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ABSTRACT

Motivation: It is popular to explore meaningful molecular targets
and infer new functions of genes through gene functional similarity
measuring and gene functional network construction. However, little
work is available in this field for microRNA (miRNA) genes due to
limited miRNA functional annotations. With the rapid accumulation
of miRNAs, it is increasingly needed to uncover their functional
relationships in a systems level.

Results: It is known that genes with similar functions are often
associated with similar diseases, and the relationship of different
diseases can be represented by a structure of directed acyclic graph
(DAG). This is also true for miRNA genes. Therefore, it is feasible
to infer miRNA functional similarity by measuring the similarity of
their associated disease DAG. Based on the above observations and
the rapidly accumulated human miRNA-disease association data, we
presented a method to infer the pairwise functional similarity and
functional network for human miRNAs based on the structures of
their disease relationships. Comparisons showed that the calculated
miRNA functional similarity is well associated with prior knowledge
of miRNA functional relationship. More importantly, this method can
also be used to predict novel miRNA biomarkers and to infer novel
potential functions or associated diseases for miRNAs. In addition,
this method can be easily extended to other species when sufficient
miRNA-associated disease data are available for specific species.
Availability: The online tool is available at
http://cmbi.bjmu.edu.cn/misim

Contact: cuiginghua@hsc.pku.edu.cn

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

microRNAs (miRNAs) are endogenous small non-coding RNA
molecules that can regulate gene expression at the post-
transcriptional level by binding with 3 untranslated regions (UTRs)
of the target mRNAs through base pairing. This results in the
cleavage or translation inhibition of target mRNAs (Berezikov
et al., 2006). miRNAs are considered to represent one of the
most important components of the cell. They play critical roles in
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many important biological processes, and are therefore associated
with various diseases (Esquela-Kerscher and Slack, 2006; Latronico
et al., 2007; Lu, 2008). Thus far, thousands of miRNAs have been
identified. For example, among humans, more than 700 miRNAs
have been reported in miRBase (Griffiths-Jones, 2004). In order to
better understand miRNA, it is increasingly necessary to measure
their functional similarity and to further construct a network based on
such. For protein-coding genes, measuring gene functional similarity
and the construction and analysis of gene functional networks have
obtained important results (Du et al., 2009; Horvath et al., 2006;
Lee et al., 2004; Lin et al., 2007; Lord et al., 2003; Pesquita
et al., 2008, 2009; Wang et al., 2007). For example, Horvath et al.
developed a gene functional network construction method based on
gene expression similarity and identified an important molecular
target (ASPM) of glioblastoma after applying their method to
glioblastoma gene expression data (Horvath et al., 2006). One class
of widely used methods related to gene functional similarity and
the construction of a gene functional network is by measuring their
sequence or expression similarities (Horvath er al., 2006; Lin et al.,
2007). Another class of methods to infer functional similarity of
protein-coding genes is based on gene ontology (GO) data (Du
et al., 2009; Lee et al., 2004; Lord et al., 2003; Pesquita et al.,
2008, 2009; Wang et al., 2007). For miRNAs, although sequence or
expression similarities can interpret part of the functional similarity,
like protein-coding genes, the correlation between gene functional
similarities and gene sequence or gene expression similarities does
not always exist (Wang et al., 2007). The functional similarity of
two miRNAs may be indirectly inferred based on their targets.
However, it is difficult for this method to achieve high reliability
because miRNA targets are mostly obtained by in silico prediction,
which shows high false positives and false negatives (Bartel, 2009).
Furthermore, although methods of measuring protein-coding gene
functional similarity based on GO can achieve better results (Du
et al., 2009), these methods are not applicable for miRNA genes
because the function of most miRNAs remains unknown and no
such function annotation database is available. Therefore, a new
method is required to measure miRNA functional similarity and to
further construct a miRNA functional network for this purpose.

It has been reported that genes with similar functions are often
implicated in similar diseases and vice versa (Goh et al., 2007).
This observation also exists in miRNAs (Lu, 2008). Moreover,
according to prior knowledge, the relationships of different diseases
can be represented in a structure of directed acyclic graph (DAG).
Therefore, the functional similarity of miRNAs can be evaluated by
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Fig. 1. The increasing pattern of miRNA-disease associations recorded in
HMDD with the time.

quantitatively measuring the similarity of disease DAG associated
with these miRNAs. This observation provides a chance to infer
miRNA functional similarity through their associated disease DAGs.
However, this method is only applicable if there are sufficient
miRNA-disease association data. Fortunately, in recent years, more
miRNA-disease associations have been reported (Fig. 1). For
example, a human miRNA disease database (HMDD) has recently
recorded 2205 human miRNA-disease associations (Lu, 2008).

Here, based on the miRNA—disease association data and disease
DAG, we presented a method, MISIM (miRNA similarity), to
measure the functional similarity of miRNAs and to further construct
miRNA functional networks according to the calculated functional
similarity. We validated our method by comparing it with other
potential miRNA functional similarity inferring methods, such as
miRNA family, miRNA cluster and miRNA expression similarity.
Results show that our method is reliable. More importantly, our
method allows the discovery of novel miRNA pairs with high
functional similarity, and can predict novel function and associated
disease by analyzing the miRNA functional network.

2 METHODS

2.1 MeSH disease DAG structure

We downloaded MeSH descriptors from the National Library of
Medicine (http:/www.nlm.nih.gov/). MeSH descriptors were organized into
16 categories: Category A for anatomic terms, Category B for organisms,
Category C for diseases, Category D for drugs and chemicals and so on. We
then obtained the relationship of various diseases based on the disease DAG
from the MeSH descriptor of Category C (Supplementary Material 1).

Each MeSH descriptor showed a structure of a hierarchical DAG. All
nodes in the DAG are connected by a direct edge from a more general term,
we call it parent, to a more specific term, and we call it child. For example
for the DAG of breast neoplasms (Fig. 2), ‘Skin diseases’ points to ‘Breast
Diseases’. The purposes of constructing all nodes in this DAG format are
to let computers interpret this DAG in a quantitative way and to let it be
readable by human.

Each node consists of a descriptor, which carries a unique ID that will not
change, and tree numbers which consist of a list of its parent tree numbers
separated by ‘;” from all general nodes. The benefit is that from any one
node, we can easily parsing a single tree number without querying the whole
DAG related to it when we need access all its ancestors. Typically, the whole
DAG is saved into a database. Thus, this organization makes the computation
much faster when we have a large amount of data to compute.

l C04; Neoplasms ‘ l 17, Skin and Connective Tissue Diseases [

N\ ~

‘ C04.588; Neoplasius by Site | ‘ C17.800; Skin Diseases

/

‘ C17.800.090; Breast Diseases ‘

/

C04.588.180; C17.800.090.500; Breast Neoplasims ‘

Fig. 2. The disease DAG of breast neoplasms. The addresses of its ancestors
are shown in a DAG structure. The semantic value of disease ‘Breast
Neoplasms’ is calculated by summing up the weighted contribution of other
diseases to ‘Breast Neoplasms’ and the contribution to ‘Breast Neoplasms’
by ‘Breast Neoplasms’ itself.

2.2 Human miRNA-disease association data

We downloaded human miRNA-—disease association data from a human
miRNA-associated disease database, HMDD, which recorded 1616 distinct
human miRNA-disease associations (September 2009). For simplicity, all
the records of different miRNA copies that produce the same mature miRNA
(such as hsa-mir-376a-1 and hsa-mir-376a-2) were merged into one group.
We further unified the name of different mature miRNAs as one miRNA gene.
Finally, we curated the disease name using the standard MeSH disease terms.
As a result, 1395 miRNA—disease associations, including 271 miRNAs and
137 diseases, were utilized in our study (Supplementary Material 2).

2.3 Method for measuring miRNA functional similarity

A critical step in our method was the measurement of miRNA functional
similarity, the basis of miRNA functional network construction. In this study,
we presented a method, MISIM, to measuring the functional similarity of
miRNAs. MISIM adapted the method for measuring the functional similarity
of protein-coding genes based on GO terms (Du et al., 2009; Wang et al.,
2007). MISIM contains four main procedures that can be measured based on
the functional similarity of two miRNAs, for example, MA and MB. First, the
diseases associated with these two miRNAs were identified, denoted as DA
and DB. Next, the semantic values of diseases were calculated based on the
DAG of corresponding diseases. Third, the semantic similarity for any pair
of diseases between DA and DB was calculated based on disease semantic
value. Finally, the functional similarity of MA and MB was calculated based
on the semantic similarity of DA and DB. Details of the procedures are given
in the following sections.

2.3.1 Semantic value of a disease  All the denominations of diseases
used in this study were in accordance with the MeSH database
(http://www.ncbi.nlm.nih.gov/). The MeSH database provided a strict system
for disease classification and could be helpful for studying the relationship of
diseases. It can be described as a DAG, in which the nodes represent diseases
while the links represent relationship between nodes. There is only one type
of relationship, defined as ‘is-a’, to connect a child node to a parent node.
Each disease has one or more addresses in the DAG, referred herein as codes,
to numerically define its location in the MeSH graph. The codes of a child
node are defined as the codes of its parent nodes appended by the child’s
addresses. For instance, the entry on breast neoplasms has two possible
addresses or codes: C04.588.180 and C17.800.090.500. Their corresponding
parent nodes are C04.588 neoplasms by site and C17.800.090 breast diseases
(Fig. 2). A disease A can be represented as a graph, DAGy =(A, T4, Ea),
where T} is the set of all ancestor nodes of A including node A itself and E4
is the set of corresponding links. We define the contribution of a disease ¢ in
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DAG4, to the semantics of disease A as the D value of disease ¢ related to
disease A, D4(t), which can be calculated by

{DA(A):I

Da(t)=max{A*D(¢')|t echildrenof?} if t#A M

where A is the semantic contribution factor for edges (E4) linking disease
t with its child disease #'. In the DAG of disease A, disease A is the most
specific disease and therefore we define its contribution to its own semantic
value as one. Those ancestor nodes which are located farther from node A
are more general denominations. For example as shown in Figure 2, C17
‘Skin and Connective Tissue Diseases’ is more general than C17.800 ‘Skin
Diseases’ and the later is more general than C17.800.090 ‘Breast Diseases’.
We here presume that such farther ancestor nodes contribute less to the
specific semantic value of node A. Therefore, A should be chosen between
0 and 1 to reduce the contributions of ancestor nodes that are far from A.
To find a suitable value for A, we tuned the parameter of A using different
values, such as 0.3, 0.4, 0.5, 0.6 and 0.7. We found that MISIM similarity
shows better correlation with expression similarity when A =0.5 than other
values. Therefore, we set A as 0.5 in this study. Based on Equation (1), we
then define the semantic value of disease A, DV(A) as

DVA)=}  Da®). @

As an example, the DV value of ‘breast neoplasms’ is 1.0 (breast
neoplasms) +0.5 (breast diseases)+0.5 (neoplasms by site)+0.5 x 0.5
(neoplasms) + 0.5 x 0.5 (skin diseases)+0.5 x 0.5 x 0.5 (skin and connec-
tive tissue diseases) =2.6250.

2.3.2 Semantic similarity of two diseases ~ We presented the measurement
of the semantic similarity of two diseases by considering their relative
positions in the MeSH disease DAG. We assumed that diseases that share
larger part of their DAGs tend to have higher semantic similarity. The
semantic similarity of two diseases is defined as

Y rer,nry Pa()+Dp(1)
DV(A)+DV(B)

S(A,B)= 3)
where D4 (¢) is the semantic value of disease ¢ related to disease A and Dp(t)
is the semantic value of disease 7 related to disease B. Formula (3) calculates
the semantic similarity of two diseases based on both the addresses of these
diseases in DAG graphs and their semantic relations with their ancestor
diseases.

2.3.3 miRNA MISIM functional similarity To accurately measure the
functional similarity between two miRNAs, we need also consider the
contributions from similar diseases that are associated with these two genes,
respectively. Therefore, we need to first define semantic similarity between
one disease and one group of disease. Here we let ‘dt’ represent one disease
and let ‘DT’ represent one disease group. We then define the similarity of
dt and DT, S(dt, DT), as the maximum similarity between one disease and
a disease group, e.g. DT ={dt, dt2, ... dty }. It is calculated as follows:

S(dt,DT)= lmaxk(S(dt, dt;)). “)

To better describe the method measuring miRNA functional similarity,
here we take hsa-mir-103 and hsa-mir-151 as an example. Assuming DT
represents the related diseases (a group of diseases) of hsa-mir-103 and
DT, represents the related diseases (another group of diseases) of hsa-mir-
151. DT contains m diseases, and DT, contains n diseases. The functional
similarity of two miRNAs need consider all diseases DT'; in and DT>. We
therefore define the functional similarity of two miRNAs as

> S(dt;,DT>)+ Y. S(dtr,DTy)
1<i<m 1<j<n

MISIM(M1,M2)= — o . )

As a result, the functional similarity of hsa-mir-103 and hsa-mir-151 is
calculated to be 0.80.

2.3.4 Construction of miRNA functional network 1t is increasingly
important to investigate the biology problems at the systems level (Horvath
et al., 2006; Sharan et al., 2007). In various biological networks, gene
functional network construction and analysis is considered one of the most
popular topics, and some important findings have been obtained in this
respect. In the same vein, constructing a reliable miRNA functional network
is increasingly necessary for better understanding of miRNAs. As described
above, MISIM is a reliable measurement of miRNA functional similarity, the
most critical problem in miRNA functional network construction; in doing so,
constructing a miRNA functional network can be easily performed. For a list
of interesting miRNAs, we first calculated their pairwise MISIM functional
similarity coefficients. We then set up a MISIM threshold, for example, 0.7,
to determine whether two miRNAs have a link. miRNA pairs with MISIM
coefficient greater than or equal to the threshold will be connected by a direct
link; otherwise, they are not connected directly. Finally, a miRNA functional
network can be constructed by this approach.

3 RESULTS

3.1 MISIM functional similarity of miRNAs

We applied our method on the MISIM to miRNAs recorded in
HMDD, and then calculated the functional similarity of all miRNA
pairs. As a result, we obtained the pairwise MISIM functional
similarity of 271 miRNAs. We further evaluated the accuracy of our
method by investigating the relationship of the calculated functional
similarity with miRNA expression similarity, family and cluster,
manually annotated functional relationship for host genes of intronic
miRNAs, and miRNA targets.

3.2 miRNA MISIM functional similarity is correlated
with expression similarity

miRNAs with similar functions tend to be involved in similar
biological processes and interact with similar cellular components.
Hence, it is possible that miRNAs with similar functions tend
to have similar expression profiles. To validate this, we explored
the relationship of miRNA functional similarity calculated by
MISIM to expression similarity. Like protein-coding genes (Horvath
et al., 2006), in this study, we used absolute Pearson’s correlation
coefficients as the measure for expression similarity of miRNAs.
We obtained the miRNA expression data from 40 normal tissues
from Liang’s study (Liang er al., 2007). We then calculated
miRNA expression similarity using Liang’s miRNA expression
data (Liang et al., 2007), followed by a correlation analysis for
functional similarity and expression similarity. As a result, miRNA
functional similarity showed positive correlation with expression
similarity (R=0.05, P=2.70 x 10712, Pearson’s correlation). We
further grouped miRNA pairs into different groups according
to functional similarity by a step of 0.1 and calculated the
average functional similarity and expression similarity of each
group. Clearly, miRNA functional similarity is positively correlated
with expression similarity (R=0.8685, P=5 x 1074, Fig. 3A).
Results indicate that functional similarity inferred by our method
is correlated with expression similarity, which is well known to be
associated with functional similarity.

3.3 miRNAs in the same family or cluster show high
MISIM functional similarity

A family of miRNAs incorporates similar mature miRNA sequences
and complete identical seed regions, which are widely accepted as
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Fig. 3. (A) The relationship between miRNA MISIM functional similarity
and their expression similarity. (B) A comparison of MISIM functional
similarity of miRNAs in the same family, miRNAs in the same cluster and
miRNAs of random pair.

the ‘key’ regions for miRNA target reorganization (Bartel, 2009).
Therefore, miRNAs of the same family tend to show high functional
similarity. We first downloaded miRNA family data from miRBase
(Griffiths-Jones, 2004). To evaluate the reliability of functional
similarity in our method calculations, we compared the functional
similarity of miRNAs in the same family to miRNAs that are
not from the same family. As a result, the functional similarity of
miRNAs in the same family was significantly greater compared with
other miRNAs (P=2.7 x 10772, s-test; Fig. 3B).

It has been reported that some miRNAs tend to organize into
very compact clusters in the genome (Baskerville and Bartel,
2005). A cluster of miRNAs is usually transcribed and expressed
synchronously and functions coordinately (Baskerville and Bartel,
2005). Therefore, miRNAs in the same cluster are expected to
have higher functional similarity. In order to confirm this, we first
downloaded the miRNA genome coordinate data from miRBase
(Griffiths-Jones, 2004) and then identified miRNA clusters by setting
the distance cutoff between miRNAs as 50 kb base on the miRNA
genome coordinate data, as previously suggested (Baskerville and
Bartel, 2005). We next calculated the functional similarity of
miRNAs in the same clusters and compared it with that of random
miRNA pairs that belong to neither the same family nor the same

04
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03 |

025 ¢

02 |

Average MISIM functional similarity

0 20 40 60 80 100
Distance cutoff for identifying cluster (kb)

Fig. 4. The effects of distance cutoff for identifying miRNA clusters on the
MISIM functional similarity of miRNAs in the same clusters.

cluster. As expected, clustered miRNAs showed higher MISIM
functional similarity than random miRNA pairs (P =6.5 x 10734,
t-test; Fig. 3B).

The reason we selected 50kb as a distance cutoff to identify
miRNA clusters is that Baskerville et al. observed that the
correlation of expression profiles decreases sharply for miRNAs
whose distances are more than 50kb, while miRNAs whose
distances are within 50 kb usually show high expression similarity
(Baskerville and Bartel, 2005). Specifically, 50 kb is suggested based
on observations from miRNA expression. However, the relationship
of distance cutoff and miRNA functions remains unclear. Therefore,
it would be interesting to investigate the MISIM functional similarity
of miRNAs in the same clusters identified using different distance
cutoffs. We first identified miRNA clusters using different distance
cutoffs from 100 kb to 10 kb by a step of 10 kb. Next, we calculated
the MISIM functional similarity of miRNAs in the same clusters.
As a result, from 30 to 100kb, the MISIM similarity in a cluster
changed minimally, whereas for clusters identified using distance
cutoff <30 kb, significantly higher MISIM functional similarity was
observed (Fig. 4). This suggests that a distance cutoff of 20kb is
more reliable for inferring functional relationships of miRNAs based
on miRNA clusters.

3.4 Novel highly functionally similar miRNAs

As we have described above, expression similarity and sequence
similarity of miRNAs can only interpret part of the functional
similarity. Some functionally similar miRNA pairs neither have
high expression similarity nor belong to the same family or cluster.
Their functional similarities have not been supported by existing
knowledge or data. Although we cannot provide direct evidence
for the high functional similarity of this part of miRNAs, the
data for the relationship of intronic miRNAs and their host genes
may present some clues. It is well known that some miRNAs are
located within the intron regions of protein-coding genes, which
are named as their host genes. It has been confirmed that many
intronic miRNAs show high expression similarity with their host
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genes (Baskerville and Bartel, 2005; Gennarino et al., 2009; Wang
et al., 2009). This information had been confirmed to be helpful in
the prediction of miRNA targets (Gennarino et al., 2009). Although
there is no experimental evidence showing that intronic miRNAs
and host genes share common molecular functions, we believe that
intronic miRNAs and host genes should have higher functional
similarity than random miRNA and protein-coding gene pairs.
Taking off from this point, we made the following presumption:
if the host genes of two intronic miRNAs are functionally
related, intronic miRNAs tend to have more functional common
parts. We downloaded miRNA genome coordinate data from
miRBase (Griffiths-Jones, 2004) and downloaded protein-coding
gene genome coordinate data from the University of California
at Santa Cruz (Karolchik et al., 2004). We identified intronic
miRNAs and their host genes by mapping miRNAs that are within
introns of protein-coding genes. We further manually annotated
the function of these host genes based on the National Center
for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) and
determined whether the function of two host genes is highly similar
or not. As a result, we identified 55 pairs of intronic miRNAs
that have high MISIM coefficients, after which the function of
their host genes were manually annotated. Surprisingly, 27 (49%)
pairs of host genes appeared to be functionally connected with
each other (Supplementary Material 3). For example, mir-103 and
mir-151 have a high MISIM coefficient of 0.9. The host gene of mir-
103, PANK3, has functions like ATP binding, nucleotide binding,
pantothenate kinase activity and transferase activity. The host gene
of mir-151, PTK2, has functions like ATP binding, nucleotide
binding, protein binding, signal transducer activity and transferase
activity. This indicates that the host genes of the two miRNAs are
functionally related, which further suggests that miRNAs with high
MISIM coefficient are indeed functionally related. Interestingly,
there are still over 100 pairs with high MISIM coefficient that cannot
be supported by current knowledge (Supplementary Material 4).
Considering the high reliability of our method, which was confirmed
by the above analysis, novel and highly functionally similar miRNAs
are deemed helpful in understanding miRNA function and disease,
as well as in exploring the novel mechanism connecting miRNAs
in the function.

3.5 MISIM functional similarity of two miRNAs is
correlated with the fraction of their common
targets

miRNAs exert their functions by regulating target genes. It is
expected that miRNAs that have higher fraction of common targets
will have higher functional similarity. Therefore, it is reasonable to
validate our method by comparing the MISIM functional similarity
of two miRNAs with the fraction of their common targets. To
confirm this, we first performed the analysis based on experimentally
supported miRNA targets from TarBase (Papadopoulos et al., 2009).
As a result, only a limited number of experimentally supported
targets are available. The common targets of different miRNAs are
rare. Therefore, it is not feasible to perform correlation analysis
for MISIM functional similarity and targets. We next repeated
the above analysis based on targets predicted by TargetScan
(Lewis et al., 2005). As expected, miRNAs with higher MISIM
functional similarity indeed have higher fraction of common targets
(R=0.80, P =0.006, Pearson’s correlation; Fig. 5). This result

0.3

0.25

o
»n
——i

e
= -
- @
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0 01 02 03 04 05 06 07 08 09 1
MISIM functional similarity
Fig. 5. The relationship between miRNA MISIM functional similarity and

the fraction of their common targets. The y-axis indicates the fraction of
common targets shared by two miRNAs.

Fig. 6. miRNA functional network constructed based on miRNA MISIM
functional similarity. Each node represents one miRNA and the edges linking
any two nodes (miRNAs) indicate that the functional similarity of the
two miRNAs is equal to or greater than the similarity cutoff (here the
cutoff is 0.7). The network is visualized by Pajek (http://vlado.fmf.uni-
1j.si/pub/networks/pajek/).

further supported that MISIM is valid to measure miRNA functional
similarity. Furthermore, similar with Figure 3A, for miRNA pairs
with MISIM similarity higher than 0.7, the fraction of their common
targets of their total targets increases dramatically, suggesting that
miRNA pairs with MISIM similarity higher than 0.7 are highly
reliable to be really functionally related.

3.6 A miRNA functional network

By applying this procedure to inputted miRNAs, the original
miRNA pairs are converted into a network based on their MISIM
coefficients (Fig. 6; Supplementary Material 5). Similar to most
of the reported biological networks, the degree of this miRNA
functional network (MISIM threshold=0.7) also shows a scale-
free distribution (Supplementary Fig. 1), which means that most
of the miRNAs only have a few functionally similar miRNAs, but
there are indeed some miRNAs that have a numerous miRNAs that
are functionally similar. We next identified network components
using Pajek (Supplementary Material 6), a free network analysis
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tool (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). Among all the
miRNAs, 31.7% (86) of them do not have any link with other
miRNAs. The giant network component contains 23.6% (64) of the
total miRNAs. To investigate the correlation between link numbers
anetwork has and the functional similarity cutoff used to construct a
miRNA functional network. We constructed networks using various
similarity cutoffs. As shown in Supplementary Figure 2, the number
of links dramatically decreases when the cutoff increases from low
value to high value. When the cutoff is equal to or bigger than
0.7, the link numbers remain relatively stable. Considering the
results of expression correlation and common target correlation with
functional similarity, it seems that the cutoff 0.7 or 0.8 is suitable
for the construction of miRNA functional networks.

Considering the relationship of the degree to the gene in a
functional network (Horvath et al., 2006), it is convenient to
determine the important genes from a group using a gene functional
network. This method was carried out by Horvath et al. to identify
ASPM as a candidate glioblastoma molecular target (Horvath ez al.,
2006). Furthermore, some general methods of biological networks
can also be used to infer useful information from this network.
For example, the method presented by Clauset ef al. can be used
to predict potential novel links in the network (Clauset et al.,
2008). We applied this method to predict novel links among
nodes. The probability of each predicted link was calculated.
To confirm the validation of the predicted links, we performed
analysis of correlation between the probability of predicted links
and the MISIM functional similarity of miRNAs connected by
the corresponding links. The result showed a significantly positive
correlation between these two variables (R=0.34, P=1.0 x 1070,
Spearman’s correlation test). This indicated that the predicted novel
links with high probability tend to be real links. Furthermore, novel
miRNA-disease associations can be predicted through miRNA pairs
with high MISIM similarity. For example, we predicted novel
miRNA-disease associations for miRNAs with MISIM similarity
between 0.7 and 0.9. As a result, 10 of the novel predicted miRNA—
disease associations were supported by newly published literature.
These associations are mir-18a and mir-19a versus neuroblastoma,
mir-34 and mir-200a versus pancreatic neoplasms, let-7c versus
carcinoma, hepatocellular, mir-200b versus adenocarcinoma, mir-
200a versus uterine cervical neoplasms, mir-18b versus breast
neoplasms, mir-133a versus myocardial infarction and mir-199a
versus stomach neoplasms. Overall, the methods presented in this
study can conveniently discover potentially important miRNAs in a
biological experiment.

3.7 Comparisons with other semantic similarity
methods

In this study, we used the algorithm presented by Wang et al.
(2007) to measure miRNA functional similarity based on the
DAG structures of miRNA-associated diseases. This algorithm is
originally presented for GO similarity measuring based on GO.
Because many methods for GO similarity measuring based on GO
have been presented (Pesquita et al., 2009), here for comparisons,
we further implemented other two methods, the method of most
informative common ancestor (MICA) and the method of improved
shortest path (see the review paper by Pesquita et al., 2009). As a
result, the method of improved shortest path did not achieve a good
result (data not shown). MICA obtained a significant result but is a

little bit worse than the current method we used (i.e. for correlation
analysis of miRNA functional similarity with expression similarity,
R=0.77, P=0.005). In addition, we provided a choice for MICA
method in our web server.

4 DISCUSSION

In summary, we presented a method for measuring miRNA
functional similarity and construction of miRNA functional
networks. Results show that our method is reliable and can be used
to infer potential function and/or associated diseases for miRNAs.
Moreover, a web-accessible program that implements the method of
MISIM is also available at http://cmbi.bjmu.edu.cn/misim.

As described above, since MISIM has calculated miRNA
functional similarity based on miRNA-disease association data
and the disease DAG, MISIM may generate bias in some cases,
especially when little disease association data is available for a
miRNA. Therefore, in the future, MISIM will improve greatly when
more miRNA-disease association data and more accurate disease
relationship are available. We believe that with the rapid increase
of miRNA—disease association data (Fig. 1), MISIM will play more
important roles in the analysis of miRNAs.
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