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Rasch MJ, Gretton A, Murayama Y, Maass W, Logothetis NK.
Inferring spike trains from local field potentials. J Neurophysiol
99: 1461–1476, 2008. First published December 26, 2007;
doi:10.1152/jn.00919.2007. We investigated whether it is possible to
infer spike trains solely on the basis of the underlying local field
potentials (LFPs). Using support vector machines and linear regres-
sion models, we found that in the primary visual cortex (V1) of
monkeys, spikes can indeed be inferred from LFPs, at least with
moderate success. Although there is a considerable degree of variation
across electrodes, the low-frequency structure in spike trains (in the
100-ms range) can be inferred with reasonable accuracy, whereas
exact spike positions are not reliably predicted. Two kinds of features
of the LFP are exploited for prediction: the frequency power of bands
in the high �-range (40–90 Hz) and information contained in low-
frequency oscillations (�10 Hz), where both phase and power mod-
ulations are informative. Information analysis revealed that both
features code (mainly) independent aspects of the spike-to-LFP rela-
tionship, with the low-frequency LFP phase coding for temporally
clustered spiking activity. Although both features and prediction
quality are similar during seminatural movie stimuli and spontaneous
activity, prediction performance during spontaneous activity degrades
much more slowly with increasing electrode distance. The general
trend of data obtained with anesthetized animals is qualitatively
mirrored in that of a more limited data set recorded in V1 of
non-anesthetized monkeys. In contrast to the cortical field potentials,
thalamic LFPs (e.g., LFPs derived from recordings in the dorsal lateral
geniculate nucleus) hold no useful information for predicting spiking
activity.

I N T R O D U C T I O N

In a typical electrophysiology experiment, the signal mea-
sured by an electrode placed at a neural site represents the
mean extracellular field potential (mEFP) from the weighted
sum of all current sinks and sources along multiple cells. If a
microelectrode with a small tip is placed close to the soma or
axon of a neuron, then the measured mEFP directly reports the
spike traffic of that neuron and frequently that of its immediate
neighbors as well. If the impedance of the microelectrode is
sufficiently low and its exposed tip is a bit farther from a single
large pyramidal cell, so that action potentials do not predom-
inate the neural signal, then the electrode can monitor the
totality of the potentials in that region. The EFPs recorded
under these conditions are related both to integrative processes
(dendritic events) and to spikes generated by several hundred
neurons.

The two different signal types can be segregated by frequency-
band separation. A high-pass filter cutoff of about 300–500 Hz

is used in most recordings to obtain multiple-unit spiking
activity (MUA), and a low-pass filter cutoff of about 300 Hz to
obtain the so-called local field potentials (LFPs). Numerous
experiments have presented data indicating that such a band
separation does indeed underlie different neural events (for
references see, e.g., Logothetis 2003).

In summary, depending on the recording site and the elec-
trode properties, the MUA most likely represents a weighted
sum of the extracellular action potentials of all neurons within
a sphere whose radius is about 140 to 300 �m, with the
electrode at its center (Henze et al. 2000). Spikes produced by
the synchronous firings of many cells can, in principle, be
enhanced by summation and thus detected over a larger dis-
tance (Arezzo et al. 1979; Huang and Buchwald 1977). In
general, experiments have shown that large-amplitude signal
variations in the MUA range reflect large-amplitude extracel-
lular potentials and that small-amplitude fast activity is corre-
lated with small ones (Buchwald and Grover 1970; Gasser and
Grundfest 1939; Grover and Buchwald 1970; Hunt 1951;
Nelson 1966).

The low-frequency range (i.e., the LFPs) of the mEFP
signal, on the other hand, represents mostly slow events re-
flecting cooperative activity in neural populations. Initially
these signals were thought to represent exclusively synaptic
events (Ajmone-Marsan 1965; Buchwald et al. 1965; Fromm
and Bond 1964, 1967). Evidence for their origin was often
gathered from current-source density (CSD) analysis and com-
bined field potential and intracellular recordings (Mitzdorf
1985; Nadasdy et al. 1998). Mitzdorf suggested that LFPs
actually reflect a weighted average of synchronized dendroso-
matic components of the synaptic signals of a neural popula-
tion within 0.5–3 mm of the electrode tip (Juergens et al. 1999;
Mitzdorf 1987). Later studies, however, provided evidence of
the existence of other types of slow activity unrelated to
synaptic events, including voltage-dependent membrane oscil-
lations (e.g., Kamondi et al. 1998) and spike afterpotentials.
Taken together, LFPs represent slow waveforms, including
synaptic potentials, afterpotentials of somatodendritic spikes,
and voltage-gated membrane oscillations, that reflect the input
of a given cortical area as well as its local intracortical
processing, including the activity of excitatory and inhibitory
interneurons.

Given the different natures of LFPs and MUA, we felt that
it would be interesting to address the question of whether one
can infer spiking of neurons from the locally measured field
potentials. Herein we address this question in a straightforward
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manner. We use methods derived from the field of machine
learning in an attempt to infer exact spike timings from the
underlying LFPs. We compare the accuracy of spikes trains
predicted by supervised learning algorithms on a wide range of
recordings from the primary visual cortex (V1) as well as from
the lateral geniculate nucleus (LGN) of anesthetized and non-
anesthetized macaques and investigate what kinds of features
of the LFP are important for inferring spikes from LFP.

M E T H O D S

Data acquisition

Electrophysiological data recorded from nine anesthetized and two
non-anesthetized monkeys (Macaca mulatta) are included in the
present study. All animal experiments were approved by the local
authorities (Regierungspraesidium) and are in full compliance with
the guidelines of the European Community (EUVD 86/609/EEC) for
the care and use of laboratory animals. Surgical procedures are
described elsewhere (Logothetis et al. 2002) together with hardware
details of the recording setup.

To perform the neurophysiological recordings in anesthetized mon-
keys, the animals were anesthetized [remifentanil (typically 1
�g �kg�1 �min�1)], intubated, and ventilated. Muscle relaxation was
achieved with mivacurium (5 mg �kg�1 �h�1). Body temperature was
kept constant, and lactated Ringer solution was given at a rate of 10
ml �kg�1 �h�1. During the entire experiment, the vital signs of the
monkey and the depth of anesthesia were continuously monitored.
Drops of 1% ophthalmic solution of anticholinergic cyclopentolate
hydrochloride were instilled into each eye to achieve cycloplegia and
mydriasis. Refractive errors were measured and contact lenses [hard
poly(methyl methacrylate) lenses by Wöhlk Contactlinsen, Karlsruhe,
Germany] with the appropriate dioptric power were used to bring the
animal’s eye into focus on the stimulus plane. Simultaneous recording
of neural activities were made from the primary visual cortex (V1)
using 8–16 electrodes configured in 4 � 4 or 2 � 8 matrices in a grid
of 1–2 mm. Electrode tips were typically (but not always) positioned
in the upper or middle cortical layers. The impedance of the electrode
varied from 300 to 800 k�. In the case of simultaneous LGN
recording an additional set of drives, usually consisting of two to four
electrodes, was additionally positioned. The electronic interface, in-

cluding drives, holder, and preamplifier, was custom designed to
minimize cross talk of signals between electrodes (typically �1 ppm).
The signals were amplified and filtered into a band of 1–8 kHz (Alpha
Omega Engineering, Nazareth, Israel) and then digitized at 21 kHz
with 16-bit resolution (National Instruments, Austin, TX), ensuring
enough resolution for both local field and spiking activities. Binocular
visual stimulation was provided through a two-fiber optic system
(Avotec, Stuart, FL) after fine alignment to each of the animal’s
foveas by a modified retinoscope coupled with a stimulus projector
holder.

In the case of the anesthetized animals we differentiate between two
different conditions: spontaneous activity (“spo”) and movie-driven
data (“stm”). In the former the input screen is blank for about 5 min;
in the latter a 4- to 6-min segment of a commercially available movie
is shown. Movie frames were synchronized with the refresh rate of the
monitor (60 Hz, two synchronizations per movie frame) and covered
7–12° of the visual field. Most of the electrodes were confirmed to
have a receptive field within the movie presentation area (see Fig. 1B
for an example). Multiple trials of movie presentations and spontane-
ous activity are run within one recording session (intermingled with
recordings of other stimuli not considered here). From these data we
include 1,304 recorded time series in the present study, which we call
trials throughout this article. The data set consisted of recordings from
nine animals collected in 12 recording sessions. From each session we
take five repeats of movie presentation and five repeats of spontaneous
activity trials (with the exception of j97nm1, where only one movie
trial is available). To avoid any subjective selection bias all measured
electrode channels per session are included. This results in 670 trials
for spontaneous activity and 634 for movie stimulus recorded using
134 electrode placements. Movies are identical within a session but
may differ between sessions.

In three sessions (two anesthetized monkeys) no more than four
electrodes were simultaneously placed in the LGN. Thus stimuli
reflected in these data (100 trials) are exactly identical to those in
corresponding recordings of the V1 data. This data is separated again
according to the conditions spontaneous activity (“spo(L)”) and
movie-driven activity (“stm(L)”). Data from non-anesthetized mon-
keys are more limited and were included in the present study only to
corroborate results for the data described earlier. They are recorded
using one to four tetrodes from chronic implants penetrating V1 (for
a detailed description of surgical methods and recording setup see
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FIG. 1. A: representative electrode recording from Session a98nm5 of an anesthetized monkey. Top plot: the instantaneous firing rate of an experiment during
movie presentation from a primary visual cortex (V1) electrode in a small time region. Movie presentation starts after a blank period at 30 s. Recording time
of 170-s duration starting 5 s after movie onset is used for prediction performance evaluation and is called a trial (see METHODS). Bottom plot: the local field
potential (LFP) trace corresponding to the V1 electrode above. B: the arrangement of receptive fields relative to the movie presentation area for Session a98nm5,
where simultaneous V1 and lateral geniculate nucleus (LGN) recordings are available. Other sessions have similar electrode arrangements.
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Tolias et al. 2007) in a total of 56 trials. Unlike the data from
anesthetized animals the stimulus conditions here are mixed, with
spontaneous activity (no task) and a fixation task showing gratings of
different orientations. This last data is labeled “awake” in the follow-
ing. All data are processed in the same way as outlined in the next
section.

PROCESSING. The data preprocessing steps are as follows. Electrode
signals were decimated to 7 kHz. Spiking activity is inferred from
high frequencies of the resulting signal (see following text). The
recording hardware introduces a high-pass filter with a cutoff �1 Hz;
1 Hz is thus the lowest frequency considered here.

The 7-kHz signal is low-pass filtered with a cutoff frequency of 250
Hz and resampled first to 500 Hz for computational convenience. The
resulting signal is low-pass filtered at 90 Hz to derive local field
potentials (LFPs). For low-pass filtering we use a custom finite
impulse response filter (FIR): a Kaiser window FIR filter with 60-dB
attenuation in the stopband, a 0.01-dB passband ripple, and a transi-
tion band of 1 Hz. To eliminate possible phase shifts, signals were
filtered forward and backward (using the MatLab filtfilt function). The
signal is then resampled to a final sampling rate of 200 Hz.

Good properties of FIR filters are won at the expense of large filter
sizes (a few seconds). However, since we discard leading and trailing
portions of �15 s of each trial, filter on- and offset artifacts are of no
concern here.

SPIKE EXTRACTION. Spike times are detected by applying a thresh-
old to the high-pass filtered 7 kHz signal described earlier (fourth-
order Butterworth, cutoff frequency 500 Hz). Since this MUA signal
is usually asymmetric, the detection threshold is automatically applied
to that side where spike waveforms exhibit greater deflection. To
avoid dependence of the size of spikes the threshold is applied at
3.5SD (�) of the “noise component” of the MUA signal. � is
estimated by calculating the SD of the signal, neglecting the 4.55%
(�2�) absolute highest values divided by the percentage of variance
that is kept in general, when setting the probability of absolute values
�2� to zero.

Visual inspection confirms that spikes are well detected. If the
assumption of a Gaussian “noise component” is correct, then the
rate of wrongly detected spikes is about 1.6 Hz (for � � 3.5 SD).
Note that the resulting spike trains will most likely include spikes
from multiple neurons (see DISCUSSION). Because most recordings
were done with single-tip electrodes we do not use any kind of spike
sorting.

Learning to infer spike trains

The learning algorithm has to learn to map from LFP waveforms
(or other LFP features) to spikes. Ideally, the learning algorithm
should output all predicted real-valued spike timings at once if the
LFP time course is given as input, although this task requires too
much data. Instead, we simplify the task by assuming that spikes are
independent and that the spike-to-LFP relationship remains constant
over time. With these assumptions one can use a binary classifier,
which yields the prediction of a spike (or no spike) at time t.
Concatenating the prediction for each t results in a predicted spike
train for a given LFP. Note that the independence assumption does not
imply that predicted spike trains are necessarily uncorrelated because
temporal correlation can be induced by the underlying LFPs.

In supervised fashion the binary classifier is trained on a set of
training examples and tested on a distinct test set. We train a binary
classifier on LFP features summarized in the sample vectors xi, i �
1, . . . , L, to predict the label yi � {1, �1}. The index i is the ith point
of the discrete LFP time series with sampling frequency 1/� at
recording time ti � i� 	 t0. Thus yi � 1 states that there occurs (at
least) one spike within time bin ti and yi � �1 indicates no spike. In
this framework prediction is temporally restricted to the sampling
resolution of the LFPs, making it necessary to bin the spike timings.

The sampling interval � is 5 ms, in accordance with the sampling
frequency of the LFP signal (200 Hz).

LEARNING ALGORITHMS. A support vector machine (SVM) was
used (Vapnik 1999) as our learning algorithm. For a more detailed
introduction to SVMs see, for example, Bishop (2006), Burges
(1998), and Schölkopf and Smola (2002). SVMs perform binary
classification in a supervised fashion.

Briefly, the model can be stated as follows (for details see Bishop
2006)

h
x� � wT�
x� � b (1)

where one looks for the decision boundary or weight vector w; b is a
bias term and � is a projection into a space of features. SVMs choose
the hyperplane that has the widest margin between both classes rather
than an arbitrary separating hyperplane. This is achieved by enforcing
appropriate constraints in the optimization. For nonseparable prob-
lems, such as our real-world data, one introduces the concept of soft
margins, i.e., in the optimization one now allows for incorrectly
classified examples, where an additional parameter C regulates the
penalty.

SVMs have the power to do nonlinear separation (seen from the
perspective of input space) by choosing an appropriate kernel that
implicitly defines the feature map �. Herein nonlinear radial basis
function (RBF) kernels are used.

As a simple alternative to SVMs we used standard linear regression
(with a constant bias term) on the label vector and the samples (see,
e.g., Bishop 2006). Briefly, using a linear model hreg(xi) � wTxi 	 b
we calculated the optimal weight vector w* by minimizing the mean
squared error [hreg(xi) � yi]

2� on the training samples. Class labels on
the test set were obtained by thresholding with the sign function, i.e.,
yj � sign [h*reg(xj)].

EXTRACTION OF LFP FEATURES. An LFP feature could be any aspect
of the LFP that one might deem helpful for inferring whether there is
a spike at ti. In our analysis, we used the LFP at different lags with
respect to ti, its power at different frequencies, and the phase of
oscillations at particular frequencies (also at different lags). Multiple
features are simply concatenated in the sample vector xi. Note that
each dimension of the resulting samples {xi} is normalized to zero
mean and unit SD. Features are extracted prior to dividing the samples
into test and training sets.

If g(ti) represents the (normalized) voltage at sampling bin ti, a time
feature may be defined as Tk(ti) :� g(ti	k), where � � k� represents
the time lag (we neglect boundaries to simplify the description).
Features Tk(ti) simply represent the LFP time course relative to sample
time ti.

Another type of feature, which we denote Pf,k(ti), is the estimated
power at (center) frequency f of the LFP time course at time ti	k. To
obtain an estimate for the power at a given frequency and time, we
calculated the spectrogram, using the multitaper approach introduced
by Thomson (Jarvis and Mitra 2001; Percival and Walden 2002;
Thomson 1982). Because spikes are single events on the timescale of
�, we chose a high temporal resolution at the expense of frequency
resolution. We set the moving window to 150 ms and the time–
bandwidth product to 1.6, which implicitly sets the half-bandwidth to
W � 10.67 Hz. Spectral estimation was averaged over two Slepian
tapers. Because this window setting does not allow accurate power
estimation �20 Hz we used larger windows for bands �20 Hz (500
ms) and �6 Hz (2 s). This reduced the half-bandwidth to 3.2 and 0.8
Hz for frequencies �20 and 6 Hz, respectively. We also tried Morlet
wavelets with variable bandwidth per frequency, but this did not alter
prediction performance.

To access phase information at particular frequencies of the LFP,
we first band-pass filtered the recorded signal with the FIR Kaiser
filter (described earlier) with a bandwidth of 2 (Fig. 6) or 4 Hz (Fig.
7), and then used the Hilbert transform to extract an instantaneous
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phase �f(ti) at frequency f. From these signals we defined phase
features �f,k(ti) :� cos [�f(ti	k)] having a lag of � � k�. These
features have phase information identical to that of the band-passed
signals but are devoid of any amplitude modulation (AM). Addition-
ally, we used �̂f,k :� sin [�f(ti	k)] in the feature analysis of Fig. 6 to
help the classifier linearly extract phase locking at phases where the
cosine would be near the zero crossing.

PERFORMANCE MEASURES. The kappa measure was used as a mea-
sure of performance (Cohen 1960). Let pl,r be the fraction of samples
having target label l � {�1, 1} and predicted label r � {�1, 1} and
let ql and q̃r be the fraction of samples in the test set that have the label
l in the target or the label r in the prediction, respectively. Then the
chance level for classification is given by 	c � q�1q̃�1 	 q1q̃1. If we
define 	0 � p�1,�1 	 p1,1 to be the overall fraction of correctly
classified samples (both positive and negative), then 
 is given by


 :�
	0 � 	c

1 � 	c

(2)

This measure is a normalized above-chance classification rate. It can
be easily seen that 
 equals zero if prediction is at chance level (i.e.,
	0 � 	c) and equals one if the predicted classification is perfect (i.e.,
	0 � 1).

Another performance measure is the Spearman rank correlation r�

between smoothed predicted spike trains and target spike trains. This
might give a more intuitive picture of the prediction quality. If not
stated otherwise, spike trains are smoothed by a Gaussian kernel of
width 25 ms.

Yet another measure for prediction quality is the mutual informa-
tion between class labels. The mutual information (MI) between target
spikes S and the prediction outcome of a classifier C(F) using LFP
features F and labels L :� {�1, 1} is

I�S;C
F �� � �
l�L

�
r�L

PI,r log2

pl,r

qlqr

(3)

where we take the probabilities defined earlier. This estimation of MI
is different from nonparametric approaches in that it can access
dependence that is only in reach of the classifier; thus one has to make
sure that the classifier captures the main aspects of its dependence.
Note that we use the naive estimator for mutual information [without
bias correction (Panzeri et al. 2007)]. Since all MI value calculations
involve an identical number of bins—that is, two, one for each
class—we can nevertheless safely compare results even for classifi-
cations with different numbers of features. However, the absolute MI
values might be biased.

To access redundancy, synergy, and independence of information
(Pola et al. 2003; Schneidman et al. 2003) conveyed by two features
F1 and F2 about the spiking activity S, we estimate mutual information
using two classifiers trained on features F1 and F2 individually,
yielding I(S; F1):� I[S; C(F1)] and I(S; F2) :� I[S; C(F2)]. Then a third
classifier is trained on both features jointly, yielding I(S; F1, F2) :�
I[S; C(F1, F2)]. If both features carried independent information from
the perspective of the classifier, both features together would convey
identical information as individual features; i.e., I(S; F1, F2) � I(S;
F1) 	 I(S; F2). If both features were related by a one-to-one mapping
(completely redundant information about the spikes), then all terms
would be equal: I(S; F1) � I(S; F2) � I(S; F1, F2). If the two features
did not carry information individually, i.e., I(S; F1) � I(S; F2) � 0, but
carried information together, I(S; F1, F2) � 0, they would be termed
(completely) synergistic. Thus we define a normalized degree of
synergy of information about the spikes (as measured by the classi-
fication algorithm) as (Schneidman et al. 2003)

syn 
F1, F2 �S� :�
I
S; F1, F2� � I
S; F1� � I
S; F2�

I
S; F1, F2�
(4)

This measure ranges from �1 in the case of completely redundant
information to 1 for completely synergic information. The measure
syn (F1, F2 � S) is zero if both features F1 and F2 convey independent
information about the spikes S.

To analyze prediction accuracy on different timescales, we used
spectral coherence (Jarvis and Mitra 2001). Spectra were again esti-
mated via a multitaper approach designed for point events (Jarvis and
Mitra 2001). Here the time–bandwidth product was set to TW � 3
using the average of K � 5 tapers, yielding a half-bandwidth of W �
0.001 Hz for T � 17 s.

PERFORMANCE EVALUATION. We evaluated the prediction perfor-
mance for each trial separately, using 10-fold cross-validation. We
analyzed a 170-s region, avoiding the on- and offset of the movie
stimulus. Spontaneous activity trials are also restricted to 170-s
duration. In the case of tetrode recordings, performance is estimated
as the average performance of the four wires of the tetrode.

Hyperparameters for the SVM algorithm were estimated as follows.
The RBF kernel width 	 was selected by a heuristic procedure. We
took 	 to be 1.77 (or 3.54) times the median distance of all Euclidean
distances in the training set. For each trial we chose that C (and 	)
showing the best performance (averaged over 10 cross-validation runs
on a logarithmic grid of 25 values from 0.25 to 400). We visually
confirmed that this range is appropriate for our data (not shown). We
used the libSVM library (http://www.csie.ntu.edu.tw/�cjlin/libsvm/)
for all SVM calculations.

Since the sample sizes were heavily biased toward the negative
(nonspiking) class we randomly picked approximately the same num-
ber of samples of both classes from the training region. This effec-
tively changes the loss function from equal loss to higher importance
for spikes (about a fivefold increase, depending on the mean firing
rate). We used 1,000 and 1,200 samples for spiking and nonspiking
classes (or the maximum available in the training region with a
constant class ratio) and empirically found this to be a good compro-
mise between prediction quality and computational speed because
�1,000 samples only marginally improved the results (not shown).
Training the classifier on all possible samples was prohibitive due to
the enormous sample size. We tried to use class biasing in the C
parameters (Musicant et al. 2003), but this only increased computation
time with little gain in prediction quality.

The test set was always a temporally contiguous region to avoid
feature correlation of trained and tested samples that might lie nearby
in time if a randomized set of samples were used.

FEATURE SELECTION ALGORITHM. We now describe how to deter-
mine the usefulness of different features for spike prediction. Al-
though features important for the SVM classifier are hard to interpret,
in the case of linear regression (with squared loss) one can derive an
analytical expression for the prediction error of a set of features
involving only the STAs and correlation among features. Based on
this prediction error, we derived an algorithm that forwardly selects a
small subset of features out of a much larger pool of features. As
subsequently explained, the selected subset will show minimal pre-
diction error compared with other subsets with the same number of
features. In that sense the subset of features selected by our algorithm
represents the most useful features from a given pool. Because this
feature selection can be efficiently done for huge feature pools, we
restricted feature analyses to linear classification, rather than using the
SVM classifier. This is not too restrictive in our case because linear
classification achieves almost 90% of the performance of an SVM
classifier (see RESULTS).

In linear regression we look for the weight vector w that has
minimal error in a mean squared sense
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�
w� � 
yi � wTxi�
2� (5)

where the brackets indicate averaging over all samples i. Minimizing
the error is straightforward and results in the optimal weight vector1

w* of

w* � xixi
T��1yixi� (6)

provided that the estimated correlation matrix A: � xixi
T� has full

rank. We note that we have a binary classification and thus yi � {�1,
1}. Thus

yixi� � �
c�1

c1 � c�1

m�1 �
c1

c1 � c�1

m1

where m�1 and m1 are the class means for the nonspiking and spiking
class, respectively, and c�1 and c1 are the number of samples in each
class. With the condition that each feature is normalized to variance
one and zero mean, Eq. 6 reduces to

w* � cA�1m1 (7)

with

c :�
2c1

c1 � c�1

The minimal error is then given by

�
w*� � 1 � c2m1
TA�1m1 (8)

In other words, the error of the linear regression is dependent only on
the STA m1 and the correlation among features. We note that if we
restrict ourselves to the use of n features (the dimensions of xi) out of
a pool of N � n features, the preceding equations remain valid if the
correlation matrix and the mean are also restricted to these features
only (that is, A has size n � n with rank n and m1 is n-dimensional).

To select a set of n important features we use the following iterative
algorithm. We start with the feature that has the highest STA, i.e., f1 �
arg maxj � (m1)j � (the variance of each feature being normalized to
one). Assume now that n � 1 features are already selected. Then we
search through all N � n 	 1 remaining features and choose one that
minimizes the error (Eq. 8), where the restriction of the correlation
matrix is now enforced on the n features rather than on n � 1 (and
analogously with m1). We stop this iteration when the desired number
of features m �� N is selected.

This algorithm is highly efficient in finding a good set of features,
since we need to calculate the correlation matrix only between the
selected features and all other features (which costs much less effort
than calculating it for all pairs).

R E S U L T S

This section is organized as follows. After showing the
general spike-to-LFP relationships present in our data, we
report the population performance for the task of predicting
spike trains from LFP, focusing first on data from V1 of
anesthetized monkeys (nine monkeys) collected during the
presentation of 5 min of commercial movie stimuli and equally
long periods of spontaneous activity. We then compare these
results with a more limited set of sessions recorded from V1 of
awake monkeys (two monkeys) and with results on data from
LGN of anesthetized monkeys (two monkeys). Finally, we

investigate which LFP features are important for the prediction
task and which aspect of the spikes they code for.

Average spike to LFP-power and -phase relation

Figure 1 shows spiking activity and (normalized) LFPs of a
representative electrode. Relationships between spiking activ-
ity and underlying LFPs are visualized in Fig. 2.

In Fig. 2A the spike-triggered average (STA) of the LFPs of
an example electrode during movie stimulus is plotted. Clearly,
there is a linear relation between spikes and LFPs. One notes a
sharp negativity at spike position at zero time lag and a
prominent upswing for positive time lags, i.e., after spiking has
occurred. Likewise, in the STA of the spectrogram (Fig. 2B)
power is enhanced in the high-frequency range (40–90 Hz)
during spiking activity. Enhancement of power at high LFP
frequencies as a response to spikes is common among elec-
trodes, stimulus conditions, and monkeys, as we will see in the
next sections.

Figure 2C shows the probability of spiking activity at the
oscillation phase of a particular LFP frequency for the same
example electrode, but averaged �30 repeats of the movie pre-
sentation (�120 min of recording time). One notes that the phases
of all LFP frequencies are at least weakly related to spiking
activity (Raleigh test of nonuniform angular distribution). Most
strikingly, spikes are relatively tightly locked to phases of low
frequencies (10 Hz). The generality of this behavior is
illustrated in Fig. 2D, where the phase preferred by spikes is
plotted as an average across all data from V1 (anesthetized
animals). The average preferred phase shifts with frequency
from the onset of a positive half-wave to the valley of the LFP
oscillation (compare with Fig. 2E). This behavior is very
consistent, regardless of whether activity is spontaneous or
movie-driven. For some electrodes the preferred phase-fre-
quency dependence is slightly different (as in the example of
Fig. 2C for high frequencies). For a few electrodes the phase-
to-spike relation seems to be mirrored at � (not shown).

The gray-shaded area in Fig. 2D shows the (average) phase
range within which 50% of the spikes fall. It would be zero for
perfect phase locking and � for no phase–spike relation. One
notes that this range is somewhat smaller for low frequencies
(0.85�), but approaches 0.98� for frequencies �20 Hz, indi-
cating that the phase locking is far from perfect at all frequen-
cies and is especially weak for high frequencies.

In summary, we have seen that there is indeed a consistent
relationship between LFPs and spiking activity on average. In
the next sections we ask to what degree it is possible to exploit
these relations (and maybe other information available in the
LFP) in a systematic way to infer spikes from the LFP.

Population prediction performance

In Fig. 3 a typical example of a predicted spike train is
depicted together with the used LFP features. Figure 3, A and
B shows 8 s of LFP spectrogram and the time course in the test
region, respectively. Small vertical lines in Fig. 3B indicate
spike times before binning to 5-ms resolution. Several inter-
esting points can be noted. As expected from the LFP-to-spike
relations discussed in the last section, spikes preferentially
occur in the upswing and valleys of very low and medium LFP
oscillations, as seen for instance at times 171 and 173.4 s in

1 Note that the optimal weight vector w* has only minimal error for the
regression, and that there may be a better weight vector for classification. We
neglect this here for the sake of simplicity.
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Fig. 3B. Additionally, the power of multiple frequencies is
enhanced when a burst of spiking activity occurs, as suggested
by Fig. 2B, but the frequency response to bursts is diffuse and
variable (compare the burst at 173.4 s to that at 174.5 s). The
clustering of spiking activity on a timescale of a few hundred
milliseconds in this example is actually quite typical in our V1
data (see following text). For the single spikes in between the
clusters no feature of the LFP is immediately predictive.

Figure 3C shows target and predicted spiking activities.
Prediction of spikes is made for individual sample times at a
resolution of 5 ms using a set of LFP time course and fre-
quency features (see following text). Concatenating the predic-
tion over time yields a predicted spike train that is compared
with the target spike train. One notes that the prediction
captures, at least approximately, the overall structure of the
spike train. The occurrence of bursts of spiking activity, which
are associated with easily seen traces in the LFP time course
and spectrogram, is well predicted. Nevertheless, the exact
onsets and offsets of the bursts are somewhat inaccurate in the
prediction. Even some smaller bursts and single spikes are

closely predicted (172.5 s), although no clear mark in the LFP
time course or spectrogram can be seen with the naked eye.
However, their length (176.6 s) and exact position (176.3 s)
sometimes seem inaccurate. There are also occasions where
spikes are simply missed (172.9 s) or fabricated (173.9 s).

Prediction performance is evaluated in different ways. One
measure is the 
 performance, a measure defined on the
samples in the test set, which is positive for above-chance classi-
fication; it equals one for perfect classification (see METHODS

for definitions). In contrast, the correlation measure r� (see
METHODS) is defined as a local average in the time domain and
is therefore less sensitive to small temporal inaccuracies. The
performance measure 
 of the predicted spike train in Fig. 3C has
a value of 
 � 0.40, which is relatively good (but not the best
possible; see following text). Rank correlation is r25 ms � 0.60.

In the example of Fig. 3, the predicted spike train resembles
the original to a certain degree. We ask whether this prediction
quality carries over to LFPs recorded from different monkeys,
electrodes, and stimulus conditions. For that we estimated
prediction performance using a large data set (see METHODS).
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FIG. 2. Spike–LFP relationships for one electrode in V1 of an anesthetized monkey during movie stimulation (A–C) and across all recordings from V1 in
anesthetized monkeys (D and E). A: spike-triggered average (STA) LFP. For significance levels interspike intervals (ISIs) are shuffled and the SD of the resulting
STA is calculated. B: STA of the LFP spectrogram (see METHODS), with power series normalized to zero mean and unit SD. Power at high frequencies is clearly
modulated by spiking activity, whereas power at lower frequencies shows only diffuse dependence on spikes. C: probability distribution of LFP phases at a
particular spiking position. LFP phases are computed via Hilbert transform (1-Hz bands). Here all spikes over 30 repeats of movie-driven activity are included
(same electrode as before). Note that the color map shows only a narrow range of probabilities and that values above or below the limits are truncated. Black
dots indicate the preferred (i.e., mean) phase. No phase locking of spikes would result in a uniform distribution at 2% per bin. Although locking to low frequencies
is strong, locking to high frequencies is only weak (but present). D: the average preferred phases for all electrodes across all anesthetized data individually for
movie-driven activity (“movie”) and spontaneous activity (“spont”). Bars indicate SEs. The phase range containing half of the spikes around the preferred phase
is indicated by the shaded area. E: the interpretation of phase, showing that spikes are locked at very low frequencies to the onset of a positive half-wave and
at high frequencies to the valley.
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Inferences are made on the basis of a set of LFP features, with
which we observed a dependence between spikes and LFPs in
the previous section. In the population analysis we include as
features the time course around each sample position (in a
window of 100 ms before and 300 ms after spike position) and
an estimate of the frequency content of LFPs at zero time lag
[Pf,0(ti); see METHODS], resulting in a total of 116 features. This
feature set generally produced good performance (with a rea-
sonable computational speed) over a wide range of data. For
the prediction itself a nonlinear support vector machine is used
with radial basis functions such as kernel (SVM–RBF) and
a linear classification is employed (for details see METHODS).

In Fig. 4 the prediction performance over all trials is eval-
uated (on 10 cross-validation runs) and averaged. The anesthe-
tized V1 data set is labeled “spo” for spontaneous activity and
“stm” for movie stimulus-driven activity. We shall focus on
these data for the moment. The remaining conditions shown in
this plot are discussed in the following text.

Plot A shows the average performance 
 for the SVM–RBF
classifier and for linear classification. From the results we draw
the following insights. First, since performance measure 
 is
�0 for above-chance prediction it can be said that both
classifiers can exploit information in the LFP time course to

predict spiking activity (all conditions highly significant; t-test,
P � 10�6, Wilcoxon signed-rank test for zero median, P �
10�6). Second, prediction quality for the stimulus condition
and for spontaneous activity differs only slightly: indeed, one
cannot reject the hypothesis that the underlying distributions
have identical means (two-sided unpaired t-test, P � 0.21;
linear, P � 0.18). However, if one compares pairwise record-
ings during spontaneous activity and stimulus presentation
done with identical electrodes, mean and median prediction
performances on spontaneous activity are significantly better
than those on stimulus-driven activity (one-sided paired t-test:
P � 10�4; linear, P � 10�4; for the distribution-free Wilcoxon
matched-pairs signed-ranks test: P � 10�4; linear, P � 10�3).
Average prediction performance for spontaneous activity is

 � 0.211 � 0.006 (linear 
 � 0.185 � 0.005) and 
 �
0.201 � 0.005 (linear 
 � 0.175 � 0.005) for stimulus-driven
activity.

Third, nonlinear margin classification is consistently better
than linear classification (one-sided paired t-test: “stm” P �
10�6, “spo” P � 10�6; Wilcoxon matched-pairs signed-ranks
test, P � 10�6). It amounts to an increase, on average, of about
12% in performance. This suggests that the mapping from LFP
features is nonlinear. However, since a simple linear regression
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FIG. 3. Example of spike prediction from LFP (anesthetized monkey, Session a98nm5, spontaneous activity). A: the (normalized) spectrogram of the 8 s of
LFP activity. B: corresponding LFP time course and spiking activity. Spikes are indicated by marks before binning to the LFP resolution (5 ms). C: the binned
target spikes and their spike density function (blue) together with the predicted spikes and their spike density function (red). The prediction is relatively good
(
 � 0.40, r25 ms � 0.60) on this trial, but other trials show even better performance (compare with r25 ms values of other trials in Fig. 4B, “spo”). One notes
that regions of high activity are well predicted, whereas the location of single spikes is less accurate. Classification is done with the support vector machine (SVM)
radial basis function (RBF) classifier trained on the region 35–160 s using the same features as for the population analyses (Fig. 4).
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classifier already achieves almost 90% of the accuracy of the
nonlinear classifier, one could state that the LFP feature space
exploited here seems expressive enough for this task.

We found that for individual trials performance varies
widely. For selected trials prediction performance can reach

 � 0.65. Plot B of Fig. 4 shows the rank-correlation measure
r25 ms of the SVM–RBF prediction. Each thin short line repre-
sents performance for an individual trial. Whereas the corre-
lation for some trials is as high as 0.8–0.9 on this moderately
small timescale (25 ms), it is almost zero in others. There are
some trials where prediction fails completely in each of the
conditions. The failing trials are not all from the same sessions
since the session means (markers) tend to cluster around the
overall mean.

There is not much variability in performance over time: the
average SD for the 
 performance of five repeats of 170-ms
recordings for the same electrodes is 0.023 � 0.002 for
stimulus-driven activity, 0.026 � 0.002 for spontaneous activ-
ity, and 0.045 � 0.002 for both together. This is in contrast to
the variance across electrodes recorded simultaneously. Here
the average SD (in 
) is 0.113 � 0.004 for stimulus-driven and
0.130 � 0.005 for spontaneous activity. The roughly 25-fold
increase in variance across electrodes compared with within-
electrode variance suggests that prediction performance is a
matter of which electrode is being observed, rather than stim-
ulus condition or time. Electrode tips might be positioned in a
region where the arrangement of current sources and sinks
might differ (e.g., in deep or superficial layers), or where active
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FIG. 4. Population performance for spike prediction from LFP. A: average prediction performance 
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neurons might be less well correlated with the bulk activity of
the cortex. Since we cannot distinguish the layers from which
electrodes record, we cannot pursue this further.

Up to now we have presented results for recordings only
from V1 of anesthetized monkeys. We also have a limited
amount of data available from V1 where monkeys were not
anesthetized and free to behave. The stimuli for this data set
(labeled “awake”) are mixed and include spontaneous activity
and fixation tasks. Another pool of data consists of recordings
from LGN of anesthetized monkeys (labeled “stm(L)” and
“spo(L)”; see METHODS).

We see from Fig. 4A that prediction differs quite drastically
for the different data types. Spike prediction for the anesthe-
tized monkey data from V1 is more than fivefold better than
that in the LGN, where performance is hardly above chance: on
average, 
 � 0.035 � 0.005 (linear 
 � 0.033 � 0.005) for
movie-driven activity and 
 � 0.027 � 0.003 (linear 
 �
0.022 � 0.003) for spontaneous activity.

As in V1, there is little difference between spontaneous and
movie-driven activity in LGN, although there is a reversed
tendency for spike prediction to be easier on movie-driven
activity than that on spontaneous activity. This tendency is
barely significant (one-sided paired t-test: P � 0.02; linear,
P � 0.01; Wilcoxon matched-pairs signed-ranks test: P �
0.05; linear, P � 0.08).

We find that average prediction performance on awake data
is 
 � 0.063 � 0.005 (linear 
 � 0.046 � 0.005). This is much
worse than that on anesthetized V1 data (unpaired t-test, P �
10�5), but still significantly better than that on LGN data (all
unpaired one-sided t-test, P � 0.05). Figure 4B reveals that
individual trials have a correlation of target and prediction
similar to that in anesthetized monkeys. There are trials with
correlation up to r25 ms � 0.6, whereas in the case of the LGN,
no trial exceeds 0.3 correlation.

Cross-electrode predictions

The volume of cortex that contributes to the generation of LFPs
is different from that producing our spiking signal (see INTRODUCTION).
Thus it might be interesting to see how the relationship be-
tween the two signals changes with distance. Because record-
ings were done simultaneously with multiple electrodes (in the
data set from anesthetized animal), we tried to infer spikes
from LFPs collected with two different electrodes. In Fig. 4C
the average performance is plotted against the (three-dimen-
sional) distance of the electrode tips. To facilitate comparison,
performance is evaluated relative to the average performance
achieved using the spiking signal from the electrode from
which the LFPs were taken.

One notes that prediction performance drops to about 40%
when electrodes are 1 mm apart (the minimal distance in our
recording setup). Interestingly, for stimulus-driven activity
performance degrades significantly with distance (rank corre-
lation between distance and relative kappa performance using
all measurements: �0.20, P � 10�4), whereas for spontaneous
activity no significant correlation with distance can be found
for distances 1 cm (rank correlation 0.015, P � 0.2). Note
that the number of samples becomes relatively small for
distances �6 mm since rectangular electrode grids with 1-mm
spacing are used for most sessions. However, we can safely

compare spontaneous and stimulus-driven activity because the
electrode placements do not change with the condition.

Because LGN data were collected while other electrodes
simultaneously recorded from V1, we can investigate whether
the LFPs of V1 can be predicted on the basis of spikes from
LGN and vice versa. This is shown in Fig. 4D averaged over
data from the three sessions recording simultaneous measure-
ments from V1 und LGN (see METHODS). Performance is
averaged either across electrode predictions (regardless of
distances) or over all predictions using the same electrode for
both signals. Although results are difficult to interpret because
of the limited size of the data set, one notes that using LFPs
from LGN and spikes from V1 results in performance above
chance, whereas LFPs from V1 seem to hold no information
about spikes in LGN (unpaired Wilcoxon signed-rank test for
median performance different from zero, significance level 0.05).

Temporal accuracy of predicted spike trains

We found an average 
 value of about 0.2, which is well
above chance but nevertheless far from perfect prediction at

 � 1. On the other hand, in example Fig. 3C some features of
the target spike trains seem to be well captured by the predic-
tion, especially regions of high and low activity, which alter-
nate on a timescale of about 0.5 s in this example. Thus one
might ask at what timescale the predicted spiking activity most
closely resembles the target spiking activity or at what timing
accuracy the prediction fails.

To answer this we evaluated the coherence between target
and predicted spike train (Fig. 5). Coherence is a correlation
measure in the frequency domain. Coherence at a particular
frequency makes a statement about the exactness of the pre-
diction on a timescale of one over that frequency. We also
estimated the temporal accuracy directly in the time domain
(by varying the correlation kernel width) where one arrives at
similar conclusions (not shown).
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comparison we included surrogate data, in which spike trains were generated
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coherence between surrogate spike train and its jittered version with Gaussian
noise of different SDs (� from 5 to 500 ms, as listed in the plot). Coherence
drops for higher frequencies, suggesting that, on average, prediction is reason-
ably good only for slow structure in the spike trains. Note that the chance
coherence level is at about 0.15 here, as shown by the surrogate data. Chance
levels do not tend to zero because coherence is estimated on 10 cross-
validation regions (each 17-s duration) and only subsequently averaged over
all trials. Colored areas indicate SEs.
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In Fig. 5 one observes that coherence is low for high
frequencies and rises for low frequencies. Thus the general
resemblance of a predicted spike train might be adequate, but
the exact spike position is often predicted with some jitter. This
is also evident in the example of Fig. 3.

Coherence drops at about 25 Hz for the anesthetized V1
data. This timescale is comparable to a spike train whose
spikes are jittered by Gaussian random noise with SD of 25 ms.
Coherence levels of such surrogate data are indicated by the
dashed lines in Fig. 5. Since the jitter destroys all information
in the high frequencies, the plateau at low coherence for the
surrogate data can be taken as a significance level for the
coherence estimation. In surrogate data low-frequency aspects
stay completely intact (thus a coherence of 1), but for predicted
spike trains this is only partly the case. However, average
coherence rises considerably for larger timescales compared
with smaller ones, suggesting that at least in a subset of trials,
slow structure is well predicted.

Data from the non-anesthetized monkey are less coherent at
low frequencies but much more so than for data from LGN,
where almost no significant coherence is observed, even for
low frequencies. Note that we have far fewer trials from LGN
and non-anesthetized V1, so averaging is less effective in
smoothing.

In summary, predicted spike trains are seldom accurate to a
spike timing precision of �25 ms, as suggested by comparison
to a jittered version of the original spike train. On the other
hand, predicted spike trains capture structure on a larger
timescale reasonably well, say for clusters of high spiking
activity in the 100-ms range.

LFP features important for inferring spikes

For determining the usefulness of particular LFP features for
inferring spiking activity, we iteratively select a small number
of features out of a large pool of possible features. The selected
subset shows minimal prediction error for a given number of
features, and therefore selected features can be seen as the most
important for prediction. Because spike prediction in LGN is
almost impossible, only V1 data are analyzed in the following.

We consider a feature pool consisting of phase and power
features (Pf,k, �f,k, and �̂f,k). Phase is estimated on 45 frequency
bands each 2 Hz wide, whereas the power features Pf,k have
different frequency resolutions (see METHODS). Setting k appro-
priately, we include time lags of 3s in both directions (before
and after ti). Out of this pool of features, containing together
N � 138,115 features, only up to m � 10 features are selected
for each trial individually using the algorithm outlined in
METHODS. Figure 6D shows that, on average, selecting only 10
features out of the huge pool is enough for a linear classifier to
approach the performance of the linear classifier used previ-
ously (Fig. 4), which used 116 general features (dashed line).
For the first five selected features the gain in performance is
highest.

Figure 6, A–C shows histograms of m � 5 selected, most
important features aggregated for all trials. Phase- and power-
related features are colored blue and red, respectively. Analo-
gous to previous results, useful features differ only slightly
between stimulus-driven activity (Fig. 6A, “stm”) and sponta-
neous activity (Fig. 6B, “spo”): stimulus induction does not
seem to induce a general change in the preference of features

for spike–LFP interaction. One notes that in both spontaneous
and stimulus-driven activity power fluctuations in the high
�-band (40–90 Hz) are preferred features. Selected frequencies
are biased toward high values, with 80–90 Hz being the most
likely selection. Indeed, high-frequency power features are
selected as the first and most useful feature in about 90% of the
trials (and in 82% in non-anesthetized animals; not shown).
The time lags of the selected � power features are almost
symmetrically distributed around zero (with a small bias to-
ward positive lags) in a zone spanning about 50 ms to either
side. There are smaller symmetrical peaks at 150 ms, which
may be attributed to the power estimation, where we use a
moving window of 150-ms duration. Likewise peaks at 80 and
60 Hz are introduced by spectral estimation because the band-
width is roughly 20 Hz (see METHODS).

We identified low-frequency information as a second class
of useful LFP features, in particular phase information of
low-frequency bands �10 Hz. Time lags of selected phase
features are mostly positive, meaning that the time of the
feature is most informative after the spike. Useful lags vary
from �50 to 200 ms, depending on the frequency, and they can
be as long as 500 ms for the lowest frequency bands (2 Hz).
Time lags vary according to an oscillation period of the low
bands. Power modulations in the low-frequency bands are
selected about as often. The time lags of these features are
distributed widely, which is caused by the long window setting
of 2 s needed to estimate power at low frequencies (see
METHODS).

Bands from 10 to 40 Hz, especially 15 to 30 Hz, seem to be
much less important for inferring spikes. Despite a small
number of scattered features in the “spo” condition, phase
information for �-bands (e.g., �40 Hz) does not play a role,
either.

For the non-anesthetized animals results are hard to inter-
pret, given the limited amount of data (see Fig. 6C). However,
it seems that the overall structure is similar to the V1 data of
anesthetized monkeys in having high-frequency power features
as well as very low frequency phase features for positive lags.
However, there seems to be an increase of selected power
features for intermediate frequencies.

Both feature types, meaning high-frequency power features
around zero lag and low-frequency information, either low-
frequency power or low-frequency phase features with positive
lags, are often jointly selected among the five optimized
features. This shows that individual trials have similar features.
We found that in 75% (“stm”), 59% (“spo”), and 72%
(“awake”) of the trials both types of features are jointly
selected, more specifically a high-frequency power feature (�40
Hz) with absolute lags of �250 ms and a low-frequency phase
feature (�10 Hz) with positive lags or a low-frequency power
feature �10 Hz. In absolute terms high-frequency powers are
preferred over low-frequency features (“stm” 61 vs. 24%;
“spo” 62 vs. 19%; “awake” 47 vs. 24%). In “stm” and “spo”
conditions low-frequency phase features with positive lags are
selected slightly more often in combination with high gamma
powers than low-frequency power features (“stm” 49 vs. 44%;
“spo” 38 vs. 33%), whereas low-frequency powers are pre-
ferred in the awake condition (28 vs. 60%). Neither of the
low-frequency features is present in about 25% of the trials
when the first 5 selected features are considered, although this
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value drops to about 5% when the first 10 selected features are
examined.

In summary, our analysis shows that two feature types are
most useful for predicting spikes: power in the higher bands
(�40 Hz) and (to a lesser degree) low-frequency information
(�10 Hz), which can be power modulation or phase informa-
tion with lags around and after the spike.

POPULATION STATISTICS OF LOW-FREQUENCY PHASE FEA-

TURES. Low-frequency phase features indicate spike positions
relative to the low-frequency oscillations of the LFP. This
feature thus carries the information of the phase locking to
lower bands (Fig. 2, C and D). However, from the perspective
of phase locking it is surprising that the informative lags are
asymmetrically distributed around the spiking position. This
indicates that it is not merely the locking to a phase that is
important, but that instead the LFPs at low frequencies display
a consistent slow wave following spiking activity and spikes
are locked to the onset of that wave. In contrast LFPs before
spikes are less well determined on average. This asymmetry of
the phase locking to lower bands can be seen in the STA LFP,
as pointed out earlier (Fig. 2A).

The form of the STA is stereotypical for the majority of
electrodes in V1. As we showed earlier in METHODS, a high
value in the STA is a good feature for classification (given
some covariance constraints). Thus the typical form of the STA
explains why the phase features for positive lags are consis-
tently selected among the best features. To show the generality
of the form of the STA in our data, we select two particular
phase features, �A and �B. Feature �A is determined by the
position of the first maximum (peak) for positive lags of the 1-
to 4-Hz band-pass filtered LFP (cross in Fig. 7A). To reject any
AM in that band we take the cosine of the time course of the
phase instead of the time course of the LFP (see METHODS). The
second phase feature �B is the valley nearest to zero lag in the
4- to 8-Hz band of the LFP (star in Fig. 7A).

In Fig. 7B the distribution of these two features is shown in
a scatterplot across all trials. Note that the feature �A (black
crosses) lies very consistently at mean lag around 112 � 1 ms,
although the height differs somewhat (see marginal distribu-
tions in attached plots). The feature �B (green stars) is likewise
consistent across trials. However, the height distribution of this
second feature (right margin plot) is more skewed to lesser
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values than for feature �B, suggesting that it might be less
useful for prediction. There is also a minority of trials in which
neither feature was well expressed, indicated by the scattered
outliers.

INFORMATION CONVEYED BY LOW-FREQUENCY BANDS AND HIGH-

FREQUENCY POWER FEATURES. To compare information con-
veyed by different features about spikes we use the mutual
information between target spikes train and predicted spikes
train (see METHODS). Mutual information between the class
labels is a lower bound for the mutual information contained
between the signals under consideration (Natschläger and
Maass 2005). It is only a lower bound, since a classification
method might fail to use all the information contained in the
signal. However, it is unlikely that a nonlinear SVM classifier
would miss much of the dependence in our data, since the
relationship between features and spikes seems to be mostly
simple proportionality. Recall that for our data a linear classi-
fier already achieves about 90% of the performance of a
nonlinear classifier.

First, we tested prediction performance for single-frequency
power and low-phase features individually using the SVM
classifier. In Fig. 7C we show the average information about
the spikes at different frequencies for V1 of anesthetized
monkeys (blue crosses). The information change with fre-

quency closely resembles the number of selected power fea-
tures per frequency from our selection algorithm in the previ-
ous section. We note that, on average, frequencies around 80
Hz convey the most information about the spikes. If one uses
all the features tested here simultaneously, average perfor-
mance reaches 0.037 � 0.002 bits, which is 35% higher than
that when the best individual feature is used.

Information contained in the power decreases monotonically
with frequency. This decrease can also be seen on the level of
individual trials (not shown). If one uses either one of the
low-frequency phase features �A and �B on its own, informa-
tion drops to about a third for �A and much lower for �B
compared with that of the best power feature (black and green
lines in Fig. 7C, respectively). Despite the usefulness of low-
frequency power modulation in combination with high-frequency
powers (as shown in the feature selection), low-frequency power
exhibits poorer performance as a single feature than the phase
features (in particular in comparison to �A; see Fig. 7C). Note that
the timing resolution of the phase features is much higher as
phase is defined at any moment in time, whereas power has to
be estimated within a window of sufficient length. The induced
temporal correlation of nearby time points for the low-fre-
quency power seems to be too high to predict spike times on
its own.
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We next investigated the information conveyed by any two
features jointly. If two LFP features F1 and F2 conveyed
independent information about spiking activity S, the normal-
ized measure for synergy of information syn (F1, F2 � S) (Eq. 4)
would be zero. In general, this measure ranges from minus one
for completely redundant information to one for completely
synergistic information (for details see METHODS). Figure 7D
shows the average normalized synergy of information about
the spikes for all combinations of features. Here synergy of
information is calculated on the basis of single trials, where
trials having joint information not significantly above zero
information are excluded (Wilcoxon signed-rank test, P value
�0.1). Generally, information conveyed by high-frequency
bands is mainly independent from information contained in
low-frequency bands. The information in individual high-
power features is more redundant [e.g., for 87 and 50 Hz,
syn (P50 Hz, P87 Hz � S) � �0.40 � 0.02] than between high-
power features and phase features, where information is nearly
independent [synergy values with high-frequency power fea-
tures around �0.2; for instance, syn (�A, P81 Hz � S) �
�0.21 � 0.01 and syn (�B, P81 Hz � S) � �0.14 � 0.02]. Phase
feature �B becomes more redundant with power for decreasing
frequency [e.g., syn (�B, P2 Hz � S) � �0.45 � 0.03], whereas
�A redundancy is relatively low even with low-frequency
powers [e.g., syn (�A, P2 Hz � S) � �0.23 � 0.03]. However,
redundancy between any two low-power features is much
higher. Both phase features convey almost independent infor-
mation about spikes [syn (�A, �B � S) � �0.05 � 0.02].

Note that the high redundancy of information in two high-
frequency powers that are �20 Hz apart is a result of spectral
estimation, which is done on the bandwidth of 21 Hz (see
METHODS).

In summary, both feature types, high-frequency power and
low-frequency information, seem to code for mostly indepen-
dent information, whereas two high-power features convey
more redundant information.

PREDICTION PERFORMANCE IS RELATED TO CLUSTERS OF SPIKES.

We noticed that generally prediction performance is superior
on data where spikes tend to cluster to bursts of activity with
relatively long silent periods in between. This can be seen if
one correlates the interspike interval coefficient of variation
(ISI-CV) with prediction performance. If spikes are temporally
clustered, many short intervals are interspersed with few very
large intervals, causing a large value for ISI-CV, the ratio of
SD to mean of the ISI distribution. Thus ISI-CV can be seen as
an approximate measure for the degree of temporal clustering
of spike trains. One notices a strong correlation between the
ISI-CV and prediction performance (rank correlation 0.86),
whereas prediction performance is only poorly correlated with
the firing rate (0.47). This behavior can also be seen for
individual features. High-frequency power features have the
highest correlation with ISI-CV (0.92), whereas correlation
with single phase features is lower (e.g., 0.64 for �A). Corre-
lation with rate for both features is much lower (high gamma
frequency 0.34, phase feature �A 0.44). We found that if one
defines larger clusters of spike or burst events directly and
discards single spikes in between (see Fig. 8), low-phase features
are locked to the timings of such bursts and the performance of
phase feature �A is highly correlated with the burst rate (rank
correlation 0.82). In our burst definition (see caption of Fig. 8) the

average burst length is 122 � 1 ms, which suggests that
low-frequency phase information preferentially codes for
(rather sustained) bursts of activity.

D I S C U S S I O N

Local field potentials (LFPs) are the best indicators of
integrative activity in an area. They reflect the area’s input
activity in terms of population excitatory and inhibitory
postsynaptic potentials, but also the area’s regional processing
because they are directly affected by dendritic spikes, voltage-
gated oscillations, and various after-potentials—all markers of
diverse neural computations (see Buszáki 2006 for an over-
view). Not surprisingly, an increasing number of studies report
their specificity and usefulness in the search for neural corre-
lates of behavior (Kreiman et al. 2006; Lee et al. 2005; Liu and
Newsome 2006; Osipova et al. 2006; Rubino et al. 2006;
Scherberger et al. 2005). Although these studies show that
LFPs convey information that is to some degree independent of
spiking activity, it has been suggested and demonstrated by
many researchers that spikes synchronize to—or that synchro-
nization gives rise to—specific oscillation frequency of the
LFPs, in particular �-bands (�40 Hz) in visual cortex and
�-band (4–8 Hz) in the hippocampus (see Buszáki 2006 and
references therein).

Herein we investigated the relation of spiking activity to
LFP on a more fundamental level by asking which aspects of
the LFP can generally be exploited to predict spike times.
Unlike other approaches in which simple linear interaction
between both signals is tested (e.g., with means of coherence or
correlation), the classification approach used in our study can

P
ha

se
 o

f 1
−

4H
z 

[r
ad

]

 

 

0

2

4

6

B
ur

st
 p

ro
ba

bi
lit

y 
[%

]

0

1

2

3

4

5
−101

20 40 60 80 100 120
0

0.1
0.2

κ 
of

 φ
A

Electrode no.

0

1

2

Burst rate [Hz]

FIG. 8. Locking of high spiking activity events to phases of slow LFP
oscillations. Here a high spiking activity event (burst) is defined as having �10
spikes. Spikes constituting a burst have to occur within a maximal mean ISI of
5 ms, and spikes not contained in a burst are deleted. Bursts have to occur �25
ms apart from each other; otherwise, they are regarded as one continuous
event. The middle position is taken as the timing of an event. The probability
of event times occurring in a particular phase of the 1- to 4-Hz oscillation of
the LFP is plotted for individual electrodes (averaged over 10 trials of
conditions “stm” and “spo” recorded at the same electrode site). Electrodes are
sorted according to the performance 
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exploit multiple different features of the LFP simultaneously in
a nonlinear way to infer spiking activity from LFPs. We found
that when the best single feature is used, performance drops to
about 70%, showing that multiple features are essential. The
nonlinear component in the code is rather small, but there is
still an average increase of 12% when SVM classifiers are
used.

In contrast to V1, the prediction of spikes from LFPs is
(almost) impossible in the LGN. The reason for this could be
that spiking activity might be less correlated and thus have less
effect on the LFP or, alternatively, that the geometrical ar-
rangements of current sources and sinks in the thalamus gen-
erate field potentials of lower spatial specificity than those
observed in cortex. Furthermore the fact that 80% of the LGN
input is cortical and modulatory is an additional potential
reason for the LFP-spiking decoupling in this nucleus. Neuro-
modulation might explain our observation in simultaneous
thalamus–cortex recordings that V1 LFP cannot predict LGN
spiking. LGN–LFP, on the other hand, is a reasonable predictor
of V1 spiking, likely because the former is a better indicator of
local LGN activity that is correlated with the V1 LFPs, which
in turn can predict the spiking of this cortical area.

From the point of view that LFP is mostly generated by the
totality of synaptic input and local processing in a region one
might ask whether it is possible to predict spikes solely on the
basis of information preceding the actual time of the spike. To
evaluate this possibility we recomputed prediction perfor-
mance for the same feature types but with shifted lags, so that
only causal information of the LFP is included. When we did
this, prediction performance dropped to 68% of the average
noncausal classifier used for the population analyses, which is
still well above chance level. However, conclusions about the
relation between synaptic input and spiking output are difficult
to draw from this number. For instance it is likely that due to
temporal correlation in the spike train (and various LFP bands)
neighboring times in the time series are good predictors for
each other.

LFP features related to spiking activity

Besides having generated and visualized concrete spike
trains inferred solely from information contained in the LFPs,
our analysis revealed those features that are the most important
carriers of information about spiking activity in the LFP and
estimated their relative importance and redundancy properties.

The first and most useful feature for inferring spike trains
from LFPs is the power modulation of high-frequency compo-
nents in the upper �-band from 40 to (at least) 90 Hz. This is
in good agreement with other studies that have established a
link between gamma-frequency bands and spiking activity
(Csicsvari et al. 2003). The biophysical origin of gamma
frequencies in the LFP remains a topic for current research.
The rather fixed relationship between spikes and LFPs over a
wide range of data and conditions could reflect physical con-
straints (layered organization of the cortex, distribution of
sinks, and sources) or inherent properties of the neural network
topology and function. For instance, gamma activity might be
the effect of fast inhibitory circuits on the LFPs (for a recent
review see Bartos et al. 2007).

In contrast to power modulations, phase in the �-range is
much less important for prediction than one might have ex-

pected from the well-documented fact that spikes are synchro-
nized in this range (Gray et al. 1989; Kreiter and Singer 1992).
Our stimuli consist of cinema movies of several minutes’
duration and containing a mixture of objects, faces, actions,
colors, and edges. Thus specific object encoding might be weak
and cluttered only with other aspects of the code because the
stimulus consists of multiple objects at any given time. Be-
cause we assume a stationary spike–LFP relation for the
duration of a trial (170 s), more subtle aspects of the relation
such as transient rapid neuron-to-neuron synchronizations
would be averaged out and therefore not detected as a useful
feature. Another possibility for the relative unimportance of
gamma-phase features might be that different subgroups of
neurons present in the MUA signal lock to different phases in
the gamma cycle, as suggested for inhibitory and excitatory
neurons (Hasenstaub et al. 2005). In general, if two subgroups
of units present in the MUA signal locked to a different feature
of the LFP, our classification method should not degrade in
performance because it can exploit many features simulta-
neously. However, the relative usefulness of both features
would indeed decrease in the average features analyses.

In addition, locking to phases of higher frequencies is
difficult to detect because even a small amount of jitter in
spike-time precision abolishes locking. Such jitter might be
introduced during binning of the spike timings to LFP sam-
pling resolution (5 ms). This is in contrast to the effect of a
small amount of jitter at lower frequencies. Accordingly, the
phases of low-frequency components are indeed useful for
predicting spiking activity. Moreover, our analysis suggests
that the oscillation phases of low frequencies code for larger
bursts of temporally correlated spiking activity. In fact, the
high probability of spikes occurring in clusters in our V1 data
helps to infer spikes from LFPs. Prediction quality is highly
correlated with ISI-CV because one can predict spiking activity
on a timescale of �25 ms, rather than reaching single spike
precision. In the LGN data, where the spikes are less clustered
(low ISI-CV, average of 1.1 � 0.05 compared with 2.4 � 0.05
in anesthetized V1 and 1.8 � 0.05 in non-anesthetized V1), it
is almost impossible to predict spikes from LFPs. Since we
observe stronger clustering for anesthetized data, we conclude
that this might be partly an effect of anesthesia (Steriade et al.
1993).

The low-frequency power modulations selected as useful
features in a part of trials probably have origins similar to those
of the slow-phase features and may code for the relative
amount and size of clusters of activity. Thus low-frequency
power modulations might provide a slow-changing state vari-
able that is useful in combination with the fast-changing
high-frequency powers, as indicated by the low redundancy
values.

About half a century ago, several studies were conducted
that attempted to relate electrical encephalographic (EEG)
signals to spiking activity. Then it was found that spikes occur
preferably at the negativity of 0.2- to 2-Hz waves (Fromm and
Bond 1964). Since EEG has a basis of origin similar to that of
LFPs (Nunez and Srinivasan 2006), this confirms our findings,
where spikes occur at the minimum to rising phase of the slow
oscillation. It is not just the negativity that is important,
however, but also the peak that is seen following the spikes.
This is similar to slow-wave sleep of cats as seen in the STA
(Destexhe et al. 1999) and is taken to the extreme in spike-
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wave complexes, which can be observed in cases of epilepsy
(e.g., Destexhe et al. 2001). In the latter case, it was suggested
that the slow positive wave form after a burst of activity is
accompanied by neuronal silence and can be explained by slow
inhibitory effects mediated by �-aminobutyric acid type B
(Destexhe et al. 2001). Although we observe neither clear up-
and downstates nor any pathological periodic activity in the
LFPs of our data, the similarity of the STA suggests that such
processes may play a role during more physiological states,
albeit in a much weaker form.

Effects of spike detection method

The spiking signal used herein is generated by a simple
threshold-based procedure for detecting spiking events from
the recordings. This detecting procedure is prone to false-
positive detection, as well as to a smaller fraction of missed
spikes originating at larger distances or from neighboring
interneurons. With our method we expect a false-positive rate
of 2 Hz, if one assumes that nonspike values (i.e., noise) in
MUA amplitudes are subject to Gaussian distribution (see
METHODS). Thus the spiking signal contains not only the activity
of multiple neurons and possibly of different cell types, but
also noise spikes. Since noise spikes should be independently
distributed with respect to time, false-positive labels should
actually reduce performance compared with the “true” spiking
signal. We tested higher spike detection thresholds, where the
contribution of noise becomes negligible (e.g., for 5SD only
0.05 Hz), and found instead reduced prediction performance,
although performance still remained well above chance (not
shown). Since it was estimated that in principle spikes arising
from 1,000 neurons could be detected by a single electrode
(Henze et al. 2000), a spiking signal generated with a higher
threshold will include fewer smaller spikes from neurons that
are further away and incorporate only those neurons that
happen to be in the immediate neighborhood of the electrode
tip. Thus the spiking signal becomes more local and its rela-
tionship to the relatively global LFP signal is naturally weaker.
Therefore noise spikes are not likely to artificially enhance our
performance results, but influencing the number of neurons
whose spikes are detected via threshold will have an effect.

Similarly, spike sorting yielding multiple single-unit activities
rather than multiunit activity would naturally decrease prediction
performance, since spiking signals become more local and, addi-
tionally, the prediction task would change from binary classifica-
tion to a more difficult multilabel classification task.

Encoding of the stimulus

We found that the relationship between LFPs and spikes is
almost unchanged during stimulus-driven activity compared
with spontaneous activity. This finding corresponds well to the
results of others (Fiser et al. 2004; Kenet et al. 2003; Vincent
et al. 2007), who found that the structure of spontaneous
activity is rich and sometimes even resembles stimulus-driven
activity. Although there is no general change in the structure of
features, there are of course transient aspects of the stimuli
encoded by spikes (and LFPs) that have an effect on the spike
rate, for example, which increases during stimulus presentation
(not shown). Because of the encoding of the changing movie
stimulus over time, the temporally contiguous training and test

sets might differ in their LFP–spikes relation (i.e., in their
sample distributions). Thus movie encoding might explain why
prediction performance on spontaneous activity is slightly
better than that on stimulus-driven activity.

Effects of stimulus encoding might also explain the obser-
vation that the LFP is “more global” during spontaneous
activity in that prediction of spikes degrades much more slowly
with increasing cortical distance than that during stimulus
presentation. Thus the stimulus actually decorrelates neural
activity spatially in comparison to spontaneous activity.

Note that we do not analyze features that actually encode
information about the stimuli. Information contained in LFPs and
spiking activity about aspects of the movie stimulus will be
investigated in a forthcoming paper (A Belitski, A Gretton, C
Magri, Y Murayama, MA Montemurro, NK Logothetis, S Pan-
zeri, unpublished observations) using the very same data as in the
present study. Although we show here that the structure of the
relationship of spikes and LFP does not change considerably
during spontaneous activity, Belitski et al. nevertheless show that
very low and very high oscillation powers of the LFP are highly
informative about the stimulus. They find that high frequency LFP
power series (50–120 Hz) contain information about the stimulus
that is partially redundant with that in power series derived from
the spike trains. In this respect, their results complement ours.

Conclusion

We conclude that to a certain degree spikes can be inferred
from LFPs—a fact that reflects the interaction of these signals.
However, we find that millisecond precision, which has been
shown to be used for temporal coding (Mainen and Sejnowski
1995), cannot be inferred from LFP. The temporal aspects of
neural spiking used for information coding, rate coding, or
coding on spike timing remain a topic of current research
(Rieke et al. 1999). We might conservatively say that irrespec-
tive of whether they are important for coding, time-varying
rates on the scale of about a hundred milliseconds can be
moderately well inferred from the LFPs, but that exact timings
cannot. Thus given our results, it should in principle be
possible to develop an appropriate methodology that permits
the extraction of certain spiking features from signals measured
by methods relying on LFP-like signals, such as functional
MRI (Logothetis et al. 2001) or optical recordings (Grinvald
et al. 1985, 2004). Nevertheless, the strong dependence of
spike predictability on electrode position suggests that the
reliability of such predictions may depend on the brain site.
Finally, the fact that in the thalamus it is practically impossible
to predict spikes from the LFP suggests that computations
based on input, local processing, and output—as instantiated in
the different frequency bands of the mEFP–can be helpful only
for structures with the appropriate element geometry (e.g.,
fascicles of pyramidal cells vs. potentially close-field arrange-
ment of thalamic neurons) and the proportion of driver to
modulator afferents.
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Natschläger T, Maass W. Dynamics of information and emergent computa-
tion in generic neural microcircuit models. Neural Networks 18: 1301–1308,
2005.

Nelson PG. Interaction between spinal motoneurons of the cat. J Neurophysiol
29: 275–287, 1966.

Nunez PL, Srinivasan R. Electric Fields of the Brain: The Neurophysics of
EEG (2nd rev. ed.). Oxford, UK: Oxford Univ. Press, 2006.

Osipova D, Takashima A, Oostenveld R, Fernandez G, Maris E, Jensen O.
Theta and gamma oscillations predict encoding and retrieval of declarative
memory. J Neurosci 26: 7523–7531, 2006.

Panzeri S, Senatore R, Montemurro MA, Petersen RS. Correcting for the
sampling bias problem in spike train information measures. J Neurophysiol
98: 1064–1072, 2007.

Percival DB, Walden AT. Spectral Analyses for Physical Applications.
Cambridge, UK: Cambridge Univ. Press, 2002.

Pola G, Thiele A, Hoffman K-P, Panzeri S. An exact method to quantify the
information transmitted by different mechanisms of correlational coding.
Network Comput Neural Syst 14: 35–60, 2003.

Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W. Spikes:
Exploring the Neural Code. Cambridge, MA: MIT Press, 1999.

Rubino D, Robbins KA, Hatsopoulos NG. Propagating waves mediate
information transfer in the motor cortex. Nat Neurosci 9: 1549–1557, 2006.

Scherberger H, Jarvis MR, Andersen RA. Cortical local field potential
encodes movement intentions in the posterior parietal cortex. Neuron 46:
347–354, 2005.

Schneidman E, Bialek W, Berry MJ. Synergy, redundancy, and indepen-
dence in population codes. J Neurosci 23: 11539–11553, 2003.

Schölkopf B, Smola AJ. Learning with Kernels. Cambridge, MA: MIT Press,
2002.

Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in
the sleeping and aroused brain. Science 262: 679–685, 1993.

Thomson DJ. Spectrum estimation and harmonic analysis. Proc IEEE 70:
1055–1096, 1982.

Tolias AS, Ecker AS, Siapas AG, Hoenselaar A, Keliris GA, Logothetis
NK. Recording chronically from the same neurons in awake, behaving
primates. J Neurophysiol 98: 3780–3790, 2007.

Vapnik VN. The Nature of Statistical Learning Theory. Berlin: Springer-
Verlag, 1999.

Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC,
Zempel JM, Snyder LH, Corbetta M, Raichle ME. Intrinsic functional
architecture in the anaesthetized monkey brain. Nature 447: 83–86, 2007.

1476 RASCH, GRETTON, MURAYAMA, MAASS, AND LOGOTHETIS

J Neurophysiol • VOL 99 • MARCH 2008 • www.jn.org

 on July 5, 2009 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org

