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Abstract

The multispecies coalescent provides an elegant theoretical framework for estimating species trees and species demograph-
ics from genetic markers. However, practical applications of the multispecies coalescent model are limited by the need to
integrate or sample over all gene trees possible for each genetic marker. Here we describe a polynomial-time algorithm that
computes the likelihood of a species tree directly from the markers under a finite-sites model of mutation effectively in-
tegrating over all possible gene trees. The method applies to independent (unlinked) biallelic markers such as well-spaced
single nucleotide polymorphisms, and we have implemented it in SNAPP, a Markov chain Monte Carlo sampler for inferring
species trees, divergence dates, and population sizes. We report results from simulation experiments and from an analysis of
1997 amplified fragment length polymorphism loci in 69 individuals sampled from six species of Ourisia (New Zealand native
foxglove).
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Introduction

Biallelic markers such as single nucleotide polymorphisms
(SNPs) and amplified fragment length polymorphisms
(AFLPs) are potentially rich sources of information about
species radiations, species divergences, and historical de-
mographics. However, extracting this information is not al-
ways straightforward. Patterns of genetic variation at these
markers are not just a product of the relationships between
the species; they also reflect inheritance patterns within
each species. Any full-likelihood (or full-Bayesian) method
for inferring species histories from genetic markers needs
to model the random distribution of gene tree histories for
each marker. To date, this task has often meant implement-
ing massive Monte Carlo simulation-based sampling of both
species trees and the gene trees at every locus (Rannala and
Yang 2003; Wilson et al. 2003; Hey and Nielsen 2007; Liu and
Pearl 2007; Heled and Drummond 2010).

In this paper, we describe an algorithm that allows
us to bypass the gene trees and compute species tree
likelihoods directly from the markers. The likelihood
values, or posterior probabilities, computed by the al-
gorithm are identical to those that would be obtained
by sampling every possible gene tree topology and every
possible set of gene tree branch lengths at each locus.
The algorithm makes use of new formulae for lineage
and allele probabilities under the coalescent and employs
recently developed numerical techniques (Sidje 1998;
Schmelzer and Trefethen 2007) to evaluate these formulae.

Our approach makes the following assumptions of the
data:

(A1) Each marker is a single biallelic character (e.g., a bial-
lelic SNP or AFLP banding pattern);

(A2) The genealogies for separate markers are condition-
ally independent given the species tree. In prac-
tice, this assumption applies to unlinked markers
or linked markers that have so little linkage that
they do not possess a discernible excess of linkage
disequilibrium.

This latter assumption is clearly not valid for sites in a
single-gene sequence. However, it is satisfied for SNPs that
are well spaced along the genome. If the independence as-
sumption (A2) is only partially violated, the effect of link-
age could be investigated by subsampling sets of markers
with varying degrees of independence. Even when there
is linkage between sites, treating the markers as indepen-
dent often still provides statistically responsible inferences
(Gutenkunst et al. 2009; RoyChoudhury 2011).

In principle, the full-likelihood methods of Liu and
Pearl (2007) and Heled and Drummond (2010), which
are designed primarily for linked sequence data, could
be applied to data satisfying assumptions (A1) and (A2)
by encoding each marker as a separate locus. This strat-
egy would quickly become computationally infeasible as
the number of markers increased. Nielsen et al. (1998)
demonstrated that a full-likelihood approach is tractable
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for data satisfying (A1) and (A2), presenting an algo-
rithm that uses biallelic characters directly to compute the
likelihood of the species tree, though their method was
computationally feasible only for small species trees. Roy-
Choudhury (2006) and RoyChoudhury et al. (2008) made a
substantial advance on the computational problem. They
took the approach of Nielsen et al. (1998) and placed it
within a dynamic programming framework, thereby giving
an efficient algorithm for computing the likelihood of a tree
with an arbitrary number of species.

The methods developed by Nielsen et al. (1998) and
RoyChoudhury et al. (2008) both make a significant and
mathematically convenient assumption about mutation.
Under their models, mutation can only occur within the
population at the root of the species tree. It cannot occur
within the populations represented by the branches of the
species tree. This assumption is reasonable when comparing
closely related populations for which recent mutations are
sufficiently rare that they can be ignored. It is less appropri-
ate when analyzing rapidly mutating markers or when com-
paring more distantly related populations or species.

Here, we extend the dynamic programming structure of
RoyChoudhury et al. (2008) to allow mutations within the
populations represented by the species tree. In many ways,
this is a more parsimonious model: The mutation model
in the root population is the same as the mutation model
used for the populations along the branches. We address the
algorithmic, mathematical, and computational challenges
resulting from this deceptively minor change in model
assumptions.

Our algorithm implements a “finite-sites” model for mu-
tation. Nielsen (1998) derived a recursion for computing the
likelihood of a tree under the “infinite-sites” model for mu-
tation. In general, the recursive formula has too many terms
to be evaluated directly, so a Markov chain Monte Carlo
(MCMC) method was used instead. However, if the data sat-
isfy (A1) and (A2), then the recursion described by Nielsen
(1998) can be evaluated efficiently using algorithms similar
to those described here.

One issue that arises when modeling mutation is that
some of parameters might not be identifiable from data. Un-
der the infinite-sites model and the “no-branch-mutation”
model of Nielsen et al. (1998) and RoyChoudhury et al.
(2008), the length of a branch in the species tree and the cor-
responding population size are confounded: Doubling the
effective population size has the same effect on the like-
lihood as halving the branch length. A similar issue arises
when inferring species trees from gene tree topologies with-
out branch lengths (Degnan and Salter 2005; Wu 2011). We
show that fully including mutations in the finite-sites model
permit the identification of both branch lengths (times) and
population sizes (θ), at least in situations where sufficiently
many mutations have occurred throughout the species tree.

The coalescent process is often viewed as a dual process
to the Wright–Fisher diffusion (Donnelly and Kurtz 1996),
and each has some practical advantages over the other.
Diffusion-based approaches for analyzing SNP data from
multiple populations have been proposed by Gutenkunst

et al. (2009) and Siren et al. (2010). The main difference
is that coalescent-based methods such as ours’ model the
history of the ancestral lineages, whereas diffusion-based
approaches model variation in the continuous allele fre-
quencies. In practice, it is not clear which approach is
preferable for a given data set: both require some level of
approximation and each has advantages and disadvantages
computationally.

We have implemented the new finite-sites model like-
lihood algorithm and incorporated it within a Bayesian
MCMC sampler, which we call SNAPP (“SNP and AFLP Phy-
logenies”). SNAPP, which interfaces with the BEAST package
(Drummond and Rambaut 2007), takes a range of biallelic
data types as input and returns a sample of species trees
with (relative) divergence times and population sizes. We
have tested and validated the algorithm and software using
a range of techniques, and we report results of several ex-
periments with simulated data. The software is open source
and is available for download from http://snapp.otago.ac.nz.

To illustrate the application of SNAPP, we analyze AFLP
loci in 69 individuals sampled from 6 species of New Zealand
Ourisia or native foxglove. The New Zealand Ourisia form a
relatively recent species radiation and inference of branch-
ing patterns between these species has proven difficult
(Meudt et al. 2009). Meudt et al. propose that the difficul-
ties are due in part to “incomplete lineage sorting,” which
occurs when the coalescence of lineages within species
predates the divergence of different species. Our Bayesian
analysis, which models lineage sorting explicitly, provides
a relatively clear picture of ancestral species relations in
the group and, up to a scale constant, effective population
sizes.

Materials and Methods

The Multispecies Coalescent
Our models are all based on the assumption that the lineage
dynamics within populations (or species) are well described
by the conventional Wright–Fisher model. The distribution
of the gene trees within each population is approximated by
the “coalescent process” (reviewed in Felsenstein 2004; Hein
et al. 2005; Wakeley 2009). This process models the number
of ancestral lineages of the sample from a single population
as a Markov process that goes backward in time. Initially, the
number of ancestral lineages equals the size of the sample.
Going backward in time (upward in a branch), lineages meet
at common ancestors, and the number of ancestral lineages
decreases.

It is customary in coalescent theory to rescale time in
terms of effective population size, so that two lineages co-
alesce at rate 1. This rescaling is not generally possible in
the multispecies coalescent since different species can have
different effective population sizes. Instead, we adopt the
standard practice from phylogenetics and rescale time in
terms of expected mutations (as in Rannala and Yang 2003).
Hence, the expected time to a coalescence for two lineages
is θ/2 and the expected time to a coalescence for k lineages
is θ/[k(k − 1)], where θ denotes the expected number of
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mutations separating two randomly chosen individuals in
the population.

At the first coalescent event, two lineages are selected at
random and combined, and we are left with k − 1 lineages.
This coalescence of lineages continues until the top of the
branch is reached, at which anywhere from 1 to k lineages
could be present.

The nodes in the species tree represent species diver-
gences or population splits. The individuals in each of the
child populations are descendants of individuals in the par-
ent population. In terms of the coalescent process, the lin-
eages coming upward from the child population become
lineages at the base of the parent population. This pro-
cess continues upward in the species tree until the species
tree root is reached. At that point, any remaining lin-
eages coalesce according to the standard single-population
coalescent model.

See Felsenstein (2004), Degnan and Rosenberg (2009),
and Heled and Drummond (2010) for general introductions
to the multispecies coalescent. Early contributions to the
development of multispecies models built on the branches
of a species tree were made by Hudson (1983), Tajima
(1983), Takahata and Nei (1985), Nei (1987), Pamilo and Nei
(1988), and Takahata (1989).

The multispecies coalescent determines a distribution for
gene trees and their branch lengths, conditional on a species
tree. The parameters of the distribution are the shape of the
species tree, the divergence times within the species tree,
and the population sizes along the branches of the species
tree (one parameter for each branch). We bundle these pa-
rameters into the single composite parameter S, so that the
probability of a gene tree G given the species tree is P(G|S).
We treat this quantity as a density rather than a discrete
probability because of the continuous branch lengths of G.

Let X denote the alignment of sequences for a locus. Con-
ventional phylogenetic models (e.g., Felsenstein 2004) give
us the probability that X evolved along a specified gene tree
G. These models provide the distribution of states at the
root and the mutation probabilities down the edges of the
tree. Accordingly, they determine P(X|G), the probability of
the data (alignment) given the gene tree. Note that once the
gene tree is chosen, the species tree has no further influence
on the probability of the data.

Putting P(G|S) and P(X|G) together, we obtain the
“joint” probability (or density) of the alignment X and the
gene tree G:

P(X, G|S) = P(X|G)P(G|S). (1)

The gene tree G is not observed directly and it can be dif-
ficult to estimate. Since our focus is on the species tree and
the features of the species tree, we work with the “marginal”
probability of the data. Let Ψ denote the set of all possi-
ble genealogies for the individuals incorporating both the
topologies and branch lengths. The marginal probability for
the data is then found by integrating over Ψ:

P(X|S) =

∫

Ψ

P(X|G)P(G|S)dG. (2)

Equation (2) is sometimes called the “Felsenstein equa-
tion” (Felsenstein 1988; Rosenberg and Nordborg 2002; Hey
and Nielsen 2007).

Generally, we consider multiple genetic markers. We as-
sume that the gene trees for separate markers are indepen-
dent (given the species tree). Let Xi be the alignment for
the ith gene and let Gi be a corresponding gene tree. Un-
der the independence assumption, the total probability of
the m alignments at m genes is a product over all the genes:

P(X1, X2, . . . , Xm|S) =
m
∏

i=1

P(Xi|S)

=
m
∏

i=1

∫

Ψ

P(Xi|Gi)P(Gi|S)dGi.

(3)

If we were to plug this formula into a Bayesian analysis, we
would specify a prior distribution P(S) on the species trees
and then sample from the posterior distribution

P(S|X1, . . . , Xm) ∝

(

m
∏

i=1

∫

Ψ

P(Xi|Gi)P(Gi|S)dGi

)

P(S).

(4)
Sampling from P(S|X1, . . . , Xm) is equivalent to sampling

from the joint posterior distribution

P(S, G1, . . . , Gm|X1, . . . , Xm) ∝

(

m
∏

i=1

P(Xi|Gi)P(Gi|S)

)

P(S)

(5)

and only considering the marginal distribution of the species
trees S. This is the approach taken by BATWING (Wilson et
al. 2003), BEST (Liu and Pearl 2007), and STAR-BEAST (Heled
and Drummond 2010), among others. Note that if the actual
gene trees Gi are provided or if they can be inferred with high
accuracy, they can be treated as data and the species tree
can be inferred directly (Degnan and Salter 2005; Kubatko
et al. 2009).

At this point, it is appropriate to reflect on what exactly
is required when applying equations (3) or (4) to large num-
bers of unlinked biallelic markers. To evaluate the likelihood
exactly, we would need to sum (or integrate) over all pos-
sible gene trees of all loci. In a Bayesian setting, we would
need to sample over a space containing not only every pos-
sible choice of species tree but also every possible choice of
gene tree for every locus. Furthermore, the marginal proba-
bilities for the gene trees depend not only on the data but
also on the species tree, and so the analyses for the sepa-
rate genes are all interdependent. An analysis of 1,000 in-
dependent loci then amounts to 1,001 interlinked Bayesian
analyses (1,000 gene trees and one species tree). Even with
modern Monte Carlo algorithms, this scale of this analysis is
computationally daunting.

Overview of the Likelihood Algorithm
We circumvent these computational difficulties by calculat-
ing the integral in equation (3) analytically. In the follow-
ing sections, we describe a pruning algorithm that we use to
compute the likelihood of a species tree given genotype data
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at unlinked biallelic markers. The algorithm works in a sim-
ilar manner to Felsenstein’s pruning algorithm (Felsenstein
1981) for computing the likelihood of a gene tree: we define
partial likelihoods that focus only on a specific subtree; the
partial likelihoods are then computed starting at the leaves
(of the species tree), working upward to the root.

There are two major differences. In Felsenstein’s pruning
algorithm, one partial likelihood is defined for every node
and every state (i.e., amino acid or nucleotide). In our algo-
rithm, we have separate partial likelihoods for the top and
bottom of each branch in the species tree, for every possi-
ble number of ancestral lineages at each point, and for every
possible count of the number among these lineages carrying
each allele.

Second, we need to deal with the complication that the
coalescent process works backward in time (and is not re-
versible), whereas the mutation process works forward in
time. We were not able to define a simple transition process
taking numbers of ancestral lineages to numbers of descen-
dant lineages. Instead, we first compute probability distribu-
tions for the numbers of ancestral lineages at each node in
the species tree. We then define partial likelihoods for sub-
trees in the species tree and derive the equations required
to compute them efficiently. Finally, we show how to handle
the probabilities at the root of the species tree when com-
puting the full probability of the genotype data of a marker.

We orient trees so that the ancestral nodes are at the top
and time travels downward. Thus, the base of a branch in the
species tree corresponds to the population at the time near-
est to the present, whereas the top of a branch corresponds
to the population just after it has diverged from its ances-
tral population. In a similar fashion, the genotypic state in a
gene tree evolves from the top of the gene tree (the com-
mon ancestor) downward to the leaves.

Red and Green Alleles
The multispecies coalescent model for the evolution of
markers (SNPs, AFLPs etc.) has two components: the model
for the gene trees in the species tree and the model for the
markers evolving down the gene tree (i.e., forward in time).
The model for gene trees uses a coalescent process that
works backward in time, whereas the mutation model for
genetic markers (SNPs, AFLPs, etc.) typically works forward
in time.

Given a gene tree with branch lengths specified, we
model the evolution of a genetic marker using standard
phylogenetic machinery. Suppose that there are two alleles,
which for ease of illustration we label “red” and “green.” Let
u be the rate of mutation from the red allele to the green
allele per unit time (forward in time), and let v be the cor-
responding rate of mutating from green to red. We say that
a lineage is a red lineage if it has the red allele and a green
lineage otherwise.

The allele of the most recent common ancestor at the
root of the gene tree is red with stationary probability
v/(u + v) and green with probability u/(u + v). The
marker evolves down the gene tree as a continuous-time
Markov chain whose instantaneous rate matrix has rate u

of mutating from red to green and rate v for mutating from
green to red. The alleles at the leaves of the gene tree are
then the observed alleles. The probability of the allele fre-
quencies at a marker, given the species tree, is therefore the
probability of the site given a gene tree multiplied by the
probability of the gene tree given the species tree, summed
over all possible gene tree topologies and integrated over all
possible gene tree branch lengths (eq. [3]).

Ancestral Lineage Counts and the Likelihood
The multispecies coalescent can be used to generate a ran-
dom gene tree conditional on a species tree. If we take any
node or point in the species tree, we can count the number
of lineages in the gene tree in that species at that point in
time. We say that at a specified time point, this quantity is
the number of “ancestral lineages.” The count of ancestral
lineages is a random variable with distribution determined
by the multispecies coalescent process and its resulting
distribution of gene trees. The first step in our likelihood
algorithm is the calculation of these lineage count distribu-
tions. See RoyChoudhury et al. (2008) and Efromovich and
Kubatko (2008) for similar computations.

Let x be a branch (i.e., ancestral species) in the species
tree. Let nB

x denote the number of gene tree lineages at the
base of the branch x. Let nT

x denote the number of ancestral
lineages at the top of the branch and let t be the length of the
branch, measured in units of expected number of mutations
(see fig. 1). The minimum possible value for nB

x and nT
x is 1,

whereas the maximum possible value is the total number
of individuals sampled in populations at or below x, a quan-
tity that we denote by mx. The distribution of nT

x given nB
x is

given by the probability in the standard coalescent model of
going from n ancestors to k ancestors over time t (measured
in units of expected mutations):

Pr[nT
x = k|nB

x = n]

=
n
∑

r=k

e
−r(r−1)t

θ
(2r − 1)(−1)r−kk(r−1)n[r]

k!(r − k)!n(r)

, (6)

where n[r] = n(n − 1)(n − 2), . . . , (n − r + 1) and n(r) =
n(n + 1), . . . , (n + r − 1) (Tavaré 1984).

When x is an “external” branch (adjacent to a leaf) in
the species tree, nB

x equals the number of samples from the
species corresponding to that branch. Let nx denote this
number of samples. Then

Pr[nB
x = n] =

{

1 if n = nx,

0 otherwise.
(7)

Suppose that x is an internal or external branch in the
species tree. Let mx denote the maximum possible value for
nB

x or nT
x , equal to the total number of sampled individuals

summed across populations at or below x in the species tree.
Suppose that Pr[nB

x = k] has been computed for all k from
1 to mx. The distribution of nT

x is determined by the value of
nB

x using the conditional probabilities in equation (6):

Pr[nT
x = n] =

mx
∑

k=n

Pr[nB
x = k] Pr[nT

x = n|nB
x = k]. (8)
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FIG. 1. Gene trees in species trees. Each branch in the species trees corresponds to a species that is either contemporary (A,B,C) or ancestral ( x, y).

The present-day samples are represented by green (solid) and red (hollow) squares along the lower edge of the tree. The red (dashed) and green

(solid) lines trace out two possible gene trees for these individuals, the red–green coloring indicating which allele is carried by a lineage at any

particular time. The random variables nB
x and rB

x equal the number of lineages and the number of red lineages, respectively, at the bottom of the

branch for ancestral species x. The corresponding values at the top of this branch are denoted nT
x and rT

x , respectively.

Now suppose that x is an internal branch in the species
tree and that branches y and z are attached to the base of
branch x. There is no time for coalescent events between the
tops of the branches y and z and the bottom of the branch
above x. Hence, nB

x = nT
y + nT

z and

Pr[nB
x = n] =

n
∑

k=0

Pr[nT
y = k] Pr[nT

z = n − k]. (9)

Equations (7)–(9) together provide a method for com-
puting Pr[nB

x = n] for all nodes x in the species tree and
all n > 1. In our implementation, the nodes are visited in
a “postorder traversal” in order from the leaves up to the
root, so that a node is always visited after the required prob-
abilities for the children have already been computed. When
considering a branch attached to a leaf in the species tree,
we use equation (7) to compute Pr[nB

x = n] for all n and
equation (8) to compute Pr[nT

x = n] for all n. At an internal
branch, we use equation (9) to compute Pr[nB

x = n] for all
n and equation (8) to compute Pr[nT

x = n] for all n.

Computing the Partial Likelihoods
We now introduce mutation. We associate the two colors
red and green to the two alleles and color each branch of
the gene tree according to the allele state along the branch.
Hence, a gene tree node will be red or green, depending on
whether the corresponding lineage carries a red or green al-
lele at that point. A mutation along a lineage is represented
by a change in color along the branch, and a branch can have
multiple color changes.

Recall that nB
x denotes the number of gene tree lineages

at the bottom of a particular branch x in the species tree. We
let rB

x denote the number of these lineages that carry the red
allele at that point, so that 0 6 rB

x 6 nB
x . In the same way, we

let rT
x denote the number of lineages carrying the red allele

at the top of the branch x, so that 0 6 rT
x 6 nT

x .

Let rz denote the number of red alleles set observed in
the species associated with an external branch z. Our objec-
tive is to compute the joint probability of (rB

z = rz) over all
leaves z in the species tree, conditional on the species tree,
sample sizes, and model parameters. To this end, we define a
“partial likelihood” equal to the corresponding conditional
likelihood for a subtree of the species tree. Let Rx denote
the event that (rB

z = rz) holds for every external branch z

that is a descendant of branch x in the species tree. That is,
Rx is shorthand for the event that the allele counts below
x correspond to those observed in the data for a single ge-
netic marker. For every node x of the species tree, and every
choice of n and r, we define

FB
x(n, r) = Pr[Rx|n

B
x = n, rB

x = r] Pr[nB
x = n] (10)

and

FT
x (n, r) = Pr[Rx|n

T
x = n, rT

x = r] Pr[nT
x = n]. (11)

We will see that the values FB
x(n, r) and FT

x (n, r) can be
computed by starting at the leaves and working upward
toward the root, just as in Felsenstein’s pruning algorithm.
Furthermore, when x is the root of the tree, the proba-
bility for the entire marker can be determined from the
values of FB

x(n, r). Technically speaking, FB
x(n, r) is not a par-

tial likelihood; rather, it is the product of a partial likelihood
(Pr[Rx|n

B
x = n, rB

x = r]) and a probability (Pr[nB
x =

n]). This latter term simplifies the mathematics further on
and makes the computation more numerically stable. In
the same way, FT

x (n, r) is the product of a partial likelihood
(Pr[Rx|n

T
x = n, rT

x = r]) and a probability (Pr[nT
x = n]).

We will show that these quantities can be computed using
dynamic programming and that they can then be used to
compute the probability of the marker.

We note that the computation can be extended to mul-
tifurcating species trees by converting a multifurcating tree
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into a bifurcating tree. This extension is performed by re-
placing any multifurcation with a series of bifurcations, all
separated by branches of length 0. The probabilities of the
marker will be unchanged.

Partial Likelihoods for a Leaf

The simplest case for computing the partial likelihood is
when the branch x is attached to a leaf (that is, when x is
external). The number of samples from the associated
species is nx, and the number of individuals carrying the red
allele is rx. Hence,

FB
x(n, r) =

{

1 if n = nx and r = rx,

0 otherwise.
(12)

Partial Likelihoods along a Branch

Let y be a branch for which FB
y(nb, rb) has already been com-

puted for all nb and rb. We carefully manipulate the condi-
tional probabilities to obtain an expression for FT

y (nt, rt). As
before, we let my denote the number of individuals sampled
from species at or below y. Starting with the definition of FT

y ,
we have

FT
y (nt, rt)

= Pr[Ry|n
T
y = nt, rT

y = rt] Pr[nT
y = nt]

=

my
∑

nb=nt

nb
∑

rb=0

Pr[nT
y = nt]

× Pr[Ry|n
T
y = nt, rT

y = rt, nB
y = nb, rB

y = rb]

× Pr[nB
y = nb, rB

y = rb|n
T
y = nt, rT

y = rt]. (13)

We now use the fact that Ry is conditionally independent
of nT

y and rT
y given nB

y and rB
y , so that Pr[Ry|n

T
y , rT

y , nB
y , rB

y ] =
Pr[Ry|n

B
y , rB

y ], and

FT
y (nt, rt) =

my
∑

nb=nt

nb
∑

rb=0

Pr[Ry|n
B
y = nb, rB

y = rb]

× Pr[nB
y = nb, rB

y = rb|n
T
y = nt, rT

y = rt]

× Pr[nT
y = nt]

=

my
∑

nb=nt

nb
∑

rb=0

FB
y(nb, rb)

Pr[nB
y = nb]

× Pr[nB
y = nb, rB

y = rb|n
T
y = nt, rT

y = rt]

× Pr[nT
y = nt].

After rearranging the conditional probabilities, we have

Pr[nB
y , rB

y |n
T
y , rT

y ] = Pr[rB
y |n

B
y , nT

y , rT
y ] Pr[nB

y |n
T
y , rT

y ],

which simplifies to Pr[rB
y |n

B
y , nT

y , rT
y ] Pr[nB

y |n
T
y ], as the num-

ber of red lineages at the top of the branch (rT
y ) is condi-

tionally independent of the number of red lineages at the
bottom (rB

y ), given the total number of lineages at the top
(nT

y ). Applying Bayes rule

Pr[nB
y |n

T
y ]

Pr[nT
y ]

Pr[nB
y ]

= Pr[nT
y |n

B
y ],

we obtain

FT
y (nt, rt) =

my
∑

nb=nt

nb
∑

rb=0

FB
y(nb, rb)

× Pr[rB
y = rb|n

B
y = nb, nT

y = nt, rT
y = rt]

× Pr[nT
y = nt|n

B
y = nb]. (14)

The term Pr[nT
y = nt|n

B
y = nb] is evaluated using

equation (6) above. Computing Pr[rB
y |n

B
y , nT

y , rT
y ] is more in-

volved. In the special case that u = v = 0 a closed-form
expression exists for this probability (Slatkin 1996). To our
knowledge, a closed-form expression in the general case has
not previously been derived. We express this probability us-
ing a matrix exponential.

Define the matrix Q with rows and columns indexed by
pairs (n, r) and entries given by

Q(n,r);(n,r−1) = (n − r + 1)v, 0 < r 6 n,

Q(n,r);(n,r+1) = (r + 1)u, 0 6 r < n,

Q(n,r);(n−1,r) =
(n − 1 − r)n

θ
, 0 6 r < n, (15)

Q(n,r);(n−1,r−1) =
(r − 1)n

θ
, 0 < r 6 n,

Q(n,r);(n,r) = −
n(n − 1)

θ
−(n − r)v − ru, 0 6 r 6 n.

All other entries in the matrix are 0. Here, n ranges from 1
to the number of individuals sampled, whereas for all n, we
have 0 6 r 6 n. Hence,Q has

m
∑

n=1

(n + 1) =
1

2
m(m + 3)

rows and columns. We useQ(n,r);(n′ ,r′) to denote the entry of
Q in the row corresponding to pair (n, r) and column cor-
responding to pair (n′, r′). We note that Q is not the gen-
erator of a process, and the connection with the coalescent
and mutation processes is somewhat indirect. The most im-
portant feature (and justification) of the matrix is its role in
computing the conditional allele probabilities required for
the partial likelihoods.

Suppose that nB individuals are sampled from a Wright–
Fisher population. Let nT denote the number of ancestral
lineages at some time t in the past, and let rT be the number
of these lineages that carry the red allele at that time. In the
appendix, we use a result of Griffiths and Tavare (1997) to
show that

Pr[rB = r|nB = n, n
T = nt , r

T = rt] =
exp(Qt)(n,r);(nt ,rt)

Pr[nT = nt|nB = n]
.

(16)

Substituting equations (16) into (14), we can compute the
values for FT

y (nt, rt) at the top of the branch given the re-
spective values for FB

y(nb, rb) at the bottom of the branch.

Partial Likelihoods at a Speciation

Suppose that a branch x represents a population that di-
verges into two populations, corresponding to branches y

and z. Each of the n lineages at the bottom of branch x came
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up either from the top of branch y or from the top of branch
z. If ny is the number that came up from branch y, then n−ny

is the number from branch z. The conditional joint distribu-
tion of nT

y and nT
z is then

Pr[nT
y = ny, nT

z = n − ny|n
B
x = n]

= Pr[nT
y =ny] Pr[nT

z =n−ny]

Pr[nB
x =n]

(17)

and is computed using equations (7), (8), and (9). Assuming

nB
x = n and rB

x = r we have that the conditional distri-

bution of red allele counts is given by the hypergeometric

distribution:

Pr[rT
y = ry, rT

z = r − ry|n
T
y = ny, nT

z = n − ny] =

(

ny

ry

)(

n−ny

r−ry

)

(

n
r

) .

(18)

The value of ny can range from ny = 1 (one lineage com-
ing from branch y) to ny = n−1 (all but one lineage coming
from branch y). Combining equations (17) and (18), sum-
ming over ny and ry, and applying equations (10) and (11),
we obtain

FB
x(n, r) =

(n−1)
∑

ny=1

r
∑

ry=0

FT
y (ny, ry)FT

z (n− ny, r− ry)

×

(

ny

ry

)(

n−ny

r−ry

)

(

n

r

) . (19)

This equation gives the joint probability of the allele
counts in the subtree below branch y and the subtree be-
low branch z, conditional on the sum of the lineage counts
equalling n and the sum of the red lineage counts equalling
r. Note, however, that the way we have defined FT

y (n, r) and
FT

z (n, r) means these quantities are not partial likelihoods
as they also include the lineage count probabilities at the
nodes (see equations [10] and [11]).

Root Probabilities
Let ρ denote the root of the species tree. The probability of
the observed data at a genetic marker, conditional on the
species tree and model parameters, is

Pr[Rρ] =

mρ
∑

n=1

n
∑

r=0

Pr[Rρ|n
B
ρ

= n, rB
ρ

= r] Pr[nB
ρ

= n]

× Pr[rB
ρ

= r|nB
ρ

= n]

=

mρ
∑

n=1

n
∑

r=0

FB
ρ
(n, r) Pr[rB

ρ
= r|nB

ρ
= n]. (20)

Here, mρ is the total number of individuals sampled. The
value for the probability Pr[rB

ρ
= r|nB

ρ
= n] depends on

the choice of assumptions about what happens in the pop-
ulation above the root.

Using diffusion models, it can be shown that the allele
frequencies in a single population have approximately a
beta distribution (see, e.g., Ewens 2004, p. 174), and this
is the distribution used for the root allele probabilities in
RoyChoudhury et al. (2008). Here, we use the formulae for

these probabilities under the coalescent model derived by
Sawyer et al. (1987), Lundstrom (1990), and Griffiths and
Tavare (1997), simplified to the case of biallelic markers. Let
N and R be the (random) numbers of lineages and red lin-
eages sampled from a single population of constant size. Let
Q be the matrix defined in equation (15) and let x be be the
nonzero solution for Qx = 0 such that x(1,0) + x(1,1) = 1.
The vector x is indexed by pairs in the same way asQ. Then,
Pr[R = r|N = n] = x(n,r) for all n and r. The matrix Q
is highly structured, and x can be computed using a simple
recurrence in O(m2) time, where m is the maximum value
for n.

Dominant Markers
AFLPs are dominant markers: heterozygotes cannot be dis-
tinguished from homozygotes for the dominant band, an is-
sue that creates statistical difficulties (Lynch and Milligan
1994; Krauss 2000). We can include dominance explicitly
within the likelihood calculation. Consider a biallelic locus
for which the red allele is dominant. Given a sample of n

diploid individuals from the population at leaf x, we consider
the allele counts within the sample of 2n chromosomes.
Suppose that there are r chromosomes with the red allele
and rx individuals with at least one copy of the red allele. It
follows that exactly r− rx of the individuals will be homozy-
gotes for the red allele and 2rx− r will be heterozygotes. The
remainder will be homozygotes for the green allele. Hence,
the number of ways of distributing the r red alleles among
the 2n chromosomes so that exactly rx individuals have at
least one red copy is

n!

(r − rx)!(2rx − r)!(n − rx)!
22rx−r.

The exponential term, 22rx−r, results from the two ways
that the red allele can be assigned in each of the 2rx − r

heterozygotes. The probability that one of the
(

2n

r

)

ways of
assigning r alleles to the 2n chromosomes gives rx individuals
with at least one copy is then

Pr[Rdom
x = rx|Rx = r]

=
n!

(r − rx)!(2rx − r)!(n − rx)!
22rx−r

(

2n

r

)

−1

,

where Rdom
x is the observed number of individuals with

at least one red allele in the population corresponding to
leaf x.

To analyze dominant markers in SNAPP, we need only
make two changes to the likelihood algorithm described
above. First, the sample size for each population is doubled
to reflect the fact that we are counting each chromosome
as an individual. Second, the likelihood calculation for a leaf
is modified. Suppose that the number of individuals from
the associated species is nx and the number of individuals
carrying at least one copy of the red allele is rx. Then

F
B
x (n, r) =















n!
(r−rx)!(2rx−r)!(n−rx)!

22rx−r
(

2n
r

)

−1
if n = 2nx

and rx 6 r 6 2rx

0 otherwise.
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FIG. 2. High-level outline of the algorithm to compute the log-likelihood of a set of unlinked biallelic markers, given the species tree. A branch x

in the species tree is external if it is adjacent to a leaf; otherwise, it is internal. In equations (9) and (19), we use y and z to denote the branches

attached to the base of branch x.

Below we explore the effect of including, or ignoring, this
correction for dominant markers.

Time Complexity
Figure 2 gives a high-level description of the algorithm for
computing the likelihood of a species tree given a collection
of unlinked biallelic markers. The time complexity of the al-
gorithm is dominated by two calculations. The first is the
evaluation of FB

x(n, r) for all n, r using equation (19). A direct
implementation of the formula would require O(n4) time
per marker, per branch in the species tree, where n is the
number of individuals sampled. However, the application of
two-dimensional convolution algorithms reduces this com-
plexity to O(n2 log n) by using the fast Fourier transform
(see Bracewell 2000).

The second time-consuming calculation is the compu-
tation of exp(Qt), which is required for the application
of equation (14). We found that standard diagonaliza-
tion techniques were both computationally expensive and
numerically unstable. Instead, we use the fact that after
rearranging equation (14), we only need to be able to
evaluate exp(Qt)v for different vectors v. For this compu-
tation, we implemented a Carathéodory-Fejér approxima-
tion based on Schmelzer and Trefethen (2007) that runs in
O(n2) time per species tree node. To check numerical ac-
curacy, we also implemented the expokit algorithm of Sidje
(1998), which is slower than the method of Schmelzer and
Trefethen (2007) but has more numerical safety checks.

In summary, the time complexity of our likelihood
calculation, per marker, is O(sn2 log n), where n is the num-
ber of individuals and s is the number of species. We im-
plemented a dynamic cache-based system to store partial
likelihood values for different subtrees and multithreading
to take advantage of parallel computation on multiple core
machines or graphics processing units.

The SNAPP Sampler
We implemented our likelihood algorithm as the core of an
MCMC software package SNAPP, which takes biallelic data

(e.g., SNPs or AFLP) at multiple loci in a set of species and
returns samples from the joint posterior distribution of

1. species phylogenies,
2. species divergence times,
3. effective population sizes at the root and along each

branch of the species tree.

Note that our method does not sample gene trees; it only
samples the species tree and its parameters.

The software is open source and is available for download
from http://snapp.otago.ac.nz.

We have implemented a range of simple priors in the
SNAPP package.

1. The stationary allele proportions are fixed at the ob-
served proportions of red and green alleles in the data.
In our experience, the posterior distribution of these pa-
rameters was tightly peaked at the observed value. These
observed proportions also determine mutation rates u

and v since we measure time in units of expected muta-
tions. The user can also specify different values for the al-
lele proportions or allow these to be sampled within the
MCMC.

2. Following Drummond and Rambaut (2007), we assume a
pure birth (Yule) model for the species tree topology and
species divergence times, with a hyperparameter λ equal
to the birth rate of the species tree. This hyperparameter
is either fixed or allowed to vary with an improper uni-
form hyperprior.

3. Following Rannala and Yang (2003), we use independent
gamma prior distributions for the population size param-
eters θ. We use fixed values for the shape α and inverse
scale β parameters for the gamma distribution.

Later, we tabulate the parameters for the prior distribu-
tions that we used for simulations and for the analysis of the
Ourisia data.

SNAPP gives the user a great deal of control over the exact
combinations of priors and prior parameters used. A wide
range of distributions is available for the model parameters,
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and it is relatively straightforward to implement new prior
distributions.

The MCMC proposal functions implemented in SNAPP
are standard and are a subset of those available in BEAST
(Drummond and Rambaut 2007) when sampling from
molecular clock trees. Briefly, we implemented moves that
raise or lower single nodes in the species tree, a move that
swaps subtrees in the species tree, moves that alter θ values
for single or multiple populations, and several moves that al-
ter branch lengths and θ values simultaneously. See Drum-
mond et al. (2002) for a detailed discussion of these moves,
and Huelsenbeck et al. (2001) for a general overview of the
use of MCMC methods to sample phylogenies. The SNAPP
manual provides the most up-to-date list of MCMC propos-
als available.

The execution of the MCMC, and outputs, is con-
trolled via a BEAST-style XML-file, which can be con-
structed using a graphical user interface. The user has the
option of outputting a range of parameters and statis-
tics computed from the Markov chain; many more are
available by passing the output tree files through Tree-
Stat (http://tree.bio.ed.ac.uk/software/treestat/). Conver-
gence can be assessed for several statistics (e.g., likelihood
values, tree length, tree height, and summary θ values) visu-
ally using Tracer (Rambaut and Drummond 2007) on multi-
ple chains and using the Gelman–Rubin diagnostic (Gelman
and Rubin 1992). Credibility sets are determined by rank-
ing the topologies in the sample by decreasing sample fre-
quency, and keeping as many trees as were necessary to
obtain a total of 95% of the sample (after burn-in).

In principle, the model implemented in SNAPP can iden-
tify both divergence times and population sizes, parame-
ters that are confounded in the models of Nielsen et al.
(1998) and RoyChoudhury et al. (2008). However, care must
be taken when interpreting the estimated θ values. If the
amount of mutation is low, the data will satisfy the as-
sumptions underlying the model of Nielsen et al. (1998) and
RoyChoudhury et al. (2008), making the absolute θ values
nonidentifiable. In these situations, scaling the divergence
times and θ values by the same amount makes little or no
change to the likelihood, and apparent precision in the es-
timates could be due to the prior rather than the data. For
this reason, we recommend performing an additional anal-
ysis using modified priors for the tree height and θ values,
so that their prior expectations are either both increased
or reduced. We do this for our simulations and the Ourisia

analysis.

Simulations
We have tested the likelihood algorithm and the SNAPP
software extensively. The likelihood algorithm and sampler
were originally implemented in C++ and reimplemented in
Java. Core calculations, such as those required to apply equa-
tion (16), were independently reimplemented and tested
in MATLAB. The likelihood values returned by the algo-
rithm for two species and a small number of individuals
were identical to those obtained analytically from gene tree
probabilities.

We have implemented a simulator called SimSNAPP that
generates polymorphic biallelic markers on a species tree
according to the multispecies coalescent. Internally, Sim-
SNAPP generates a gene tree within the species tree and
then evolves the marker along that gene tree. If the marker is
not polymorphic, both gene tree and marker are discarded.
We note that MCMC-COAL (Rannala and Yang 2003) and
Mesquite (Maddison WP and Maddison DR 2010) could also
have been used to generate gene trees, though the fact that
most gene trees are discarded made it more efficient for us
to combine gene tree simulation and character simulation
within a single program.

Simulation is a blunt tool for analyzing and comparing
methods of inference, particularly in a context like this one
where the parameter space for the model is large and com-
plex. Here, we use simulation fairly conservatively. First, we
run a check that when used as a means to infer species
tree topologies, SNAPP returns a credibility set containing
the tree used to simulate data. A failure to do this would
indicate problems with the likelihood algorithm or imple-
mentation. In our second experiment, we demonstrate by
example that SNAPP, in at least one case, is able to infer ab-
solute θ values and divergence times. This ability represents
a qualitative difference between SNAPP and the methods of
Nielsen et al. (1998) and RoyChoudhury et al. (2008). A more
difficult and complex problem, and one beyond the scope of
this paper, would be to properly characterize the situations
in which the θ values can be reliably inferred.

In our simulations, we began with the two four-species
trees and two eight-species trees used in simulation experi-
ments of Liu and Pearl (2007) (fig. 3). Two of the trees were
classified as “hard” due to a short internal branch that would
be difficult to resolve: We would expect to need more indi-
viduals or more markers to accurately infer these trees. We
used the same θ values as Liu and Pearl (2007) for all internal
branches and θ = 0.006 for the root and external branches.
The average θ values over all populations in these four trees
are (A) 0.0060, (B) 0.0057, (C) 0.0061, and (D) 0.0047. The re-
spective tree heights are (A) 0.024, (B) 0.014, (C) 0.018, and
(D) 0.018 expected mutations per site.

Ability to Recover the Species Tree

We tested whether, as the number of sites increased, the
species tree used to generate data appeared in the credibil-
ity set produced by SNAPP. This experiment tests the likeli-
hood algorithm and the sampling algorithm simultaneously.
As the number of sites increases, the likelihood function
should concentrate around the true value (assuming iden-
tifiability) and, consequently, so should the posterior distri-
bution. We also ran SNAPP with four choices of prior. For
the θ values, we considered a “correct” prior with expecta-
tion close to the values used in simulation and an “incorrect”
prior with values averaging 10% of the true values. In the
same way, we considered a “correct prior” value for the spe-
ciation rate λ in the Yule model giving expected tree heights
roughly equal to the tree heights of the simulated trees as
well as an incorrect prior value for λ giving tree heights of
around 50% of the true value. The parameter values used
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FIG. 3. Species trees used for simulations. These trees are identical to those used by Liu and Pearl (2007) to assess the reconstruction of species trees

from known gene trees. θ values are indicated on the tree, and branch lengths are drawn to scale with respect to expected number of mutations

(scale bar at base of figure). All external branches have θ = 0.006. Branch lengths are drawn to scale to depict times (not θ values). (A) A “hard”

four-taxa tree, the difficulty stemming from the short branch separating taxa A and B from C. (B) An “easy” four-taxon tree. (C) A hard eight-taxon

tree, made difficult by the two short branches. (D) An easy eight-taxon tree.

for the priors are summarized in table 1. Chains were started
from random trees and initial parameter values drawn from
the prior, with chain lengths of 200,000 for the four-taxon
case and 400,000 for the eight-taxon case, these lengths be-
ing determined by convergence tests on preliminary runs.
For this experiment, we sampled only one individual per
species. All simulations were run using an Opteron 24-core
computer.

To examine the effect of correcting for dominant mark-
ers, we repeated the experiment using simulated dominant
markers and ran SNAPP both with and without the dom-
inant marker correction as described above. We also re-
peated the experiment using a modified version of SNAPP
that assumed that no mutations occur along the branches,
thereby emulating the model of Nielsen et al. (1998) and
RoyChoudhury et al. (2008).

Ability to Recover Parameters

For the second experiment, we examined the posterior dis-
tribution of divergence time and θ values on a fixed tree, us-
ing the “easy” four-taxon tree (fig. 3B). We simulated 10,000
polymorphic loci for 40 individuals, with 10 individuals for
each of the four species. We used the same priors for θ and
λ as before (correct and incorrect) and generated chains of
length 200,000.

Analysis of Ourisia AFLP Data
Meudt et al. (2009) investigated the utility of AFLP markers
for species delimitation and reconstruction of evolutionary

Table 1. Values Used for Priors in Simulations.

Prior Version Distribution Expectation

θ
Correct (c) Gamma (α = 1, β = 200) 0.005

Incorrect (i) Gamma (α = 1, β = 2000) 0.0005

Tree
Correct (c) Yule (λ = 40) 0.014/0.021

Incorrect (c) Yule (λ = 80) 0.027/0.042

NOTE.—Note that the correct prior for θ values gives a prior expectation
roughly the same as the average θ value in the input trees, whereas the
incorrect prior has expectation 10% of that. The prior expectations for tree
heights are given for four-taxon (first value) and eight-taxon (second value)
trees. Height is measured in expected number of mutations per site (along a
single lineage).

relationships between New Zealand populations of Ourisia

(Plantaginaceae), the native foxglove. Molecular evidence

suggests that Ourisia species have radiated fairly recently

(between 0.4 and 1.3 Ma), adapting rapidly to a range of

habitats, from sea level to alpine herbfields (Meudt et al.
2009).

AFLP markers are a readily available source of whole-
genome information, well suited to the analysis of closely
related species, particularly in the absence of whole-genome
sequences (see review in Meudt and Clarke 2007). The
analysis in Meudt et al. (2009) used a collection of 2,555
nonconstant AFLP markers for 193 Ourisia individuals,
sampled from 100 locations in New Zealand and 3 lo-
cations in Australia. Several contrasting tree-based and
cluster-based methods were applied, identifying 15 dis-
tinct meta-populations. Meudt et al. also detected strong
evidence for a split between a “large-leaved group” and
a “small-leaved group,” the molecular signal for the split

being consistent with differences in both morphology

and habitat. The relationship between the species within

each of these groups was not well resolved by any of

their methods. Meudt et al. (2009) argued that this
lack of resolution was not due to introgression or in-
sufficient diversity. Two plausible explanations provided

were the potentially low ratio of phylogenetic signal to

noise in AFLP data and the effect of incomplete lineage
sorting.

Here, we applied SNAPP to AFLP data from all members

of the large-leaved group, producing a data matrix of 69 in-
dividuals from 6 populations and 1,997 characters. We used

a diffuse gamma prior for the θ values (α = 10, β = 100),

with independent θ values on each branch. We used a pure

birth (Yule) prior for the species tree, with birth rate λ sam-
pled from an improper uniform hyperprior. We generated

one chain of 790,000 iterations (sampling every 500 itera-
tions) with additional smaller chains to check convergence

and the effect of the prior. To assess the impact of the com-
putationally intensive correction for dominant markers, we

also generated a chain of 1.4 million iterations without this

correction.
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Table 2. The Size of the Credibility Sets in the Simulation Used to Assess Recovery of the Species Tree.

Four Taxa Eight Taxa

Tree
Easy Hard Easy Hard

θ-Prior
c i c i c i c i

Tree Prior c i c i c i c i c i c i c i c i

100 1 1 1 1 3 3 3 3 1 1 1 1 22 21 12 14

200 1 1 1 1 3 3 3 3 1 1 1 1 9 9 8 8

300 1 1 1 1 3 3 2* 3 1 1 1 1 3* 3* 1* 1*

400 1 1 1 1 3 3 3 3 1 1 1 1 9 9 8 8

500 1 1 1 1 3 3 3 3 1 1 1 1 6 6 4 5

600 1 1 1 1 3 3 3 3 1 1 1 1 8 8 6 6

700 1 1 1 1 3 3 3 3 1 1 1 1 7 6 4 4

800 1 1 1 1 3 3 3 3 1 1 1 1 5 5 3* 3*

900 1 1 1 1 2 2 2 2 1 1 1 1 4 4 3 3

1,000 1 1 1 1 3 3 3 3 1 1 1 1 8 9 8 8

10,000 1 1 1 1 1 1 1 1 1 1 1 1 3 3 5 5

100,000 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3

1,000,000 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

NOTE.—“Tree” indicates which of the trees in figure 3 was used to generate data. Letters “c” and “i” indicate whether correct or incorrect priors were used on the
θ values and on the speciation rate. Numbers 100 to 1,000,000 indicate the number of polymorphic sites generated. Values in the table are the numbers of distinct
tree topologies in the 95% credibility set. The seven instances where the true tree was not contained within this set are marked by an asterisk (*).

Results

Simulation Experiments: Recovering the Species Tree
For the first experiment, we tested whether SNAPP would
recover the species tree used to generate the data. We ex-
pected the true tree to be in the 95% credibility set for
almost all replicates and that the size of the credibility
set would shrink as the number of sites increased. (See
table 2 for a summary of the sizes of the credibility sets
constructed).

Four Taxa with an “Easy” Tree

In all simulations, the 95% credibility set contained the true
tree and no other trees.

Four Taxa with a “Hard” Tree

The true tree was in the 95% credibility set for all except one
instance. The credibility set contained three trees (the three
resolutions of the short branch) for data sets with 100 to
1,000 sites. The credible set contained only the true tree with
10,000 or more sites. The choice of prior had little effect on
outcomes.

Eight Taxa with an Easy Tree

In all simulations, the 95% credibility set contained the true
tree and no other trees.

Eight Taxa with a Hard Tree

The true tree was in the 95% credibility set for all except two
simulated data sets with 300 and 800 sites. Otherwise, the
true tree was contained in the credibility set. There were at
least three trees in the credibility set even for data sets with
1 million sites: SNAPP was unable to resolve the short edge
in the species tree.

Overall, the credibility sets contained the true species
tree topology in nearly all the experiments, and in many
cases, only the true species tree. This result provides a good
indication that the likelihood computation is working cor-

rectly. The processes were run on single threads. Each sim-
ulation (chain length 200,000) took around 4050 s for the
four-taxon cases and between 2 and 4 min for the eight-
taxon cases. Note that there was only one sample per
species.

When dominant, rather than codominant, markers were
simulated, little difference was observed in the ability of
SNAPP to recover the species trees. Credibility sets had sim-
ilar sizes to those seen in the case of codominant markers
(supplementary data, Supplementary Material online).

Restricting SNAPP to a model with no mutation along
the branches also did not have a noticeable impact on the
ability of the software to reconstruct species trees (data not
shown). This result was unexpected since, under this model,
mutations that actually occurred along the branch would
need to be explained by a polymorphism maintained all the
way back to the root. It would be useful to explore the prac-
tical implications of excluding mutation in the model, both
in theory and in application, although a thorough investiga-
tion of this issue falls beyond the scope of this paper.

Simulation Experiments: Recovering Parameters
The marginal posterior distributions for the node height and
θ parameters appear in figure 4. We used two sets of pri-
ors, a correct prior centered on the true values and an in-
correct prior where the prior expectations of the θ values
were approximately one-tenth of the true values and the
prior expectations of the tree height one-half of the true
value. The posterior distributions given by the correct prior
are indicated using solid lines, whereas those for the incor-
rect prior are given by dashed lines. The two posterior dis-
tributions almost coincide. This result gives strong evidence
that the posterior distributions are influenced far more by
the data than by the priors and also that in some situa-
tions, SNAPP is able to accurately estimate both θ values and
branch lengths unlike earlier methods (Nielsen et al. 1998;
RoyChoudhury et al. 2008).
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FIG. 4. Posterior distribution for θ and node heights for data simulated on a four-taxon tree. θ values are offset by subtracting off the corresponding

true value on the model tree. Solid lines indicate use of the correct prior; dashed lines indicate use of the incorrect prior. True values are indicated

by vertical gray lines. (A) The model tree used for the second simulation; (B) the posterior distribution for branch lengths in units of expected

number of mutations; (C) posterior distributions for branch lengths in coalescent units; (D) posterior distributions for θ on internal branches;

and (E) posterior distribution for θ at the root.

The posterior variances for the θ and branch length
estimates differ considerably in different parts of the
tree: The posterior variance for the θ value at the root
is an order of magnitude greater than that for the other

branches. We suspect that an important determinant for
the posterior variance is the number of coalescent events
occurring along each branch. When simulating the data,
we recorded the numbers of lineages at each node in the

1928



Inferring Species Trees from Markers · doi:10.1093/molbev/mss086 MBE

FIG. 5. Species tree with the highest posterior probability (73%) for six “large-leaf” Ourisia species. The thicknesses of bars are proportional to θ

values for the respective populations. θ values for each population are printed on the pipes. The posterior probabilities for internal nodes are

printed on an angle.

species tree. There were 10 lineages sampled from each pop-
ulation (A), (B), (C), and (D). There were, on average, 2.8
lineages at the base of population (A,B), 2.3 lineages at the
base of (A,B,C), and 2.0 lineages at the base of the root
population. Hence, very few coalescent events occurred
along internal branches of the species tree, explaining the
more diffuse posterior distributions for the corresponding
θ values.

It took a little under 3 h to generate a chain of length
200,000 for the data sets with four species and ten samples
per species, using four threads for each run.

Ourisia Data
We ran 790,000 iterations of the SNAPP MCMC algorithm in
∼1,200 h of computing time on Opteron desktop comput-
ers, with three machines running 10 threads each. We note
that although the data included 69 diploid individuals, the
correction for dominance meant that, so far as computation
was concerned, we were effectively analyzing 138 haploid
individuals. Additional shorter chains were run to test con-
vergence and the effect of the prior, and results were com-
pared with an earlier run of 1.4 million iterations that did
not correct for dominance. We removed 10% of the chains
as burn-in and retained one in every 500 iterations for the
sample.

The species tree topology represented in figure 5 has
a posterior probability of 73%. The second most probable
topology (15%) differed only by the position of the root.
These trees had similar posterior probabilities when we ran
SNAPP without the dominance correction. Interestingly, the
AFLP phylogeny of Meudt et al. (2009), which was obtained
using a MrBayes analysis that ignored lineage sorting, had
<5% posterior probability.

SNAPP found significant support for several relationships
between species in the large-leaved group. The (O. vulcanica,

O. calycina) clade and the (O. macrophylla, O. crosbyi) clade

both had significant posterior probability. The former clade
also appears in the MrBayes tree of Meudt et al. (2009)
though the latter does not.

One feature of the tree in figure 5 is that the divergence
times for all the clades are early relative to the age of the
tree. This result is consistent with a rapid species radiation
at the base of the large-leaved group where an initial swift
expansion was followed by a period of consolidation.

The θ estimates reported in figure 5 are shown with es-
timates of the posterior standard deviations. The standard
errors on the sample means for the θ values were around
0.001, with the standard correction for autocorrelation
(Ripley 1987, p. 143). The mean values differed little from
those computed without the dominance correction, and
from those for which the prior expectations for tree length
and θ values were halved.

One anomaly is the θ estimate for O. macrophylla subsp.
lactea, which is at least twice that of other species. A
Neighbor-Net (Bryant and Moulton 2004) of the AFLP
data reveals considerable substructure, and O. macrophylla

subsp. lactea is not monophyletic in neighbor joining or
parsimony analyses (Meudt et al. 2009). Hence, the high θ
value could well represent fragmentation within the sub-
species or poor delimitation of the subspecies with respect
to O. macrophylla subsp. macrophylla rather than a large
population.

In summary, by taking lineage sorting into account, we
have been able to extract a well-supported phylogenetic
tree for the large-leaved group of Ourisia species. Earlier
tree-based and cluster-based analyses were unable to ex-
tract such a clear signal from these data (Meudt et al.
2009). Our analysis did not support the same tree as a
Bayesian phylogenetic analysis that ignored incomplete lin-
eage sorting. Furthermore, our θ estimates indicate poten-
tial fragmentation or poor delimitation in O. macrophylla

subspecies lactea.
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Discussion

We have presented a method that takes biallelic markers
sampled from multiple individuals from multiple species
and computes the likelihood of a species tree topology to-
gether with population genetic parameters. Our approach
implements a full multispecies coalescent model without
having to explicitly integrate or sample the gene trees at
each locus. With our MCMC sampler, SNAPP, we can con-
centrate on the parameters of interest: the species tree,
population sizes, and divergence times rather than on the
problem of traversing through the space of potential gene
trees. The likelihood values we compute are exact up to nu-
merical error and do not require a simplification or approx-
imation of the full coalescent model.

The model we implement differs from that of Nielsen
et al. (1998) and RoyChoudhury et al. (2008) through its
inclusion of mutation in populations other that the root
population. Although mutation is rare in SNP data from the
most closely related populations, it can play a significant role
in the evolution of markers for more distant species, for trees
with multiple species, or when analyzing markers such as
AFLP that may have higher mutation rates than SNPs. We
showed that modeling mutation permits the inference of
both θ values and divergence times from biallelic markers,
parameters that cannot be identified under the model of
Nielsen et al. (1998) and RoyChoudhury et al. (2008).

To incorporate mutation, we have derived new theoret-
ical results on the evolution of biallelic markers under the
coalescent. These formulae extend work of Tavaré (1984)
on the distribution of ancestral lineage counts and of Slatkin
(1996) on the evolution of markers in a population without
mutation. They combine the coalescent process, which op-
erates backward in time, with the mutation process, which
works forward in time.

The SNAPP sampler differs from methods such as
BEST (Liu and Pearl 2007) and STAR-BEAST (Heled and
Drummond 2010), which sample gene trees explicitly. Each
of the methods is suited for different kinds of unlinked loci.
BEST and STAR-BEAST can analyze loci with multiple sites,
provided that no recombination within loci has occurred.
SNAPP assumes that each locus is a single biallelic site. Un-
like the other methods, SNAPP can analyze tens of thou-
sands of unlinked markers, a feature that is not practical for
methods that explicitly jointly sample one gene tree for each
marker in a Monte Carlo algorithm.

We have reported some of the analyses we have per-
formed to validate the algorithm and our implementation
and to assess the ability of the method to infer phyloge-
netic and demographic parameters. Considerable scope ex-
ists for a more extensive investigation into the strengths,
weaknesses and characteristics of the methodology with re-
spect to other approaches. A wide variety of factors affect
the performance of our method, or indeed any method,
when inferring trees and parameters. (i) Sufficient mutation
must have occurred but not so much mutation as to cause
loss of signal; (ii) θ values can only be reliably inferred for
ancestral populations if sufficiently many coalescent events
occur within these populations; (iii) if θ values are too high,

then there will be no coalescent events along the branches
of the species tree and all coalescences will occur within the
root population. In this case, little or no information is avail-
able to infer the tree or θ values. Alternatively, if the θ values
are too low, then all coalescences will occur along pendant
branches (as in the examples above), and only patchy in-
formation will be available about phylogenetic relationships
and population sizes closer to the root of the species tree.
These issues are likely to be faced not only by SNAPP but also
by any method inferring phylogenies and population sizes.

The computational advances underlying SNAPP are
made possible by some fairly stringent assumptions re-
garding both genetic and demographic processes. First, we
assume genealogies for different markers are conditionally
independent given the species tree. Violations of this as-
sumption may not necessarily bias the analysis, though they
are likely to bias measures of variability (RoyChoudhury
2011). Further, by assuming markers are unlinked, SNAPP
fails to take into account patterns of linkage disequilibrium
that can provide valuable information about demographics
and genetic relationships. It may be possible to use theoreti-
cal advances combining the coalescent with recombination
(Griffiths et al. 2008) to incorporate a model including link-
age in future versions of SNAPP.

Second, we assume that gene dynamics within popu-
lations are well described by the (neutral) Wright–Fisher
model, approximated by a coalescent process. In some cases,
it might be possible to incorporate alternative models or
variations simply by modifying the transition formula (15)
for the allele frequencies. Other cases will demand a com-
pletely new approach.

Third, we assume that there is no gene flow between
populations. Incorporating gene flow will be difficult mainly
because the dynamic programming algorithm used within
SNAPP relies on a lack of gene flow between descendent
populations. Here, approaches based on diffusion processes
are especially promising (Gutenkunst et al. 2009; Siren et al.
2010). The use of diffusions also makes it far easier to in-
clude selection and migration into the model (Gutenkunst
et al. 2009). This flexibility incurs a computational cost how-
ever. The numerical methods used to evaluate likelihoods by
Gutenkunst et al. (2009) require grid sizes (and hence run-
ning times) that grow exponentially in the number of popu-
lations, although careful approximations, perhaps along the
lines of those used by Siren et al. (2010), might address this
exponential explosion in runtime.

In many ways, SNAPP is itself an example of a combina-
tion of coalescent theory and diffusion theory: The model is
based on the coalescent process and yet no explicit sampling
of gene trees takes place. What remains to be developed
is a combination of the computational advances of SNAPP
and the flexibility of diffusion-based methods that provides
a tractable method for implementing a full and rich model
of demographic and genetic change.

Supplementary Material

Supplementary data are available at Molecular Biology and

Evolution online (http://www.mbe.oxfordjournals.org/).
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Appendix

For 0 6 r 6 n and t > 0, we define

ft(n, r) = Pr[Rt = r|Nt = n].

If we write x = (r, n − r), then we have ft(n, r) = q(x, t)
in the notation of Griffiths and Tavare (1997). Griffiths and
Tavare (1997) show that df

dt
= Qf, where Q is the matrix

defined in equation (15). Let gt(n, r) denote the conditional
probability

gt(n, r) = Pr[Rt = r|Nt = n, Rτ = rτ , Nτ = nτ ]

× Pr[Nτ = nτ |Nt = n]

= Pr[Rt = r|Nt = n, Rτ = rτ , Nτ = nτ ]

×
Pr[Rτ = rτ |Nt = n, Nτ = nτ ]

Pr[Rτ = rτ |Nt = n, Nτ = nτ ]

× Pr[Nτ = nτ |Nt = n]

=
Pr[Rt = r|Nt = n]

Pr[Rτ = rτ |Nτ = nτ ]

=
ft(n, r)

fτ (nτ , rτ )
.

Hence, dg
dt

= Qg and equation (16) follows by solving
this ordinary differential equation for 0 6 t 6 τ with the
boundary conditions

gτ (n, r) =

{

1 n = nτ and r = rτ ,

0 otherwise.
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