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Many network systems are composed of interdependent but distinct types of interactions, which
cannot be fully understood in isolation. These different types of interactions are often represented
as layers, attributes on the edges or as a time-dependence of the network structure. Although they
are crucial for a more comprehensive scientific understanding, these representations offer substan-
tial challenges. Namely, it is an open problem how to precisely characterize the large or mesoscale
structure of network systems in relation to these additional aspects. Furthermore, the direct incor-
poration of these features invariably increases the effective dimension of the network description,
and hence aggravates the problem of overfitting, i.e. the use of overly-complex characterizations
that mistake purely random fluctuations for actual structure. In this work, we propose a robust and
principled method to tackle these problems, by constructing generative models of modular network
structure, incorporating layered, attributed and time-varying properties, as well as a nonparametric
Bayesian methodology to infer the parameters from data and select the most appropriate model ac-
cording to statistical evidence. We show that the method is capable of revealing hidden structure in
layered, edge-valued and time-varying networks, and that the most appropriate level of granularity
with respect to the additional dimensions can be reliably identified. We illustrate our approach on
a variety of empirical systems, including a social network of physicians, the voting correlations of
deputies in the Brazilian national congress, the global airport network, and a proximity network of
high-school students.

I. INTRODUCTION

The network abstraction has been successfully used as
a powerful framework behind the modeling of a great va-
riety of biological, technological and social systems [1].
Traditionally, most network models proposed in these
contexts consist of a set of elements possessing a sin-
gle type of pairwise interaction (e.g. epidemic contact,
transport route, metabolic reaction, etc.). More recently,
it has becoming increasingly clear that single types of in-
teraction do not occur in isolation, and that a complete
system encompasses several layers of interactions [2–4],
and very often change in time [5]. Many examples have
shown that the interplay between different types of inter-
actions can dramatically change the outcome of paradig-
matic processes such as percolation [6], epidemic spread-
ing [7–9], diffusion [10, 11], opinion formation [12–14],
evolutionary games [15–17], and synchronization [3, 18],
among others. The realization that different types of
interaction need to be incorporated into network mod-
els also changes the way data need to be analyzed. In
particular, the large or mesoscale structure of network
systems may be intertwined with the layered or tem-
poral structure, in such a way that cannot be visible if
this information is omitted. The conventional approach
of representing mesoscale structures is to separate the
nodes into groups (or modules, “communities”) that have
a similar role in the network topology [19]. Some meth-
ods have been proposed to identify such groups in both
layered [4, 20–22] and time-varying [20, 21, 23–28] net-
works. However, these methods do not address two very
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central questions: 1. Is the layered or temporal struc-
ture indeed important for the description of the net-
work? And if so, to what degree of granularity? 2. How
does one distinguish between multiple descriptions of the
same network, and in particular separate actual structure
from stochastic fluctuations? In this work we tackle both
these questions by formulating generative models of lay-
ered networks, obtained by generalizing several variants
of the stochastic block model [29–32], incorporating fea-
tures such as hierarchical structure [33, 34], overlapping
groups [35–37] and degree-correction [38], in addition to
different types of layered structure. We show how the
unsuspecting incorporation of many layers that happen
to be uncorrelated with the mesoscale structure can in
fact hinder the detection task, and obscure structure that
would be visible by ignoring the layer division in the usual
fashion. Since most methods proposed so far take any
available layer information for granted, and attempt to
model it in absolute detail, this issue represents a severe
limitation of these methods in capturing the structure
of layered networks in a reliable manner. We show how
this problem can be solved by performing model selection
under a general nonparametric Bayesian framework, that
can also be used to select between different model flavors
(e.g. with overlapping groups or degree correction). We
demonstrate that the proposed methodology can also be
used to infer mesoscale structure in networks with real-
valued correlates on the edges (such as weights, distances,
etc.), while reliably distinguishing structure from noise,
as well as change-points in time varying networks [39].

This work extends recent developments on layered [40–
45], edge-valued [46–49] and temporal [50–54] genera-
tive processes, not only by incorporating many impor-
tant topological patterns simultaneously (i.e. hierarchi-
cal structure, degree correction and overlapping groups),
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but also by tying all these types of model into a non-
parametric Bayesian framework that permits model se-
lection, and avoids overfitting. The framework presented
allows one not only to select among all different model
classes, but also their appropriate order, i.e. the num-
ber of groups, layer bins and hierarchical structure. This
is done in a principled fashion, based on statistical ev-
idence and the principle of parsimony, and without the
specification of ad hoc parameters. Furthermore, since it
is based on the computation of posterior probabilities, it
can be extended to other probabilistic models.

This paper is divided as follows. In Sec. II we for-
mulate generative models for layered structure, includ-
ing a very diverse set of possible topological patterns,
and in Sec. III we describe a Bayesian model selection
procedure to choose between them based on statistical
evidence. In Sec. IV we tackle the problem of deciding
whether or not the layered structure is informative of
the network structure. In Sec. V we show how the lay-
ered models can be adapted to networks with real-valued
edge-covariates, and in Sec. VI to networks that change
in time, for which the division into layers corresponds to
a detection of change-points. We finalize in Sec. VII with
a conclusion.

II. GENERATIVE MODELS OF LAYERED

NETWORKS

We consider graphs that have a layered structure [2, 3],
so that the adjacency matrix in layer l ∈ [1, C] can be
written as Al

ij (with values in the range [0, 1] for a sim-
ple graph, or in N for a multigraph), corresponding to
the presence of an edge between vertices i and j in layer
l. We will consider both directed and undirected graphs
(i.e. Al

ij being asymmetric and symmetric, respectively),
although we will focus on the undirected case in most
of the derivations, since the directed cases are mostly
straightforward modifications (which are summarized in
Appendix B). Here we assume that the vertices are glob-
ally indexed, and in principle can receive edges in all
layers. The collapsed graph corresponds to the merging
of all edges in a single layer, with a resulting adjacency
matrix Aij =

∑

l A
l
ij . In the following, we will denote a

specific layered graph as {Gl} (with Gl = {Al
ij} being an

individual layer), and its corresponding collapsed graph
as Gc = {Aij}.

In this work we will consider two alternative ways of
generating a given layered graph {Gl} (see Fig. 1). The
first approach interprets the layers as edge covariates [46]:
First the collapsed graph Gc is generated, and then the
layer membership of each edge is a random variable sam-
pled from a distribution conditioned on the adjacent ver-
tices. In the second approach, the graphs Gl at each layer
l are generated independently from each other. (Hence-
forth we call these alternatives simply by “edge covari-
ates” and “independent layers”, respectively). These dif-
ferent generative processes do not exhaust the realm of
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Figure 1. (Color online) Two processes capable of generating
layered networks. Left: The collapsed graph is generated first,
and conditioned on it, the edges are distributed among the
layers. Right: The layers are formed independently from each
other.

possible multilayer models. Instead, the objective here is
to consider the most basic possibilities that allow us to in-
corporate different types of properties into the generated
networks, and enable the formulation of a nonparamet-
ric model selection framework to decide if either one is
more appropriate than the other depending on the statis-
tical evidence available in the data, as discussed in detail
below.

In the following we define two versions of the stochastic
block model family (SBM), corresponding to the alterna-
tives outlined above.

A. SBM with edge covariates

We generate first a collapsed graph from the tradi-
tional SBM ensemble, where N nodes are divided into B
groups, via the membership vector {bi} ∈ [1, B]N , and
the number of edges randomly placed between groups r
and s is given by the edge counts ers (or twice the number
if r = s, for convenience of notation). After the graph is
generated, for each set of edges incident on groups r and
s, we distribute the layer memberships randomly, condi-
tioned only on the total number of edges of each type l
between the two groups, ml

rs. Any particular distribu-
tion of covariates among edges incident on groups r and
s is generated with the same probability, which in the
case of simple undirected graphs is given by

∏

l m
l
rs!

mrs!
, (1)

where mrs =
∑

l m
l
rs = (1 − δrs/2)ers. For the multi-

graph case, see Appendix A. If we use the shorthand
{θ} = {{elrs}, {bi}} for the model parameters, the total
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likelihood of observing the layered graph is

P ({Gl}|{θ}) = P (Gc|{θ})
∏

r≤s

∏

l m
l
rs!

mrs!
, (2)

where P (Gc|{θ}) = e−St is the likelihood of the collapsed
stochastic block model, where St is the microcanonical
entropy [55]. For instance, for simple undirected graphs
that are sparse (i.e. with ers ≪ nrns), we have [55]

St ≈ E −
1

2

∑

rs

ers ln
ers
nrns

. (3)

Here we are free to replace the traditional SBM by any
other flavor, which amounts simply to a different likeli-
hood in the first term of Eq. 2. The traditional SBM
considered above imposes that all nodes belonging to
the same group will receive the same number of edges
on average, with little variation. An important alterna-
tive to this is the degree-corrected stochastic block model
(DCSBM) [38], that includes as additional model param-
eters the degree sequence of the network, {ki}. As argued
in Ref. [38], and supported by an empirical model selec-
tion analysis in Ref. [37], this version is often a better
model for many (collapsed) networks that feature signif-
icant degree variability. However, in this version with
edge covarites, only the degrees of the collapsed graph

are constrained, and thus the edges incident on a specific
node will be distributed randomly among the layers in-
dependently of its degree. Hence, for networks generated
in this manner, nodes with a large collapsed degree will
also tend to possess uniformly larger degrees in all layers,
when compared to other nodes of the same group with a
lower collapsed degree. In other words, this model does
not allow for degree variability across layers.

The complete likelihood of this model can be obtained
in an entirely analogous fashion, simply by augmenting
the parameter set in Eq. 2 to include the collapsed degree
sequence, i.e. {θ} = {{elrs}, {bi}, {ki}}, and using the
likelihood of the degree-corrected model [55].

Other useful variations are SBMs with mixed mem-
berships (e.g. [35–37]), in which nodes are allowed to
belong to more than one group. Here we use the for-
mulation of Ref. [37], where we need to replace the node

partitions above by overlapping partitions, {~bi}, where
~bi determines the mixture of node i, with bri ∈ {0, 1}
specifying whether node i belongs to group r, so that

{θ} = {{~bi}, {ers}}. Likewise, for the degree-corrected
version, we need to specify the (collapsed) labeled degree

sequence {~ki}, where kri is the degree of node i of type

r, leading to {θ} = {{~bi}, {ers}, {~ki}}. In both cases we
simply replace the likelihood in Eq. 2 by the ones de-
scribed in Ref. [37].

B. SBM with independent layers

Alternatively, we may generate each layer as an in-
dependent SBM, constrained only by the fact that the

group memberships of the nodes are the same across
all layers (although this can be relaxed in the overlap-
ping version, as discussed below). Furthermore, we allow
nodes to belong only to a subset of the layers, by includ-
ing a N × C layer membership matrix {zil}, where each
binary entry zil ∈ [0, 1] determines whether node i be-
longs to layer l. If a node does not belong to a given
layer, it is forbidden to receive edges of that type.

Using the shorthand {{θ}l} = {{elrs}} and {φ} = {bi},
the likelihood of the resulting layered block model is sim-
ply

P ({Gl}|{{θ}l}, {φ}, {zil}) =
∏

l

P (Gl|{θ}l, {φ}), (4)

with P (Gl|{θ}l, {φ}) being the likelihood of the tradi-
tional stochastic block model as before, where Gl is the
subgraph containing only the edges of layer l and the
nodes specified by {zil}.

Like with the edge covariates model, here we are also
free to replace the traditional SBM by any other fla-
vor, which amounts simply to different likelihoods in the
product of Eq. 4. However, differently from the SBM
with edge covariates, if we wish to include degree cor-
rection, we need to specify the layer-specific degree se-
quence {kli}, where kli =

∑

j A
l
ij is the degree of node

i in layer l, so that {{θ}l} = {{elrs}, {k
l
i}}. Therefore,

unlike the previous case, this model allows for degree
variability across different layers, i.e. a node with a large
degree in one layer, may possess very low degree in an-
other. Note that given the layer-specific degree sequence,
we do not need to distinguish between nodes that belong
or not to a layer, since a node with a layer-specific de-
gree equal to zero will inherently not receive any edge
in that layer. Therefore the parameters {kli} replace the
parameters {zij}, which are removed from Eq. 4 in this
case.

We again may wish to use mixed-membership models
in each layer, by using overlapping partitions as param-

eters, i.e. {φ} = {~bi}. For the degree-corrected version,
we need to specify the labeled degree sequence at each

layer, {~ki}l, where kri l is the degree of node i of type r

in layer l, i.e. {{θ}l} = {{elrs}, {
~ki}l}. We may view the

labeled degree sequence inside each layer as a weighted
membership to each group. Since these “weights” may
change across the layers (even becoming zero), this cor-
responds to a generalization that allows the memberships
to change arbitrarily between the layers (despite the fact

that the overall, unweighted group mixtures {~bi} are con-
stant across the layers). This is a particularly useful
property for temporal networks, that allows group mem-
bership to change in time, as discussed in more detail in
Sec. VI.
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C. Equivalence between models

The “independent layers” and “edge covariates” models
are equivalent in some situations, and different in others.
In particular, in the non-degree-corrected case described
above, if all nodes belong to all layers, both models gen-
erate the same networks asymptotically with the same
probability. This can be seen by employing Stirling’s
approximation ln elrs! ≈ elrs ln e

l
rs − elrs in Eq. 2, which

makes it identical to Eq. 4. Hence, as long as the edge
counts in each layer are sufficiently large, these models
are fully equivalent. However, if nodes belong only to spe-
cific subset of the layers, these models are not equivalent.
In this case, only the model with independent layers will
take the heterogeneous layer memberships into account,
and hence it should be preferred. Since we assume that
the layer memberships are known a priori there is no rea-
son to employ the “edge covariates” non-degree-corrected
model, since the “independent layers” model will always
provide an equal or better description asymptotically1.

The situation is different for the degree-corrected mod-
els. Strictly, both model versions are not equivalent, since
the layered version allows for degree variability across lay-
ers, whereas the covariate version does not. Hence, there
are networks generated by the layered model that cannot
be generated (or only with a vanishing probability) by
the edge covariates model. The opposite, however, is not
true: A layered network generated by the covariate ver-
sion can always be sampled with the independent layers
version given an appropriate parameter choice.

Since the SBM with independent layers version always
encapsulates the edge covariate version, one might be
tempted to prefer it systematically. However, one needs
to realize that the layered version requires more parame-
ters than the covariates version, either via the layer mem-
bership matrix {zil} or the layer-specific degree sequence
{kli}. Similar comparisons can be made between specific
flavors of both models (e.g. with overlapping groups or
degree correction). Because of the increased number of
degrees of freedom in the model specification, we risk
overfitting the data by always choosing the most con-
strained model. We discuss exactly how this choice be-
tween models should be done in the next section.

III. SELECTING THE MOST APPROPRIATE

MODEL

The proper way to select between alternatives is to
perform model selection based on statistical significance,
and opt for the more complicated model only if there
is sufficient evidence available in the data to compen-
sate the larger number of parameters. Formulated in a

1 This may change if the layers are not entirely known, and need
to be determined, as in the case with real-valued covariates in
Sec. V.

Bayesian setting, as proposed in Ref. [37], this selection
procedure amounts to finding the model that maximizes
the posterior likelihood

P ({θ}|{Gl}) =
P ({Gl}|{θ})P ({θ})

P ({Gl})
, (5)

where {θ} is a shorthand for the entire set of model pa-
rameters (e.g. for the non-degree-corrected SBM with
edge covariates we have {θ} = {{bi}, {e

l
rs}}), P ({θ}) is

the prior probability on the parameters, and P ({Gl}) is
a normalization constant. Since in our context we are
dealing with discrete parameters, we can write P ({θ}) =
e−L({θ}), where L({θ}) is the microcanonical entropy
of the parameter ensemble. Therefore, we have that
− lnP ({θ}|{Gl}) = Σ + lnP ({Gl}) with Σ = S({Gl}) +
L({θ}) being the description length of the data [56–
58]. Hence this approach amounts to finding the model
that most compresses the observed data, i.e. the one
with the minimum description length, since to maximize
P ({θ}|{Gl}) is equivalent to minimize Σ [34, 37, 59].

Here we observe that since the prior probabilities
are nonparametric, the whole procedure also becomes
parameter-free, and hence no ad hoc choices are required
a priori. In particular for the SBM variants considered in
this work, the partition of the nodes, degree of overlap,
the number of groups and the hierarchical structure are
obtained in entirely nonparametric fashion.

A. Choice of priors

In order to compute P ({θ}), we need to describe gen-
erative processes for the parameter themselves. This
means that for the model variants above we need to spec-
ify a generative process for the partition into B groups
{bi}, the layer membership matrix {zil}, the collapsed
(or layer-specific) degree-sequence {ki} (or {kli}), and the
layered edge counts {elrs}. (In the overlapping case, we
need to do the same for the overlapping partition and la-
beled degree sequences, which we show in Appendix C.)

Choosing prior probabilities is a subtle issue, since it
depends on a priori assumptions about the data, which
usually depends on context, and often requires domain-
specific knowledge. In general situations, a prudent ap-
proach is to choose uninformative priors, which do not
bias the estimation. Here we will take the systematic
approach of choosing a nested sequence of priors and hy-
perpriors, so that an uninformative prior is chosen only
at the topmost level [34, 37]. This approach is intended
to minimize the sensitivity of the choice of priors, and
accordingly provide a shorter description length in the
majority of cases.

To generate the partition into groups, we use the pro-
cess described in detail in Refs. [34, 37], that corresponds
to a multilevel Bayesian process, where the distribution
of group sizes {nr} (where nr is the number of nodes
in group r) is first uniformly sampled from the set of
all allowed possibilities, and the partition is distributed
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uniformly, conditioned of the observed size distribution,
yielding a description length Lp = − lnP ({bi}) given by

Lp = ln
((

B
N

))

+ lnN !−
∑

r

lnnr!, (6)

where
((

n
m

))

=
(

n+m−1
m

)

is the total number of m-
combinations with repetitions from a set of size n.

For the independent layers model without degree cor-
rection, we need to specify the node memberships to each
layer. For this, we use the process described in detail in
Ref. [37] to generate overlapping partitions. We represent
each line in the {zil} matrix as a mixture vector ~zi with C
binary entries. We formulate a multilevel Bayesian pro-
cess, where the distribution of mixture sizes {nd} (where
di =

∑

l z
l
i is the mixture size of node i, and nd is the

number of nodes with di = d) is generated from all pos-
sibilities with uniform probability, and the local values
of di are sampled from this distribution. The mixture
distribution {n~z} (where n~z is the number of nodes be-
longing to mixture ~z) is also sampled from the set of
possible choices with uniform probability, conditioned of
the local mixture sizes {di}, and finally the individual
mixtures {~zi} themselves are sampled from this distribu-
tion. This yields a description length Lz = − lnP ({~zi})
given by [37]

Lz = ln
((

C
N

))

+
∑

d

ln
((

(Cd)
nd

))

+ lnN !−
∑

~z

lnn~z!. (7)

The collapsed degree sequence can be generated with a
similar Bayesian process, described also in Ref. [37], that
yields a description length Lκ = − lnP ({ki}) given by

Lκ =
∑

r

min
(

L(1)
r ,L(2)

r

)

, (8)

with

L(1)
r = ln

((

nr

er

))

, (9)

L(2)
r = lnΞr + lnnr!−

∑

k

lnnr
k!, (10)

and ln Ξr ≈ 2
√

ζ(2)er.
For layered networks, we need a generative process for

the layer-specific degree sequence, {kli}. Although one
could in principle construct nonparametric distributions
that incorporate arbitrary correlations among the degree
sequences of all layers, the dimension of such distribu-
tions is likely to exceed the evidence available in typical
data as the number of layers increases. Therefore, here
we take the simpler route and assume independent dis-
tributions at each layer, so that the description length
Lκ = − lnP ({kli}) becomes simply

Lκ =
∑

l

Lκ({ki}
l), (11)

where {ki}
l should be understood as the collapsed degree

sequence of the graph containing only the edges belonging
to layer l.

Finally, to generate the edge counts {elrs}, we note that
they can be viewed as the adjacency matrix of a lay-
ered multigraph with B nodes [59]. Therefore, we may
use the stochastic blockmodel itself to generate it, either
with independent layers or edge covariates. Since these
models have their own edge count parameters, this forms
a nested sequence of SBMs, encapsulating the multilevel
hierarchical structure of the network, in a fully nonpara-
metric fashion, yielding a description length as described
in Ref. [34],

Le =

L
∑

h=1

Sm({elrs}
h, {nr}

h) +

L−1
∑

h=1

Lh
p , (12)

where Sm({elrs}
h, {nr}

h) is the appropriate entropy of
the layered SBM in hierarchical level h, and Lh

p is the
description length of the corresponding node partition.

At the top of the hierarchy we have the remaining pa-
rameters {El}, denoting the number of edges in each lay-
ers. For completeness, they can be easily generated by

including an uniform prior P ({El}) =
((

L
E

))−1

, how-

ever this only adds an overall constant to the description
length, which is not relevant to any comparisons made in
this paper.

To summarize, using the shorthand {θ} for the en-
tire set of parameters, we have for each given model (i.e.
edge covariates and independent layers, with any optional
combination of degree correction and group overlap) an
overall description length

Σ = S({θ}) +
∑

θ

Lθ, (13)

where S({θ}) is the appropriate SBM entropy, and Lθ

is the description length of a specific parameter ensem-
ble, chosen from Eqs. 6 to 11 (and Eqs. C1 to C2), as
appropriate.

B. Confidence levels

As described above, selecting the model with the small-
est description length Σ is the appropriate manner of
balancing model complexity and goodness of fit. How-
ever, often we desire a more refined approach where the
alternative model can be accepted or rejected with a de-
gree of confidence, in a nonparametric fashion. This can
be achieved, as proposed in Ref. [37], by inspecting the
posterior odds ratio [60],

Λ =
P ({θ}a|{Gl},Ha)P (Ha)

P ({θ}b|{Gl},Hb)P (Hb)
(14)

= exp (−∆Σ)
P (Ha)

P (Hb)
, (15)
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where P ({θ}|{Gl},H) is the posterior according to hy-
pothesis H (i.e. a specific model class), P (H) is any
prior belief for hypothesis H, and ∆Σ = Σa − Σb is the
difference in description length between both hypotheses.
For Λ < 1 we have that Ha is rejected over Hb with a
confidence that increases as Λ decreases. Often the val-
ues of Λ are divided in subjective intervals of evidence
strength [61], as a convention with Λ = 1/100 being con-
sidered the plausibility threshold, below which Ha is de-
cisively rejected in favor of Hb, and with Λ ∈ [1/3, 1] be-
ing considered only a negligible difference between both
models. In the case where there is no preference for ei-
ther model, P (Ha) = P (Hb), the value of Λ is called the
Bayes factor [61], which has the same interpretation. In
the following, we will always assume P (Ha) = P (Hb),
and impose Λ ≤ 1, by always putting the preferred hy-
pothesis in the denominator of Eq. 14.

C. Inference algorithm

The description length of a given flavor of the SBM
given by Eq. 13 is an objective function that needs to
be minimized with some appropriate algorithm. The
only known algorithm that is guaranteed to find the
global minimum is the exhaustive computation of the
description length for every possible hierarchical parti-
tion of the network, which is unfeasible in any practi-
cal scenario with networks with more than a few nodes
and edges. Therefore, we must resort to approximate
methods. Here we employ the multilevel MCMC algo-
rithm described in Ref. [62], together with the hierarchi-
cal generalization presented in Ref. [34], and the exten-
sion to overlapping groups presented in Ref. [37]. The
advantage of these algorithms is their good typical run-
ning times, and their capacity to overcome metastable
states by performing agglomerative moves 2. The divi-
sion of the network into layers does not alter these al-
gorithms in any significant way, other than a straight-
forward book-keeping of the layer membership of each
edge. In particular, by using appropriate sparse data
structures that do not change in size if the number of
layers is increased, the division into layers does not alter
significantly the typical running times of the algorithms,
which remain O(N ln2 N) in their greedy versions, in-
dependent of the number of groups B and layers C, and
hence are applicable to reasonably large networks. An ef-
ficient C++ implementation of these algorithms is freely
available as part of the graph-tool Python library [65]
at http://graph-tool.skewed.de.

2 We note that in principle other algorithms such as belief prop-
agation [63] and spectral clustering [64] could be used as well,
provided their are suitably adapted to the nonparametric likeli-
hoods considered here.

(a) (b)

Figure 2. (Color online) Artificial network example containing
an informative layered structure. (a) The collapsed graph
possesses no discernible structure, i.e. it corresponds to a
fully random graph. (b) When the division of edges into two
layers [grey and red (light grey)] is taken into account, a four-
group structure is revealed.

IV. WHEN ARE LAYERS INFORMATIVE?

Layers are informative of the network structure if their
incorporation into the model yields a more detailed de-
scription of the data, when compared to a model that is
only based on the collapsed structure of the network. An
illustration of an informative layered structure is shown
in Fig. 2. In this example, an artificial network composed
of two layers is constructed. The collapsed graph corre-
sponds to a fully random network, however the division
of the edges into layers is such that four fully assortative
groups exist in one of the layers. Clearly, the layered divi-
sion yields structural information that is not discernible
in the collapsed graph. This implies that, in more gen-
eral cases, omitting such information on the edges could
potentially significantly obscure structure present in the
data [2, 3].

However, it is important to realize that the oppo-
site is also true: If the edge distribution into layers is
uncorrelated with the group divisions, it can also ob-
scure structural information which would otherwise be
revealed if the layer information were to be ignored.
This happens because increasing the number of layers
in the model also increases its effective dimension. If
the total size and density of the network remains con-
stant as the number of layers increases (and hence the
effective dimension of the model), the available data be-
come increasingly sparse, which reduces the inference
precision, since it becomes increasingly difficult to dis-
tinguish signal from noise. An example of this is shown
in Fig. 3, corresponding to a collapsed B = 2 assorta-
tive SBM with equal-sized groups and edge counts given
by ers = 2E[δrsc/B + (1 − δrs)(1 − c)/B(B − 1)]], with
c ∈ [0, 1] being a mixing parameter, where the edges
are distributed randomly in C layers. As C increases,
both model variants (edge covariates, and independent
layers) display increasing degradation when inference is
performed, with the detectability transition [66] shifting
to higher values of c. For the SBM with independent lay-

http://graph-tool.skewed.de
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Figure 3. (Color online) An excessive number of layers can
obscure network structure. Top: A collapsed two-group struc-
ture is generated, and the edges are randomly distributed in
C layers. Middle and Bottom: As the number of edges per
layer E/C diminishes, the structure inside each layer becomes
increasingly sparse, and the overall quality of the inference
worsens. The middle panel shows the normalized mutual
information (NMI) between the planted and inferred parti-
tions, using the SBM with independent layers, for a network
of N = 104 nodes and average degree 〈k〉 = 2E/N = 14 as a
function of the mixing parameter c, as described in the text.
The bottom panel is the same as the middle one, but using
the SBM with edge covariates. In both cases the vertical lines
mark the detectability transition point for the collapsed SBM,
c∗ = 1/B + (B − 1)/(B

√

〈k〉) [66].

ers, the transition shifts to c∗ → 1 as C → E, and in this
limit no information at all on the graph structure can
be inferred. The version with edge covariates displays a
relatively superior performance, with the transition re-
maining at c∗ < 1 for C → E, since it is conditioned on
the collapsed graph. Nevertheless, even in this case the
degradation caused by increasing C is very noticeable.

Because of this problem, it is important to consider
if we indeed need the layered structure to describe the

(a) Λ = 1 (b) log
10

Λ ≈ −51

Figure 4. (Color online) Two generative models for a layered
social network of physicians [67]. (a) Inferred DCSBM for the
collapsed network, with the edges assumed to be randomly
distributed among the layers. (b) Inferred DCSBM with edge
covariates, where each layer corresponds to one type of ac-
quaintance. Below each figure is shown the posterior odds
ratio Λ, relative to preferred model (a). The circular layout
with edge bundling [68] represents the inferred node hierarchy
(indicated also by the red nodes and edges), as explained in
the text (see also Ref. [34]).

large-scale structure of a network, or if it needs to be
coarse-grained or even discarded. This can be done by
considering a null model where the edges are distributed
among the layers in a manner that is entirely independent
of the group structure, and is parametrized only by the
total number of edges in each layer, {El}. Let us use
the shorthand {θ} for the possible set of parameters of
a collapsed SBM. This null model has a likelihood given
simply by

P ({Gl}|{θ}, {El}) = P (Gc|{θ})×

∏

l El!

E!
(16)

where the first term is the likelihood of the collapsed SBM
and the second accounts for the random distribution of
edges across the layers (the above equation is valid only
for simple graphs; for multigraphs see Appendix A). The
full posterior and its corresponding description length are
computed just as before, by including the priors for {ers},

{bi}, {~b}, {ki} and {~ki}. We can then compare the de-
scription length of this null model with any of the other
layered variants, and decide if there is enough evidence
to justify the incorporation of layers that are correlated
with the group structure.

As a concrete example, here we consider an empirical
social network of N = 241 physicians, collected during a
survey [67]. Participants were asked which other physi-
cians they would contact in hypothetical situations. The
questions asked were: 1. “When you need information or
advice about questions of therapy where do you usually
turn?”, 2. “And who are the three or four physicians with
whom you most often find yourself discussing cases or
therapy in the course of an ordinary week – last week for
instance?”, 3. “Would you tell me the first names of your
three friends whom you see most often socially?”. The
answers to each question represent edges in one specific



8

layer of a directed network. If one applies the DCSBM to
the collapsed graph (which provides the best fit among
the alternatives), it yields a division into B = 9 groups,
as shown in the left panel of Fig. 4, including also a divi-
sion into three disconnected components (corresponding
to different cities). Between the layered SBM versions,
the model with edge covariates that turns out to be a bet-
ter fit to the data (i.e. yields a lower description length)
and divides the network into B = 8 groups, as shown in
the left panel of Fig. 4. When inspecting the edge counts
visually, one does not notice any significant difference
between the patterns in each layer. Indeed, when com-
paring the description lengths between the null model
with random layers above and the SBM with edge co-
variates, we find that the latter is strongly rejected with
a posterior odds ratio Λ ≈ 10−51. Therefore, there is
no noticeable evidence in the data to support any cor-
relation of layer divisions with the large-scale structure
present in the graph. This suggests that the important
descriptors of this social network are mainly the overall
acquaintances among physicians, not their precise types
(at least as measured by the survey questions).

We now turn to another example, where informative
layered structure can be detected. We consider the vote
correlation network of federal deputies in the Brazilian
national congress. Based on public data containing the
votes of all deputies in all chamber sessions across many
years3, we obtained the correlation matrix between all
deputies. We constructed a network by connecting an
edge from a deputy to other 10 deputies with which
she is most correlated in the considered period4. We
then separated the network in two layers, correspond-
ing to two consecutive four-year terms, 1999− 2002 and
2003− 2006. Deputies not present during the whole pe-
riod were removed from the network, yielding a network
with N = 224 nodes and E = 7247 edges in total. When
fitting the DCSBM for the collapsed network (which is
again the best model), we obtain the B = 11 partition
shown in the left panel of Fig. 5. It shows a hierarchical
division that is largely consistent with party and coalition
lines, as well as positions in the political spectrum (with
a noticeable deviation being a group of left-wing parties
composed by PDT, PSB and PCdoB being grouped to-
gether with center-right parties PTB and PMDB). When
incorporating the layers, the best model fit is obtained
by the DCSBM with independent layers, which yields a
B = 11 division mostly compatible with (but not fully
identical to) the collapsed network, although with a dif-
ferent hierarchical structure, as can be seen in the right
panel of Fig. 5. However, the layered representation of
this network reveals a major coalition change between
the two terms, consistent with the shift of power that oc-
curred with the election of a new president belonging to

3 Available at http://www.camara.gov.br/.
4 We experimented with other threshold values, and obtained sim-

ilar results.

the previous main opposition party: In the 1999 − 2002
term we see a clear division into a government and oppo-
sition groups (as captured in the topmost level of the hi-
erarchy), with most edges existing between groups of the
same camp, corresponding to a right-wing/center govern-
ment led by the PSDB, PMDB, PFL, DEM and PP par-
ties, and a left-wing opposition composed mostly by PT,
PDT, PSB and PCdoB. After 2002, we observe a shifted
coalition landscape, with a left-wing/center government
predominantly formed by PT, PMDB, PDT, PSB and
PCdoB, and an opposition led by PSDB, PFL, DEM
and PP. Because of this noticeable change in the large-
scale network structure — that is completely erased in
the collapsed network — the null model with random
layers ends up being forcefully rejected with Λ ≈ 10−111,
meaning that the layered structure is very informative on
the network structure.

In the above examples we made a comparison between
the layered model and a null model with fully random lay-
ers. In some scenarios we might be interested in a more
nuanced approach, where the layers are coarse-grained
with a more appropriate level of granularity. This can be
done by merging some of the layers into bins, such that
inside each bin the layer membership of the edges is dis-
tributed regardless of the group structure. Let ℓ specify
a set of layers that were merged in one specific bin, and
{θ}{ℓ} be a shorthand for the possible set of parameters
of a layered SBM {Gℓ} (with independent layers or edge
covariates) where each bin ℓ corresponds to an individ-
ual layer. The likelihood of this model conditioned on a
specific bin set {ℓ} is is given by

P ({Gl}|{θ}{ℓ}, {ℓ}) = P ({Gℓ}|{θ}{ℓ})×
∏

ℓ

∏

l∈ℓ El!

Eℓ!
,

(17)
where Eℓ =

∑

l∈ℓ El is the number of edges in bin ℓ (the
above equation is valid only for simple graphs; See Ap-
pendix A for the more general case with parallel edges).
When considering the full posterior, we need to include
the priors for {θ}{ℓ} as before, but also for the binning
{ℓ} itself. If the layers can be grouped arbitrarily, we
have

P ({ℓ}) =

∏

ℓ nℓ!

C!
×

((

M

C

))−1

(18)

where nℓ is the number of layers in bin ℓ and M is the
total number of layer bins. If the layers are inherently
ordered, and thus can only be contiguously binned, this
becomes instead simply

P ({ℓ}) =

((

M

C

))−1

. (19)

If we make M = 1 we recover the original null model
above. Algorithmically, one can find the appropriate bins
in a variety of ways. A simple approach is to use agglom-
erative hierarchical clustering, i.e. by putting at first each

http://www.camara.gov.br/
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Figure 5. (Color online) Network of vote correlations among federal deputies of the Brazilian national congress during two
consecutive four-year terms, 1999 − 2002 and 2003 − 2006. (a) DCSBM fit for the collapsed network obtained by merging
both terms, corresponding to a null model where the edges are randomly distributed between the layers. The group labels
correspond to the predominant parties inside each group, determined after the inference had been performed (the size of the
label indicates the proportion of each party inside the group). (b) DCSBM with independent layers for the network divided
into two terms. In both cases is shown the posterior odds ratio Λ relative to the best model [in this case (b)]. The layout is
the same as in Fig. 4.

layer in its own bin, and subsequently merging bins ac-
cording to the reduction of the overall description length.
We explore this idea further in Sec V, when dealing with
real-valued edge covariates.

A. Layers as evidence for overlaps

There is an important correspondence between layered
networks and overlapping structures of collapsed net-
works. Namely, the inference of overlapping structures
in collapsed graphs can to some extent be interpreted
as the inference of latent layers [40] to which the edges
belong, where each (connected) group pair (r, s) would
correspond to a different layer. Because of this corre-
spondence, any a priori knowledge of the division into
layers can fundamentally alter the interpretation of the
data in situations where a nonoverlapping model would
otherwise be considered a better fit for the collapsed net-
work [37].

This is better understood by considering the following
generative process as an example: A network is gener-
ated with C layers, where in each layer E/C edges are
randomly placed between the nodes that belong to that
layer. The layer membership mixtures are parameterized
as n~z ∝

∏

l µ
zl , up to a normalization constant, and with

µ ∈ [0, 1] controlling the degree of layer overlap: For
µ → 0 we obtain asymptotically nonoverlapping layers
with nl = N/B nodes at each layer l, and for µ = 1 all
mixtures ~z have the same size. This process corresponds

to a layered SBM with only one group, B = 1, and the
aforementioned layer structure. If we consider only the
collapsed graph, with the layer information removed, the
corresponding topology can be generated in two alterna-
tive ways: 1. An overlapping SBM with B = C groups

and mixtures~bi = ~zi, and edge counts ers = 2Eδrs/B. 2.
A nonoverlapping SBM with each individual mixture as

its own group, indexed by r~b =
∑B

s=1 bs2
s−1 ∈ [1, 2C−1],

resulting in a total of B = 2C−1 groups, and edge counts
given by

er~b1r~b2
=
∑

rs

br1b
s
2

ers
nrns

nr~b1
nr~b2

. (20)

The description length of the collapsed graph generated
with the layered model is

Σc = 2E − E ln
2EC

N2
+ Lz({n~z(µ)}), (21)

which is in fact identical to the overlapping SBM, cor-
responding to C → B and n~z(µ) → n~b(µ) in the above
equation. The nonoverlapping model, on the other hand,
has a description length given by

Σ′
c = 2E−

1

2

∑

~b1~b2

er~b1r~b2
ln

er~b1r~b2
nr~b1

nr~b2

+Lp({nr~b
(µ)}), (22)

where Lp({nr~b(µ)
}) corresponds to a nonoverlapping par-

tition of individual mixtures. As discussed in Ref. [37],
we may have Σ′

t < Σt if the number of nodes at the
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intersections is sufficiently large. Therefore the nonover-
lapping model may indeed be considered the most par-
simonious of the three in that case, which is arguably
non-intuitive, since the overlapping SBM seems closer to
the original model. However, the situation changes when
the observed data includes the layer information on the
edges. In this case, we must include the random division
of the edges into layers in the two collapsed models, by
adding, according to Eq. 16, the following term to the
description length:

lnE!−
∑

l

lnEl! = lnE!− C lnE/C!. (23)

Because of this difference, the layered model with B = 1
becomes always the preferred choice (see Fig. 6). There-
fore, when edge information is available, it can signifi-
cantly change which model is preferred, and tip the scale
towards the overlapping description. However, we em-
phasize that this extra information does nothing regard-
ing the decision between both collapsed models; it only
supports the acceptance of the third layered variant.

It is important to consider the above comparison to-
gether with the results of Ref. [37], which showed that
the overlapping variants of the SBM are seldom the best
fit for the majority of empirical networks used for that
work, which contained no layer information. As the ex-
ample above shows, this assessment may change (at least
in principle) if any division among the edges can be as-
sumed a priori. Therefore, for a fair assessment of the
best generative process, it is imperative to leverage all
available information, in particular the division into lay-
ers, or the existence of edge covariates.

V. EDGES WITH REAL-VALUED

CORRELATES

The models discussed so far are capable of generat-
ing data with discrete values associated with the existing
edges. However, in many important situations the val-
ues associated with edges are real values, corresponding
to weights, distances, capacities, etc. Here we show how
the previous models can be straightforwardly adapted to
these cases as well, using a discretization approach. As
before, we simply assume that the graph is divided into
C discrete layers, however we ascribe to each layer l a
real value xl, randomly sampled from a PDF ρ(x), such
that all edges in the same layer possess the same edge
correlate. In the case that all edges have a different cor-
relate, we will have C = E layers. Like in Sec. IV we
assume that the layers themselves are grouped into bins
{ℓ}, with {θ}{ℓ} being a shorthand for the possible set of
parameters of a layered SBM (with independent layers or
edge covariates) {Gℓ} where each bin ℓ corresponds to an
individual layer. The whole PDF of the data generated
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Figure 6. (Color online) Top left: Description length per
edge Σ/E for the collapsed planted partition model described
in the text as a function of the overlap parameter µ, with
N = 103, 〈k〉 = 2E/N = 10 and B = 4 (illustrated in
the lower left panel). The two curves show the description
length of the planted overlapping model, and the equivalent
non-overlapping model with 2B − 1 groups (illustrated in the
lower middle panel). Only for values of µ below the inter-
section point the original overlapping model is preferred over
the nonoverlapping one. Top right: The same as in the top
left, but with layer information included. The third curve
corresponds to a B = 1 model with C = 4 independent layers
(illustrated in the lower right panel), whereas the first two
curves correspond to the same collapsed models as in the left
panel, but with a random distribution of edges in the C = 4
layers. The model with independent layers is preferred over
the alternatives in the entire parameter range.

in this manner becomes

P ({Gx}|{θ}{ℓ}, {ℓ}) = P ({Gl}|{θ}{ℓ}, {ℓ})×
∏

l

ρ(xl),

(24)

where the first term is given by Eq. 17. The advantage
of this approach is that the overall correlate PDF ρ(xl)
amounts to constant multiplicative factor in the likeli-
hood, independent of our choice of bins, and therefore
cannot influence either the maximum likelihood estimate
or the maximum of the posterior distribution, and there-
fore for these purposes we can avoid specifying it alto-
gether. This contrasts with another generalization of
the SBM for real-valued covariates proposed in Ref. [49],
which requires the exact form of the correlate distribu-
tion to be specified prior to inference (on the other hand,
the approach presented here is based the discretization of
the correlates into bins, whereas in Ref. [49] no binning
is necessary).

In order to choose the best number of layers, we maxi-
mize the posterior P (θ{ℓ}, {ℓ}|{Gx}), which involves the
priors of the SBM parameters, as well as for the bins {ℓ},
as given by Eq. 19. Therefore, both the number and the
boundary positions of the bins can be determined in a
nonparametric manner, based only on the data.
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Figure 7. (Color online) Global airport network of openflights.org. Top left: Distribution of edge distances. The bins labeled
from (a) to (e) correspond to the best division of the edges into layers according to the method described in the text. Top

right: Spatial distribution of airports. The colors correspond to the division of the network into groups, according to the best
fit of the DCSBM model with independent layers (the same color coding is used in the remaining panels). Bottom: Individual
layers of the DCSBM fit, corresponding to the bins in the top panel. The layout is the same as in Fig. 4.

As an example we consider the global airport network
as collected by openflights.org. This is a directed
multigraph, where the N = 3253 nodes are airports and
the E = 67154 edges represent existing flights. Since
the position of the airports is known, we can character-
ize the edges by their geodesic distance, which we treat
as a covariate. In applying the DCSBM with indepen-
dent layers, using the method outlined above to find the
optimal binning of the distances, we find a division into
B = 34 groups, and M = 5 distance bins, as shown in
Fig. 7. When inspecting the spatial distribution of air-
ports, we observe that the obtained groups correspond
to fairly contiguous geographical regions (see Fig. 7, top
right). The distribution of edges across the layers reveal
a hierarchical organization strongly correlated with flight
distance: The first layer captures local “intra-groups”
with relatively short distance, whereas the upper lay-
ers capture increasingly “inter-groups” flights with longer
distances. The nodes with large degree tend to be those
that belong to multiple layers, i.e. major airport hubs
that service both short and long-distance flights.

VI. TIME-VARYING NETWORKS

Temporal networks can be viewed as a special case
of networks with real-valued edge correlates representing
their existence at a specific time, xi = ti, and hence we

can use the same approach as in the previous section5. By
using the different model versions presented in this work,
different types of temporal patterns can be captured. In
all cases, by separating the network into time-bins, it is
assumed that inside each bin the edges are placed be-
tween the groups in a random fashion, conditioned only
on the group membership of the receiving nodes. When
using the SBM with edge covariates, the nodes are as-
sumed to belong to all time layers, and as such can receive
edges at all times, depending only on the activity of the
entire group at any give time. On the other hand, the ver-
sion with independent layers allows for a individualized
placement of the nodes into the layers (independently of
their group membership) such that their activity may be
separately regulated. The activity inside each layer can
be even more fine-tuned in the degree-corrected model
with independent layers, since the degree of each node
at each time window is separately specified. In all these
examples, the group memberships are forced to be stable
in time. This can be changed by using an overlapping
SBM [37], where the group memberships (which are in
this case attributes of the half-edges of the graphs) can
change arbitrarily in time. As before, given some empiri-
cal observation, the most appropriate model choice is the
one with the minimum description length.

The discretization approach presented here is similar in

5 Other formulations of temporal networks are possible. For in-
stance, one could attribute to each edge a tuple ~xi = (tb

i
, te

i
),

containing a creation and deletion time, respectively. The ap-
proach presented here can be adapted to such a multivariate case
in a straightforward manner, by using multidimensional bins.

openflights.org
openflights.org
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Figure 8. (Color online) Proximity network between high-school students [69]a. Top: Network activity (i.e. probability density
of an edge being present) as a function of time, over a period of one day. The bins labeled from (a) to (j) correspond to the
best division of the edges into layers according to the method described in the text. Bottom: Individual layers of the DCSBM
fit, corresponding to the bins in the top panel. The layout is the same as in Fig. 4.

a Retrieved from http://sociopatterns.org.

spirit to the detection of “change points” in networks [39].
Since it is assumed that inside each time window the
edges are placed in a manner that is independent of their
time relative to one another, the most appropriate time
binning is the one that partitions the time series in such a
way that inside each time window the large-scale network
structure does not change significantly. The interface
between two bins can therefore be interpreted as change
points where the large-scale structure has changed in a
measurable and statistically significant way.

Here we show an application of this method to a time-
resolved proximity network between N = 126 high-school
students, recorded over a period of four days in 2011 [69],
of which we isolated only the first day to simplify the
analysis. In this experiment, volunteering students wore
proximity sensors during school hours, which recorded an
edge and its time if two students were below a distance
threshold for a pre-specified amount of time. If we ap-
ply the DCSBM with independent layers to this dataset
(again providing a better fit), the best partition is found
for B = 33 groups, and the whole time series was di-
vided into M = 10 periods, as can be seen in Fig. 8.

The hierarchical partition is in accordance with the ex-
istence of three classes, as can be seen in the first levels
of the hierarchy. Each period marks a region in time
where a distinct large-scale structure is observed. These
periods alternate between those with high activities and
those with a relative quiescence, presumably represent-
ing breaks (with many edges between classes, and a per-
ceived synchrony between the PC and PC∗ classes) and
class periods (with few edges between classes), respec-
tively, although this information is not available in the
dataset.

In the above example, the best fit was obtained for a
nonoverlapping SBM, implying that the group member-
ships remain stable in time. However, in some situations,
movements between groups can be inferred. As an exam-
ple, we return to the network of vote correlations of the
Brazilian national congress. Differently from before, now
we inspect a single four-year term from 2007 to 2010, and
we separate each year into one layer, yielding a network
with N = 475 nodes and E = 9053 edges in total. In this
case, a best fit is obtained for an overlapping DCSBM
with independent layers and B = 12 groups, as seen in

http://sociopatterns.org
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Fig. 9. The hierarchical division clearly separates be-
tween a center-left government coalition (the largest top-
most branch) and the right-wing opposition (the smallest
topmost branch). In the government branch, we observe
the existence of many “peripheral” deputies, which are
not strongly correlated with each other, and instead are
aligned with smaller groups of more connected nodes,
which are divided mostly along party lines. This prop-
erty is weakened in the later years of the term, as more
edges are observed between peripheral deputies. The
overlapping structure found is correlated strongly with
the layered divisions, such that by observing only one
layer in isolation, no overlaps are present. Therefore, a
fraction of the deputies seem to completely change their
alignment patterns in successive years, as shown in the
bottom of Fig. 9. The flow between groups is mostly con-
fined to either the government or opposition groups, with
the majority of the activity occurring inside the govern-
ment faction. Although some deputies did change their
party affiliation during this period, the observed flows
seem mostly uncorrelated with this, and instead appears
to show a more fine-grained alignment between deputies
that is not uniquely defined by their party membership.

VII. CONCLUSION

We presented a framework for the nonparametric in-
ference of mesoscale structures in layered, edge-valued
and time-varying networks, based on a variety of mod-
ifications of the stochastic block model, incorporating
features such as hierarchical structure, degree-correction,
and overlapping groups. These models were formulated
in a Bayesian setting, that allows the identification of
the most appropriate model variant based on statistical
evidence, corresponding to a principled balance between
model complexity and quality of fit.

We have identified an important pitfall when analyz-
ing network data with layered structure, where the in-
clusion of many layers that are uncorrelated with the
mesoscale structure can obstruct its identification. This
problem cannot be neglected if the number of layers be-
comes large, as in the case of temporal or edge-value net-
works where the layers correspond to arbitrary bins of
the edge covariates. We expect this problem to affect
also non-statistical methods based on modified modular-
ity maximization [4, 20, 21, 26, 28], as well as flow com-
pression [22] and non-negative tensor factorization [27].
In our setting, we have shown how this can be com-
pletely avoided by comparing the inferred model with
a null model that assumes that the layers are uncorre-
lated, or with a coarse-grained version that condenses
uncorrelated layers into bins.

We also showed how this framework can be extended
in a straightforward manner to networks with real-valued
attributes on the edges, and temporal networks. The
proposed methodology is capable of identifying specific
scales — both of the edge values and in time — where
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Figure 9. (Color online) Network of vote correlations among
federal deputies of the Brazilian national congress in the four-
year term from 2007 to 2010. The top panel shows the B =
12 division obtained by fitting an overlapping DCSBM with
independent layers, with all layers collapsed into one figure.
The group labels correspond to the predominant parties inside
each group. The individual layers can be seen in the middle
panel. The bottom panel shows the flows of deputies between
each group after each year. The edge thickness corresponds to
the amount of deputies, with the largest flow corresponding
to 10 deputies, and the smallest 1 deputy.

the mesoscale structure does not change significantly, en-
abling the identification of the most appropriate coarse-
graining of the network in discrete layers, as well as the
detection of “change points” of the network structure.

The unsupervised inference of the most parsimonious
layered model, as well as the appropriate granularity of
the layers, based solely on statistical evidence and re-
quiring no ad hoc parameters, provides a principled and
robust method to analyze multilayer, temporal and edge-
valued network data. This approach is likely to be di-
rectly useful in a variety of tasks, such as the nonpara-
metric modeling of correlation networks [21], the pre-
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diction of missing valued edges [47, 48], the identifica-
tion of relevant time scales in temporal networks [70],
and its relation to dynamical processes taking place on
them [71, 72], among many others.
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Appendix A: Multigraphs

For multigraphs, we need to consider that parallel
edges that belong to the same layer are indistinguish-
able. Hence the likelihoods of Eq. 2 must be corrected to
read

P ({Gl}|{θ}) = P (Gc|{θ})
∏

r≤s

∏

l m
l
rs!

mrs!
×

∏

i>j Aij !
∏

i>j,l A
l
ij !

∏

i Aii/2!
∏

i,l A
l
ii/2!

. (A1)

The last term does not depend on the SBM parameters.
Therefore, when doing inference, the difference amounts
to multiplicative constant which does not alter the posi-
tion of the most likely network partition, and thus could
in principle be discarded. However, this difference is im-
portant when comparing models with a different number
of layers, as will be done below.

For the independent layers model, it suffices to use
the appropriate multigraph likelihood in each layer, as is
given in Refs. [37, 55].

Likewise, when considering the null model of Sec. IV,
the existence of parallel edges must also be accounted for.
Therefore Eq. 16 must be modified to read

P ({Gl}|{θ}, {El}) = P (Gc|θ)×

∏

l El!

E!
×

∏

i>j Aij !
∏

i>j,l A
l
ij !

×

∏

i Aii/2!
∏

i,l A
l
ii/2!

. (A2)

In the case of binned layers, it must be analogously mod-
ified to read

P ({Gl}|θ{ℓ}, {ℓ}) = P ({Gℓ}|θ{ℓ})×
∏

ℓ

∏

l∈ℓ El!

Eℓ!
×

∏

i>j

∏

ℓ

Aℓ
ij !

∏

l∈ℓ A
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×
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i
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ℓ

Aℓ
ii/2!

∏

l∈ℓ A
l
ii/2!

. (A3)

Appendix B: Directed graphs

Directed graphs represent straightforward modifica-
tions of the models presented in the main text. For the
collapsed likelihoods and priors, we refer the Refs. [37,
55].

For the model with edge covariates and the possibility
of multiple edges, the total likelihood of Eq. 2 becomes
simply

P ({Gl}|{θ}) = P (Gc|{θ})
∏

rs

∏

l m
l
rs!

mrs!
×

∏

ij Aij !
∏

ij,l A
l
ij !

.

(B1)

And again, for the independent layers model, it suffices
to use the appropriate directed likelihood in each layer,
as is given in Refs. [37, 55].

Likewise, when considering the null model of Sec. IV,
for directed graphs (with possible multiple edges) Eq. 16
must be modified to read

P ({Gl}|{θ}, {El}) = P (Gc|θ)×

∏

l El!

E!
×

∏

ij Aij !
∏

ij,l A
l
ij !

,

(B2)

and in the case of binned layers,

P ({Gl}|θ{ℓ}, {ℓ}) = P ({Gℓ}|θ{ℓ})×
∏

ℓ

∏

l∈ℓ El!

Eℓ!
×

∏

ij

∏

ℓ

Aℓ
ij !
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l∈ℓ A
l
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. (B3)

Appendix C: Model selection for overlapping groups

In the case the SBM with overlapping groups, we need
to specify a generative process for the overlapping par-

tition into B groups {~bi}, and the collapsed (or layer-

specific) labeled degree-sequence {~ki} (or {~kli}).
To generate the overlapping partition into groups,

we use the hierarchical process described in detail in
Ref. [37], already described in the main text adapted
to the generation of the layer-membership matrix {zil},

which yields Lp = − lnP ({~bi}) given by

Lp = ln
((

D
N

))

+
∑

d

ln
((

(Bd)
nd

))

+ lnN !−
∑

~b

lnn~b!,

(C1)

where D ≤ B is the maximum mixture size d. The case
without group overlaps amounts to D = 1, reducing it to
Eq. 6.

The collapsed overlapping degree sequence can be gen-
erated with a similar Bayesian process, described also
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in Ref. [37], that yields a description length Lκ =

− lnP ({~ki}) given by

Lκ =
∑

r

ln
((

mr

er

))

+
∑

~b

min
(

L
(1)
~b

,L
(2)
~b

)

. (C2)

with

L
(1)
~b

=
∑

r

ln

((

n~b
er~b

))

, (C3)

L
(2)
~b

=
∑

r∈~b

ln Ξr
~b
+ lnn~b!−

∑

~k

lnn
~b
~k
!. (C4)

where ln Ξr
~b
≈ 2

√

ζ(2)er~b
. For the case without overlaps

this reduces to Eq. 8. The edge-specific overlapping de-
gree sequence is obtained according to Eq. 11.
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