1 aij the

strength of node i, so that strongly connected neighbours are more likely to be visited.

• While being in an adjacent node j of i, identify all their common neighbours using the row vector A(c) = Ai∗ ·
Aj∗ where (·) denotes element-by-element multiplication and Ai∗ the i-th row of A. Pick the next node h with

probability p(h|j) = A
(c)
h /

(

∑N
n=1 A

(c)
n

)

. If no common neighbours exist, return to focal node i. This is the

inverse application of the scheme presented in Fig. 8.

We apply the above scheme on the Newman-Girvan random graph (NG) template [6] that consists of N = 128 nodes,

observed solution of C = 4 communities (with n = 32 nodes each) and average degree of 〈k〉 = 16. Additionally, the

variable inter-community degree 〈kout〉 controls the module cohesiveness of the network. Given an instance of such graph

with adjacency matrix A, we generate a data stream of an appropriate size in order for all nodes to appear. We then use

GMMEvents to extract the agent connectivity in the stream, which leads us to a new adjacency matrix A′.

We seek to compare A and A′ and see how well the original topology of the NG graph is recovered in our new

network. For that reason, an appropriate way of comparing the two networks would be in terms of their community

structure and see how well their “topological signatures” match. This approach also avoids the problem of link weight

magnitudes, which may be different between A and A′ depending on the size of the data stream.

In Fig. 9 we plot the similarity of the original A versus the extracted A′ NG graph at various levels of community

cohesion. For each value of 〈kout〉, which controls the tendency of nodes to link with members of other communities,

we generate 100 networks. For each instance, we generate a data stream using the algorithm described above and use

GMMEvents to recover the original adjacency matrix. We perform community extraction using Bayesian Non-negative

Matrix Factorisation (Bayes NMF) [15] on each recovered adjacency matrix A′ and use Normalised Mutual Information

[3] to measure the mesoscopic similarity of the extracted versus the ground-truth graph. We can see from Fig. 9 that

GMMEvents performs an accurate extraction of the original graph topology for most cases of community cohesion, while

it fails only when the original network possesses a close to random mesoscopic organisation.
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Figure 9: We plot the similarity, in terms of Normalised Mutual Information, of community structure between the ground

truth Newman-Girvan random graph and the one extracted using GMMEvents . The different values of 〈kout〉 represent

various levels of “fuzziness” in terms of how easily communities are separated in the network.

6 Software

The methods presented in the paper were implemented using MATLAB R2010b, with the Statistics and Parallel toolboxes

installed. The scripts are accessible through the Pattern Analysis and Machine Learning Research Group (PARG) webpage

http://www.robots.ox.ac.uk/˜parg/software.html.

The main script that performs graph extraction from spatio-temporal data is named gmmevents.m. The first input

argument of the function is the actual data stream, which should be in a pre-specified format; a MATLAB matrix of

dimensionality [Z × 3] where Z the total observations as shown in Fig. 10.

Figure 10:

In the above example, the input variable DATA represents a toy data stream with Z = 21 rows that represent 21 bird

visits to feeding locations. The first column in Fig. 10 represents the timestamps tz of each record. The second column

represents the unique ID of individual birds. In our code we use integer IDs for identifying birds, so that there is a direct

correspondence with the node numbering used in the adjacency matrix of the network. The third column specifies the

location on which the observation took place. Again, the location IDs are integers.

The second argument is the total number of individuals in the stream. Although this can be skipped and automatically

inferred by the second column of the DATA variable, there are cases where we want to show an individual’s absence in

the inferred network. The third argument is the number of randomisations for the null model. This can be set to 0 if the

user does not which to perform a significance test on the link weights.
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The script outputs are:

• A : the actual N × N adjacency matrix of the network. Each element aij is the number of co-occurrences of

individuals i and j.

• B : is a L-cell array, where L is the number of locations. Each cell B{l} is an N ×Kl matrix, with N individuals

and Kl gathering events2. Such matrix (that defines a bipartite network) can be used for the extraction of various

association indices such as the Half-Weight-Index [5].

• X : a N × 1 vector, where each element xi is the total appearances of individual i in the data stream.

• Anull mean : the N × N adjacency matrix of the network under the null model. Each element

Anull mean(i,j) is the average number of co-occurrences of individuals i and j under the null hypothesis.

• Anull std : an N × N matrix where each element Anull std(i,j) denotes the standard deviation in the

average number of Anull mean(i,j) co-occurrences between individuals i and j, given the null hypothesis.

In cases were the dataset is very large (for example, it covers an entire year), in order to regulate computational

complexity we would recommend that the algorithm is not applied on the whole stream directly. Instead, the user may

want to partition it into chunks either denote some natural separation in the observation timeline (for example, days) or

into chunks of size 10,000 records. The whole network can then be recovered by simply summing the subgraphs that

correspond to each partition.

For bug reports and recommendations, the corresponding author is ioannis.psorakis@eng.ox.ac.uk.
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