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Abstract

Motivation: Detecting driver genes from gene mutation data is a fundamental task for tumorigenesis research. Due

to the fact that cancer is a heterogeneous disease with various subgroups, subgroup-specific driver genes are the

key factors in the development of precision medicine for heterogeneous cancer. However, the existing driver gene

detection methods are not designed to identify subgroup specificities of their detected driver genes, and therefore

cannot indicate which group of patients is associated with the detected driver genes, which is difficult to provide

specifically clinical guidance for individual patients.

Results: By incorporating the subspace learning framework, we propose a novel bioinformatics method called

DriverSub, which can efficiently predict subgroup-specific driver genes in the situation where the subgroup annota-

tions are not available. When evaluated by simulation datasets with known ground truth and compared with existing

methods, DriverSub yields the best prediction of driver genes and the inference of their related subgroups. When

we apply DriverSub on the mutation data of real heterogeneous cancers, we can observe that the predicted results

of DriverSub are highly enriched for experimentally validated known driver genes. Moreover, the subgroups

inferred by DriverSub are significantly associated with the annotated molecular subgroups, indicating its capability

of predicting subgroup-specific driver genes.

Availability and implementation: The source code is publicly available at https://github.com/JianingXi/DriverSub.

Contact: xuelong_li@nwpu.edu.cn or qhhuang@nwpu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a life-threatening disease which involves millions of
patients and causes hundreds of thousands of deaths (Siegel et al.,
2019). A primary reason of cancer progression is that DNA muta-
tions on driver genes can lead to the abnormalities of key functions
involved in tumor cells (Vogelstein et al., 2013). Consequently, the
comprehensive understanding of driver genes is crucial for the devel-
opment of cancer diagnosis and treatment (Bailey et al., 2018).
Recently, the next generation sequencing technique has provided the
unprecedented opportunity to detect the mutated genes in cancer
samples (Meyerson et al., 2010; Yu et al., 2014), which accumulates
a large volume of gene mutation data (Hudson et al., 2010;

Tomczak et al., 2015). Unfortunately, even we are able to detect all
the mutated genes of a tumor sample, there are still a number of
mutated genes that do not confer an advantage to tumor progres-
sion, where the related mutations are denoted as passenger muta-
tions (De and Ganesan, 2017). Due to the passenger mutations, even
if a gene is mutated in a tumor sample, we still cannot directly dis-
tinguish whether this mutation is contributing to tumorigenesis or
not (Vogelstein et al., 2013). Therefore, inferring driver genes from
the mutation data of tumor samples is a fundamental task in cancer
research (Bailey et al., 2018; Vogelstein et al., 2013).

A common strategy to discover driver genes from the mutation
data is to incorporate the hypothesis that driver genes are mutated re-
currently among a large cohort of tumor samples (Bailey et al., 2018;
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Tokheim et al., 2016). Based on this hypothesis, most of the previous
published approaches focus on establishing computational methods
to detect recurrently mutated genes as driver gene candidates
(Tokheim et al., 2016). For example, MutSigCV is proposed to pre-
dict recurrently mutated driver genes according to the statistical sig-
nificance of their mutation frequencies among all samples (Lawrence
et al., 2013). Furthermore, OncodriveCLUST detects driver genes
which display significant biases toward mutation clustering within
their related sequences (Tamborero et al., 2013). Based on the com-
putational approaches aforementioned, numerous driver gene candi-
dates with high frequencies have been discovered, many of which
have been validated to play important roles in the progression of
tumor cells according to the follow-up biological experiments
(Lawrence et al., 2013; Tamborero et al., 2013).

However, an amount of previous studies have reported that can-
cer is a heterogeneous disease, i.e. there are various subgroups for a
certain type of cancer, and the mutated driver genes are distinct be-
tween different subgroups of the cancer (Alizadeh et al., 2015;
Vogelstein et al., 2013). If a driver gene is mutated in the samples
within one subgroup rather than in all samples, this gene is denoted
as a subgroup-specific driver gene (Cyll et al., 2017). When com-
pared with recurrently mutated driver genes, subgroup-specific
driver genes are the essential clues to unveil the distinction between
different subgroups of heterogeneous cancers (Alizadeh et al., 2015;
Cyll et al., 2017). Moreover, subgroup-specific driver genes are also
regarded as the guidance of precise diagnosis and treatment on can-
cer patients (Dagogojack and Shaw, 2017). Nonetheless, when a cer-
tain subgroup includes only a small fraction of the investigated
samples, the driver genes specific to this subgroup will be infrequent-
ly mutated among all samples (Cyll et al., 2017). In this regard, to
detect driver genes with relatively low mutation frequencies,
MutSigCV also introduce corrections for variation by gene-specific
background mutation rates, and can detect genes that are only mu-
tant in 3–5% of samples (Lawrence et al., 2013). In addition to mu-
tation frequency, there are also a lot of methods consider multiple
types of features, such as the amino acid change and flanking se-
quence composition (Carter et al., 2009; Tan et al., 2012), which do
not rely on mutation frequency and can detect rare mutations. Still,
the aforementioned methods are not designed to identify subgroup
specificities of their detected driver genes, and therefore cannot indi-
cate which group of patients are associated with the detected driver
genes, which is difficult to provide specifically clinical guidance for
individual patients (Cyll et al., 2017). Consequently, there is an ur-
gent need for the computational methods which are capable of pre-
dicting subgroup-specific driver genes (Cyll et al., 2017).

Recently, there have been some attempts to detect subgroup-spe-
cific driver genes from heterogeneous cancer data (Pereira et al.,
2016). For the special case that the subgroups of samples are well-
annotated, an intuitive approach is to divide the cancer samples into
different subgroups according to the annotations, and detect the re-
currently mutated genes from these annotated subgroups, respective-
ly (Pereira et al., 2016). With the subgroups annotations of samples,
a maximum weight submatrix optimization based method is then
proposed to simultaneously detect common and subgroup-specific
driver genes (Zhang and Zhang, 2017). Nonetheless, all these meth-
ods are suitable to the ideal case where the information of subgroups
are known (Pereira et al., 2016; Zhang and Zhang, 2017). When the
subgroup annotations of the cancer samples are not available, the
aforementioned methods cannot predict subgroup-specific driver
genes anymore (Cyll et al., 2017). Since the information of sub-
groups are unavailable on most occasions (Vogelstein et al., 2013),
inferring subgroup-specific driver genes from cancer samples with-
out subgroup annotations is an imperative task for the development
of precision therapy for heterogeneous cancers (Cyll et al., 2017).

In this article, we present a novel bioinformatics method called
DriverSub, which can efficiently address the unavailability of subgroup
annotation problem. Due the difficulty of acquiring a large amount of
experimentally validated driver genes, we incorporate the unsupervised
learning strategy which does not require any known driver genes.
Furthermore, to simultaneously infer driver genes and their related sub-
group specificities, we establish a transformation which can convert the

mutation data of genes into representation vectors of genes (Yang et al.,
2019) through the subspace learning framework (Wang et al., 2016;
Zheng et al., 2019). For the vectors of the investigated genes, the distan-
ces between the output vectors and the origin of the subspace can be
used to discriminate driver genes, and the coordinate values in different
dimensions of the vectors can indicate the subgroups specificities of the
related genes. When we evaluate the performance of DriverSub through
simulation datasets where the ground truth is known, DriverSub outper-
forms the previous methods on the prediction of subgroup-specific
driver genes (Lawrence et al., 2013; Tamborero et al., 2013). For the in-
ference of subgroup specificities of driver genes, when we further com-
pare DriverSub with existing subspace learning methods (Hyvärinen,
2013; Jolliffe and Cadima, 2016), DriverSub also yields the best predic-
tion of the subgroup indices of driver genes. Moreover, when DriverSub
is applied on two real cancer datasets (Cancer Genome Atlas Network
and Others, 2012; Cancer Genome Atlas Research Network and
Others, 2014), the predicted genes are highly enriched for experimental-
ly validated known driver genes (Sondka et al., 2018). Moreover, the
subgroups inferred by DriverSub are significantly associated with the
annotated molecular subgroups, indicating the efficiency of DriverSub
on inferring subgroup-specific driver genes.

2 Materials and methods

2.1 Subspace learning and output vector
Since the biological experimental annotations of driver genes require
extensive costs, we adopt the unsupervised learning strategy to over-
come the lack of annotation problem. Here we use the subspace learn-
ing framework to obtain the vectorized representations of unannotated
genes (Wang et al., 2016; Zheng et al., 2019), which can transform the
input high-dimensional mutation data of genes into a low-dimensional
subspace of gene representations (Yang et al., 2019). In this study, the
input mutation data are formed as a binary matrix (Hofree et al.,
2013), which consists of the vectors of mutations of the investigated
genes X ¼ ½x1; . . . ; xi; . . . ;xP� (here P is the total gene number). The
binary input mutation vector of the ith gene is an N-dimension vector,
where the number of dimensions of the input vectors N is the total
amount of the investigated samples, and the binary value of the jth co-
efficient of the vector indicate whether there are any mutations occur-
ring in the ith gene of the jth sample (Hofree et al., 2013).

Meanwhile, the output matrix Z ¼ ½z1; . . . ; zi; . . . ; zP� is composed
of the low-dimensional output subspace vectors (8zi  R

K), where the
number of dimension K of the subspace vectors should be far less than
the number of dimension N of the input mutation vectors, i.e. K� N
(Wang et al., 2016; Zheng et al., 2019). Furthermore, for conserving the
mutation information of input genes, the transformation of subspace
learning should be constructed to be approximately invertible (Wang
et al., 2016). Consequently, the output subspace vectors can be used to
reconstruct the input mutation profiles due to the approximate invertibil-
ity of the transformation. In contrast to the input vectors of mutation
profiles, the output vectors in the low-dimensional subspace are more ap-
propriate for the computational analysis, which can also circumvent
problem caused by the curse of dimensionality (Wang et al., 2016; Zheng
et al., 2019).

2.2 Subgroup specificity indication by subspace

dimensions
Although the output vector can represent the gene’s mutation profile
across the investigated samples, how to indicate the subgroup indices of
the genes is still an essential issue for inferring subgroup-specific driver
genes. In other word, the challenge is how to determine which subgroup
the investigated gene belongs to (Cyll et al., 2017). Since the dimensions
of the subspace can be used to reveal the intrinsically latent features of
the input data (Wang et al., 2016; Zheng et al., 2019), the dimensions
of the output vectors may also have the potential of indicating the
related subgroups of these genes. Nevertheless, directly using the existing
subspace learning cannot guarantee whether the subspace dimensions of
output vectors can indicate the subgroup specificities of the driver genes
(Hyvärinen, 2013; Jolliffe and Cadima, 2016). Therefore, to ensure the
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relationship between the subspace dimensions and the subgroup indices
of genes, we propose a novel subgroup indicating subspace learning
method called DriverSub, which is based on subspace learning
with additional constraints and regularizations on the subspace
dimension.

To ensure that the subspace dimension can efficiently indicate
the subgroup indices of genes, we introduce two prerequisites
for the subgroup indicating subspace learning method. The first
prerequisite is that the coordinate values of output vectors can be
calculated as a metric for driver gene evaluation (Tokheim et al.,
2016). The second prerequisite is that the coordinate values of out-
put vectors in different dimensions can be used to indicate the
subgroup indices of the corresponding genes (Cyll et al., 2017).
To achieve the first prerequisite, we introduce the nonnegative con-
straints on output vectors to ensure the coordinate values are either
positive or zero, where a larger value represents a better chance of
being driver gene (Cai et al., 2011). For the second prerequisite, we
utilize sparsity-inducing regularization to ensure that most of the
output vectors are sparse vectors (Zhou and Tao, 2013). For output
vectors zi, although L0-norm corresponds to the sparsity, the
L0-norm optimization problem is non-convex and therefore difficult
to solve (Ramirez et al., 2013). Accordingly, we use the convex L1
optimization problem as a good approximation to L0-norm problem
of sparsity, as suggested by Candes and Tao (2005) and Ramirez
et al. (2013). When the coordinate values are sparse, the output vec-
tors trend to be close to the coordinate axes or the coordinate
planes, where the dimensions of the located coordinate axes or
planes can indicate the subgroup specificities of the genes. The ob-
jective function of the subgroup indicating subspace learning is illus-
trated below:

min
W ;zi

X

P

i¼1

kxi �Wzik
2
2 þ kZ

X

P

i¼1

kzik1

s:t: W � 0 and zi � 0;8i ¼ 1; . . . ;P

(1)

where the reconstruction function is assumed to be linear function
fW ðziÞ ¼Wzi, and the related parameters are in the matrix W
(Zheng et al., 2019). Moreover, the tuning parameter kZ is respon-
sible for the sparsity-inducing regularization, which is a positive
value that can control the distance between the output vectors and
the coordinate axes/planes (Zhou and Tao, 2013). Accordingly, the
subspace dimensions of vectors can efficiently indicate the subgroup
indices of the related genes.

In addition to the two ideas aforementioned, overfitting issue
of the subspace learning procedure is also a noteworthy problem
(Li et al., 2015). Hence, we further introduce the Frobenius norm
regularization into the subspace learning procedure, which can pre-
vent extreme values in the parameters of the subspace transform-
ation (Li et al., 2015). The objective function with Frobenius norm
regularization is

min
W ;zi

X

P

i¼1

kxi �Wzik
2
2 þ kZ

X

P

i¼1

kzik1 þ kWkWk
2
F

s:t: W � 0 and zi � 0; 8i ¼ 1; . . . ;P

(2)

where the term kWk2F denotes the squared Frobenius norm of the
matrixW, and the tuning parameter kW is a positive value to control
the tolerability of extreme values (Li et al., 2015). Here the two
parameters kZ and kW are set to 0.001 and 0.1 empirically.
Accordingly, the output vectors learned from the subspace learning
above can both preserve the information of the input mutation pro-
files of the genes, and indicate the subgroup indices of the genes
through the subspace dimensions. The overview of our proposed
DriverSub is illustrated in Figure 1.

2.3 Subspace learning algorithm via alternative

optimization
To obtain both the output vectors and the parameters of the trans-
formation for the subspace learning (Zheng et al., 2019), we adopt

an alternative optimization strategy to solve the learning task (Cai
et al., 2011). Note that the objective function in Equation (2) of sub-
space learning is equivalent to the following formulation:

min
W ;Z
kX �WZk2F þ kZkZk1 þ kWkWk

2
F;

s:t:W � 0 and Z � 0:
(3)

To solve the optimization problem of the subspace learning with
subgroup index indication, we firstly introduce two matrices of
Lagrange multipliers U ¼ ½/jk� and W ¼ ½wki� on the two constraints

of matrices W � 0 and Z � 0 (Cai et al., 2011). Here the elements
/jk and wki of the two matrices are the Lagrange multipliers for the

element-wise constraints wjk � 0 and zki � 0, respectively. The sum-

mation of all the element-wise Lagrange multipliers can be written

in matrix format
P

j;k/jkwjk ¼ TrfUWTg and
P

k;iwkizki ¼

TrfWZTg. Furthermore, since the matrix Z is restricted to be non-
negative, the term of L1 norm penalty kZk1 can be written as the
summation of the elements of matrix Z, which is also equivalent to

the term TrfJZTg (here J is a K by P matrix of ones). Based on the

property of matrix that kAk2F ¼ TrfAATg, the Lagrange function
can be further written as the formulation below:

L ¼ TrfðX �WZÞðX �WZÞTg þ kZTrfJZ
Tg

þkWTrfWWTg þ TrfUWTg þ TrfWZTg:
(4)

Since there are two variables to be solved, i.e. matrix W for the
parameters of the reconstruction function, and matrix Z for the

Fig. 1. The overview of our proposed DriverSub. To overcome the difficulty of

acquiring a large amount of experimentally validated driver genes, DriverSub in-

corporate the unsupervised learning strategy which do not requires any known

driver gene. To infer driver genes and their related subgroup specificities simultan-

eously under the situation of unavailability of subgroup annotations, DriverSub is

established based on the subspace learning framework (Wang et al., 2016; Zheng

et al., 2019) which can represent the investigated genes as output vectors through

their mutation data. Accordingly, the driver genes can be discriminated through the

distances between the output vectors and the origin. The subgroups specificities of

the related genes can also be inferred according to the coordinate values in different

dimensions of the vectors

Inferring subgroup-specific driver genes from heterogeneous cancer samples via subspace learning with subgroup indication 1857
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output vectors, we conduct the alternative solving strategy by opti-
mizing one variable when the other variable is fixed (Cai et al.,
2011). Specifically, when the values of a matrix are fixed, we can
solve the updating rules of the other matrix by its partial derivative
of L. The partial derivatives of the Lagrange function ‘ with respect
to matrixW and V are

@L=@Z ¼ �2WTX þ 2WTWZþ kZJ þW;

@L=@W ¼ �2WZT þ 2WZZT þ 2kWW þU:
(5)

Accordingly, we derive the Karush-Kuhn-Tucker (KKT) condi-
tions with respect to the Lagrange function L (Cai et al., 2011), i.e.
@L=@Z ¼ 0; @L=@W ¼ 0; Z�W ¼ 0 and W�U ¼ 0, where the sym-
bol � denotes to the element-wise product of two matrices, and the
matrix 0 is all-zero matrix. According to the KKT conditions, we
can obtain the following equations for both Z andW:

WTWZþ
kZ

2
J

� �

�Z ¼ ðWTXÞ�Z;

ðWZZT þ kWWÞ�W ¼ ðXZTÞ�W :

(6)

Based on the two equations in Equation (6), we can yield the al-
ternatively updating algorithms of the two matrices Z andW:

Z Z�ðWTXÞ:= WTWZþ
kZ

2
J

� �

;

W  W�ðXZTÞ:=ðWZZT þ kWWÞ:

(7)

where the symbol ./ denotes the element-wise division. By alterna-
tively using the two formulas, the objective functions in Equation
(7) are guaranteed to be convergent under the two updating rules
(Cai et al., 2011). The output vectors and the learned transform-
ation will be obtained after the convergence of this algorithm.
In addition, compared with L1-norm which can control the distance
between the output vector and the coordinate axes and plains,
L2-norm has more advantages in controlling the distance between
the output vector and the origin. Consequently, we also derive the
alternatively updating roles for L2-norm regularization on zi
(Supplementary Material), and implement two options for users to
choose L1- or L2-norm in the source code. In summary, by adopting
the alternative optimization strategy, DriverSub can simultaneously
obtain the output vectors and the transformation’s parameters of
the subspace learning.

2.4 Driver gene inference by normalized distance
After the output vectors are obtained through the subspace learning
algorithm, the next step is to infer driver genes and their subgroup
indices from the learned output vectors. Since a larger coordinate
value in the nonnegative output vector indicates a stronger trend to-
ward driver gene, we use the coordinate values to calculate the dis-
tances between the origin and the output vector. Here the distance is
adopted as the evaluation metric for driver gene. Since the scales of
vectors are different among the dimensions of the subspace, to over-
come the imbalance among the scales of the dimensions, we adopt
the normalization procedure where the coordinate values of output
vectors are divided by their related standard deviations (Cai et al.,
2011). Subsequently, we can use the normalized vectors to calculate
their Euclidean distances from the origin. Finally, the investigated
genes can be sorted according to their distance scores, and the top
ranked genes are inferred as the candidates of driver genes.

Our proposed DriverSub can also infer the related subgroup
samples of the driver genes. For a predicted driver gene, we can use
the coordinate values in the dimensions of the output vector to indi-
cate its related subgroups. Here the parameter matrix W can reflect
the relationship between subgroup samples and subspace dimen-
sions, where the value of the non-negative element wjk can be used
as the indicating score of the jth sample to the kth subgroup. For the
jth sample, if the score wjk� is the maximum scores from wj1 to wjK,
then the jth sample is assigned to the k�th subgroup. Furthermore,
we can acquire the corresponding samples of each dimension of the
subspace via the parameters of the learned transformation. For the

output vector of a predicted gene, if the coordinate value of the kth
dimension is larger than zero, then the investigated gene is consid-
ered to be related to the kth subgroup. Finally, by retrieving the sub-
group samples from the subspace dimensions according to their
coordinate values in these dimensions, we can acquire the subgroup
samples of the driver genes.

3 Results

3.1 Simulation dataset evaluations

3.1.1 Overall performance
In this section, we conduct a series of experiments on the evaluation
of the performance of subgroup-specific driver gene prediction.
To overcome the unavailability of ground truth caused by the lack
of known driver genes, we conducted simulation data analysis where
the ground truth of driver genes is available (Hofree et al., 2013).
The details of the generation of simulation data is provided in
Supplementary Material. In this study, we compare our proposed
DriverSub with two existing methods MutSigCV (Lawrence et al.,
2013) and OncodriveCLUST (Tamborero et al., 2013), which are
widely used in driver gene prediction. In the comparison analysis, all
the parameters used in these competing methods are set to the de-
fault values (we also try different parameters of the two existing
methods, and the results are shown in Supplementary Material and
Supplementary Figs S1 and S2; Lawrence et al., 2013; Tamborero
et al., 2013). For DriverSub, the predicted driver genes are priori-
tized according to their distances between the output vectors and the
origin. For MutSigCV and OncodriveCLUST, the driver gene candi-
dates are prioritized according to their false discovery rate con-
trolled q-values (Lawrence et al., 2013; Tamborero et al., 2013).
Accordingly, the investigated genes are be prioritized by the three
competing methods, where the top ranked gene candidates have the
potential to be driver genes (Tokheim et al., 2016).

When we analyze the top ranked genes of these competing meth-
ods with various rank thresholds, we can calculate a series of preci-
sions as the fractions of predicted genes which are ground truth
driver genes, and recalls as the fractions of ground truth driver genes
that are successfully predicted (Jing et al., 2019). By comparing
these precisions and recalls, we can evaluate the prediction results of
these methods. When we compare the results of top 100–500 genes
with a step of 100, we can draw these precision recall curves of the
competing methods, where the x- and y-axis are recalls and preci-
sions, respectively (Chen et al., 2018). If the location of a curve is
closer to the top and right, then the related values of precision and
recall are also higher (Chen et al., 2018). Thus, the precision recall
curves can be used to evaluate the prediction performances of the
competing methods.

As shown in Figure 2, the curve of our DriverSub is the closest to
the top and right among the curves of the three methods, indicating
that our method yields better prediction results than those of the
other two competing methods. Generally, for the simulation data
with different numbers of subgroups, the precision recall curves of
the three competing methods show similar trends. Taking the case
of simulated data with four subgroups as an example, the precisions
of the top 300 genes for MutSigCV and OncodriveCLUST are 0.94
and 0.73, respectively, while the precision for our proposed
DriverSub is 0.99. At the same time, the recalls of the top 300 genes
for DriverSub is 0.61, which is also larger than those for MutSigCV
and OncodriveCLUST, respectively.

When we further evaluate the top 400 or 500 genes predicted
by the competing methods, compared with the results for
OncodriveCLUST, DriverSub and MutSigCV achieve better predic-
tion performances among all the simulation data with different sub-
groups. When applied on simulation data with four subgroups,
DriverSub and MutSigCV yield the precisions ranging in a narrow
interval from 0.75 to 0.76, indicating that the two methods achieve
comparable performances in the prediction tasks. Nevertheless, the
performances of DriverSub still show a slight advantage where pre-
cision of DriverSub is about 0.01 larger than that of MutSigCV. In
summary, our proposed DriverSub can successfully predict driver
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genes, and achieve comparable or better performances than those of
the existing methods.

3.1.2 Subgroup-specific driver gene prediction performance

For our proposed DriverSub, a distinct advantage beyond the pre-
dictive capability of driver genes is that DriverSub can further esti-
mate the subgroup specificities of the predicted genes. For the
output vectors learned by DriverSub, their coordinate values in dif-
ferent dimensions can be used to indicate the related subgroups of
these investigated genes. Specifically, a larger value in the kth dimen-
sion of the vector indicates a larger tendency of the investigated gene
to belong to the kth subgroup. When there are more than one coeffi-
cients of the output vector representing relatively larger values, the
investigated gene is considered as driver gene mutated in multiple
subgroups, and the subgroups are indicated by the dimensions of
these coefficients. Moreover, if all the coefficients of the output vec-
tor are large values, then the investigated gene is regarded as a driver
gene recurrently mutated among all samples. Consequently, in add-
ition to the prediction of driver genes, DriverSub is also capable of
inferring the related subgroups of the investigated driver genes.

To demonstrate the advantage of our approach in predicting
subgroup-specific driver genes, we further evaluate the inferred sub-
group indices of the investigated genes. Since our proposed
DriverSub is based on subspace learning, we also compare
DriverSub with two widely used subspace learning methods, prin-
ciple component analysis (Jolliffe and Cadima, 2016) and

independent component analysis (Hyvärinen, 2013). Based on the
simulation datasets with different subgroups, the comparison results
of three subspace learning methods are evaluated through precision
recall curves (Supplementary Fig. S3). Through the precision recall
curves of the three methods, we can see that the curves for our
DriverSub are closest to the top and right among all cases, indicating
the efficiency of our approach in inferring the related subgroups of
driver genes. For example, when applied on simulation data with
two subgroups, the precisions of the driver genes in only one sub-
group predicted by our approach is averagely 27.5% higher than
those of the other competing methods, and the metrices are also
higher for driver genes in three and four subgroups, respectively.
Moreover, we also test the performances of DriverSub with regulari-
zations of L1- and L2-norm, and the comparison results demon-
strate that the prediction results with the two types of
regularizations are comparable to each other (Supplementary Figs
S4 and S5).

Furthermore, to intuitively interpret the prediction results of
driver genes and their subgroup specificities for our proposed
DriverSub, we also draw the coordinate graphs of the output vectors
under the cases of two and three subgroups (Fig. 3), where the circ-
lets are the learned output vectors in the subspace. In Figure 3A, the
black circlets represent the ground truth genes with passenger muta-
tions. The red circlets and green circlets denote the ground truth
driver genes which are mutated in the first subgroup (Sub 1) and in
the second subgroup (Sub 2), respectively. The yellow circlets indi-
cate the ground truth driver genes mutated in both the first and the

A B C

Fig. 2. Precision recall curve for the predicted driver genes by DriverSub, MutSigCV and OncodriveCLUST, on simulation datasets with (A) two subgroups, (B) three sub-

groups and (C) four subgroups. The precision recall curves are plotted according to the top ranked 100–500 predicted genes with a step of 100

BA

Fig. 3. The visualization of subspace output vectors yielded by DriverSub on simulation datasets with (A) two subgroups and (B) three subgroups. The black circlets represent

ground truth genes with passenger mutations, and the colored circlets indicate ground truth driver genes in different numbers of subgroups, as shown in the legends
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second subgroups. As shown in Figure 3A, nearly most black circlets
are surrounding the origin of the coordinate plane, indicating our
approach can successfully filter out the genes with passenger muta-
tions by their distances from the origin. Also, most red circlets and
green circlets are beneath the y-axis (Sub 1) and x-axis (Sub 2) re-
spectively, and most yellow circlets are located in the first quadrant
of the subspace. These phenomena demonstrate that the driver genes
in either Subs 1 or 2 can be efficiently distinguished through the out-
put vectors yielded by our approach.

For the situation where there are three subgroups in the simula-
tion data (Fig. 3B), we further use blue circlets to represent driver
genes mutated in the third subgroup (Sub 3). Also, the cyan circlets
indicate the driver genes in both Subs 2 and 3, whereas the violet
circlets denote the driver genes in both Subs 1 and 3. Moreover, the
light gray circlets represent the driver genes mutated in all the three
subgroups (Subs 1–3). Similar to the case with two subgroups,
the black circlets of passenger genes in Figure 3B are also close to
the origin of the coordinate space. Meanwhile, the red, green and
blue circlets are beneath the z-axis (Sub 1), x-axis (Sub 2) and y-axis
(Sub 3), respectively. Furthermore, the yellow, cyan and violet circ-
lets are located at the xz-plane (Subs 1 and 2), the xy-plane (Subs 2
and 3), and the yz-plane (Subs 1 and 3). Moreover, most of the light
gray circlets are distributed in the first octant of the coordinate
space. Based on the results above, we can conclude that our ap-
proach can successfully infer driver genes and their related sub-
groups according to the output vectors learned through the
unsupervised learning paradigm.

For the cases where the subgroup number is larger than 3, we
also extend the number of subgroup to a greater number (here up to
7) in the subgroup analysis. As shown in Supplementary Figure S6,
we can observe a parabolic trend of the performance of DriverSub,
where it shows an increase followed by a decrease in precision as the
subgroup number increases. From a biological stand point, a pos-
sible explanation of the phenomenon is that, when the number of
subgroups becomes larger, the fractions of subgroup-specific drivers
in the cohort also decrease rapidly. Consequently, even though the
proposed DriverSub is able to represent the subgroup specificities of
driver mutations, the mutation frequencies of subgroup-specific
drivers are likely to be indistinguishable from the passenger muta-
tions in this extreme case. Moreover, since the two parameters kZ
and kW are fixed in the aforementioned analysis of DriverSub, we
also conduct an experiment to see how the prediction results will
change when these parameters are perturbed (Supplementary Fig.
S7), where the sensitivity analysis shows that DriverSub is robust to
perturbations of these parameters.

3.2 Real cancer data applications

3.2.1 Enrichment analysis for known driver genes

To demonstrate the applicability of our proposed DriverSub on real
cancer data, we apply our method on datasets of two types of can-
cers, breast cancer (Cancer Genome Atlas Network and Others,
2012) and bladder cancer (Cancer Genome Atlas Research Network
and Others, 2014). The two datasets contain somatic mutations of
507 breast cancer samples and 130 bladder cancers samples, respect-
ively, which are curated by The Cancer Genome Atlas (TCGA) pro-
gram (Tomczak et al., 2015) and are downloaded from cBioPortal
database (Gao et al., 2013). For the two datasets, the subspace di-
mension K of DriverSub is set to 4 experimentally (details in
Supplementary Material). When analyzing the prediction results on
real cancer data, we use a list of experimentally validated known
driver genes which are curated by Cancer Gene Census (CGC;
Sondka et al., 2018). Subsequently, we can use Fisher’s exact test to
assess whether the genes predicted by DriverSub are significantly
enriched for known driver genes or not (Subramanian et al., 2005).
To demonstrate the advantage of our proposed DriverSub, we also
apply the two existing methods MutSigCV and OncodriveCLUST
on the real cancer datasets with default settings, and compare their
enrichment results.

Due to the practical reason, the top ranked predicted genes are
more likely to be chosen in the further experimental validation,

we select the top ranked predicted genes for the enrichment analysis.
As suggested by previous study (Hou et al., 2018), we first provide
the full lists of the top 500 driver gene candidates predicted by
DriverSub, MutSigCV and OncodriveCLUST on breast cancer and
bladder cancer in Supplementary Tables S1–S6, respectively. Here,
we apply Fisher’s exact test on the predicted results of the three com-
peting methods, where the corresponding P-values can be used to
assess whether the results are enriched for known driver genes.
For the results of DriverSub, MutSigCV and OncodriveCLUST, their
P-values for breast cancer data are 1.34e-07, 9.12e-01 and 2.88e-
07, respectively, where DriverSub yields the most significant
P-values. For bladder cancer data, the P-values of MutSigCV and
OncodriveCLUST are 5.68e-02 and 2.70e-05, and our proposed
DriverSub yields a P-value of 8.59e-18. Generally, most of the
P-values of the three competing methods are <0.05, indicating that
the results of these methods are significantly enriched for known
driver genes. Furthermore, the P-values yielded by our proposed
DriverSub are much smaller than those of the other two competing
methods, demonstrating the superior capability of DriverSub in
driver gene prediction.

Since top 500 is much too large a gene set to start from for any
kind of experimental prioritization, we further down sample from
here and demonstrate the enrichment P-values of the investigated
methods. As shown in Supplementary Table S3, when the number of
the top ranked genes becomes smaller, the P-values of our method
are also the smallest among those of these methods. Taking the
results for top 200 genes as an example, the P-values of DriverSub,
MutSigCV and OncodriveCLUST are 1.46e-06, 8.35e-02 and
1.23e-02 for breast cancer data. For bladder cancer data, the
P-values of MutSigCV and OncodriveCLUST 6.69e-06 and 4.16e-
04, and DriverSub yields a P-value of 2.96e-07 in comparison.
Consequently, when we only focus on a small number of the top
ranked predicted genes, the superior capability of our method still
holds up for the prediction of known driver genes.

3.2.2 Venn diagram analysis

To further analyze the results of the three methods on the two real
cancer datasets, we evaluate the predicted genes by investigating
whether they are also shared by the results of other methods. Hence,
we draw the Venn diagram of the predicted genes for the three com-
peting methods (Fig. 4), which can illustrate the shared genes of
these methods. For the prediction results on breast cancer data
(Fig. 4A), there are four predicted genes shared by all the three meth-
ods, including known driver genes PIK3CA and TP53 (Sondka et al.,
2018). According to previous studies, PIK3CA plays oncogenic roles
in breast cancer (Mukohara, 2015), and TP53 is also a driver gene
that encodes a tumor suppressor protein (Yin et al., 2002). For the
results on bladder cancer data (Fig. 4B), there are six driver genes
shared by the three methods, and three of them are known driver

A B

Fig. 4. Venn diagram of intersections between the predicted genes for DriverSub,

MutSigCV and OncodriveCLUST on real datasets of (A) breast cancer samples and

(B) bladder cancer samples. The red, green and blue circles represent the predicted

results of DriverSub, MutSigCV and OncodriveCLUST, respectively. The gray num-

bers after the slash indicate the numbers of included genes, and the black numbers

before the slash indicate the numbers of driver genes which are validated by experi-

ments (Sondka et al., 2018). (Color version of this figure is available at

Bioinformatics online.)
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gene KDM6A, PIK3CA and TP53 (Sondka et al., 2018). Generally,
most of the shared genes have been reported by CGC known driver
genes lists.

Furthermore, for the results on breast cancer data, there are a total
of 81 genes predicted by both DriverSub and OncodriveCLUST rather
than MutSigCV (Fig. 4A). Specifically, 10 of them are known driver
genes, such as MTOR, MAP2K4, MAP3K1, NCOA2 and SPEN.
Meanwhile, there are also 21 genes shared by the results of DriverSub
and MutSigCV rather than OncodriveCLUST, which include known
driver genes such as AFF4 and AKAP9 (Sondka et al., 2018). When we
investigate the results on bladder cancer data, we can also observe simi-
lar phenomenon that there are many predicted genes shared by the
results of both DriverSub and the other methods (Fig. 4B). For the pre-
diction results on bladder cancer data, there are 58 genes shared by
DriverSub and OncodriveCLUST rather than MutSigCV (Fig. 4B),
including 12 known driver genes such as CLTC, DDX3X, EP300 and
SPEN (Sondka et al., 2018). As for the genes predicted by both
DriverSub and MutSigCV rather than OncodriveCLUST, there are to-
tally 36 shared genes including known driver genes as BRCA2,
NOTCH1, FGFR3, CREBBP and PTPN13 (Sondka et al., 2018).
In conclusion, these shared genes indicate the consistency between the
predicted genes for DriverSub and those for the other existing methods.

Despite the genes predicted by both DriverSub and the existing
methods, there are also some predicted genes that are unique to our
proposed DriverSub. For the results on breast cancer data, there are
394 driver gene candidates predicted by exclusively DriverSub
(Fig. 4A), which include 35 known driver genes. For examples,
ERBB2, BRCA1, BRCA2 and CDH1 are exclusively predicted by
our method, and these genes have been reported to play crucial roles
in breast cancer (Cancer Genome Atlas Network and Others, 2012).
Here the fraction of known driver genes in the results exclusively
yielded by DriverSub is comparable or larger than the fractions of
the other two competing methods. For the results on bladder cancer
data, there are totally 400 genes unique to our proposed DriverSub
(Fig. 4B), including 49 known driver genes such as ERBB3, LRP1B,
NOTCH2 and TSC1 (Sondka et al., 2018). When we investigate the
fraction of known driver genes in the results unique to these compet-
ing methods, the fractions for MutSigCV and OncodriveCLUST are
4.6 and 6.1%, respectively. In comparison, DriverSub yields a fraction
of 12.3%, which is larger than those of the two other methods. Note
the fact that a fair number of genes are identified as drivers uniquely
by one of the methods, we also explore why there are stark differences
in these inferences between methods (details in Supplementary
Material). Consequently, DriverSub can successfully predict a bunch
of driver genes that are missed by the existing methods.

3.2.3 Analysis of subgroup-specific driver genes
The major distinction between our proposed DriverSub and the
existing methods is that DriverSub can infer subgroup-specific driver
genes, and the existing methods mainly focus on the prediction of re-
currently mutated driver genes. When compared with recurrently
mutated driver genes, subgroup-specific driver genes are mutated in
only a small fraction of samples, which lead to relatively low fre-
quencies of mutations (Cyll et al., 2017). Therefore, we further ana-
lyze the mutation frequencies of the driver genes predicted by
DriverSub. For PIK3CA and TP53 which are predicted by both
DriverSub and other existing methods on breast cancer data, the
mutation frequencies of the two genes are 41.03 and 39.05%, re-
spectively. In comparison, the mutation frequencies of driver genes
exclusively predicted by our proposed DriverSub are much lower
than those of the shared predictions (Supplementary Fig. S8A),
where the frequencies are 1.78% for ERBB2, 4.14% for BRCA1,
4.93% for BRCA2 and 6.71% for CDH1. For the results on bladder
cancer data, we can also observe similar phenomenon that the pre-
dicted genes unique to DriverSub show relatively lower mutation
frequencies than those of the genes shared by both DriverSub and
other existing methods (Supplementary Fig. S8B). Therefore, our
proposed DriverSub can efficiently predict driver genes mutated in
only a small fraction of samples.

We should note that predicting subgroup-specific driver genes is
not equivalent to detecting rarely mutated genes. Admittedly, due to

the fact that subgroup-specific driver genes are mutated in only a
small fraction of samples, many of them show low mutation fre-
quencies. Thus, by investigating the lowly frequently mutated genes,
we can confirm whether this method satisfies the necessary condi-
tions for prediction subgroup-specific driver genes. For a fair com-
parison, we also check the mutation frequencies of driver genes that
are exclusively predicted by the other methods, demonstrating that
not only our proposed DriverSub but also the other two methods,
can successfully detect driver genes with relatively low frequencies
(Supplementary Fig. S9), where the number of lowly frequently
mutated driver genes for DriverSub is generally comparable with
those for MutSigCV and OncodriveCLUST. Consequently, compared
with the capability of identifying rare mutated genes, the main contri-
bution of DriverSub to the detection of subgroup-specific driver genes
is the ability to infer the subgroup indication of the tested genes.

When we further analyze the related subgroups of the known
driver genes predicted by DriverSub, we can observe that the coord-
inate values of output vectors Z of the driver genes vary distinctly
among the different subgroup (Fig. 5A and B). This result indicates
the necessity of inferring subgroup-specific driver genes for hetero-
geneous cancer samples. Taking the result on breast cancer data as
an example (Fig. 5A), there is only one large coefficient in the output
vector of ERBB2, indicating that ERBB2 gene is frequently mutated
in only one subgroup, rather than in all the subgroups. For the
MTOR gene, the related output vector includes two relatively large
scores, which represents that MTOR is mutated in two subgroups of
the investigated samples. Likewise, according to the results yielded
by DriverSub on bladder cancer data (Fig. 5B), driver genes such as
GATA1, CBL and HOXC11 are mutated in only one subgroup ra-
ther than in all subgroups. Genes such as AKAP9, APC, CDKN2A
and SF3B1 are mutated in two subgroups of the samples. In com-
parison, the recurrently mutated driver gene TP53 demonstrates
large coefficients in all the dimensions of its related output vector,
which indicates that TP53 is highly mutated in all subgroup of the
bladder cancer samples. Based on these phenomena aforementioned,
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Fig. 5. The heatmaps of output vectors for experimentally validated driver genes,

yielded by DriverSub on real datasets of (A) breast cancer and (B) bladder cancer.

(C) Composition of inferred subgroups in terms of PAM50 subgroups of breast can-

cer, where the subgroups are inferred from parameter matrix of samples W. In the

heatmaps, darker color indicates higher coordinate values of output vectors Z. The

values in output vectors demonstrate that a bunch of driver genes are mutated in

only a fraction of subgroups rather than in all subgroups. (Color version of this fig-

ure is available at Bioinformatics online.)
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we can conclude that our proposed DriverSub can efficiently infer
the subgroup specificities of the predicted driver genes.

We further use DriverSub to infer subgroups of the TCGA sam-
ples of breast cancer, of which the annotated molecular subgroups
are available. For the application on DNA mutation data, the output
parameter matrix W learned by DriverSub can provide information
of the relationship between inferred subgroups and individual sam-
ples. By simply retrieving the maximum elements of the parameter
matrix of samples W, we can infer DNA mutation-based subgroups
of the investigated samples. Through statistical analysis of chi-
squared test, we can observe that the DNA mutation-based sub-
groups inferred by DriverSub are significantly associated with the
annotated breast cancer subgroups (P-value ¼ 5.59e-11, details in
Supplementary Fig. S10). Nevertheless, we should note that the sub-
group annotations of TCGA breast cancer is defined by PAM50
(Prediction Analysis of Microarray 50) RNA expressions (Cancer
Genome Atlas Network and Others, 2012), and RNA expression
based subgroups are distinct from DNA mutation-based subgroups
to a certain degree (Hofree et al., 2013). Since there are little studies
on DNA mutation-based molecular subgroups for breast and blad-
der cancers (Hofree et al., 2013), there is still a lack of the evidence
of direct assessment of DNA mutation-based subgroup inferred by
DriverSub. To circumvent this shortage, we further used the learned
parameter matrix of samples W to train a map between the two
types of subgroups (details in Supplementary Material), which is
used to assess whether the inferred subgroups can be mapped back
to the annotated molecular subgroups. The results demonstrate that
the subgroups inferred through the map from parameter matrix of
DriverSub are highly significantly associated with the annotated
PAM50 subgroups (shown in Fig. 5C), indicating that the output of
DriverSub is highly informative for inferring the associated sub-
groups of driver genes.

3.2.4 Predictions by integrating copy number variations
Since there are a number of cancer types such as breast cancer, are pre-
dominantly copy number driven, we further add copy number vari-
ation (CNV) data into the analysis. When compared with MutSigCV
and OncodriveCLUST that are not compatible with the format of
CNV data as their inputs, integrating CNV data into our proposed
DriverSub is rather straight forward. Accordingly, we also apply
DriverSub on data integrated of both mutations and CNVs (details in
Supplementary Material), and the predicted driver genes are demon-
strated in Supplementary Tables S7 and S8 for breast cancer and blad-
der cancer, respectively. Taking breast cancer as an example, when we
evaluate whether the results are enriched for known driver genes,
DriverSub’s result on both mutations and CNVs yields a P-value of
8.36e-12 by Fisher’s exact test, which is more significant than that of
the results on only mutations. For bladder cancer, the corresponding P-
value of the result on both mutations and CNVs is 6.09e-15, indicating
the significance of enrichment for known drivers. Specifically, some
well-known drivers such as ERBB2 and BRCA1/2, are more frequently
altered by CNVs rather than mutations in breast cancers. For example,
gene ERBB2 is altered in 45.2% breast cancer samples in this case,
which may also be responsible for its higher predicted rank than that in
the case of only mutations (rank ¼ 42 versus rank ¼ 438). Moreover,
the analysis of subgroup-specific driver genes on the data of both muta-
tions and CNVs also shows that DriverSub can predict driver genes
with distinct patterns across the investigated samples (Supplementary
Fig. S11) and inferring subgroups closely associated with the recorded
PAM50 defined subgroups of breast cancer (Supplementary Fig. S12),
indicating its efficiency in subgroup-specific driver inference.

4 Discussion

Inferring subgroup-specific driver genes is crucial for the under-
standing of cancer heterogeneity and the development of precision
medicine. When the subgroup annotations of cancer samples are un-
available, the existing methods are not capable of detecting sub-
group-specific driver genes from heterogeneous caner samples.
Thus, it is an imperative task to infer subgroup-specific driver genes

in the situation where the annotations of subgroups are unknown.
To predict subgroup-specific driver genes from heterogeneous can-
cer data, we propose a subspace learning-based method called
DriverSub to simultaneously predict driver genes and their subgroup
specificities from mutation data of genes. Through the comparison
with existing methods on simulation datasets, the results of
DriverSub demonstrate not only better predictions of driver genes,
but also more accurate indications of the subgroup specificities of
genes. The applications of our method on real heterogeneous cancer
data also illustrate that the results of DriverSub are highly enriched
for experimentally validated known driver genes. When assessed by
known molecular subgroups of breast cancers, the subgroups
inferred by DriverSub display significant association with the anno-
tated subgroups. In summary, DriverSub show effective capability
of predicting subgroup-specific driver genes.

There are three potential reasons which might be considered to be
responsible for the remarkable performance of DriverSub. The first as-
pect is that subspace learning framework can transform the high-
dimensional discrete mutation data of genes into the low-dimensional
vectors with continuous values, where the vectors with continuous val-
ues are more suitable for numerical analysis than the discrete data of
mutations (Yang et al., 2019). Also, compared with high-dimensional
mutation data, the transformed low-dimensional vectors can circum-
vent the problem caused by the curse of dimensionality (Wang et al.,
2016). The second aspect is that subspace learning can adopt the
dimensions in the subspace to indicate the subgroup specificities of
genes. By regarding each dimension in the subspace as subgroups of
cancer, the coordinate values in different dimension are adopted to in-
dicate the related subgroups of driver genes. The third aspect is that the
distances between output vectors and the origin of the subspace coord-
inate can demonstrate the potential of the investigated genes to be
driver genes, which can be used as a metric to predict driver genes.

Despite the distinguished performance achieved by DriverSub on
subgroup-specific driver gene prediction, there are still many oppor-
tunities to improve the inferring of subgroup-specific driver genes
from heterogeneous cancers. First, DriverSub only incorporate the
information from mutation data, and the information beyond muta-
tions such as copy number alternations, transcriptome and epige-
nome can also be integrated into a model of multi-omics (Peng et al.,
2019; Shi et al., 2017). Second, as the cancer samples accumulated
through time, we can expand the datasets to include more than
thousands of samples in the future, which can offer a more compre-
hensive view of the subgroups in heterogeneous cancers (Liu and
Zhang, 2015; Weinstein et al., 2013). Finally, in addition to sub-
group-specific driver genes, there are also some other factors such as
personalized drug response that can also contribute to the develop-
ment of precision medicine (Ding et al., 2016; Yang et al., 2019),
which can also be investigated in future work.
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