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Abstract.— We extend our recently developed Markov chain Monte Carlo algorithm for Bayesian estimation of species diver-
gence times to allow variable evolutionary rates among lineages. The method can use heterogeneous data from multiple gene
loci and accommodate multiple fossil calibrations. Uncertainties in fossil calibrations are described using flexible statistical
distributions. The prior for divergence times for nodes lacking fossil calibrations is specified by use of a birth-death process
with species sampling. The prior for lineage-specific substitution rates is specified using either a model with autocorrelated
rates among adjacent lineages (based on a geometric Brownian motion model of rate drift) or a model with independent
rates among lineages specified by a log-normal probability distribution. We develop an infinite-sites theory, which predicts
that when the amount of sequence data approaches infinity, the width of the posterior credibility interval and the posterior
mean of divergence times form a perfect linear relationship, with the slope indicating uncertainties in time estimates that
cannot be reduced by sequence data alone. Simulations are used to study the influence of among-lineage rate variation
and the number of loci sampled on the uncertainty of divergence time estimates. The analysis suggests that posterior time
estimates typically involve considerable uncertainties even with an infinite amount of sequence data, and that the reliability
and precision of fossil calibrations are critically important to divergence time estimation. We apply our new algorithms
to two empirical data sets and compare the results with those obtained in previous Bayesian and likelihood analyses. The
results demonstrate the utility of our new algorithms. [Bayesian method; divergence times; MCMC; molecular clock.]

The molecular clock hypothesis postulates that the
molecular evolutionary rate is constant over time
(Zuckerkandl and Pauling, 1965) and provides a sim-
ple indirect means for dating evolutionary events. The
expected genetic distance between sequences increases
linearly as a function of the time elapsed since their diver-
gence and fossil-based divergence dates can therefore be
used to translate genetic distances into geological times,
allowing divergence times to be inferred for species with
no recent ancestor in the fossil record. The molecular
clock hypothesis is often violated, however, particularly
when distantly related species are compared, and such
violations can lead to grossly incorrect species diver-
gence time estimates (Bromham et al., 1998; Yoder and
Yang, 2000; Adkins et al., 2003).

One approach to dealing with a violation of the clock
is to remove sequences so that the clock approximately
holds for the remaining sequence data. This may be use-
ful if only one or two lineages have grossly different
rates and can be identified and removed (Takezaki et al.,
1995) but is difficult to use if the rate variation is more
widespread. A more promising approach is to take ex-
plicit account of among-lineage rate variation when es-
timating divergence times. Variable-rates models have
been the focus of much recent research, with both likeli-
hood and Bayesian methodologies employed. In a likeli-
hood analysis, prespecified lineages in the phylogeny are
assigned independent rate parameters, estimated from
the data (Kishino and Hasegawa, 1990; Rambaut and
Bromham, 1998; Yoder and Yang, 2000). Recent exten-
sions to the likelihood method (Yang and Yoder, 2003)
allow the use of multiple calibration points and simulta-
neous analysis of data for multiple genes while account-
ing for their differences in substitution rates and in other
aspects of the evolutionary process.

The Bayesian approach, pioneered by Thorne et al.
(1998) and Kishino et al. (2001; see also Huelsenbeck
et al., 2000; Drummond et al., 2006), uses a stochastic
model of evolutionary rate change to specify the prior
distribution of rates and, with a prior for divergence
times, calculates the posterior distributions of times and
rates. Markov chain Monte Carlo (MCMC) is used to
make the computation feasible. Such methods build on
the suggestion by Gillespie (1984) that the rate of evo-
lution may itself evolve over time and may be consid-
ered as more rigorous implementations of Sanderson’s
rate-smoothing procedure (Sanderson, 1997; Yang, 2004).
The algorithm was extended to analyze multiple genes
(Thorne and Kishino, 2002). The method has been ap-
plied successfully to estimate divergence times in a
number of important species groups, such as the mam-
mals (Hasegawa et al., 2003; Springer et al, 2003), the
birds (Pereira and Baker, 2006), and plants (Bell and
Donoghue, 2005).

Thorne et al. (1998) used lower and upper bounds for
node ages to incorporate fossil calibration information.
With this prior, divergence times outside the bounds
are impossible in the posterior, whatever the data. Bi-
ologists may often lack sufficiently strong convictions
to apply such “hard bounds” and, in particular, fos-
sils often provide good lower bounds (minimal node
ages) but not good upper bounds (maximal node ages).
However, the posterior can be sensitive to changes to
the upper bounds. This observation prompted Yang
and Rannala (2006) to implement arbitrary prior dis-
tributions for the age at a fossil calibration node.
Such “soft bounds” may sometimes provide a more
accurate description of uncertainties in fossil ages.
Our implementation, however, assumed the molecular
clock.

453



D
ow

nl
oa

de
d 

B
y:

 [Y
an

g,
 Z

ih
en

g]
 A

t: 
16

:0
3 

13
 J

un
e 

20
07

 

454 SYSTEMATIC BIOLOGY VOL. 56

In this paper, we extend our previous model to
relax the clock assumption. We implement two prior
models that allow the evolutionary rate to vary over
time or across lineages. The first assumes a geometric
Brownian motion process of rate drift over time, the
model implemented by Thorne et al. (1998) and Kishino
et al. (2001). Rates are autocorrelated between ancestral
and descendant lineages on the tree. The second is
an independent-rates model, with no autocorrelation.
Instead, branch-specific rates are independent variables
drawn from a common distribution. If higher rates tend
to change more than lower rates, there may be little au-
tocorrelation of rates between ancestral and descendant
lineages (Gillespie, 1984). In such cases, independent-
rates models may be more flexible in accommodating
large rate shifts that may occur during species radiations
due to rapid range expansions, increasing effective
population sizes, enhanced selection, etc.

We also develop an “infinite-sites theory” to under-
stand the limit of divergence time estimation; even when
the number of sites in the sequence approaches infinity,
the errors in posterior time estimates will not approach
zero because of inherent uncertainties in fossil calibra-
tions and the confounding effect of rates and times in the
sequence data. Yang and Rannala (2006) studied the an-
alytical properties of this problem when the data consist
of one locus and the molecular clock is assumed. Here,
the theory is extended to the general case of variable rates
and multiple loci. We use computer simulation to assess
the information content of sequence data from multiple
loci for estimation of divergence times (in the limit of
infinite sequence length). We also analyze two empirical
data sets for comparison with previous methods.

THEORY

The Bayesian Framework

Let s be the number of species. The topology of the
rooted phylogenetic tree is assumed known and fixed.
Sequence alignments are available at multiple loci, with
the possibility that some loci are missing for some
species. Let D be the sequence data and let t be the s − 1
divergence times in the species tree. Let r represent the
substitution rates for branches in the tree at all loci. Let
g be the number of loci. At each locus, there are 2s − 2
branch rates, so r includes (2s − 2)g rates. Let θ denote
parameters in the nucleotide substitution model as well
as parameters in the prior for times t and rates r.

Bayesian inference makes use of the joint conditional
distribution

f (θ , t, r|D) = f (D|t, r) f (r|θ , t) f (t|θ ) f (θ )
f (D)

where f (θ ) is the prior for substitution parameters, f (t|θ)
is the prior for divergence times, which incorporates
fossil calibration information, f (r|θ , t) is the prior for
substitution rates for branches, and f (D|t, r) is the like-
lihood. The proportionality constant f (D) involves in-

tegration over t, r, and θ . We construct a Markov chain
whose states are (θ , t, r) and whose steady-state distribu-
tion is f (θ , t, r|D). We implement a Metropolis-Hastings
algorithm (Metropolis et al., 1953; Hastings, 1970). The
general framework has been described before (see, e.g.,
Thorne et al., 1998). Given the current state of the chain
(θ , t, r), a new state (θ∗, t∗, r∗) is proposed through a
proposal density q (θ∗, t∗, r∗|θ , t, r) and is accepted with
probability

R = min
{

1,
f (D|t∗, r∗) f (r∗|θ∗, t∗) f (t∗|θ∗) f (θ∗)

f (D|t, r) f (r|θ , t) f (t|θ ) f (θ )

×q (θ , t, r|θ∗, t∗, r∗)
q (θ∗, t∗, r∗|θ , t, r)

}
(1)

Note that f (D) cancels in calculation of R. The proposal
density q (·|·) is flexible as long as it specifies an aperi-
odic and irreducible Markov chain. Calculation of the
likelihood follows Felsenstein (1981) for models of one
rate for all sites or Yang (1994) for models of variable
rates among sites. The likelihood calculation is straight-
forward but expensive. The prior for divergence times
f (t|θ ) is described in Yang and Rannala (2006). Our fo-
cus in this paper is the prior on rates f (r|θ , t).

Prior Densities of Evolutionary Rates

Autocorrelated substitution rates on branches.—Thorne
et al. (1998) and Kishino et al. (2001) used a geometric
Brownian motion model to specify the prior for rates
f (r|θ , t). The logarithm of the rate drifts according to a
Brownian motion process and the rate evolves according
to a geometric Brownian motion process. Thus, given the
rate rA in the ancestor, the rate r time t later has a log-
normal distribution. Kishino et al. (2001) force the ex-
pectation of the rate r to equal the ancestral rate rA, that
is E(r |rA) = rA, by applying a bias-correction term. The
density of rate r given the ancestral rate rA is

f (r |rA) = 1

r
√

2π tσ 2
exp

{
− 1

2tσ 2

(
log(r/rA) + tσ 2

2

)2
}

,

0 < r < ∞ (2)

Similarly, let y = log(r ), yA = log(rA), and then y|yA ∼
N(yA − tσ 2/2, tσ 2). Here N(m, s2) stands for the normal
distribution with mean m and variance s2. Parameter
σ 2 determines how fast the rate drifts across lineages
(Thorne et al., 1998). The relevant parameter for evolu-
tionary inference is the integral over the sample path of
the rate on each branch. Kishino et al. (2001) formulated
the model using rates for nodes, with the arithmetic av-
erage of the rates at ancestral and descendant nodes as
a proxy for the average rate over the branch. We use in-
stead the rate at the midpoint of a branch. This strategy
simplifies the MCMC algorithm and makes it easier to
compare the independent and autocorrelated rates mod-
els. The rate at the root, µ, is given a gamma prior with
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2007 RANNALA AND YANG—SPECIATION TIME AND EPISODIC MOLECULAR CLOCK 455

FIGURE 1. Definition of rates and times surrounding an internal
node of a tree under our parameterization of the variable rates model.
Parameter rA is the rate at the midpoint of the ancestral branch, whereas
r1 and r2 are the rates at the midpoints of the two descendent branches.
The total time durations of the three branches are 2tA, 2t1, and 2t2.

parametersαµ andβµ. Because the autocorrelation model
assumes that the geometric Brownian motion process is
homogeneous, µ is also the mean rate across the tree. The
parameter σ 2 is given a gamma prior with parameters ασ 2

and βσ 2 .
Here we derive the probability density of the rates at

the midpoints of two descendant branches given the rate
at the midpoint of an ancestral branch under a geometric
Brownian motion model. We consider one locus first, and
results are easily generalized to multiple loci. We refer
to the rate at the midpoint of a branch as the rate for
the branch; this is used to approximate the average rate
for the whole branch. Each internal node that is not the
root has two daughter branches and an ancestral branch
(Fig. 1). For each such node, let r1 and r2 be the rates
of the two daughter branches and rA be the rate of the
ancestral branch. Let the rate at the central node itself
be r0. To simplify the presentation, we let yA, y0, y1, y2
be the logarithms of rates rA, r0, r1, r2. Let half of the
time length for the ancestral branch be tA and half of
the time length for the two daughter branches be t1 and
t2, respectively. The density of r1 and r2 given rA can be
derived as follows.

y0|yA ∼ N
(

yA − tAσ 2/2, tAσ 2) (3)

y1, y2|y0, yA ∼ N2

[(
y0 − 1

2 t1σ 2

y0 − 1
2 t2σ 2

)
,
(

t1σ 2 0
0 t2σ 2

)]
(4)

Here N2(m, S) is the bivariate normal distribution with
mean vector m and variance-covariance matrix S. Thus,

y1, y2|yA ∼ N2(η, �), (5)

where

η =
[

yA − 1
2 (tA + t1)σ 2

yA − 1
2 (tA + t2)σ 2

]
, � =

[
tA + t1 tA

tA tA + t2

]
σ 2 (6)

Thus, by applying a variable transform from (y1, y2) to
(r1, r2), we obtain

f (r1, r2|rA) = f (r1, r2|yA) = f (y1, y2|yA)
r1r2

= exp
[− 1

2 (y − η)′�−1(y − η)
]

2π |�|1/2 × 1
r1r2

(7)

where y = (y1, y2)′ = (log r1, log r2)′.
For the root, the rates of its two daughter branches,

given the rate at the root (µ), have independent log-
normal distributions. The density can be calculated us-
ing Equations (6) and (7) by setting tA = 0 in Equation (6).
From equation (7), the log rates y1 and y2, given the an-
cestral log rate yA, have a correlation coefficient of

ρ12 = tA√
(tA + t1)(tA + t2)

(8)

Note that our formulation of the model using rates for
branches is similar to that of Thorne et al. (1998). How-
ever, as pointed out by Kishino et al. (2001), Thorne et al.
(1998) failed to accommodate the correlation between the
rates for two descendant branches given the rate at the
ancestral branch. This correlation is due to the fact that
both log rates y1 and y2 evolved from the common log rate
y0 at the central node (Fig. 1). It is explicitly accounted
for in our implementation.

Independent and identically distributed substitution rates
on branches.—We consider an alternative to the model
of Thorne et al. (1998) for among-lineage rate variation
that does not impose autocorrelation of rates among
branches. The average rate over the ith branch is given
by the log-normal density

f (ri |µ, σ 2) = 1

ri
√

2πσ 2

exp
{

− 1
2σ 2

[
log(ri/µ) + 1/2σ 2]2

}
, 0 < ri < ∞

(9)

Parameter µ is the mean of the rate for all lineages and
σ 2 is the variance of the log rate. Parameters µ and σ 2

are assigned gamma priors with parameters αµ, βµ and
ασ 2 , βσ 2 , respectively.

We note that the overall rate parameter µ has the same
interpretation under the autocorrelated and indepen-
dent rates models. However, parameter σ 2 does not have
the same interpretation; under the autocorrelated rates
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model, the variance of the rate for a descendant branch
given the rate for an ancestral branch depends on the
elapsed time t, but under the independent rates model,
the variance depends on σ 2 only.

Multiple loci.—To analyze multiple loci we assume
that the j th locus has a set of branch-specific rates. Let
r = {ri j }, where ri j is the substitution rate on branch i
at locus j . We ignore possible correlations in substitu-
tion rates among loci in the prior (although rates may be
correlated in the posterior) and multiply the priors for
rates across the loci. Each locus has the overall rate µ j

and variance parameter σ 2
j . Here the gamma prior on µ j

may be interpreted as a model of variable rates among
loci, as may the gamma prior on σ 2

j .

BAYESIAN INFERENCE WITH INFINITE NUMBER OF SITES

Here we consider properties of the posterior distri-
bution of divergence times when the number of sites
tends to infinity, with the substitution rate either con-
stant or variable across branches. This extends the anal-
ysis of Yang and Rannala (2006) of the asymptotic dis-
tribution in the case of a strict molecular clock and a
single locus. The theory provides a way to quantify
the residual uncertainty of divergence time estimates—
uncertainty that cannot be further reduced by sequenc-
ing more sites for a gene or by sequencing more genes—
and allows us to explore the limits of this kind of
inference. We derive our theory for a specific phy-
logeny first and then describe how it is applied to any
phylogeny.

Consider the phylogeny of s = 4 species shown in
Fig. 2a. The parameters are the divergence times t =
{t5, t6, t7} and the branch-specific substitution rates r =
{r1, r2, r3, r4, r5, r6}. The likelihood of the sequence data

FIGURE 2. (a) Rooted tree for four species, showing three diver-
gence times t5, t6, and t7, and six branch rates r1, . . . , r6. (b) The cor-
responding unrooted tree with five branch lengths measured in the
expected number of substitutions: b1, . . . , b5. Note that the position
of the root (ancestor 7 in a) is not determined in the absence of a
clock.

depends on the branch lengths in the unrooted tree
at each locus, measured by the expected number of
substitutions: b1 = r1 × t5, b2 = r2 × t5, b3 = r3 × t6, b4 =
r4 × t7 + r6 × (t7 − t6), and b5 = r5 × (t6 − t5). Because we
do not assume the clock, the root cannot be identified
and the two branches joining nodes 7-6 and 7-4 in the
rooted tree (Fig. 2a) are combined to become one branch
of length b4 in the unrooted tree (Fig. 2b). For each locus
the prior on rates under both the autocorrelated rates and
independent rates models is determined by two param-
eters: µ and σ 2.

Single Locus

In the limit as the number of sites tends to infinity, the
likelihood becomes a point mass with density concen-
trated at the true values of the branch lengths. The branch
lengths can then be treated as observed data and it is
possible to study the posterior density of the divergence
times. Note that there are 3s − 1 = (s − 1) + 2 + (2s − 2)
parameters in the model: s − 1 divergence times, µ and
σ 2, and 2s − 2 branch rates. Fixing the branch lengths
in the unrooted tree by assuming an infinite number of
sites reduces the dimension by 2s − 3, leaving s + 2 pa-
rameters in the posterior density: the s − 1 divergence
times, µ, σ 2, and one additional rate, which we arbitrar-
ily choose to be the rate r6 for the left daughter branch
of the root. The other 2s − 3 branch rates are analyti-
cally determined by the branch lengths on the unrooted
tree.

The key to solving this problem is to transform the
prior density of the original variables

f (t5, t6, t7, r6, µ, σ 2, r1, r2, r3, r4, r5)

to the prior density of the new set of variables

g(t5, t6, t7, r6, µ, σ 2, b1, b2, b3, b4, b5)

through a variable transform.

t5 = t5,

t6 = t6,

t7 = t7,

r6 = r6,

µ = µ,

σ 2 = σ 2,

r1 = b1/t5,

r2 = b2/t5,

r3 = b3/t6,

r4 = [b4 − r6(t7 − t6)]/t7 = (b4 + r6t6)/t7 − r6,

r5 = b5/(t6 − t5) (10)
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2007 RANNALA AND YANG—SPECIATION TIME AND EPISODIC MOLECULAR CLOCK 457

The Jacobian determinant is

|J | =
∣∣∣∣ ∂(t5, t6, t7, r6, µ, σ 2, r1, r2, r3, r4, r5)
∂(t5, t6, t7, r6, µ, σ 2, b1, b2, b3, b4, b5)

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0

− b1
t2
5

0 0 0 0 0 1
t5

0 0 0 0

− b2
t2
5

0 0 0 0 0 0 1
t5

0 0 0

0 − b3
t2
6

0 0 0 0 0 0 1
t6

0 0

0 r6
t7

− b4+r6t6
t2
7

t6
t7

− 1 0 0 0 0 0 1
t7

0
b5

(t6−t5)2 − b5
(t6−t5)2 0 0 0 0 0 0 0 0 1

t6−t5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1

t2
5 t6t7(t6 − t5)

(11)

The transformed density is

g(t5, t6, t7, r6, µ, σ 2, b1, b2, b3, b4, b5)

= f
(

t5, t6, t7, r6, µ, σ 2,
b1

t5
,

b2

t5
,

b3

t6
,

b4 − r6(t7 − t6)
t7

,
b5

t6 − t5

)
×|J |

Note that the upper-diagonal elements of the J ma-
trix are all zero, whereas on the diagonal the recipro-
cals of the nonunity terms, t5, t5, t6, t7, (t6 − t5) are the
time durations of branches 1, 2, 3, 4, 5 in Fig. 2a; that is,
of all the branches except the left daughter branch of
the root node. These features are easily seen to hold in
general and the Jacobian determinant for any tree of s
species is

|J | =

2s−2∏

j �=i

Tj




−1

where Tj is the time duration of the j th branch on the
tree, with branch i , the left daughter branch of the root
(branch 6 with rate r6 in Fig. 2a), excluded. For a tree of
s species, the posterior density of t = {t1, . . . , ts−1}, µ, σ 2

and r (the rate for the left daughter branch of the root),
conditional on the branch lengths is

g(t, r, µ, σ 2|b) = g(t, r, µ, σ 2, b)∫
t

∫
r

∫
µ

∫
σ 2 g(t, r, µ, σ 2, b)dσ 2dµdrdt

(12)

where g(.) is the transformed density as described above
while the integral in the denominator is a normalizing

constant. It is difficult to evaluate the integral analytically
but relatively simple to develop an MCMC algorithm to
generate the posterior density numerically and we use
this strategy. Note that the evaluation of this density un-
der the autocorrelation and independent rates models is
essentially similar.

Multiple Loci

The above result can be readily extended to multiple
loci if lineage-specific rates vary independently across
loci, as assumed in our model. If there are K loci, the
posterior density will have s − 1 + 3K parameters: the
s − 1 divergence times, and three parameters at each lo-
cus: µ, σ 2, and the rate r for the left daughter branch of
the root. The transformed density is

gK
(
t, r (K ), µ(K ), σ 2(K )

, b(K ))

= fK
(
t, r (K ), µ(K ), σ 2(K )

, r−1[b(K )]) ×

2s−3∏

j=1

Tj




K

where r (K ) is a vector of the K rates across the K loci
for the left daughter branch of the root, and r−1[b(K )]
is the inverse function that maps the vector of branch
lengths for each locus to the locus-specific rates. The joint
posterior density given the branch lengths at the K loci
is

gK

(
t, r (K ), µ(K ), σ 2(K )|b(K )

)
= gK

(
t, r (K ), µ(K ), σ 2(K ), b(K )

)
∫

t

∫
r (K )

∫
µ(K )

∫
σ 2(K ) gK

(
t, r (K ), µ(K ), σ 2(K ), b(K )

)
dσ 2(K )dµ(K )dr (K )dt

An MCMC algorithm was implemented to evaluate this
posterior density numerically.

Our prior model of rate change assumes that rates drift
independently across loci. Nevertheless, the infinite-sites
theory developed above applies if changes in rates are
correlated across gene loci, as assumed by Kishino et al.
(2001). The only change is that calculation of the prior
density has to take into account the correlation structure
in the model.

Similarly, the limiting posterior distribution can be de-
rived for the case of multiple loci evolving under a global
clock. This is an extension to the analysis of Yang and
Rannala (2006), who considered one locus only. When the
clock holds, the branch lengths are proportional across
loci. The posterior density has one dimension, which
may be the age of the root, as all other divergence times
and branch rates are determined by the fixed branch
lengths. It is noted that under the clock, increasing the
number of loci does not lead to any reduction in the pos-
terior credibility intervals (CIs).

ziheng
Comment on Text
The exponent K here should be -K, as the highlighted term is the Jacobi in the left column of this page raised to the power of K for K loci.
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Computer Simulation to Examine the Effect
of the Number of Loci

Yang and Rannala (2006) conducted simulations to ex-
amine the impact of sequence length, fossil uncertain-
ties, etc., on posterior time estimates, when hard and soft
bounds are used to describe fossil uncertainties. A major
result from that simulation is that typical sequence data
sets appear to be nearly as informative as infinitely long
sequences and most of the uncertainties in the posterior
time estimates are therefore due to uncertainties in the
fossils.

Here we conduct simulations to examine the effect of
the number of loci on the precision of posterior time esti-
mates when there are infinitely many sites at each locus,
so that the branch lengths are estimated without error.
We use the phylogeny of nine species shown in Fig. 3,
which was used by Yang and Rannala (2006). Rate vari-
ation among lineages was modeled using a log-normal
distribution with mean 1 and variance σ 2, corresponding
to the independent rates model. At each locus, rates
were sampled from the log-normal distribution and
multiplied by the divergence times to generate branch
lengths in units of expected number of substitutions. The
data were then analyzed using the infinite-sites theory,
as described above. We examined the effects of among-
lineage rate variation, the number of loci, and the level of
uncertainty in fossil calibrations on the cumulative width
of the posterior CIs for divergence times (that is, the sum
of the posterior CI widths for all node ages on the tree).
This simulation design allows us to potentially examine
the relative importance of three sources of uncertainty
affecting divergence time estimation: fossil calibrations

FIGURE 3. A tree of nine species used in computer simulation to ex-
amine the performance of divergence time estimation under variable-
rates models. The true ages of nodes 1, 2, . . . , 8 are 1, 0.7, 0.2, 0.4, 0.1,
0.8, 0.3, and 0.05, as indicated by the time line. If one time unit is 100
million years, the age of the root will be 100 My. Fossil calibration in-
formation, in the form of minimal and maximal bounds, is available
for nodes 1, 3, 4, and 7, as shown in the inset.

TABLE 1. The cumulative width of the 95% posterior CIs of diver-
gence times when data of infinite sites are analyzed under the clock
and variable-rates models. The sum of the widths of the 95% poste-
rior CIs for the eight divergence times in the tree of Figure 3 is shown
as a function of the number of loci, the model of rate evolution (C1
for global clock, C2 for the independent-rates model, and C3 for the
correlated-rates model), and among-lineage rate variation reflected by
σ , the standard deviation in the log-normal distribution used to sim-
ulate branch-specific substitution rates. In the third set of simulations,
σ 1 = 0.05 for the first locus, whereas σ �=1= 0.25 for all other loci.

σ 1 = 0.05,
σ = 0.05, σ �=1 = 0.25 σ = 0.25 σ = 0.50

No. σ = 0
loci C1 C2 C3 C2 C3 C2 C3 C2 C3

1 0.40 0.68 1.37 1.44 2.18 2.46 2.64 2.93 2.89
5 0.40 0.47 0.68 1.22 1.76 1.64 1.77 1.78 2.00

10 0.40 0.41 0.56 1.06 1.43 1.19 1.57 1.46 1.42
30 0.40 0.38 0.42 0.54 0.89 1.14 1.01 1.04 0.95
50 0.40 0.38 0.35 0.50 0.76 0.51 0.75 0.87 0.77

(improved by sampling more fossils with narrower
strata ranges); uncertain locus-specific branch lengths
due to finite sequence length (improved by sequencing
more sites per locus); and among-lineage rate variation
(improved by either sampling more loci or reducing the
among-lineage rate variation at one or more loci).

The results are presented in Table 1. It is clear that when
among-lineage rate variation exists at all loci, the width
of the CIs converges (with increasing numbers of loci)
to the width for a single locus under a perfect molecular
clock. If even one locus exists that is highly clock-like,
this locus tends to dominate inferences and including
additional loci will have little effect.

In our previous study (Yang and Rannala, 2006)
we showed that for perfectly informative (effectively
infinite) sequences an exact linear relationship exists
between the width of the CI and the mean of the poste-
rior distribution of divergence times. Simulation results
of Figs. 4 and 5 suggest that such a relationship exists
also under the variable-rates models when the number
of sites at each locus is infinite and the number of loci
approaches infinity. It is noteworthy that increasing the
number of loci has two effects. First, the relationship be-
tween the posterior mean and the posterior CI width
becomes increasingly linear. Second, the slope of the re-
gression line is reduced, until eventually it converges to
the slope obtainable under a molecular clock with a sin-
gle locus and an infinite number of sites. In the first set
of simulations (Fig. 4), there is not much rate variation
among lineages, and 30 loci appear to be close to the limit
as the two regression lines in Figure 4 are very close. In
the second set of simulations (Fig. 5), there is far more rate
variation, and even 50 loci are far away from the limit.

ANALYSIS OF EMPIRICAL DATA SETS

We apply our new methods to two empirical data
sets, for comparison with previous analyses. The first
data set consists of mitochondrial protein-coding genes
from seven species of apes (Fig. 6), compiled and ana-
lyzed by Cao et al. (1998). Because of the closeness of
the species concerned, the molecular clock assumption
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FIGURE 4. Widths of the 95% posterior CIs plotted against the posterior means of the divergence times for infinite-sites simulations using
different numbers of loci. The parameter for rate-variation among loci was σ = 0.05. The independent rates model (clock 2) was used both to
simulate and to analyze the data. Data (branch lengths) for 30 loci were simulated, and 1, 5, 10, or all 30 of them were analyzed to calculate results
for the four plots. The solid line in plot (d) represents the results for one locus under the global clock, which is the limit for the variable-rates
model when the number of loci reaches infinity.

is not seriously violated. The data set was analyzed by
Yang and Rannala (2006) under the clock assumption.
Here we apply the two variable-rates models for com-
parison. The second data set consists of nuclear genes
from 38 species of the cat family (Fig. 7), analyzed by
Johnson et al. (2006) using the method of Thorne et al.
(1998) and Kishino et al. (2001), which relaxes the molec-
ular clock assumption. Here we apply our methods for
comparison.

Divergence Times of Apes

This data set consists of all twelve protein-coding
genes encoded by the same strand of the mitochondrial
genome from seven species of apes (Cao et al., 1998).
The species phylogeny is shown in Fig. 6. See Cao et al.
(1998) for the GenBank accession numbers. The align-
ment contains 3331 nucleotides at each codon position.
We ignore the differences among the 12 genes but accom-
modate the huge differences among the codon positions.

We use the HKY85+
5 substitution model (Hasegawa
et al., 1985), with a discrete gamma model of variable
rates among sites, with five rate categories used (Yang,
1994). Each codon position has its own substitution rate,
transition/transversion rate ratio κ , and gamma shape
parameter α (Yang, 1996). Parameter κ is assigned the
gamma prior G(6, 2), whereas α has the gamma prior
G(1, 1). The data set is very informative about κ and α
and the prior has little effect on the posterior for these
parameters. The nucleotide frequencies are fixed at the
observed frequencies. The overall substitution rate µ is
assigned the gamma prior G(2, 2) with mean 1 and vari-
ance 1/2. Here one time unit is 100 My, so the mean rate
is one substitution per site per 108 years, which appears
typical for an average mitochondrial rate in primates.
The relatively large variance means that this prior is quite
diffuse. Parameter σ 2 reflects the amount of rate varia-
tion across lineages or how seriously the molecular clock
is violated. It is assigned a gamma prior G(1, 10), with
mean 0.1, variance 0.01, with the small mean to reflect



D
ow

nl
oa

de
d 

B
y:

 [Y
an

g,
 Z

ih
en

g]
 A

t: 
16

:0
3 

13
 J

un
e 

20
07

 

460 SYSTEMATIC BIOLOGY VOL. 56

FIGURE 5. Widths of the 95% posterior CIs plotted against the posterior means of divergence times for infinite-sites simulations using 1, 5,
10, or 50 loci. The parameter for rate variation among loci is σ = 0.25. See legend to Figure 4 for more details.

the fact that the molecular clock roughly holds for these
data. In the birth-death process with species sampling,
we fix the birth and death rates at λ = µ = 2, with the
sampling fraction ρ = 0.01. For this data set, those pri-

FIGURE 6. The tree of seven ape species for the mitochondrial data
set of Cao et al. (1998). The branches are drawn to show posterior means
of divergence times estimated under the autocorrelated-rates model
(clock 3 in Table 2). Nodes 2 and 4 are used as fossil calibrations. The
HKY85+
5 substitution model was used to analyze the three codon
positions simultaneously, with different parameters used to account
for their differences.

ors are found to have only a minor effect on the posterior
time estimates.

The phylogenetic tree is shown in Figure 6. As in
Yang and Rannala (2006), two fossil calibrations are
used in our Bayesian analysis. The first is for the
human-chimpanzee divergence, assumed to be between
6 and 8 My, with a most likely date of 7 My (Cao et al.,
1998). A gamma prior G(186.2, 2672.6), with one time
unit representing 100 My, is used for the node age, with a
cumulative tail probability of 5% determined according
to the method of Yang and Rannala (2006). The second
calibration is for the divergence of the orangutan from
the African apes, assumed to be between 12 and 16 My,
with a most likely date of 14 My (Raaum et al., 2005). The
prior is specified as “> 0.12 = 0.139 < 0.16,” and the
gamma G(186.9, 1337.7) is fitted, with tail probabilities
2.2 and 2.7%.

The MCMC was run for 40,000 iterations, after a burn-
in of 4000 iterations. For each analysis, the MCMC al-
gorithm was run at least twice using different starting
values to confirm convergence to the same posterior.

Table 2 shows the posterior means and 95% CIs of the
six divergence times. The posterior distributions for µ
are shown as well. The posterior mean of µ suggests that
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FIGURE 7. A phylogeny for 38 modern cat species, from Johnson et al. (2006). The branches are drawn in proportion to the posterior means
of divergence times estimated under the HKY85+
5 model and with autocorrelated rates (38 species, clock 3 in Table 3). Fourteen nodes have
fossil calibration information, as indicated on the tree.

the substitution rate is about 0.50, 0.17, and 3.1 × 10−8

at first, second, and third codon positions, respectively.
Posterior results for other parameters such as κ, α, σ 2

and the rates are not shown. The estimates under the
independent rates (clock 2) and correlated rates (clock 3)
models are rather similar to those under the clock model
(clock 1). This similarity is expected as the molecular

clock is not seriously violated for this data set. The
posterior CIs are slightly wider under the variable-rates
models than under the clock model, reflecting the
relaxed assumptions of the model.

No fossil calibration is available at the root and no
constraint is placed on the root age in the above analysis,
following Yang and Rannala (2006). The means and 95%



D
ow

nl
oa

de
d 

B
y:

 [Y
an

g,
 Z

ih
en

g]
 A

t: 
16

:0
3 

13
 J

un
e 

20
07

 

462 SYSTEMATIC BIOLOGY VOL. 56

TABLE 2. Posterior mean and 95% CIs of divergence times (My) and substitution rates estimated under different clock models for the mtDNA
data. The three codon positions are analyzed as a combined data set under the HKY85 +
5 model, with different parameters for each position.
Divergence times are defined in Figure 1. The rates µ1, µ2, and µ3 are for the three codon positions, respectively, measured by the expected
number of substitutions per site per 100 My.

Prior Clock 1 Clock 2 Clock 3

t1 (root) 1376 (268, 4857) 19.8 (17.5, 22.2) 19.9 (16.4, 24.1) 19.1 (16.5, 22.4)
t2 14.0 (12.0, 16.1) 16.3 (14.6, 18.1) 15.8 (14.1, 17.7) 16.3 (14.6, 18.1)
t3 10.5 (6.9, 14.5) 8.6 (7.6, 9.6) 9.0 (7.8, 10.3) 9.1 (7.9, 10.4)
t4 7.0 (6.0, 8.0) 6.1 (5.5, 6.8) 6.3 (5.6, 7.1) 6.2 (5.5, 6.9)
t5 3.5 (0.2, 7.0) 2.0 (1.8, 2.4) 2.3 (1.7, 3.0) 2.3 (1.9, 2.9)
t6 7.0 (0.3, 14.0) 4.1 (3.5, 4.7) 4.4 (3.5, 5.6) 4.5 (3.6, 5.4)
µ1 1.00 (0.12, 2.80) 0.49 (0.43, 0.57) 0.50 (0.41, 0.61) 0.49 (0.40, 0.58)
µ2 1.00 (0.12, 2.80) 0.17 (0.14, 0.20) 0.17 (0.13, 0.22) 0.17 (0.14, 0.21)
µ3 1.00 (0.12, 2.80) 3.11 (2.75, 3.51) 3.13 (2.58, 3.77) 3.22 (2.66, 3.86)

CIs for divergence times in the prior listed in Table 2 are
obtained by running the MCMC without data; that is, by
fixing f (D|t, r) = 1 in Equation (1). The prior mean for
the root age from the birth-death process, at 1376 My, is
huge. We found it in general beneficial to place a weak
upper bound on the root age (maximal age) even if no
fossil calibration is available at the root, especially when
the molecular clock is seriously violated. For this data set,
however, doing so had only a minor effect on posterior
time estimates, perhaps because the clock roughly holds.
For example, with the root age constrained to be <100
My, the prior mean and 95% CI for the root age became
58 My (17, 100). The posterior mean and 95% CI for the
root age under clock 3 (correlated rates model) became
18.8 My (16.4, 21.9), very close to estimates in Table 2
obtained without placing any constraint on the root age.

The widths of the 95% posterior CIs for the eight node
ages are plotted against their posterior means in Fig-
ure 8a. The slope of the regression line indicates the
amount of uncertainty in posterior time estimates that
cannot be removed by increasing sequence data; this is
about 0.27 My of the width of the 95% posterior CI per My
of divergence time. The considerable scatter around the

regression line indicates that additional sequence data
will very likely improve the precision of the estimates.

Divergence Times of Cats

The data set of Johnson et al. (2006) consists of 38
species of modern cats (family Felidae) plus seven out-
group species from feliform carnivoran families. The
phylogeny of the 38 ingroup species is shown in Fig.
7, extracted from the phylogeny of Johnson et al. (2006).
Following those authors, we used 30 nuclear genes (19
autosomal, 5 X-linked, and 6 Y-linked) for divergence
time estimation. The results were compared with those
obtained by Johnson et al. (2006) using the method of
Thorne et al. (1998) and Kishino et al. (2001). Johnson et al.
(2006) removed some small regions of the alignment.
These appear reliable and are retained in our analysis. A
total of 19,984 base pairs are included in the alignment.
Some genes (loci) are missing in some species and the
missing data are coded as question marks. See Johnson
et al. (2006) for GenBank accession numbers.

Whereas the method of Thorne et al. (1998) requires
outgroups, our method does not. Maximum likelihood

FIGURE 8. The 95% posterior CI widths plotted against the posterior means of divergence times in the analysis of the (a) ape and (b) cat data
sets. The correlated-rates model (clock 3, 38 species in Table 3) was used in both analyses. The prior CI widths and prior means are plotted for
the cat data in (c).
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2007 RANNALA AND YANG—SPECIATION TIME AND EPISODIC MOLECULAR CLOCK 463

TABLE 3. Posterior mean and 95% CIs of divergence times (My) for the Felidae data of Johnson et al. (2006). Node numbers refer to those of
Figure 7, following Johnson et al. (2006). “Fossil” represents fossil calibration information, specified as minimal or maximal ages for the node.

39 species 38 species

Node Fossil Johnson et al. Prior Clock 2 Clock 3 Clock 1 Clock 2 Clock 3

1 <16 10.8 (8.4, 14.5) 15.4 (12.4, 17.4) 12.6 (9.6, 16.0) 14.0 (10.1, 16.7) 15.2 (12.2, 17.1) 15.0 (12.0, 16.9) 15.3 (12.4, 17.1)
2 9.4 (7.4, 12.8) 14.8 (11.4, 17.1) 11.0 (8.3, 14.0) 12.2 (8.7, 15.0) 14.1 (11.2, 16.2) 14.0 (11.1, 16.1) 14.2 (10.9, 16.4)
3 8.5 (6.7, 11.6) 14.3 (10.6, 16.8) 9.9 (7.5, 12.7) 11.1 (7.9, 13.6) 12.8 (10.1, 14.6) 12.6 (9.9, 14.6) 12.7 (9.7, 14.6)
4 >5 8.1 (6.3, 11.0) 13.5 (9.4, 16.4) 9.4 (7.1, 12.0) 10.5 (7.5, 13.0) 12.2 (9.7, 14.1) 12.0 (9.4, 14.0) 12.1 (9.1, 14.0)
5 >5.3 7.2 (5.6, 9.8) 12.0 (7.7, 15.5) 8.3 (6.3, 10.7) 9.4 (6.8, 11.8) 10.8 (8.5, 12.4) 10.5 (8.2, 12.4) 10.7 (7.8, 12.5)
6 6.7 (5.3, 9.2) 10.9 (6.4, 14.9) 7.6 (5.8, 9.9) 8.7 (6.3, 10.9) 10.0 (7.9, 11.5) 9.7 (7.4, 11.5) 9.8 (6.9, 11.5)
7 >4.2 6.2 (4.8, 8.6) 9.3 (4.9, 14.0) 7.0 (5.3, 9.2) 8.1 (5.8, 10.2) 9.3 (7.3, 10.8) 9.0 (6.9, 10.7) 9.1 (6.2, 10.6)
8 3.4 (2.4, 4.9) 6.7 (2.4, 12.4) 4.1 (3.1, 5.5) 4.5 (3.1, 6.1) 5.4 (4.2, 6.4) 5.4 (4.0, 6.7) 4.5 (3.2, 5.5)
9 3.0 (2.2, 4.4) 5.1 (1.7, 11.1) 3.7 (2.7, 4.8) 4.1 (2.8, 5.4) 4.9 (3.8, 5.8) 4.8 (3.5, 6.0) 4.2 (2.9, 5.0)

10 2.5 (1.7, 3.7) 4.0 (1.3, 9.6) 3.0 (2.2, 4.0) 3.2 (2.1, 4.4) 4.1 (3.2, 5.0) 4.0 (2.9, 5.0) 3.4 (2.3, 4.3)
11 >1 1.4 (0.9, 2.2) 2.9 (1.0, 7.7) 1.8 (1.2, 2.5) 1.7 (1.2, 2.3) 2.3 (1.7, 2.9) 2.3 (1.6, 2.9) 2.0 (1.3, 2.6)
12 1.0 (0.6, 1.6) 1.5 (0.1, 4.4) 1.1 (0.7, 1.8) 1.1 (0.6, 1.5) 1.5 (1.0, 2.0) 1.5 (0.9, 2.1) 1.2 (0.7, 1.8)
13 1.2 (0.7, 1.9) 1.5 (0.1, 4.4) 1.4 (0.9, 2.0) 1.5 (1.1, 2.0) 1.9 (1.4, 2.4) 1.8 (1.3, 2.5) 1.6 (1.0, 2.2)
14 >1 5.9 (4.5, 8.2) 6.4 (1.9, 11.8) 6.5 (4.9, 8.6) 7.6 (5.5, 9.6) 8.7 (6.8, 10.1) 8.3 (6.3, 10.0) 8.4 (5.7, 10.0)
15 4.6 (3.4, 6.5) 4.1 (1.0, 9.6) 5.0 (3.6, 6.7) 6.0 (4.3, 7.9) 6.6 (5.1, 7.9) 6.4 (4.7, 7.9) 6.6 (4.5, 8.1)
16 2.9 (2.0, 4.3) 2.7 (0.4, 6.9) 3.2 (2.3, 4.4) 3.8 (2.7, 5.0) 4.3 (3.3, 5.2) 4.1 (2.9, 5.2) 4.3 (2.9, 5.3)
17 2.6 (1.7, 3.8) 1.5 (0.0, 4.4) 2.8 (1.9, 3.8) 3.4 (2.4, 4.5) 3.8 (2.9, 4.7) 3.6 (2.4, 4.6) 3.7 (2.4, 4.7)
18 >3.8 4.9 (3.9, 6.9) 7.7 (3.8, 13.1) 5.3 (4.0, 7.1) 6.2 (4.4, 8.1) 7.0 (5.5, 8.3) 6.7 (4.9, 8.3) 7.1 (5.0, 8.7)
19 >1.8 4.2 (3.2, 6.0) 4.1 (1.8, 9.6) 4.3 (3.1, 5.9) 5.0 (3.4, 6.7) 5.6 (4.3, 6.8) 5.5 (3.9, 7.0) 5.7 (3.9, 7.2)
20 >2.5 3.2 (2.5, 4.7) 8.0 (2.8, 13.7) 3.5 (2.5, 4.9) 3.8 (2.6, 5.3) 4.6 (3.5, 5.7) 4.4 (3.1, 5.7) 4.3 (3.1, 5.5)
21 1.6 (1.1, 2.6) 4.3 (0.7, 10.8) 1.8 (1.2, 2.6) 2.0 (1.3, 3.0) 2.3 (1.7, 3.0) 2.3 (1.5, 3.2) 2.3 (1.7, 3.1)
22 1.2 (0.7, 2.0) 2.1 (0.1, 6.6) 1.3 (0.8, 2.1) 1.5 (0.9, 2.2) 1.7 (1.2, 2.3) 1.7 (1.0, 2.6) 1.7 (1.1, 2.3)
23 <5 2.9 (2.0, 4.2) 4.1 (2.1, 5.2) 3.6 (2.6, 4.7) 3.7 (2.7, 4.9) 4.4 (3.4, 5.0) 4.5 (3.5, 5.2) 4.3 (3.3, 5.0)
24 1.6 (1.0, 2.4) 2.2 (0.1, 4.7) 2.4 (1.6, 3.4) 2.4 (1.6, 3.5) 2.9 (2.1, 3.6) 3.0 (2.0, 3.9) 2.8 (2.0, 3.6)
25 >1 2.4 (1.7, 3.6) 3.1 (1.2, 4.8) 2.9 (2.1, 3.9) 3.1 (2.2, 4.1) 3.7 (2.8, 4.4) 3.7 (2.8, 4.4) 3.6 (2.7, 4.3)
26 1.8 (1.2, 2.7) 1.8 (0.1, 4.1) 2.0 (1.3, 2.8) 2.2 (1.4, 3.0) 2.6 (1.8, 3.3) 2.5 (1.7, 3.4) 2.5 (1.8, 3.4)
27 0.9 (0.6, 1.5) 2.2 (0.4, 4.3) 1.4 (0.9, 2.1) 1.4 (0.9, 2.2) 1.7 (1.2, 2.3) 1.8 (1.2, 2.5) 1.8 (1.3, 2.4)
28 0.7 (0.4, 1.2) 1.3 (0.0, 3.7) 1.0 (0.6, 1.7) 1.1 (0.6, 1.7) 1.3 (0.9, 1.8) 1.3 (0.8, 1.9) 1.3 (0.9, 1.8)
29 >3.8 5.6 (4.1, 7.9) 9.2 (3.9, 15.3) 6.5 (4.6, 8.9) 7.2 (4.9, 9.4) 8.3 (6.4, 9.8) 8.2 (6.0, 10.3) 8.2 (6.1, 10.1)
30 1.9 (1.2, 2.9) 3.5 (0.2, 11.1) 2.3 (1.5, 3.5) 2.7 (1.7, 3.9) 2.9 (2.1, 3.8) 3.0 (2.0, 4.2) 3.0 (2.0, 4.1)
31 5.9 (4.3, 8.4) 7.8 (1.1, 15.8) 5.7 (4.0, 7.8) 6.7 (4.7, 8.7) 7.6 (5.9, 9.1) 7.3 (5.2, 9.3) 7.7 (5.7, 9.4)
32 4.3 (3.0, 6.4) 3.2 (0.1, 11.9) 3.9 (2.6, 5.7) 4.6 (3.0, 6.6) 5.2 (3.9, 6.6) 5.1 (3.5, 7.2) 5.5 (3.7, 7.5)
33 >3.8 6.4 (4.5, 9.3) 11.9 (4.8, 16.3) 6.4 (4.6, 8.9) 7.2 (4.8, 10.3) 7.7 (6.1, 9.0) 7.6 (5.7, 9.6) 7.6 (5.8, 10.5)
34 3.7 (2.4, 5.8) 8.1 (2.2, 15.1) 3.5 (2.6, 4.7) 4.3 (2.8, 6.1) 4.5 (3.5, 5.4) 4.4 (3.3, 5.6) 4.6 (3.5, 6.0)
35 2.9 (1.8, 4.6) 4.5 (0.7, 12.5) 2.7 (1.9, 3.7) 3.3 (2.2, 4.7) 3.4 (2.6, 4.2) 3.4 (2.4, 4.4) 3.5 (2.5, 4.8)
36 2.1 (1.2, 3.5) 2.2 (0.1, 7.5) 2.0 (1.3, 2.8) 2.4 (1.6, 3.5) 2.5 (1.8, 3.2) 2.5 (1.6, 3.4) 2.7 (1.9, 3.5)
37 >1 2.9 (1.8, 4.6) 3.8 (1.0, 11.7) 2.7 (1.9, 3.7) 3.2 (2.0, 5.0) 3.5 (2.7, 4.4) 3.4 (2.4, 4.4) 3.5 (2.5, 4.8)

estimates (MLEs) of branch lengths on the tree of
all species without assuming the clock (results not
shown) suggest that the seven outgroup species are very
distantly related to the ingroup species, and the ingroup
species evolve in a clock-like fashion. Thus we analyzed
two data sets. The first one includes the 38 Felidae species
as well as banded linsang (Prionodon linsang), with the six
other, more distant, outgroups excluded. The results ob-
tained from this data set under the independent rates
(clock 2) and correlated rates (clock 3) models are sum-
marized under the heading “39 species” in Table 3. All
16 calibrations of Johnson et al. (2006) are used. Fourteen
of the calibrations place minimal or maximal ages for
nodes on the ingroup tree and are shown in Fig. 7 and
Table 3. The calibration at node 4, a minimal age of 5 My,
is redundant as its daughter node (node 5) has a mini-
mal age of 5.3 My. Two additional calibrations specify
the minimal (28 My) and maximal (50 My) ages of the
ancestor of Prionodon linsang and the Felidae clade.

The second data set includes the 38 ingroup species
only, with all seven outgroup species excluded. Removal
of linsang means that we can use only the 14 calibrations
shown on Fig. 7 and Table 3. The results of this analy-

sis are summarized under the heading “38 species” in
Table 3.

The MCMC was run for 20,000 iterations, after a burn-
in of 500 iterations. For each analysis, the MCMC al-
gorithm was run at least twice using different starting
values to confirm convergence to the same posterior.
We used both the JC69 (Jukes and Cantor, 1969) and
HKY85+
5 (Hasegawa et al., 1985; Yang, 1994) substi-
tution models. They produced very similar estimates of
divergence times, even though the log likelihood under
HKY85+
5 is higher than under JC69 by more than 1200
units. Simultaneous use of multiple calibrations appears
to have made divergence time estimation rather robust to
the assumed substitution model. We present the results
under HKY85+
5 only. Under the global clock (clock 1),
the mean of the overall rate is 0.066 substitutions per
site per 108 years, with the 95% posterior CI to be (0.057,
0.082). The posterior means and 95% CIs for the substi-
tution parameters under HKY85+
5 are 3.70 (2.88, 4.07)
for κ and 0.22 (0.15, 0.51) for α.

We discuss the results from the 39-species data set first.
The time estimates obtained under the two relaxed-clock
models (clock 2 and clock 3) are similar, with the clock
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FIGURE 9. (a) The posterior means of divergence times estimated by Johnson et al. (2006) and in this study (38 species clock 3 in Table 3).
(b) The 95% posterior CI widths of divergence times calculated in the two studies.

3 estimates being slightly older. However, estimates of
ages for most nodes under both models are older than
those obtained by Johnson et al. (2006). For example,
the age of the ingroup root (node 1) is dated to 12.6
My with the 95% CI to be (9.6, 16.0) under clock 2 and
14.0 (10.1, 16.7) under clock 3. The corresponding es-
timates obtained by Johnson et al. are 10.8 (8.4, 14.5).
The CIs obtained under different models have similar
widths.

For the analysis of the data set of 38 ingroup species
only, we used the global clock model, in addition to the
independent rates (clock 2) and correlated rates (clock
3) models (Table 3). With only the ingroup species, the
molecular clock is not seriously violated. Indeed, these
three models produced very similar results. However,
all age estimates are older than those obtained from the
39-species data set and much older than estimates ob-
tained by Johnson et al. (2006), even though the 95%
posterior CIs overlap among the analyses. The poste-
rior means of divergence times obtained under the cor-
related rates model (clock 3) from the 38-species data set
in our analysis are about 1.426 times as old as those of
Johnson et al. (2006), with a strong correlation (r = 0.993)
between the two sets of estimates (Fig. 9a), indicating
systematic differences between the two analyses. No ap-
parent trend can be seen concerning the 95% CI widths,
apart from the fact that the CIs from our analysis assum-
ing soft bounds tend to be wider (Fig. 9b). The reasons
for the systematic differences between methods are not
clear. We speculate that the following factors may be im-
portant. First, species sampling appears to have a large
effect on time estimation in this data set, with inclusion of
outgroup species producing younger estimates for node
ages in the ingroup tree; time estimates obtained from
the 38-species data set are younger than those from the
39-species data set, which are in turn younger than those
from the complete data set of Johnson et al. (2006). We
note that the linsang sequence is very divergent from
all 38 ingroup sequences, while the other six outgroups

are even more divergent. Second, we used soft bounds
to specify fossil calibrations, while Johnson et al. (2006)
used hard bounds. Soft bounds may be advantageous
when not all fossil calibrations are reliable (Yang and
Rannala, 2006). Nevertheless, our incorporation of fos-
sil information at multiple calibration nodes does not
appear to deal properly with the inherent constraints on
node ages for ancestral and descendant nodes. See below
for an extensive discussion of the differences between
our implementation and that of Thorne et al. (1998) and
Kishino et al. (2001).

The widths of the 95% posterior CIs for the 37 node
ages are plotted against their posterior means in Fig. 8b.
Interestingly the relationship between the CI width and
posterior mean is approximately linear for small and
moderate values of node ages (<10 My), whereas for
older ages, the posterior CIs tend to be narrower than
expected by the linear relationship. For comparison, a
similar plot is shown in Fig. 8c using the prior 95% CI
widths and prior means.

DISCUSSION

There are a number of similarities between the algo-
rithm we have implemented here and the algorithm of
Thorne et al. (1998) and Kishino et al. (2001). Both use
geometric Brownian motion to model the change of evo-
lutionary rate to relax the molecular clock (although we
have implemented an independent rates model as well).
Both can analyze multiple genes or site partitions si-
multaneously while accounting for their differences in
evolutionary dynamics, and both accommodate missing
loci in some species. Both can also use multiple calibra-
tion points simultaneously, accommodating fossil uncer-
tainties through the use of prior distributions for node
ages.

There are also a number of differences between the two
implementations. Whether the differences are important
to posterior time estimation is not very clear and may
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depend on the number and nature of fossil calibrations,
the seriousness of violation of the molecular clock, etc.
Further tests using both real and simulated data sets are
needed to fully understand the effects of those factors
and the differences between the methods.

First, as discussed by Yang and Rannala (2006),
Thorne et al. (1998) used hard bounds for fossil calibra-
tions, while we implemented soft bounds and flexible
distributions to describe fossil uncertainties. Such
priors may prove useful for adequately incorporating
uncertainties in fossil ages (Tavare et al., 2002; Benton
and Donoghue, 2007). Fossil information appears to be
critically important to divergence time estimation, and
we expect that this difference in implementation may be
important in some data sets.

Second, the two programs differ in the likelihood cal-
culation. Thorne et al. (1998) used a two-step procedure
to calculate the likelihood approximately. The first step is
to calculate MLEs of the branch lengths on the unrooted
phylogeny including both ingroup and outgroup species
without assuming the clock. The variance-covariance
matrix for branch lengths in the rooted ingroup tree is
calculated, using the local curvature of the likelihood
surface. The second step uses an MCMC algorithm for
estimating divergence times on the rooted tree of the in-
group species, employing a multivariate normal density
of branch lengths to approximate the likelihood. When
the MLEs of some branch lengths are zero, as sometimes
occurs on a large phylogeny, the normal approximation
may not work well but, in general, the accuracy of the
approximation is not well understood. We instead use
a rooted tree for the ingroup only, without the need for
outgroups, and use the pruning algorithm of Felsenstein
(1981) to calculate the likelihood exactly. However, the
computational cost of our approach is much greater, and
our current algorithm does not appear computationally
feasible for data sets with >100 species. It will be inter-
esting to compare the two algorithms to assess the effects
of the approximate likelihood calculation.

Third, Thorne et al. (1998) used rates for branches
to implement the geometric Brownian motion model
of evolutionary rate drift, whereas Kishino et al. (2001)
formulated the model using rates for nodes. We used
rates for branches to remove a parameter (the rate at the
root) but properly accommodate the correlation of rates
between two daughter branches given the rate for the
mother branch. We suspect that this difference is tech-
nical and should have little effect on posterior time esti-
mation. We note that calculation of the average rate for
each branch is approximate in both algorithms; ideally,
the length of a branch should be calculated as an integral
over the sample path of the geometric Brownian motion
process, or otherwise calculation of the transition prob-
ability from one nucleotide to another along the branch
has to take explicit account of the fluctuating rate. In
addition to the autocorrelated rates model, we have im-
plemented a model of independent rates, which appears
to produce sensible time estimates and may be useful for
assessing the effect of the prior on rates on estimates of
divergence times.

Fourth, the two implementations used different priors
for divergence times for nodes with no fossil calibrations.
Kishino et al. (2001) used a recursive procedure, proceed-
ing from ancestral to descendant nodes. The age of the
root is assigned a gamma prior. Then a Dirichlet density
is used to break the path from an ancestral node to a tip
into time segments, corresponding to branches on that
path. The prior thus favors equally spaced branch time
lengths. We used the birth-death process with species
sampling (Yang, 1997) to specify the prior on times, cal-
culating the prior density analytically. Use of such an
analytically tractable prior enabled us to use flexible
prior information on fossil calibrations. The parameters
in the birth and death process, such as the speciation
rate, extinction rate, and sampling fraction, affect the
shape of the tree. By adjusting these parameter values,
the prior can generate trees of different shapes, including
bush-like trees with short internal branches as well as
trees with long internal branches, and may be useful for
assessing the influence of the divergence-time prior on
posterior time estimates.

A similar MCMC algorithm has recently been de-
scribed by Drummond et al. (2006), which incorporates
arbitrary prior distributions for fossils and allows the
evolutionary rate to drift over time. The variable-rates
models are implemented using discretization. The con-
tinuous distribution of branch rates is approximated us-
ing as many discrete rates as there are branches on the
tree. In the MCMC, two branches are chosen at random
with their rates switched. Additional proposals alter the
rates themselves. Technically, this does not appear to
be a correct implementation of the variable-rates mod-
els. Consider the rooted tree of two species with two
branches. Let the two possible rates from the discretized
distribution be r1 and r2. Under the independent rates
model, the following four rate assignments to the two
branches should have equal probabilities (1/4): r1r1, r1r2,
r2r1, r2r2, where rir j means that branch 1 has rate ri and
branch 2 has rate r j and so on. In the implementation of
Drummond et al., the combinations r1r1 and r2r2 are not
possible and only r1r2 and r2r1 are allowed, each assigned
equal probability (1/2). One effect of this implementation
is that a negative correlation between branch rates is in-
troduced into the prior so that the model tends to under-
estimate possible positive autocorrelations in rates across
branches. The effect should become minor in large trees
with many branches. At any rate, we suggest that inde-
pendent developments of multiple MCMC algorithms
are very important to furthering our understanding of
this complex estimation problem and will benefit empir-
ical biologists who are interested in applying such meth-
ods to estimation of species divergence times.

SOFTWARE AVAILABILITY

The MCMC algorithm described in this paper has been
implemented in the MCMCtree program in the PAML
package (Yang, 1997). The variable clock = 1, 2, 3 repre-
sents the global clock, independent rates, and correlated
rates models, respectively.
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