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Abstract. We consider the problem of inferring the basal

sliding coefficient field for an uncertain Stokes ice sheet for-

ward model from synthetic surface velocity measurements.

The uncertainty in the forward model stems from unknown

(or uncertain) auxiliary parameters (e.g., rheology param-

eters). This inverse problem is posed within the Bayesian

framework, which provides a systematic means of quanti-

fying uncertainty in the solution. To account for the asso-

ciated model uncertainty (error), we employ the Bayesian

approximation error (BAE) approach to approximately pre-

marginalize simultaneously over both the noise in measure-

ments and uncertainty in the forward model. We also carry

out approximative posterior uncertainty quantification based

on a linearization of the parameter-to-observable map cen-

tered at the maximum a posteriori (MAP) basal sliding coeffi-

cient estimate, i.e., by taking the Laplace approximation. The

MAP estimate is found by minimizing the negative log poste-

rior using an inexact Newton conjugate gradient method. The

gradient and Hessian actions to vectors are efficiently com-

puted using adjoints. Sampling from the approximate covari-

ance is made tractable by invoking a low-rank approxima-

tion of the data misfit component of the Hessian. We study

the performance of the BAE approach in the context of three

numerical examples in two and three dimensions. For each

example, the basal sliding coefficient field is the parameter

of primary interest which we seek to infer, and the rheol-

ogy parameters (e.g., the flow rate factor or the Glen’s flow

law exponent coefficient field) represent so-called nuisance

(secondary uncertain) parameters. Our results indicate that

accounting for model uncertainty stemming from the pres-

ence of nuisance parameters is crucial. Namely our findings

suggest that using nominal values for these parameters, as

is often done in practice, without taking into account the re-

sulting modeling error, can lead to overconfident and heavily

biased results. We also show that the BAE approach can be

used to account for the additional model uncertainty at no

additional cost at the online stage.

1 Introduction

Inferring the basal sliding coefficient field using both the lin-

ear and nonlinear Stokes ice sheet model from noisy surface

velocity measurements has received considerable attention

in recent years (see, for example, Truffer, 2004, Raymond

and Gudmundsson, 2009, Pollard and DeConto, 2012, Isaac

et al., 2015b, Morlighem et al., 2013, Zhao et al., 2018a, b,

Giudici et al., 2014, Petra et al., 2012, 2014, and Isaac et al.,

2015a). The standard approach to this problem invariably as-

sumes that the other parameters of the ice, such as those con-

trolling the rheology, are known precisely. This is particu-

larly common, for example, in the case of the so-called flow

rate factor and the Glen’s flow law exponent, in which nom-

inal values such as A = 10−16 Pa−n a−1 and n = 3, respec-

tively, are prescribed; we refer, e.g., to Isaac et al. (2015a),

Petra et al. (2014), Raymond and Gudmundsson (2009),

Truffer (2004), Morlighem et al. (2013), Zhu et al. (2016),

Zhao et al. (2018b), Giudici et al. (2014), and Pollard and De-

Conto (2012). The inference problem is made significantly

more challenging (both theoretically and numerically) by al-
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lowing the rheology parameters to be uncertain and spatially

varying. One possible approach to solve the problem is to

infer both the basal sliding coefficient and the rheology pa-

rameters. However, this considerably increases both the ill-

posedness of the inverse problem and the associated compu-

tational costs. For most ice sheet inverse problems consid-

ered in the literature, the field of interest is the basal sliding

parameter, which arguably presents the largest uncertainty in

determining the ice flow rate.

It is well documented that, in practice, the rheology pa-

rameters of ice sheets are not known exactly (e.g., Bons et al.,

2018; Marshall, 2005; Gillet-Chaulet et al., 2011, 2012; Cuf-

fey and Paterson, 2010; Brondex et al., 2019; Raymond and

Gudmundsson, 2011). Compounding this issue is the fact

that measured ice velocities can be heavily influenced by

rheology parameters (Schlegel et al., 2015; Bulthuis et al.,

2019). This fact was demonstrated in Petra et al. (2012), in

which the authors used the same Stokes ice sheet model as in

the current paper to reconstruct reasonable estimates of the

Glen’s flow law exponent from noisy surface velocity mea-

surements, suggesting that the surface measurements are in-

deed sensitive to changes in the Glen’s flow law exponent

field. Despite these findings, it is standard in the literature to

assume that rheology – among other – parameters of the ice

are known a priori (see, for instance, Bons et al., 2018, Mar-

shall, 2005, Gillet-Chaulet et al., 2011, 2012, Cuffey and Pa-

terson, 2010, Brondex et al., 2019, and Van der Veen, 2013).

In this paper, we treat the rheology parameters (specifi-

cally the Glen’s flow law exponent and the flow rate fac-

tor fields) as auxiliary (nuisance) parameters, i.e., parameters

which are not of primary interest. However, fixing these aux-

iliary parameters at incorrect, though possibly well-justified,

values often induces so-called modeling errors. It is well un-

derstood, though, that the solutions to inverse problems are

generally sensitive to modeling errors which – if not prop-

erly accounted for – can lead to inaccurate, nonphysical, and

in some cases meaningless solutions of the inverse prob-

lem (Brynjarsdóttir and O’Hagan, 2014; Giudici et al., 2014;

Kaipio and Somersalo, 2007, 2005). From a statistical view-

point, fixing auxiliary parameters to nominal values suggests

that these parameters are known exactly and hence neglects

all associated uncertainties. This in turn often results in bi-

ased and overconfident estimates for the parameters of inter-

est (see, for example, Kaipio and Somersalo, 2007, Kaipio

and Kolehmainen, 2013, and Nicholson et al., 2018 and the

references therein).

We carry out estimation of the basal sliding coefficient

within the Bayesian framework (Kaipio and Somersalo,

2005; Stuart, 2010), which is particularly well suited to in-

corporating various sources and types of uncertainties, in-

cluding those resulting from model errors (Tarantola, 2005;

Kaipio and Somersalo, 2005, 2007). Moreover, to ensure

the work here is readily transferable to inference problems

in large-scale ice flow problems, such as those discussed

in Isaac et al. (2015a), we make use of the computational

framework proposed in Bui-Thanh et al. (2013) and Petra

et al. (2014) for handling infinite-dimensional Bayesian in-

verse problems (Stuart, 2010). This approach, combined with

adjoint-based means to compute the derivative information

needed by the optimization solver, ensures mesh indepen-

dence and computational efficiency.

To account for the uncertainty in the rheology param-

eters, we utilize the Bayesian approximation error (BAE)

approach (Kaipio and Somersalo, 2005, 2007; Kaipio and

Kolehmainen, 2013), which, broadly speaking, lumps all

modeling and measurement uncertainties into a single ad-

ditive total error term. The total error can then be approx-

imately marginalized over in a similar manner to how stan-

dard additive errors are dealt with (Kaipio and Kolehmainen,

2013). The BAE approach is particularly attractive computa-

tionally as

(a) the approximate marginalization can be carried out prior

to data acquisition, i.e., premarginalization, and

(b) the equations to be solved in the adjoint-state approach

maintain the same general form (Nicholson et al., 2018).

The BAE approach has been used in a variety of settings (see,

for example, Kaipio and Kolehmainen, 2013, Arridge et al.,

2006, Castello and Kaipio, 2019, and Lamien et al., 2019,

among others, and the references therein). A particularly rel-

evant, and recent, example is the application of the approach

to the so-called Robin inverse problem encountered, for in-

stance, in corrosion detection (Nicholson et al., 2018). There

the parameter of interest is also a Robin-type boundary con-

dition on an inaccessible part of the domain, while the nui-

sance parameter is the (electrical or thermal) conductivity of

the domain.

To study the performance of the BAE approach, we formu-

late and solve three ice sheet flow model problems involving

synthetic data. Our results suggest that simply setting rheol-

ogy parameters to nominal values can result in severely mis-

leading estimates of the basal sliding coefficient field and as-

sociated posterior uncertainty if the additional uncertainty in

the rheology parameters is not accounted for. In comparison,

we show that incorporating the additional modeling uncer-

tainties using the BAE approach leads to sensible estimates

of the basal sliding coefficient and reasonable posterior un-

certainty at no additional online cost. We place particular

emphasis on the feasibility of the posterior uncertainty es-

timates, in particular, on how well the true parameter is con-

tained within the posterior distribution.

1.1 Contributions

In previous work, we addressed the problem of inferring the

basal sliding coefficient field from surface velocity measure-

ments in the context of ice sheet flow in a deterministic, mod-

erate scale, synthetic observational data setting in Petra et al.

(2012), in a Bayesian inference and infinite-dimensional set-

ting in Petra et al. (2014), and more recently in a large-scale,
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real data setting in Isaac et al. (2015a). Here the goal is to

extend this inversion framework to account for additional un-

certainties in the ice sheet model. The main contributions of

this paper are as follows. Firstly, we show that setting rheol-

ogy parameters to values commonly found for ice sheet mod-

els in the literature can lead to erroneous posterior estimates

of the basal sliding coefficient if the underlying uncertainty

in the rheology parameters is not accounted for. Secondly,

we show that this situation can be remedied by employing

the BAE approach to premarginalize over rheology uncer-

tainties. Thirdly, we show that this approach requires no ad-

ditional computational resources or time at the online stage

as all computations required for premarginalization are car-

ried out prior to the acquisition of data.

1.2 Organization of paper

The paper is organized as follows. In Sect. 2, we outline the

forward nonlinear Stokes flow equations for ice sheet prob-

lems, while in Sect. 3 we briefly review the Bayesian frame-

work for inverse problems, the computation of the maximum

a posteriori estimate, and the approximate posterior covari-

ance. In Sect. 4, we show how to apply the BAE approach

to premarginalize over auxiliary parameters. In Sects. 5 and

6, we formulate and solve three ice sheet inverse problems

and study the performance of the proposed method. Finally,

Sect. 7 provides concluding remarks.

2 Forward ice sheet flow model

In this section, we describe the forward ice sheet flow prob-

lem that is used for the inference of the basal sliding co-

efficient field under uncertain rheology. As in Petra et al.

(2012, 2014) and Isaac et al. (2015a), we model the flow of

ice as an isothermal, viscous, shear-thinning, incompressible

fluid via the balance of mass and linear momentum (Hutter,

1983; Marshall, 2005; Paterson, 1994), namely

∇ ·u = 0 in �, (1a)

−∇ · σ u = ρg in �, (1b)

where u denotes the velocity field, σ u the stress tensor, ρ the

density of the ice, and g gravity. The stress, σ u, can be de-

composed as σ u = τu − Ip, where τu is the deviatoric stress

tensor, p the pressure, and I the identity tensor. The domain

considered in this paper is � = [0,L]d−1 ×[0,H ], for d = 2

or d = 3. We employ the Glen’s flow law (Glen, 1955) which

relates the stress and strain rate tensors by

τu = 2η(u)ε̇u with η(u) =
1

2
A− 1

n ε̇
1−n
2n

II , (1c)

where η is the effective viscosity, A is the flow rate factor, and

ε̇u = 1
2
(∇u+∇uT ) and ε̇II = 1

2
tr(ε̇2

u) are the strain rate ten-

sor and its second invariant. Above, n = n(x) is the spatially

varying Glen’s flow law exponent, which satisfies n(x) ≥ 1

Figure 1. Schematic of a two-dimensional slab of ice (used in ex-

amples 1 and 2). The schematic can also be thought of as a cross

section through the three-dimensional slab of ice used for Exam-

ple 3. The blue circles show representative (random) measurement

locations but do not necessarily coincide with the actual measure-

ment locations used in the examples. θ is the slope of the ice slab.

for all x ∈ � to ensure the ice is a shear-thinning fluid (Glen,

1955).

In line with Petra et al. (2012), the top boundary Ŵt is

equipped with a traction-free boundary condition, all lateral

boundaries Ŵp are equipped with periodic boundary condi-

tions, and on the basal surface Ŵb we apply a no flow condi-

tion for the normal component of u along with a linear slid-

ing law for the tangential components. That is, the boundary

conditions are given by

σ un = 0 on Ŵt, (1d)

u|Ŵl
= u|Ŵr

and σ un|Ŵl
= σ un|Ŵr

on Ŵp, (1e)

u · n = 0 on Ŵb, (1f)

Tσ un + exp(β)Tu = 0 on Ŵb, (1g)

where β(x) is the log basal sliding coefficient field1, n is the

outward normal unit vector, and T := I − nnT is the projec-

tion onto the tangential plane. Above, we generically used

Ŵl and Ŵr to denote pairs of opposing boundaries on Ŵp on

which periodic conditions are imposed. We note that β gen-

erally represents a combination of complex phenomena (see,

for example, Schoof, 2005, 2010, and Perego et al., 2014).

Furthermore, the methods and results discussed in the cur-

rent paper do not rely on the particular top and lateral bound-

ary conditions specified. As such, alternative boundary con-

ditions could also be imposed on Ŵt and Ŵp. For a simple

illustration of the problem setup (shown in two dimensions),

see Fig. 1.

– The weak form of the Stokes equation. In what follows,

let us introduce the weak form of Eq. (1), as it is the

starting point for both the finite element discretization of

1The “exp” function is used to ensure the basal sliding coeffi-

cient remains positive. For simplicity, in what follows, we will refer

to β as the basal sliding coefficient.
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the forward model and the computation of the gradient

and action of the Hessian required for the solution of the

inverse problem using the adjoint-state method (see, for

example, Isaac et al., 2015a). Multiplying the nonlin-

ear Stokes system (1) with arbitrary test functions ũ and

p̃ and using integration by parts over � (Gockenbach,

2006; Elman et al., 2005), the weak form of Eq. (1) is

given by the following. Find (u,p) ∈ W = V ×Q such

that

∫

�

2η(u)ε̇u : ε̇ũ dx −

∫

�

(p∇ · ũ + p̃∇ ·u) dx

+

∫

Ŵb

exp(β)Tu · Tũ ds =

∫

�

ρg · ũ dx

(2)

for all (ũ, p̃) ∈ W . In line with Elman et al. (2005)

and Isaac et al. (2015b), we set V := {u ∈ (H 1(�))d :

u|Ŵl
= u|Ŵr

, u · n|Ŵb
= 0} and Q := (L2(�))d , for d =

2 or d = 3.

– Discretization. To guarantee the inf-sup stability (well-

posedness) of the discretized forward problem, we dis-

cretize the velocity and pressure using Taylor–Hood fi-

nite elements, i.e., quadratic elements for each velocity

component and linear elements for pressure (see, for ex-

ample, Elman et al., 2005). The basal sliding coefficient

field is discretized using continuous linear Lagrange ba-

sis functions
{

φj (s)
}m

j=1
, i.e., βh(s) =

∑m
j=1βjφj (s),

where s ∈ Ŵb. In what follows, we denote by β =

(β1,β2, . . .,βm) ∈ R
m the discrete basal sliding coeffi-

cient field.

3 Inferring the basal sliding coefficient field

In this section, we summarize the Bayesian inference frame-

work, which will be used in combination with the Bayesian

approximation error approach, to account for uncertainties in

rheology parameters. To allow for the systematic incorpora-

tion of uncertainties, we consider the inverse problem in the

Bayesian framework (Tarantola, 2005; Kaipio and Somer-

salo, 2005). In this framework, the solution of the underlying

statistical inverse problem is given by the posterior probabil-

ity density. For nonlinear inverse problems with expensive

forward models and high-dimensional parameters (as is the

case for ice sheet inverse problems), fully characterizing the

posterior is typically not tractable. Consequently, we com-

pute the Laplace approximation of the posterior, which re-

quires only the maximum a posteriori (MAP) estimate, i.e.,

the basal sliding coefficient which maximizes the posterior

density and the approximate posterior covariance.

We use Bayes’ theorem to write the solution of the

Bayesian inverse problem as the posterior measure, which

describes the probability law of the parameter conditioned

on measurements (Tarantola, 2005; Stuart, 2010). The For-

mulation of the posterior relies on both the prior density and

the likelihood function, which we outline below. We note

that initially we pose the problem in an infinite-dimensional

setting, which is particularly well suited to large-scale prob-

lems (e.g., Bui-Thanh et al., 2012; Isaac et al., 2015a) as it

ensures the discretization invariance and well-posedness of

the Bayesian inverse problem (Stuart, 2010).

3.1 The prior

We postulate a Gaussian prior density on the (spatially vary-

ing) basal sliding coefficient, i.e., β ∼ N (β∗,Cβ), with co-

variance operator Cβ , and mean value β∗ ∈ E , where E is de-

fined as the range of C
1
2

β (see, for example, Stuart, 2010 and

Bui-Thanh et al., 2013 for more details). To ensure the in-

verse problem is well posed in infinite dimensions, we use a

squared inverse elliptic operator to define the prior covari-

ance operator2 (e.g., Flath et al., 2011; Bui-Thanh et al.,

2013; Petra et al., 2014).

More specifically, we take Cβ = A−2, where A is the sec-

ond order elliptic differential operator defined by

Aβ := −∇ · (γβ∇β) + δββ on Ŵb, (3)

where the strictly positive parameters γβ (m2) and δβ (adi-

mensional) control the correlation length and the marginal

variance. Specifically, the correlation length (defined as the

distance for which the two points have a correlation co-

efficient of 0.1) is proportional to
√

γβ/δβ (m), while the

variance is proportional to δ−2
β

(

γβ/δβ

)
d−1

2 (see, for exam-

ple, Khristenko et al., 2019 and the references therein). This

choice of prior covariance operator is particularly well suited

to large-scale problems, as discretization of A (using a finite

element discretization) is sparse (see, for example, Lindgren

et al., 2011 and Osborn et al., 2017). As discussed in Khris-

tenko et al. (2019), Daon and Stadler (2018), and Roininen

et al. (2014), suitable boundary conditions need to be stipu-

lated to reduce boundary artifacts. In this work, we choose

to equip A with periodic boundary conditions on ∂Ŵb, which

parallels the periodic boundary condition (1e) of the forward

model. We note that the discrete representation of the prior

covariance operator, denoted Ŵpr, is defined as follows (e.g.,

Bui-Thanh et al., 2013; Petra et al., 2014; Villa et al., 2021):

[

Ŵ−1
pr

]

ij
=

∫

Ŵb

φi(s)A
2φj (s)ds i,j ∈ {1,2, . . .,m}. (4)

2For cases in which β has only one spatial dimension, an inverse

elliptic operator, i.e., without the squaring, also results in a valid

covariance operator (see Petra et al., 2014). However, in the current

paper we consider cases in which β is one-dimensional and two-

dimensional, and thus for ease of exposition, and in the interest of

space, we limit the choice of the prior covariance operator to the

squared inverse elliptic operator.
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Therefore, the discrete parameter β follows a Gaussian distri-

bution N (β∗,Ŵpr), with prior mean β∗ ∈ R
m and covariance

Ŵpr. That is, the prior density of β is given by

πprior(β) ∝ exp

{

−
1

2

∥

∥β − β∗

∥

∥

2

Ŵ−1
pr

}

, (5)

where ‖·‖Ŵ−1
pr

denotes the Ŵ−1
pr weighted l2 inner product.

3.2 The data likelihood

We assume the velocity measurements, denoted d, are cor-

rupted by additive noise and are related to the basal sliding

coefficient through

d = F(β) + e, (6)

where F : L2(�) → R
q is called the parameter-to-

observable map, and e ∈ R
q denotes the noise in the

measurements.

As is somewhat common in the literature (e.g., Raymond

and Gudmundsson, 2009; Petra et al., 2012, 2014), we take

the data to consist of (noisy) point-wise observations of each

component of the velocity field on the top surface3. In dis-

crete settings, we compute F(β) by first solving the Stokes

equation (Eq. 1) and then applying a linear observation op-

erator that extracts the velocity at the measurement loca-

tions. We assume the noise, e, is independent of the basal

sliding coefficient, has zero mean, and is Gaussian, i.e., e ∼

N (0,Ŵe). The likelihood is then of the following form (e.g.,

Tarantola, 2005; Kaipio and Somersalo, 2005):

πlike(d|β) ∝ exp

{

−
1

2
‖F(β) − d‖2

Ŵ−1
e

}

. (7)

3.3 The posterior

By applying Bayes’ theorem, the posterior density of β is

proportional to the product of the prior density (Eq. 5) and

the data likelihood (Eq. 7). This is given by

πpost(β|d) ∝ exp

{

−
1

2
‖F(β) − d‖2

Ŵ−1
e

−
1

2

∥

∥β − β∗

∥

∥

2

Ŵ−1
pr

}

. (8)

The corresponding MAP estimate is then defined as

βMAP := argmin
β∈Rm

1

2
‖F(β) − d‖2

Ŵ−1
e

+
1

2

∥

∥β − β∗

∥

∥

2

Ŵ−1
pr

. (9)

We note that the problem of finding the MAP estimate, de-

fined in Eq. (9), reduces to a deterministic inverse problem.

To solve this problem we use an inexact Newton conjugate

gradient (CG) method, as in Petra et al. (2012). To derive

3Vertical velocity measurements may not always be available;

however, as shown in Raymond and Gudmundsson (2009), these

measurements are fairly insignificant. Furthermore, the assumed

noise level in the current paper is larger than the vertical velocities.

the required first (i.e., gradient) and second (i.e., Hessian)

derivative information needed by Newton’s method, we use

an adjoint-based method and refer the reader to Petra et al.

(2012) for the derivation and expressions of the required

derivatives.

3.4 Quantifying posterior uncertainty

To (approximately) quantify the resulting uncertainty in the

inferred basal sliding parameter, we invoke a local Gaus-

sian approximation of the posterior (i.e., the Laplace ap-

proximation). That is, the solution to the Bayesian inverse

problem is now given by a Gaussian distribution with mean

βMAP and covariance Ŵpo given by the inverse of the (Gauss–

Newton) Hessian of the negative log-posterior, evaluated at

the MAP estimate. More specifically, we make the approxi-

mation, β|d ∼ N (βMAP,Ŵpo), with βMAP given by Eq. (9),

and

Ŵpo = H(βMAP)−1 = (H(βMAP) + Ŵ−1
pr )−1

= (FT (βMAP)Ŵ−1
e F(βMAP) + Ŵ−1

pr )−1, (10)

where H(β) is the Gauss–Newton Hessian of the data mis-

fit term (i.e., the negative log-likelihood), and F is the Ja-

cobian matrix of the parameter-to-observable map, F (e.g.,

Bui-Thanh et al., 2013).

The construction of the posterior covariance matrix (i.e.,

the inverse of the Hessian) is prohibitive for large-scale prob-

lems since its dimension is equal to the dimension of the pa-

rameter. To make operations with the posterior covariance

matrix tractable, we exploit the fact that the eigenvalues of

H(βMAP) collapse to zero rapidly since the data contain lim-

ited information about the (infinite-dimensional) parameter

field. Thus a low-rank approximation of the data misfit com-

ponent of the Hessian H can be constructed as in Isaac et al.

(2015a) by solving the generalized eigenvalue problem

HVr = Ŵ−1
pr Vr3r , (11)

where 3r = diag(λ1,λ2, . . .,λr) ∈ R
r×r is a diagonal ma-

trix collecting the r largest generalized eigenvalues, λi , and

Vr = [v1,v2, . . .,vr ] ∈ R
m×r is the matrix collecting the cor-

responding Ŵ−1
pr -orthonormal eigenvectors, vi . Above, the

truncation index r is chosen such that the remaining eigen-

values, λi , for i = r +1, . . .,m, are sufficiently smaller than 1

– often chosen such that λi ≤ c, for some 0.01 ≤ c ≤ 1 (e.g.,

Isaac et al., 2015a; Flath et al., 2011).

Substituting H ≈ Ŵ−1
pr Vr3rVT

r Ŵ−1
pr into Eq. (10) and us-

ing the Sherman–Morrison–Woodbury identity (Golub and

Van Loan, 1996) and after a few algebraic manipula-

tions (e.g., Isaac et al., 2015a), we obtain the following low-

rank-based approximation of the posterior covariance (under

the Laplace approximation):

Ŵpo ≈ Ŵpr − VrdrVT
r , (12)

where dr = diag(λ1/(λ1+1),λ2/(λ2+1), . . .,λr/(λr +1)) ∈

R
r×r .
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4 Premarginalization over auxiliary parameters and

the Bayesian approximation error approach

The Bayesian approximation error (BAE) approach (Kaipio

and Somersalo, 2007, 2005; Kaipio and Kolehmainen, 2013)

can be used to approximately premarginalize over auxiliary

parameters. The BAE approach essentially combines all un-

certainties, including those generated by fixing uncertain pa-

rameters, into a single additive total error term. The total er-

ror term can then be premarginalized over, i.e., marginalized

over before the acquisition of data. We next outline the pro-

cess.

We denote by a the auxiliary parameters which in the cur-

rent study are defined over the entire computational domain,

�, and are assumed to be Gaussian distributed with covari-

ance operator Ca = L−2, where L is defined by

La := −∇ · (γa∇a) + δaa, in �, (13)

and mean value a∗. In line with the forward problem, L is

equipped with periodic boundary conditions on the lateral

boundaries of �, while on the top and bottom boundaries

we enforce Robin boundary conditions. Note that explicit

knowledge of the distribution of a is not needed; we only re-

quire the ability to sample realizations of a. In what follows,

we denote by a any (possibly more than one) discretized aux-

iliary (uncertain) parameter, such as the rheology parameters.

Next, we let F̃(β,a) denote an accurate parameter-to-

observable mapping so that the relationship between the pa-

rameters and the measured data is given by

d = F̃(β,a) + e. (14)

Then, with the aim of avoiding so-called joint inversion, i.e.,

estimating β and a simultaneously, we introduce the approx-

imate parameter-to-observable mapping: F(β) = F̃(β,a∗).

That is, the approximate parameter-to-observable map is the

accurate parameter-to-observable map but with the auxiliary

parameters fixed to the associated mean value, i.e., a = a∗.

Fixing a to some other nominal value is also possible.

The goal is then to carry out the estimation of β using only

the approximate parameter-to-observable map, F(β), while

taking into account the (statistics of) the discrepancy between

the models. To this end, Eq. (14) is reformulated as

d = F̃(β,a) + e = F(β) + e + ε = F(β) + ν, (15)

where ε = F̃(β,a) −F(β) is known as the approximation

error and ν = e + ε as the total error (e.g., Nicholson et al.,

2018; Tarvainen et al., 2010). Next, the approximation error

is approximated as a Gaussian with mean ε∗ and covariance

Ŵε, i.e., ε ∼ N (ε∗,Ŵε). Though, formally, the approxima-

tion error depends on the parameters, i.e., ε = ε(β,a), a fur-

ther approximation, termed the enhanced error model or the

composite error model approximation, is often made, which

approximates ε as independent of all parameters (Kaipio and

Kolehmainen, 2013). This leads to the total errors being dis-

tributed as ν ∼ N (ν∗,Ŵν) = N (ε∗,Ŵe + Ŵε).

Use of the BAE approach results in an updated posterior

density for β:

πBAE
post (β) ∝ exp

{

−
1

2
‖F(β) − d + ν∗‖

2

Ŵ−1
ν

−
1

2

∥

∥β − β∗

∥

∥

2

Ŵ−1
pr

}

, (16)

which is obtained by explicit marginalization over ν (Kaipio

and Kolehmainen, 2013). The updated MAP estimate is then

βBAE
MAP := argmin

β∈Rm

{

1

2
‖F(β) − d + ν∗‖

2

Ŵ−1
ν

+
1

2

∥

∥β − β∗

∥

∥

2

Ŵ−1
pr

}

. (17)

This updated expression for the MAP estimate is only a slight

modification of the original MAP estimate given in Eq. (9);

thus reformulating the corresponding adjoint, incremental

forward, and incremental adjoint equations is essentially triv-

ial. Lastly, the updated posterior covariance matrix (under the

Laplace approximation) is now given by

ŴBAE
po = (FT (βMAP)Ŵ−1

ν F(βMAP) + Ŵ−1
pr )−1. (18)

4.1 Computing the approximation error statistics

In the current paper, all parameters are taken to have Gaus-

sian (prior) distributions, i.e., z ∼ N (z∗,Cz), with z = (β,a).

We also assume β and a are independent; thus specifying β∗,

a∗, Cβ , and Ca fully describes the prior density.

Unlike the statistics of the parameters and the measure-

ment noise, the mean (ε∗) and covariance (Ŵε) of the approx-

imation errors must in general be estimated based on (Monte

Carlo) samples. That is,

ε∗ =
1

N

N
∑

ℓ=1

ε(ℓ), and Ŵε =
1

N − 1
eeT , (19)

with N ∈ N the number of samples, ε(ℓ) = F̃(β(ℓ),a(ℓ)) −

F(β(ℓ)) for ℓ = 1,2, . . .,N , where β(ℓ) and a(ℓ) are samples

drawn from the joint prior density, and e = [ε(1) − ε∗,ε
(2) −

ε∗, . . .,ε
(N) − ε∗]. The samples, β(ℓ) and a(ℓ), are generated

efficiently as in Villa et al. (2021, Eq. 30).

It is worth noting that all sampling and computations of

the approximation errors and the associated statistics can be

carried out prior to the acquisition of any data and is thus

often termed offline computations (Kaipio and Kolehmainen,

2013). Furthermore, though the computational cost per sam-

ple of ε in the current paper is two forward (nonlinear) Stokes

solves, the sampling procedure is embarrassingly parallel,

i.e., each sample can be carried out independently, and in

practice, only a fairly small number of samples is required.
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We conclude this section by giving several rules of thumb

relating to the use of the BAE approach (for more details

see Kaipio and Kolehmainen, 2013). Firstly, the total num-

ber of samples required to accurately construct the statistics

of the approximation errors is generally (often substantially)

less than N = 1000. Secondly, two measures have been de-

veloped to identify when neglecting the approximation er-

rors can result in misleading, and potentially infeasible, re-

sults (Kaipio and Kolehmainen, 2013). Specifically, if either

trace(Ŵe) < ‖ε∗‖
2 + trace(Ŵε) (20)

holds or if for any w ∈ R
q

wT Ŵew < (wT ε∗)
2 + wT Ŵεw (21)

holds, then the approximation errors are said to dominate the

noise, and ignoring them often gives erroneous results. Intu-

itively, if the approximation errors dominate the noise, then

ignoring them often results in overconfidence in the approx-

imate forward model, in turn leading to overly confident and

biased posterior estimates.

5 Numerical examples

In this section, we outline three numerical examples to as-

sess the applicability, performance, and robustness of the

BAE approach to account for uncertain rheology parame-

ters. Several additional examples are provided in the accom-

panying Supplement, as detailed in Sect. 6.4. In all cases,

the parameter of interest is the basal sliding coefficient,

β. Any other unknown/uncertain parameters are (approxi-

mately) premarginalized over using the BAE approach, as

outlined in Sect. 4.

The forward problems considered here are based on the

models used in the Ice Sheet Model Intercomparison Project

for Higher-Order ice sheet Models (ISMIP-HOM) bench-

mark study carried out in Pattyn et al. (2008). Accordingly,

all problems are considered in box-like geometries, i.e., � =

[0,L]d−1 × [0,H ], for d = 2 (in examples 1 and 2) or d = 3

(in Example 3). Furthermore, in all model problems we take

the ice slab to be set on an incline plane with slope θ = 0.1◦,

the density of the ice to be ρ = 910 kg m−d , and the grav-

itational acceleration constant to be g = 9.81 m s−2. For all

examples, we set the length at L = 104 m, while for exam-

ples 1 and 2 we set H = 250 m, and for Example 3, we set

H = 103 m. In Fig. 1, we show a two-dimensional schematic

of the model problem setup.

The true basal sliding coefficient fields used for each ex-

ample are based on those in Petra et al. (2012). Specifically,

letting ω = 2π/L, for examples 1 and 2 (posed in two dimen-

sions) we set

β(s) = 7 + sin(ωs), ∀s ∈ Ŵb, (22)

as shown in Fig. 7, while in Example 3 (posed in three di-

mensions) we set

β(s) = 7 + 3sin(ωs1)sin(ωs2), ∀s ∈ Ŵb, (23)

as shown in Fig. 13.

For all numerical experiments, we use synthetic measure-

ments; these are randomly placed noisy point-wise measure-

ments of each component of the velocity on the top surface of

the domain, i.e., at points on Ŵt . Examples 1 and 2 are carried

out based on q = 80 measurement locations, while for Ex-

ample 3 we use q = 100 measurement locations. These mea-

surements are obtained by adding zero mean white noise to

the solution of the forward problem. Thus the additive noise

is of the form e ∼ N (0,Ŵe) with covariance matrix Ŵe =

δ2
e I. We take δe to satisfy δe = ( 1

100
) × (max(Bu(βtrue)) −

min(Bu(βtrue))), i.e., the noise level is 1 % of the range of the

noiseless synthetic measurements. The precise noise level is

problem specific; however, when using GPS techniques and

InSAR velocity measurements, a 1 % noise level is realistic

(see, for example, Martin and Monnier, 2014 and the refer-

ences therein).

For all examples considered here, the prior mean for the

basal sliding coefficient, β, is set at β∗ = 7. On the other

hand, the prior covariance operator, Cβ , is identical for ex-

amples 1 and 2, while for Example 3 different controlling

parameters are used (details are provided in Table 1). Along

with the true basal sliding coefficient used in examples 1

and 2, we also show the prior distribution and three sam-

ples drawn from the prior in Fig. 7. In Fig. 12, we show four

samples from the prior used in Example 3.

5.1 Example problems

We now give the specific details of each model problem and

make apparent which parameters we treat as auxiliary pa-

rameters and subsequently premarginalize over. Key details

about each model problem are summarized in Table 1.

Example 1: uncertain flow rate factor in the

two-dimensional linear Stokes ice sheet model

The first example is carried out assuming a linearized

(Stokes) ice sheet model in two-dimensions. Specifically,

we set n = 1 in Eq. (1), resulting in the effective viscos-

ity being given by η(x) = 1
2
A(x)−1. The flow rate factor,

A, is taken to be unknown and spatially varying, as is of-

ten the case in reality. We represent the flow rate factor as

A = A0 exp(−na(x)), with A0 = 2.140373×10−7 Pa−1 a−1,

n = 1 is the Glen’s flow law exponent, and the pre-factor,

exp(−na(x)), takes the role of the auxiliary parameter,

which will subsequently be premarginalized over using the

BAE approach. The pre-factor accounts for several physical

and computational phenomena, such as the Arrhenius rela-

tionship between A(x) and the ice temperature (e.g., Cuffey

and Paterson, 2010; Zhu et al., 2016) and the use of the so-
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Figure 2. Samples of the flow rate pre-factor for Example 1. Left

column: samples for Example 1a. Right column: samples for Ex-

ample 1b. The samples in the top row are taken as the true flow rate

pre-factors. Note that the axes have been stretched in the y direction

for ease of visualization.

called enhancement factors (Cuffey and Paterson, 2010; Ma

et al., 2010). The “exp” function is used to ensure the pre-

factor remains positive.

The prior distribution of the flow rate pre-factor is set by

taking the prior mean to be a∗ = 0, while the controlling pa-

rameters of the prior covariance operator are given in Table 1.

The true pre-factor and three other samples drawn from this

prior distribution are shown in Fig. 2 for examples 1a and 1b.

As outlined below, the computational meshes used for ex-

amples 1a and 1b are different. This leads to differences in

the true pre-factor used for both examples. This in turn re-

sults in different synthetic data being used for the inversions;

however, in both cases, the standard deviation of the noise is

δe ≈ 0.07. In both cases, the flow rate pre-factor is discretized

using continuous quadratic Lagrange basis functions.

We use this example to also demonstrate that the proposed

approach is independent of the discretization, a critical prop-

erty to have when aiming to solve large-scale problems. This

is done by considering identical problems on two different

levels of discretization. Specifically, we consider the prob-

lem on two structured meshes having substantially different

levels of discretization.

(a) In the first case, the computational mesh consists of

2000 triangular elements, which results in the dis-

cretized velocity and pressure having 8400 degrees of

freedom (DOFs), and 1100 DOFs, while the basal slid-

ing coefficient has 100 unknowns, and the flow rate pre-

factor has 4200 DOFs.

(b) In the second case, the mesh is refined, and it con-

sists of 8000 triangular elements, leading to 32 800, and

4200 DOFs for the discretized velocity and pressure, re-

spectively, while the dimensions of the basal sliding co-

efficient and the flow rate pre-factor are 200 and 16 400,

respectively.

Example 2: uncertain Glen’s flow law exponent in the

two-dimensional nonlinear Stokes ice sheet model

For the second example, we use the nonlinear Stokes prob-

lem (Eq. 1) as the governing equation. We take the Glen’s

flow law exponent, n(x), as an uncertain (and unknown) spa-

tially varying auxiliary parameter, i.e., we set a(x) = n(x),

and proceed to approximately premarginalize over it. The

prior mean of the Glen’s flow law exponent is set to a∗ = 3,

while the parameters controlling the covariance operator, Ca ,

are given in Table 1 and are chosen to ensure that the Glen’s

flow law exponents are in line with the literature. As noted,

a shear-thinning rheology is generally used when modeling

ice sheets, and we thus enforce 1 ≤ n(x). In the current pa-

per, this is done by rejection sampling, which corresponds to

constraining the function space in which n lies (see Dashti

and Stuart, 2016, Eq. 10.10 for details), though other meth-

ods could also be used, such as reparameterizing the Glen’s

flow law exponent.

We also use this example to study the effect of larger mod-

eling errors (i.e., excessive errors). That is, we consider the

case when the variance of the approximation errors is so large

that essentially all information in the data is washed out. As

we shall see, however, the resulting uncertainty estimates are

still feasible. To induce larger uncertainties (and resulting ap-

proximation errors), we alter the prior covariance operator

for the Glen’s flow law exponent, n, to favor more highly os-

cillatory realizations. We can thus further divide Example 2

into two cases:

(a) modest approximation errors and

(b) excessive approximation errors.

The parameters used to control the covariance of the distribu-

tions on n are shown in Table 1. The true Glen’s flow law ex-

ponents used to generate the data for examples 2a and 2b are

drawn from the respective distributions, which, along with

several other samples of the Glen’s flow law exponent from

each of the distributions, are shown in Fig. 3. In both cases,

the Glen’s flow law exponent is discretized using continu-

ous linear Lagrange basis functions, while the computational

mesh used is the same as that used in Example 1a. Finally,

in Example 2a we have δe ≈ 0.04, while in Example 2b we

have δe ≈ 0.05.

Example 3: uncertain flow rate factor in the

three-dimensional nonlinear Stokes ice sheet model

In this example, we consider a three-dimensional (d = 3),

nonlinear analogue of Example 1. Specifically, we con-

sider Eq. (1) in three dimensions, with the Glen’s flow law

exponent set to n = 3. Similar to Example 1, we suppose the

flow rate factor is spatially heterogeneous, unknown, and pa-

rameterized as A = A0 exp(−na(x)). Here the nominal value

for the flow rate factor is set to A0 = 10−16 Pa−3 a−1, the

Glen’s flow law exponent is set to n = 3, and the pre-factor,
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Figure 3. Samples of the Glen’s flow law exponent for Example 2.

Left column: samples for Example 2a. Right column: samples for

Example 2b. The samples in the top row are taken as the true Glen’s

flow law exponents. Note that the axes have been stretched in the

y direction for ease of visualization.

Figure 4. Samples of the flow rate pre-factor for Example 3. The

top-left sample is taken as the true flow rate pre-factor. Note that

the domain has been stretched in the z direction for ease of visual-

ization.

exp(−na(x)), takes into account several physical and com-

putational phenomena as described previously.

The mean value of the auxiliary parameter is set at a∗ = 0,

while the parameters controlling the distribution of the pre-

factor are given in Table 1. These values for the prior co-

variance operator of a ensure the flow rate values are in line

with those presented in the literature (see, for example, Ta-

ble 3.4 in Cuffey and Paterson, 2010). In Fig. 4, we show

the true flow rate pre-factor (a sample from the prior) along

with three other samples from the associated prior density.

Unlike Example 1, the flow rate pre-factor in this example

is discretized using continuous linear Lagrange basis func-

tions. The computational mesh used consists of 19 200 tetra-

hedral elements, leading to 81 600 DOFs for the velocity,

3600 DOFs for the pressure, 27 200 DOFs for the flow rate

pre-factor, and 400 DOFs for the basal sliding coefficient.

5.2 Estimates and approximate posterior covariances

For each of the examples listed above, we compare the es-

timation results (MAP points and approximate posterior co-

variances) for three different approaches. Within each exam-

ple, for each of the approaches, the same prior distribution is

used for the basal sliding coefficient; thus it is only the asso-

ciated likelihoods that differ. In our analysis, we place par-

ticular emphasis on the feasibility of the posterior estimates,

that is, whether or not the computed posterior distributions

support the true basal sliding coefficient. The three different

approaches considered are as follows.

(a) The accurate case (REF). In this case, any auxiliary

parameters are set to their true values; i.e., we use

F̃(β,atrue) as the parameter-to-observable map. REF is

computed as a benchmark/reference. The resulting like-

lihood for REF is

πREF(d|β) ∝ exp

{

−
1

2

∥

∥

∥
F̃(β,atrue) − d

∥

∥

∥

2

Ŵ−1
e

}

, (24)

while the accurate MAP estimate and the corresponding

posterior covariance matrix are denoted by βREF
MAP and

ŴREF
po , respectively.

(b) The conventional error model approach (CEM). This

approach uses the standard error model (induced by the

additive error, e) while using the approximate model,

F(β), where the auxiliary parameters are set to some

nominal value (such as a = a∗). The likelihood is then

of the form

πCEM(d|β) ∝ exp

{

−
1

2
‖F(β) − d‖2

Ŵ−1
e

}

. (25)

We denote the corresponding MAP estimate and the

posterior covariance matrix by βCEM
MAP and ŴCEM

po , respec-

tively.

(c) The Bayesian approximation error approach (BAE).

This approach also uses the approximate model, F(β),

but accounts for the approximation errors using the BAE

approach outlined in Sect. 4. As given in Eq. (17), the

updated likelihood found using the BAE approach is

πBAE(d|β) ∝ exp

{

−
1

2
‖F(β) − d + ν∗‖

2

Ŵ−1
ν

}

, (26)

with the MAP estimate and the posterior covariance ma-

trix denoted by βBAE
MAP and ŴBAE

po , respectively.

6 Results

Here we discuss and compare MAP estimates for the basal

sliding coefficient and the respective approximate posterior

covariance for each example. As alluded to previously, we

pay particular attention to the feasibility of the posterior un-

certainty estimates when comparing the results. We also ex-

amine the spectrum of the prior preconditioned misfit Hes-

sians, which gives further insight into the uncertainty, and
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Table 1. Details for each of the examples considered. The first column (Ex.) refers to the example number; the second, third, and fourth

columns give details of the forward model used, including which Stokes model is used, the aspect ratio, L
H

, and the definition of the auxiliary

parameter; the fifth, sixth, and seventh columns give the discretization details, including the number of degrees of freedom for the velocities

and pressure, the number of degrees of freedom of the unknown parameters, (β,a) DOFs, and the number of measurements, q; finally, the

8th through 12th columns give details on the prior distributions for the unknowns, including the parameters controlling the prior covariance

operator for β, the controlling parameters for the prior covariance operator of a, and the prior mean, a∗. Note that in examples 2a and 2b

the prior for the auxiliary parameter is further constrained by enforcing 1 ≤ n(x), while for all examples the prior mean for the basal sliding

coefficient is taken as β∗ = 7. Furthermore, the correlation length for β in examples 1 and 2 is approximately 4900 m, while in Example 3 the

correlation length is approximately 3200 m. Finally, in the definition of the auxiliary parameter for Example 3, the Glen’s flow law exponent

is n = 3.

Model details Discretization details Prior distribution details

Ex. Stokes L
H

a (u,p) DOFs (β,a) DOFs q γβ δβ a∗ γa δa

1a Linear 2D 40 ln(A0/A) (8400, 1100) (100, 4200) 80 840 7.0 × 10−5 0 300 1.5 × 10−4

1b Linear 2D 40 ln(A0/A) (32 800, 4200) (200, 16 400) 80 840 7.0 × 10−5 0 300 1.5 × 10−4

2a Nonlinear 2D 40 n (8400, 1100) (100, 1100) 80 840 7.0 × 10−5 3 90 9.0 × 10−3

2b Nonlinear 2D 40 n (8400, 1100) (100, 1100) 80 840 7.0 × 10−5 3 41 4.1 × 10−3

3 Nonlinear 3D 10 1
n ln(A0/A) (81 600, 3600) (400, 27 200) 100 7.5 7.5 × 10−7 0 12.5 2.5 × 10−6

the sensitivity of each approach. To conclude the section, we

give a brief comparison of the online computational costs (in

terms of linearized Stokes partial differential equation, PDE,

solves) for computing the MAP estimates.

To solve the optimization problems, we use an inexact

Newton-CG method (see, for example, Petra et al., 2012). In

all cases, we start the optimization procedure using the prior

mean for the initial estimate of the basal sliding coefficient,

while the prior covariance operator is used as the precondi-

tioner. The optimization is carried out using a Gauss–Newton

Hessian approximation for the first five iterations and then

full Newton combined with an Armijo line search (Nocedal

and Wright, 2006). Convergence is established when the gra-

dient has decreased by a factor of 106 relative to the norm of

the initial gradient.

The numerical results presented in this paper are obtained

using hIPPYlib (an inverse problem Python library; Villa

et al., 2018, 2021). The hIPPYlib library implements state-

of-the-art scalable adjoint-based algorithms for PDE-based

deterministic and Bayesian inverse problems. It builds on

FEniCS (Dupont et al., 2003; Logg et al., 2012) for the dis-

cretization of the PDEs and on PETSc (Balay et al., 2009) for

scalable and efficient linear algebra operations and solvers

needed for the solution of the PDEs. In line with the finite

element discretization used for the weak form of the forward

problem (Eq. 2), in what follows, we use Taylor–Hood finite

elements for the adjoint, incremental forward, and incremen-

tal adjoint equations, as in Petra et al. (2012).

6.1 Example 1

In this example, we consider the case of an uncertain flow

rate factor in the two-dimensional linear Stokes ice sheet

model and demonstrate the mesh independence of the ap-

proach. We begin by discussing the statistics of the ap-

proximation errors which are induced by treating the un-

known flow rate factor as a known constant, specifically, A =

2.140373 × 10−7 Pa−1 a−1. In Fig. 5, we show the marginal

distribution of the approximation errors in the x component

(top) and y component (bottom) for Example 1a (left) and

Example 1b (right). The approximation errors are similar for

the coarser mesh (Example 1a) and the finer mesh (Exam-

ple 1b), both having fairly constant mean and variance in

each component. For both examples, the mean of the approx-

imation errors in the x component of the velocity measure-

ments is non-zero, ε∗ ≈ 0.2, while the standard deviation of

the approximation errors is substantially larger than the addi-

tive noise (δe ≈ 0.07). That is, the approximation errors dom-

inate the additive noise, as explained in Sect. 4.1, and it is

likely (and is indeed the fact) that ignoring the approxima-

tion errors may lead to infeasible results.

To illustrate the convergence of the approximation errors,

in the top row of Fig. 6, we show the spectrum of the ap-

proximation errors covariance matrices, Ŵε, for examples 1a

and 1b for increasing sample sizes (N = 62, 250, 500, and

1000). From the figure, it is evident that for N ≥ 250 sam-

ples, the spectra essentially coincide and have both con-

verged, thus demonstrating the discretization independence

of the approach and that approximately N ≥ 250 samples

are likely sufficient to characterize the approximation error

statistics. Note, however, that the results displayed here use

N = 1000 samples.

To give further insight into the distribution of the approxi-

mation errors, we show the (Pearson’s) correlation matrix of

the approximation errors for Example 1a (left) and 1b (right)

in the bottom row of Fig. 6. Firstly, we notice that the cor-

relation matrices are highly structured (unlike the noise co-

variance matrix which is diagonal). It is also apparent that

the correlation matrices are (visually) identical, further il-
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Figure 5. Second order statistics of the approximation errors for

Example 1. (a, b) Distribution of the approximation errors in the

x direction velocity measurements for Example 1a (a) and 1b (b).

(c, d) Distribution of the approximation errors in the y direction

velocity measurements for Example 1a (c) and 1b (d). The mean

of the approximation errors, ε∗, is indicated with a red line, while

higher probability density is indicated by darker shading.

lustrating the discretization independence. The 2 × 2 block

structure of the correlation matrices is to be expected since

the measurement number indexing used corresponds to mea-

suring the q = 80 velocity measurements in the x direction

first, followed by the 80 velocity measurements in the y di-

rection. The behavior within the diagonal blocks is also fairly

intuitive as periodic boundary conditions are used, while the

structure also illustrates that measurements (relatively) far

away from each other are fairly uncorrelated. Comparing the

diagonal blocks we see that the approximation errors in the

x component of the velocity measurements are more highly

correlated at greater distances than those of the y component.

Finally, the off-diagonal blocks show a nontrivial correlation

between the approximation errors in the x and y components.

In particular, this figure shows that the approximation er-

rors have a similar structure to the main diagonal but reveals

smaller (Pearson’s) correlation coefficients (these range from

about −0.5 to 0.5).

In the top row of Fig. 7, we show the marginal prior dis-

tributions and the resulting marginal posterior distributions.

Also shown are the corresponding MAP estimates, the true

basal sliding coefficient, and three draws from each of the

distributions. Firstly, the accurate MAP estimate, βREF
MAP, is

in good agreement with the true basal sliding coefficient,

Figure 6. Convergence and (Pearson’s) correlation matrix of the ap-

proximation errors for Example 1. (a) Spectrum of Ŵε for various

sample sizes, N , for Example 1a (orange) and Example 1b (cyan),

along with the noise variance, δ2
e . (b, c) (Pearson’s) correlation ma-

trix of the approximation errors for Example 1a (b) and 1b (c).

while the accurate posterior is clearly feasible in the sense

that the true basal sliding coefficient is well supported by the

Laplace-approximated posterior. On the other hand, the MAP

estimate found using the conventional error model, βCEM
MAP,

differs substantially from the true basal sliding coefficient

over most of the domain. Furthermore, the posterior is essen-

tially infeasible, with the actual coefficient having virtually

no posterior density. Conversely, the MAP estimate found

using the BAE approach, βBAE
MAP, is in fairly good agreement

with the true coefficient, and the Laplace-approximated pos-

terior supports the truth well. We do see that the marginal

posterior standard deviations found using the BAE approach

are somewhat larger than those found using the accurate and

conventional error approaches. This is typical, and to be ex-

pected, as the additional uncertainty in the flow rate pre-

factor manifests itself as extra posterior uncertainty.

In the bottom row of Fig. 7, we show the corresponding

results for Example 1b. The results are fairly similar to Ex-

ample 1a when using the accurate approach and when using
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the BAE approach4 despite the substantial difference in the

discretizations used. Lastly, the MAP estimate found using

the conventional error model has changed drastically from

Example 1a, though the posterior is equally as bad.

6.2 Example 2

In this example, we consider the case of an uncertain Glen’s

flow law exponent in the two-dimensional nonlinear Stokes

ice sheet model and also demonstrate what happens when

the approximation errors are, in some sense, too large. The

approximation errors here are the result of treating the un-

known, and spatially varying, Glen’s flow law exponent as a

fixed constant, i.e., setting n = n0 = 3. To induce the larger

approximation errors for Example 2b compared to Exam-

ple 2a, we increase the uncertainty in the Glen’s flow law

exponent by altering the associated prior distribution (see

Table 1). The difference in magnitude of the approximation

errors is apparent in Fig. 8, where we show the marginal

distribution of the approximation errors at the observation

locations in the x direction (top) and y direction (bottom)

velocities for examples 2a (left) and 2b (right). Note that

the variance of the approximation errors for Example 2b

is substantially larger than that of Example 2a. Consider-

ing that the standard deviation of the added noise for the

small approximation error case (Example 2a) is δea ≈ 0.04

and for the large approximation error case (Example 2b) is

δeb
≈ 0.05, the approximation errors in both examples domi-

nate the noise (see Sect. 4.1).

The top row of Fig. 9 shows the spectrum of the covariance

matrices of the approximation errors, Ŵε, for N = 125, 500,

1000, and 2000 samples for Example 2a and for N = 250,

1000, 2000, and 4000 samples for Example 2b. For Exam-

ple 2a, it appears N ≈ 500 is enough samples, though for the

results here we used N = 1000, while for Example 2b we

require N ≈ 2000 samples. The fact that more samples are

required to ensure convergence of the approximation errors

in Example 2b follows naturally from the increased uncer-

tainty. It is worth pointing out that Example 2b is used mainly

to demonstrate how the BAE approach performs in the pres-

ence of too much modeling uncertainty; thus for the purposes

of the current study we deem taking N = 2000 as tolerable.

In the bottom row of Fig. 9, we show the (Pearson’s) corre-

lation matrices of the approximation errors. The correlation

matrices for this example share several of the characteris-

tics seen in the corresponding correlation matrices in Exam-

ple 1, specifically, the block structure and general behavior

within the blocks. Comparing the correlation matrices for

examples 2a and 2b, it appears the approximation errors in

the x component for Example 2a are more highly correlated

at greater distances towards the edges of the computational

4We attribute the differences in the BAE approach to the differ-

ences in the true flow rate pre-factor, the noise realization, and the

specific samples of ε.

domain compared to the approximation errors in the x com-

ponent of the velocity measurements for Example 2b.

In the top row of Fig. 10, we show the marginal prior

and Laplace-approximated posterior distributions, as well as

three draws from each of the distributions, the corresponding

MAP estimates, and the true basal sliding coefficient for Ex-

ample 2a. A couple of conclusions can be drawn from this

figure. First, the accurate MAP estimate, βREF
MAP, closely re-

sembles the true basal sliding coefficient, and the truth is

well supported by the accurate posterior distribution. Second,

the Laplace-approximated posterior found using the conven-

tional error approach is infeasible for most of the right half

of the domain, with the MAP estimate, βCEM
MAP, (severely) un-

derestimating the true basal sliding coefficient. Third, the

true basal sliding coefficient lies well within the bulk of

the (Laplace-approximated) posterior for the BAE approach,

with the MAP estimate, βBAE
MAP, in fairly good agreement with

the true basal sliding coefficient.

In the bottom row of Fig. 10, we show the corresponding

results for Example 2b, in which the approximation errors

are excessive. Under the Laplace approximation, the accu-

rate posterior, found by using the true Glen’s flow law ex-

ponent, remains an accurate representation of the truth as in

Example 2a. The posterior found using the conventional er-

ror model approach has significantly deteriorated, however,

with the true basal sliding coefficient even more markedly

underestimated and the truth lying well outside the bulk of

the Laplace-approximated posterior over almost all of the do-

main. Conversely, by taking into account the excessive mod-

eling errors in Example 2b, the posterior found using the

BAE approach is comparable to the prior, with the corre-

sponding MAP estimate, βBAE
MAP, being fairly similar to the

prior mean. This demonstrates that when using the BAE

approach, as the modeling errors become larger, the corre-

sponding posterior density tends towards the prior, as should

be hoped, to avoid overconfidence in biased results.

6.3 Example 3

In this example, we consider an uncertain flow rate factor in

a larger scale, three-dimensional nonlinear Stokes ice sheet

model. The approximation errors are the result of setting the

unknown flow rate factor to A = 10−16 Pa−3 a−1. The spec-

trum for the approximation errors are shown in Fig. 11. The

plot indicates that taking 500 < N ≤ 1000 samples would

likely suffice to accurately characterize the approximation er-

rors. For the results discussed here, we used N = 1000 sam-

ples. The average standard deviation of the approximation

errors in the x component of the approximation errors is ap-

proximately 3.1, while for the y and z components, the av-

erage standard deviation of the approximation errors are 0.5

and 0.4, respectively. The standard deviation of the noise, on

the other hand, is δe ≈ 0.25. We thus can expect the resulting

estimates found by disregarding the approximation errors to

be unreasonable (see Sect. 4.1).
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Figure 7. Prior and MAP estimates of the basal sliding parameter for Example 1. Top row: Example 1a prior (far left), accurate/reference

(REF) case (center left), conventional error model (CEM) case (center right), and Bayesian approximation error (BAE) case (far right). The

bottom row shows the same plots for Example 1b. In each plot, the mean of the distribution (blue line) is shown along with the true basal

sliding parameter, βtrue (red line), three samples from the respective distributions (green lines), the marginal distribution (shaded) with darker

shading indicating higher probability, and the ±2 (approximate) standard deviation intervals (dashed black line).

In Fig. 12, we show four draws from the prior density on

the basal sliding coefficient, while in Fig. 13 we show the

true basal sliding coefficient (top left) and each of the MAP

estimates: βREF
MAP (top right), βCEM

MAP (bottom left), and βBAE
MAP

(bottom right). We also show the locations (y = 2.5 km and

y = 7.5 km) of two lines, labeled l1 and l2, for which cross-

sectional plots are shown in Fig. 14. It is clear from Figs. 13

and 14 that the reference posterior is completely feasible,

and the corresponding MAP estimate is in good agreement

with the true basal sliding coefficient. On the other hand, al-

though the MAP estimate found using the conventional error

model (CEM) shows similar qualitatively behavior, as seen

in Fig. 13, when taking the corresponding posterior density

into account, it is clear that the approach is essentially infea-

sible, with the truth lying well outside the bulk of the pos-

terior across most of the domain (see Fig. 14). Finally, from

Figs. 13 and 14 we see that, though not as good as the accu-

rate case, the MAP estimate found using the BAE approach

qualitatively remains similar to the truth. Furthermore, the

truth is generally very well supported by the BAE posterior

under the Laplace approximation.

6.4 Additional examples in the Supplement

To further demonstrate the flexibility and robustness of the

proposed approach, we provide several additional numeri-

cal examples in the Supplement accompanying this paper.

Specifically, we consider three additional cases that are vari-

ations of Example 1. Section S.1 of the Supplement demon-

strates the robustness of the BAE approach in the case in

which the true distribution of the auxiliary parameter is not

known. The results show that as long as the true auxiliary

parameter is well supported by the assumed distribution, the

BAE approach provides posterior-consistent estimates of the

basal sliding coefficient β. Section S.2 compares the CEM

and BAE approaches for different assumptions of the mean

and marginal variance of the prior distribution. The results

show that the qualitative behavior of the two approaches is

consistent to that observed for Example 1. Finally, Sect. S.3

compares the BAE approach and a so-called tempering ap-

proach, in which a heuristic criterion (such as the L-curve)

is used to select an appropriate scaling of the prior or likeli-

hood density. This tempering approach can be understood as

varying the regularization parameter in a deterministic setup.

This example demonstrates that the BAE approach provides

a robust solution to the inverse problem without requiring

multiple solutions of the inverse problem for different scal-

ing parameters. In addition, in contrast to the tempering ap-

proach, the BAE approach does not rely on (possibly) unre-

liable heuristic methods to select the scaling parameter.

6.5 Spectra of the data misfit Hessians and

computational costs

In this section, we compare the spectra of the data misfit Hes-

sian and the computational cost of the three approaches (ac-

curate, conventional error, and Bayesian approximation er-

ror) for each of the three examples. The dominant eigenval-

ues of the data misfit Hessian, H (see Eq. 10), evaluated at the

corresponding MAP estimate, are shown in Fig. 15 for each

example. Firstly, we observe that for all three approaches in

all three examples, we only need to retain a relatively low
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Figure 8. Second order statistics of the approximation errors for

Example 2. (a, b) Distribution of the approximation errors in the

x direction velocity measurements for Example 2a (a) and 2b (b).

(c, d) Distribution of the approximation errors in the y direction

velocity measurements for Example 2a (c) and 2b (d). The mean

of the approximation errors, ε∗, is indicated with a red line, while

higher probability density is indicated by darker shading.

number of eigenvalues and eigenvectors to compute a rea-

sonable low-rank approximation of the Laplace posterior co-

variance matrix. Secondly, we see that the dominant spec-

trum resulting from using the BAE approach is often lower

than that of the reference and conventional error approach

cases. This is to be expected since we are accommodating

the approximation errors, which naturally lead to an increase

in uncertainty. Finally, the dominant spectrum of the misfit

Hessian for examples 1 and 2, found using the conventional

error approach, further illustrates the fact that ignoring the

uncertainty in the auxiliary parameters can lead to overcon-

fidence in erroneous estimates.

The spectrum of the misfit Hessian for Example 3, found

using the conventional error approach, seems to be somewhat

anomalous in that the spectrum decays faster than that of the

misfit Hessian found using the BAE approach. However, this

is possibly explained by the fact that the respective misfit

Hessians are evaluated at quite different MAP estimates.

Figure 15 shows that the number of eigenvalues required to

compute a reasonable low-rank approximation, in the sense

of Eq. (12), is considerably lower for the BAE approach in

most of the examples. This result suggests that computing

the low-rank approximation is cheaper for the BAE approach

compared to the other two approaches.

Figure 9. Convergence and (Pearson’s) correlation matrix of the

approximation errors for Example 2. (a) Spectrum of Ŵε for various

sample sizes, N , for Example 2a (orange) and Example 2b (cyan),

along with the noise variance for Example 2a, δ2
ea

, and Example 2b,

δ2
eb

. (b, c) (Pearson’s) correlation matrix of the approximation errors

for Example 2a (b) and Example 2b (c).

With regard to the computational cost, we consider the

number of (linearized) Stokes problem solves required for

the optimization algorithm to converge as the unit of cost. As

stated in Sect. 3, we use the inexact Newton-CG algorithm

with Armijo line search to find the MAP point. At each iter-

ation, inexact Newton-CG requires the following:

(a) one (or more if required to satisfy the sufficient descent

condition) evaluation of the log-likelihood, which in-

volves solving the nonlinear Stokes equations;

(b) one gradient evaluation, which involves solving an addi-

tional linearized Stokes problem, i.e., the adjoint equa-

tion; and

(c) one Newton system solve using the conjugate gradient

(CG) method, which at each CG iteration requires solv-

ing two linearized Stokes problems, i.e., the incremental

forward and adjoint problems.

The total number of linearized Stokes solves required to com-

pute the MAP estimate can then be calculated – per Gauss–
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Figure 10. Prior and MAP estimates of the basal sliding parameter for Example 2. Top row: Example 2a prior (far left), accurate/reference

(REF) case (center left), conventional error model (CEM) case (center right), and Bayesian approximation error (BAE) case (far right). The

bottom row shows the same plots for Example 2b. In each plot, the mean of the distribution (blue line) is shown along with the true basal

sliding parameter, βtrue (red line), three samples from the respective distributions (green lines), the marginal distribution (shaded) with darker

shading indicating higher probability, and the ±2 (approximate) standard deviation intervals (dashed black line).

Figure 11. Spectrum of Ŵε for various sample sizes, N , for Exam-

ple 3, along with the noise variance, δ2
e .

Newton iteration – as the sum of the number of iterations

required to solve the nonlinear forward problem plus one

adjoint solve (to calculate the gradient), along with one in-

cremental forward solve and one incremental adjoint solve

(to calculate the action of the Hessian) per CG iteration.

To ensure a sufficient decrease in the objective function at

each (Gauss–)Newton iteration, the forward problem may

be solved multiple times until the Armijo condition is satis-

fied, thus further increasing the number of linearized Stokes

solves.

Figure 12. Four samples from the prior for the basal sliding param-

eter field for Example 3.

The results shown in Table 2 indicate that in each of the ex-

amples considered in this paper, the BAE approach generally

requires less than half the number of the linearized Stokes

solves that are required for the REF case to converge to the

MAP point. Furthermore, the conventional error approach re-
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Figure 13. Basal sliding parameter estimates. (a, b) The true basal

sliding coefficient (a) and the accurate MAP estimate βREF
MAP

(b). (c,

d) The conventional error model MAP estimate βCEM
MAP

(c) and the

Bayesian approximation error MAP estimate βBAE
MAP

(d). The dashed

black lines are used to show the location of the cross sections (l1 =

2.5 km and l2 = 7.5 km) for Fig. 14.

quires (in some cases, significantly) more iterations, and thus

linearized Stokes solves, than the accurate model. This is to

be expected as the optimization is hampered by model mis-

match. It is also worth noting that the CEM approach requires

substantially more backtracking iterations compared to the

REF and BAE approaches, which is in line with Nicholson

et al. (2018). Furthermore, the number of CG iterations is

significantly reduced for the BAE approach when compared

to the CEM and REF case.

7 Conclusions

In this paper, we have considered the inference for the basal

sliding coefficient field for ice sheet flow problems with un-

certain rheology from surface velocity measurements. The

rheology parameters of the ice, in particular the flow rate fac-

tor and the Glen’s flow law exponent, are often uncertain and

can, at best, only be estimated in practice. We considered

examples in both two and three dimensions and used both

the linear and nonlinear Stokes ice sheet model. In each of

the cases considered, our goal was to infer the basal sliding

coefficient only; as such the unknown rheology parameters

were a priori fixed to nominal values and treated as auxiliary

parameters. To account for the resulting modeling uncertain-

ties (or errors), we employed the Bayesian approximation er-

Table 2. The cost of solving for the MAP estimates, measured in

number of linearized Stokes solves. The first column (Ex.) refers to

the example number, and the second column (Est.) refers to which

MAP estimate we are solving for, i.e., the reference MAP (REF),

the MAP found using the conventional error model (CEM), or the

MAP found using the BAE approach (BAE). The third column (#N)

gives the number of (Gauss–)Newton iterations, while the fourth

column (#CG) reports the total number of CG iterations. The fifth

column (#back) reports the number of backtracks needed through-

out the (Gauss–)Newton iterations, and the sixth column (#O) gives

the total number of objective function evaluations. Finally, the last

column (#Stokes) gives the total number of linearized Stokes solves

(for forward, adjoint, incremental forward, and incremental adjoint

problems). The (Gauss–)Newton iterations are terminated when the

norm of the gradient is decreased by a factor of 106, while the CG

iterations are terminated in line with the Eisenstat–Walker condi-

tion (Eisenstat and Walker, 1996) (to avoid over-solving) and the

Steihaug criteria (Steihaug, 1983) (to avoid negative curvature). The

results illustrate that the use of the approximation error approach

can be carried out at no additional online cost compared to the con-

ventional error approach and reference case.

Ex. Est. #O #N #CG #back #Stokes

1a

REF 10 10 68 0 156

CEM 19 17 96 2 228

BAE 7 7 30 0 74

1b

REF 12 11 68 1 159

CEM 18 16 91 2 216

BAE 7 7 28 0 70

2a

REF 21 16 66 5 244

CEM 42 27 99 15 376

BAE 12 11 25 1 110

2b

REF 12 11 78 1 241

CEM 35 26 62 9 286

BAE 8 8 18 0 78

3

REF 18 16 178 2 491

CEM 37 23 115 14 438

BAE 14 13 64 1 240

ror (BAE) approach. This approach shifts all uncertainty into

a single additive total error term, which is approximated as

Gaussian and can be premarginalized over.

The quantification of the resulting uncertainty in the esti-

mated basal sliding coefficient was carried out based on the

Laplace approximation to the posterior. In all of the exam-

ples considered here, the results suggest that fixing rheol-

ogy parameters to standard values found in the literature can

lead to overly confident and (heavily) biased estimates, with

the true basal sliding coefficient generally lying outside the

bulk of the posterior density if the uncertainty in the rheol-

ogy parameters is not accounted for. Conversely, carrying out

approximate premarginalization over the unknown rheology

parameters, via the BAE approach, leads to feasible estimates

for the basal sliding coefficient in all cases considered. To il-
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Figure 14. Cross sections of prior and MAP estimates of the basal sliding parameter for Example 3. Top row: cross section along line l1
(y = 2.5 km) of prior (far left), accurate/reference (REF) case (center left), conventional error model (CEM) case (center right), and Bayesian

approximation error (BAE) case (far right). The bottom row shows the cross section along line l2 (y = 7.5 km) in the same order. In each plot,

the mean of the distribution (blue line) is shown along with the true basal sliding parameter, βtrue (red line), three samples from the respective

distributions (green lines), the marginal distribution (shaded) with darker shading indicating higher probability, and the ±2 (approximate)

standard deviation intervals (dashed black line).

Figure 15. Spectra of the prior-preconditioned Hessian of the data misfit computed using Eq. (11) for Example 1 (a), Example 2a (b),

Example 2b (c), and Example 3 (d). The spectra for Example 1a (coarse mesh) are shown in the fainter colors, while the spectra for

Example 1b (fine mesh) are shown in the richer colors. The horizontal dashed black line (at λ = 1) shows the reference value for the

truncation of the spectrum of the prior-preconditioned Hessian of the data misfit.

lustrate a limitation of the BAE approach, we included an ex-

ample in which the modeling errors introduced were, in some

sense, too large. This case led to a posterior density (found

using the BAE approach) which showed very little reduction

in variance compared to the prior, though it still contained

the truth.

By avoiding the simultaneous estimation of the basal slid-

ing coefficient and rheology parameters (which are spatially

varying over the entire domain), the online computational

overheads of the estimation problem are substantially re-

duced. To ensure the work carried out here is applicable

to large-scale problems, i.e., scalable, we initially posed

the problem in infinite dimensions and then employed the

adjoint-state methodology to compute the MAP estimate.

In assessing the applicability and performance of the BAE

approach, the current study only considers fairly limited do-

mains, i.e., box-like geometries and idealized boundary con-

ditions. A natural next step for future work is to apply the

same framework to more realistic setups and to continental-

scale ice flow problems.

Code availability. The numerical results presented in

this paper were obtained using hIPPYlib version 3.0

(https://doi.org/10.5281/zenodo.3634136, Villa et al., 2018, 2021).
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GPL v2. It is available for download at https://hippylib.github.io
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