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Inferring the molecular and phenotypic impact of
amino acid variants with MutPred2
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Sean D. Mooney2✉ & Predrag Radivojac 1,7✉

Identifying pathogenic variants and underlying functional alterations is challenging. To this

end, we introduce MutPred2, a tool that improves the prioritization of pathogenic amino acid

substitutions over existing methods, generates molecular mechanisms potentially causative

of disease, and returns interpretable pathogenicity score distributions on individual genomes.

Whilst its prioritization performance is state-of-the-art, a distinguishing feature of MutPred2

is the probabilistic modeling of variant impact on specific aspects of protein structure and

function that can serve to guide experimental studies of phenotype-altering variants. We

demonstrate the utility of MutPred2 in the identification of the structural and functional

mutational signatures relevant to Mendelian disorders and the prioritization of de novo

mutations associated with complex neurodevelopmental disorders. We then experimentally

validate the functional impact of several variants identified in patients with such disorders.

We argue that mechanism-driven studies of human inherited disease have the potential to

significantly accelerate the discovery of clinically actionable variants.
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T
he discovery of pathogenic variants, i.e., variants capable of
causing disease, generally relies on a combination of
family- and population-based sequencing efforts1. To assist

genetic studies, particularly in characterizing rare variants and
dissecting complex disease, machine learning methods have
recently been developed to identify the signatures of pathogeni-
city and to predict the impact of variants of unknown
significance2,3. Although pathogenicity prediction methods have
matured considerably over the past decade and are now routinely
integrated into genomic pipelines, they continue to exhibit major
shortcomings. Firstly, they remain inadequate to the task in
exome-scale applications owing to a less than optimal balance of
false-positive and true-positive detection rates4,5. Secondly, they
do not generate actionable hypotheses regarding the molecular
consequences of these variants6.

The functional impact of variants may lead to a wide range of
molecular changes, even within a single protein, including dis-
rupted stability and structure, disrupted macromolecular binding,
ablation of posttranslational modification (PTM) sites, among
others (Fig. 1a). However, existing approaches generally provide
little or no information about the potential mechanisms affected
by mutations, or else simply map predicted pathogenic sub-
stitutions onto protein feature annotations (which are generally
sparse) in public databases. These methods do not therefore
explicitly model the type of change in local structure and func-
tion, and are fundamentally limited by the incomplete, incorrect,
and inevitably biased annotations in major databases7–9.

To address these challenges, we have extended our existing and
widely used machine learning approach, MutPred10, by devel-
oping an improved and statistically rigorous approach, MutPred2.
This new algorithm quantifies the pathogenicity of amino acid
substitutions, and describes how they affect the phenotype by
modeling a broad repertoire of structural and functional altera-
tions from amino acid sequence.

MutPred2 compares favorably with the existing tools recom-
mended in the American College of Medical Genetics and
Genomics and the Association for Molecular Pathology (ACMG/
AMP) Standards and Guidelines11 on stringent independent test
sets. More importantly, by applying this methodology, we esti-
mate the fraction of pathogenic missense variants in a personal
genome, and identify molecular signatures associated with a data
set of Mendelian disease variants and a data set of de novo
mutations found in individuals diagnosed with neurodevelop-
mental disorders. Finally, we prioritize several high-scoring var-
iants from this data set and experimentally validate their
functional roles. Our results suggest new molecular targets and
mechanisms impacted by multiple mutations across neurodeve-
lopmental disorders. More broadly, this study demonstrates the
power of the proposed mechanism-driven approach to studying
human phenotypes.

Results
Overview of MutPred2. MutPred2 is a machine learning-based
method, and software package that integrates genetic and mole-
cular data to reason probabilistically about the pathogenicity of
amino acid substitutions. This is achieved by providing (1) a
general pathogenicity prediction, and (2) a ranked list of specific
molecular alterations potentially affecting the phenotype.
MutPred2 is a sequence-based model that utilizes methodology
predicated upon recent machine learning advances in training
from positive-unlabeled data, and which incorporates estimation
of prior and posterior probabilities12,13. These estimates not only
facilitate the interpretation of pathogenicity and molecular
alteration scores, but also provide a framework to rigorously rank
the underlying mechanisms13. Currently, MutPred2 models a

broad range of structural and functional properties, including
secondary structure, signal peptide and transmembrane topology,
catalytic activity, macromolecular binding, PTMs, metal binding
and allostery.

Challenges in variant interpretation tool development. To
develop models for the mathematically sound inference of
molecular mechanisms of disease, several statistical and compu-
tational challenges must be addressed. First, it is necessary to
integrate disparate molecular and genetic data to develop models
that have similar yet meaningful score interpretations6. Second,
prediction software tools generally vary not only in terms of their
feature representation and prediction algorithms, but also in their
implementations, dependencies, and system requirements, which
collectively hinder the development of a robust framework that
seamlessly incorporates multiple models. Third, structural and
functional properties occur with unequal prior probabilities,
requiring sophisticated modeling to rank the properties affected
by a substitution. Finally, although these property predictors are
typically developed independently of one another, they are
interrelated; i.e., a single substitution may affect more than one
property. This places the burden of interpretation upon the user
and can be overwhelming, when multiple properties are con-
sidered simultaneously.

To address the first two challenges, we developed sequence-
based predictors for over 50 structural and functional protein
properties (Supplementary Tables 1–4). All predictors, with
minor exceptions, were trained with a common feature set,
subjected to the same evaluation protocols, designed to output
scores between 0 and 1, and implemented within the positive-
unlabeled machine learning framework; i.e., a binary classification
setting in which one is given a set of positive data and a set of
unlabeled data (a mixture of positive and negative data points)
with the goal of performing parameter estimation and learning, in
order to discriminate between positive and negative data
(Supplementary Methods)14. The areas under the ROC curves
(AUCs) of these predictors are generally high (Supplementary
Table 5). To address the third challenge, we estimated the prior
probability for each property13,15 and used it to transform raw
prediction scores to posterior probabilities to facilitate direct
comparisons with other properties13 (Supplementary Table 6).
Finally, we constructed a custom ontology of molecular
alterations by grouping the properties into broader categories to
capture the inherent relationships between the properties
(Fig. 1b). This was carried out manually by combining our
current understanding of protein structure and function, with the
Variation Ontology as a template16. Our primary goal was to
organize the space of molecular consequences so as to achieve
user-friendly interpretation (Fig. 1c).

The MutPred2 pathogenicity model was trained on a set of
53,180 pathogenic and 206,946 unlabeled (putatively neutral)
variants obtained from the Human Gene Mutation Database
(HGMD)17, SwissVar18, dbSNP19, and interspecies pairwise
alignments. The model is a bagged ensemble of feed-forward
neural networks20, each trained on a balanced subset of
pathogenic and unlabeled variants. The final prediction score is
the average of the scores from all networks and ranges between 0
and 1; higher scores reflect a higher probability of pathogenicity.
MutPred2’s models for inferring molecular mechanisms were
similarly trained from a variety of molecular data sets
(Supplementary Methods), thereby ensuring effective integration
of genetic and molecular data.

Evaluation of predictor performance. The choice of the training
set is critical in machine learning. A common practice in
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pathogenicity prediction involves the exclusion of rare variants
from the unlabeled set to minimize biases arising from potentially
undiscovered pathogenic variants; additional filtering based on
specific types of data source may also be performed. To investigate
the effects of various filtering criteria in training sets on classifica-
tion performance and to select the most appropriate training set,
different combinations of training and test sets were evaluated in an
all-against-all performance assessment (Supplementary Table 7).
We found that filtering the training set is beneficial only when the
test set is also filtered, using the same criteria. Furthermore, using
the entire unfiltered training set resulted in comparable or better
performance in most cases, consistent with recent theoretical results
justifying training from positive-unlabeled data12,13. Therefore, we
chose not to perform any filtering in subsequent steps with the
reasoning that bias introduced through different filtering schemes is
more detrimental than random noise12,13.

Using a per-protein tenfold cross-validation, the AUC was
estimated at 87.7% (Fig. 2a). The training data, however, contains
class-label noise; i.e., the set of disease variants may contain
mutations incorrectly labeled as pathogenic and the set of
unlabeled variants is by definition also a mixture of pathogenic
and benign variants. We estimate the proportion of noisy positive
variants to be 2.8% and the proportion of unlabeled variants that
are pathogenic to be 5.8% (Supplementary Methods). These
results allow us to provide a corrected estimate of the AUC of
91.3% (ref. 21).

Consistent with previous studies, conservation-based features
were the most discriminative4,22,23 (Supplementary Tables 8 and
9). MutPred2 relies on precomputed databases of multiple
sequence alignments and conservation scores to calculate these
features. In cases where the input substitutions come from novel
protein sequences or alternate isoforms, these data may often be
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Fig. 1 MutPred2 and the molecular consequences of amino acid substitutions. a The human tumor suppressor p53 as an illustration of the numerous

possible effects of amino acid substitutions on protein structure and function. Protein Data Bank IDs for the structures shown are 1TUP, 1YCS, 2J1W, and

2YBG. b The ontology constructed in this study to organize the possible structural and functional effects of amino acid substitutions. It is confined to the 53

properties included in MutPred2. c The MutPred2 workflow. For a given amino acid sequence and substitution, MutPred2 first extracts six categories of

features. Changes in structure and function due to the substitution are also modeled by running the original and mutated sequences through different

sequence-based protein property predictors. Two scores are obtained for each property and these are combined to generate two additional scores

quantifying the loss and gain of the property in question. All four scores are included as features. Next, all categories of features are presented to an

ensemble of 30 neural networks trained to distinguish between pathogenic and benign variants. MutPred2 returns two outputs, the general score and the

property score. The general score is obtained from the neural network ensemble and indicates the pathogenicity of the given variant. It ranges between 0

and 1, with a higher score indicating a greater propensity to be pathogenic. The property score is assigned to each of the 53 properties for the given variant

and also ranges between 0 and 1. The latter score is the posterior probability of loss or gain (whichever is greater) of the given property due to the

substitution. The higher the property score, the more likely that the molecular mechanism of the disease involves the alteration of the property.
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unavailable, prompting tools to avoid assigning predictions. To
ensure that every input variant has a prediction and maximize
data coverage, MutPred2 provides an option of predicting
conservation-based features from sequence and PSI-BLAST
position-specific scoring matrices (PSSMs) in cases when these
features are unavailable. Although predicted conservation features
only moderately correlate with actual values (Supplementary
Fig. 1), models that included them performed two percentage
points better than those that did not use any conservation
features (Fig. 2a).

Previous studies reported conflicting results on the association
between duplicated genes and their involvement in disease24,25.
To investigate this, we created features that, for a given protein,
enumerate homologous proteins from human and mouse at
various levels of sequence similarity (50% or greater; Supplemen-
tary Methods). We observed that excluding these homology
profiles did not drastically affect performance, when true
conservation features were available, but resulted in a decrease
of two percentage points in all other cases (Fig. 2a). This outcome
supports the evidence for compensatory mechanisms in a variety

of gene families, and a modest negative correlation between gene
family size and variant pathogenicity25.

We then evaluated MutPred2 against MutPred on its original
training set under the same evaluation protocol. We found that
MutPred2 had a similar AUC value as before (88.0%), out-
performing the original MutPred approach by about five
percentage points (Supplementary Fig. 2). Additional experi-
ments are described in Supplementary Notes.

Evaluation against external tools. We next compared the per-
formance of the default MutPred2 model with several state-of-
the-art methods recommended in the ACMG/AMP Standards
and Guidelines on the interpretation of sequence variants11;
specifically, CADD26, FATHMM27, GERP++ (ref. 28), Muta-
tionTaster2 (ref. 29), MutPred, PhyloP30, PolyPhen-2 (ref. 23),
SIFT22, and SNPs&GO31. This analysis was carried out on an
independent data set compiled from ClinVar32 and SwissVar. We
note that such comparisons are limited by differences in moti-
vating goals, problem formulations, training data, and informa-
tion used to make predictions, and are best addressed through
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Fig. 2 Performance and interpretability of MutPred2. a ROC curves obtained through tenfold cross-validation on the MutPred2 training set. The main

model represents MutPred2 in the default setting (with real conservation scores and homolog count profiles). All lines are paired with the solid line

representing the model with homolog count profiles and the dashed line, representing the model without the profiles. b ROC curves on an independent test

set, obtained from ClinVar and SwissVar by letting the data accumulate in these databases for 3 years. MutationTaster2 only returns a value of zero or one

and therefore its performance is plotted as a single point (X). Since some tools could not assign scores to all variants, results from the subset of the

variants (285 pathogenic and 107 benign) that are covered by all methods are shown. Detailed performance measures on this subset and a less stringent

set (filtered at 80% sequence identity) are shown in Supplementary Tables 10 and 11. c Mean score distributions for MutPred2, PolyPhen-2 HumDiv,

PolyPhen-2 HumVar, SIFT, FATHMM, and CADD applied to ten randomly selected exomes from the 1000 Genomes Project. Error bars represent the

standard errors of the means, estimated by dividing the standard deviation in each bin by the square root of 10. All heterozygous and homozygous variants

were plotted in separate panels. The mean in each panel represents the average number of variants found in an individual for the given category.
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community-wide challenges, such as the Critical Assessment of
Genome Interpretation; CAGI (http://genomeinterpretation.org).
For a fair and rigorous comparison, we minimized potential
biases by including only variants that were not in the training sets
(where known) of the methods listed above. The analyses were
confined to a nonredundant set of variants by comparing 25-
residue fragments centered at the variant position to all such
fragments in these training sets, and filtering out those that
shared >50% sequence identity. This resulted in a highly stringent
data set of 343 pathogenic mutations and 137 nonpathogenic
mutations.

We found that MutPred2 performed substantially better than
FATHMM, GERP++, MutationTaster2, PhyloP, and PolyPhen-2
in terms of AUC (Fig. 2b and Supplementary Table 10). The
remaining methods resulted in AUCs of at least 80% and ROC
curves that grouped together. However, MutPred2 still had the
highest AUC (87.1%), largely attributable to its high sensitivities
at lower false-positive rates (FPRs). This is especially relevant
when considering the second-best performing tool, CADD.
Despite the possibility that some of these variants may have
been present in its training set and the fact that its AUC value was
very close to that of MutPred2, CADD was more sensitive only
when the FPR was high (between 20 and 30%). Interestingly,
contrary to results from previous studies33,34, the next best
performing method on this independent data set was SIFT.

Given that most methods considered here do not return
predictions for at least a proportion of the independent data set,
the small data set size limits the interpretability of these findings.
To mitigate this, we relaxed the fragment sequence identity
threshold to 80% (as opposed to 50%), and expanded the
independent data set to include 700 pathogenic mutations and
282 nonpathogenic mutations. Although individual performance
values changed, the general trends remained unaffected, with the
exception of SIFT’s reduced performance (Supplementary
Table 11). Finally, we have additionally undertaken a compre-
hensive prospective evaluation of these methods with a
considerably larger independent data set comprising pathogenic
variants obtained from the newest version of HGMD and
unlabeled variants obtained from gnomAD. On this data set,
while performance of all methods was lower, MutPred2 emerged
as the most accurate on the full data set, as well as a subset
comprising only those proteins that contained both types of
variants (Supplementary Fig. 3, Supplmentary Table 12 and
Supplementary Notes).

Interpretability of prediction scores. The interpretability of
prediction scores is a generally underappreciated aspect of
pathogenicity prediction. From this perspective, it is desirable that
predicted pathogenic variants show a sufficient dispersion of
scores so that they can be further grouped into meaningful bins
for human interpretation. It is also desirable that the scaling of
scores is linear. For example, for two variants with scores of 0.9
and 0.7, respectively, one should be able to infer not only that
both are pathogenic, but also that the variant scored 0.9 is more
likely to be pathogenic. However, for variants with scores of 0.82
and 0.80, such an interpretation would be problematic. Intui-
tively, one should also be able to interpret the difference between
0.9 and 0.7 in a manner similar to that between 0.7 and 0.5; i.e.,
quantitative differences should reflect qualitative differences.

To visualize this, we applied MutPred2, PolyPhen-2, SIFT,
FATHMM, and CADD to missense variants from ten randomly
selected presumably healthy individuals from the 1000 Genomes
Project35, and plotted the resulting score distributions (Fig. 2c).
We found that the predictions for PolyPhen-2 and SIFT tended to
peak at the extremes of the distribution, with ~10% of the variants

in a healthy genome having scores over 0.9. The predictions for
FATHMM and CADD peaked toward the middle of the score
range with nearly half of their predictions in the region of
unknown significance. On the other hand, MutPred2 outputs a
generally decreasing score distribution (0.3% of variants with
scores >0.9), that we believe is better suited for the interpretation
of personalized genome-scale data, as it allows for the treatment
of scores approximately as probabilities.

We also investigated whether these score distributions were
impacted by minor allele frequencies (MAFs). We found that
MutPred2 scores showed a stronger negative correlation with
MAFs (Supplementary Fig. 4), further suggesting that MutPred2-
scores align better with theoretical expectations of the allele
frequencies of slightly deleterious variants.

Estimating proportions of pathogenic missense variants. The
set of unlabeled substitutions in the MutPred2 training data
comprises both benign and pathogenic variants that have not yet
been characterized or annotated as such. This is also the case for
the set of substitutions labeled as pathogenic, as a consequence of
possible errors and misannotations in our positive set. To
quantify these proportions in our training set, we generated
MutPred2 score distributions on these sets and applied the
AlphaMax algorithm13. On our training set, we estimate that
5.8% of the unlabeled variants may indeed be pathogenic and that
2.8% of the pathogenic variants may actually not be associated
with disease (Supplementary Fig. 5). Using these class prior
estimates as proxies for those occurring in nature, we then esti-
mated the average proportion of pathogenic missense variants
over the genomes of the ten individuals from the 1000 Genomes
Project. We estimated that, on average, up to 1.3% of all missense
variants in a (presumably) healthy genome are pathogenic. This
fraction was greater for heterozygous variants (1.7%) than for
homozygous variants (0.6%).

Enriched molecular mechanisms in Mendelian diseases. We
sought to identify preferentially disrupted mechanisms in the
MutPred2 training set by calculating the enrichment of the
increase (i.e., gain) and decrease (i.e., loss) of local structural and
functional properties in the set of disease mutations relative to the
unlabeled variants (FPR of 1%). We recapitulated previous
observations that protein structural changes are common
mechanisms of Mendelian disorders (Fig. 3)36,37. However, we
also observed enrichment for macromolecular binding sites, in
agreement with recent work on protein–DNA and
protein–protein interactions (PPIs)38, as well as several PTM
types. We observed depletion for properties associated with
flexible and disordered regions, potentially owing to the enrich-
ment of enzymes involved in metabolic processes39. In addition,
we found that substitutions affecting residues involved in metal
binding and allosteric regulation were also enriched in the set of
Mendelian disease mutations.

Metals, unlike PTMs, freely form coordinate bonds without
enzyme involvement and are perhaps more ubiquitous in nature.
One metal ion can also be in competition with another at one or
more sites in a protein due to their similar chemical properties40.
In terms of allosteric regulation, to the best of our knowledge, a
sequence-based predictor of allosteric residues does not exist, and
only one structure-based study has systematically investigated the
role of allosteric regulation in monogenic diseases36. Contrary to
the findings of that study, we predict that the disruption of
allosteric sites is an active mechanism in such diseases. Allosteric
regulation and metal binding are treated as both structural and
functional properties in our ontology (Fig. 1b). This is supported
by the fact that metals are known to play important roles in
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stabilizing both protein structure and macromolecular interac-
tions40. Further details of the enrichment analysis are provided
in Supplementary Notes (Supplementary Fig. 6).

Impact of de novo mutations in neurodevelopmental disorders.
Neurodevelopmental disorders have a strong genetic compo-
nent41–43. Recent whole-genome and whole-exome sequencing in
neurodevelopmental diseases has identified thousands of de novo
mutations in patients with such phenotypes. However, distin-
guishing between pathogenic and benign de novo mutations
remains challenging. We applied MutPred2 to a data set of 4324
de novo missense mutations obtained through the exome
sequencing of families impacted by four different disorders
(autism spectrum disorder (ASD), intellectual disability, schizo-
phrenia, and epileptic encephalopathy), and 1316 de novo

missense mutations from the healthy siblings of the patients from
these families as a control (“Methods”).

We first examined whether pathogenicity scores alone were
sufficient to distinguish between cases and controls. We found
that MutPred2 predicted significantly higher proportions of
pathogenic mutations in the case set than in the control set at 10
and 5% FPR score thresholds with odds ratios of 1.44 and 1.56,
respectively (Fig. 4a). Statistically significant odds ratios exceed-
ing 1.22 were observed starting at a score threshold of 0.45
(Supplementary Fig. 7). Given the fact that the overall mutational
load for de novo missense mutations is similar in the cases and
the healthy controls44,45, the higher fraction of predicted
pathogenic missense mutations in the cases suggests the good
discriminative ability of MutPred2. Low odds ratios are not
unexpected, as missense variants are likely to be less disruptive to
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protein structure and function than loss-of-function (stop,
frameshifting indel, and splice site) variants, for which a twofold
enrichment in cases versus controls has been previously observed
for autism44.

Next, we examined whether mutations in neurodevelop-
mental disorders preferentially alter specific protein structural
and functional properties. We asked which molecular mechan-
isms were frequently ranked among the top three in the set of
predicted pathogenic mutations (at the 5% FPR threshold) from
the case and control sets (Supplementary Data File 1). In
contrast to the set of Mendelian disorders, we observed a
statistically significant enrichment of the majority of macro-
molecular binding features (e.g., calmodulin binding, DNA
binding, and protein binding), catalytic sites, and two types of
PTMs (acetylation and phosphorylation) among the case
mutations (Fig. 4b). The most significant enrichment was

observed for the PPI residue feature, in agreement with
previous studies demonstrating the loss of PPIs, as a result of
mutations associated with human Mendelian diseases46–48. At
the same time, well-defined structure and metal binding were
not significantly enriched among case mutations, despite high
proportions of secondary structure elements (helix, strand, and
loop) being affected by the mutations in both cases and controls
(Fig. 4b).

Experimental validation of the impact of de novo mutations.
High pathogenicity scores for a given mutation provide hypoth-
eses of disruption of protein structure or function that could lead
to a disease. We used the yeast two-hybrid (Y2H) system to test
the impact of our high-scoring mutations on PPIs, with corre-
sponding binding partners46,47.
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We selected three genes with de novo missense mutations:
STXBP1, ZBTB18, and DNMT3A, and introduced the high-
scoring mutations into the open reading frame (ORF) clones of
these genes. We then tested both wild-type (wt) and mutant
variants for interactions with protein partners that were available
in the human hORFeome collection49 (“Methods”). We also
tested common single-nucleotide polymorphisms (SNPs) from
dbSNP adjacent to the de novo mutations, as experimental
controls. In total, we tested ten mutations from these three genes
(Supplementary Table 13).

Two mutations, R551C50 and G544D51, and one SNP (G561R)
in the STXBP1 gene disrupted interactions between STXBP1 and
three protein partners (TRIM38, STX11, and STX5), whereas two
other SNPs (A113T and V84I) did not alter interaction patterns
compared to the wt protein (Fig. 4c). These results are in
agreement with the MutPred2 predictions that assigned high
scores to both R551C (score 0.942) and G544D (score 0.938), and
also to the G561R (score 0.796) SNP. Interestingly, although the
G561R variant is present in dbSNP and has unknown clinical
significance, it is a rare variant52 (Supplementary Table 13).
STXBP1 is a syntaxin-binding protein that plays a role in the
release of neurotransmitters via regulation of syntaxin, a
transmembrane attachment protein receptor. A recent study
demonstrated that the heterozygous loss of STXBP1 in human
neurons lowers the level of its protein product together with its
binding partner syntaxin-1, emphasizing the importance of this
PPI53. STXBP1 is highly expressed in the brain, and other
mutations in STXBP1 are associated with early infantile epileptic
encephalopathy51, intellectual disability54, and developmental
delay55. Our results suggest that the underlying mechanism of the
mutations tested here could be attributable to loss of binding to
protein partners.

We then examined the effect of the R486G mutation54 and
three SNPs (G416R, A502T, and T507A) on the binding of
ZBTB18 with two partners: CTBP1 and CTBP2 (Supplementary
Fig. 8a). Although the experimental results for R486G (score
0.932), G416R (score 0.668), and T507A (score 0.069) were in
agreement with predictions, the MutPred2 score for A502T (score
0.208) did not match the observed loss of binding (Supplemen-
tary Fig. 8a). A502T may therefore be an undiscovered
pathogenic variant missed by MutPred2 or alternatively it is a
PPI-altering variant that does not lead to a disease phenotype.
Finally, we tested the R635W mutation56 in the DNMT3A gene
(Supplementary Fig. 8b). The prediction result for R635W (score
0.886) agreed with experimental observation of the loss of
interaction with the TCL1A partner.

Overall, MutPred2 predictions agreed well with experimental
observations. It is, however, important to interpret these results
with caution, because the loss of PPIs may not be the primary
mechanism for pathogenicity, which could also result from the
loss of stability, aberrant folding, increased degradation, and from
other relevant mechanisms of protein structure disruption by a
mutation.

Discussion
An individual person’s genome contains ~10,000 amino acid-
altering variants when compared to the reference genome35. The
first step in connecting this information with phenotype, and
particularly with disease, involves prioritizing variants that affect
protein structure and function. The current generation of
pathogenicity prediction methods has enabled the reduction of a
large number of hypothetically deleterious variants to hundreds
of possible candidates. However, these numbers still remain
prohibitively large for subsequent experimental characterization,
even considering high-throughput studies in vitro or new

CRISPR/Cas9 technologies. To address this challenge, we devel-
oped MutPred2, a tool for the inference of the structural, func-
tional, and phenotypic consequences of coding variants. By
modeling the effects of variants on local protein structure and
function, MutPred2 improves pathogenicity prediction and
assigns putative molecular alterations, using the proposed ranking
approach. This additional information can be used to accelerate
experimental validation. The assignment of specific molecular
impact also allows one to quantify molecular signatures within
different data sets; e.g., classes of disease, a specific disease, a
healthy population, a subpopulation, among others.

Previous studies have developed predictors trained on the data
sets that were filtered based on MAFs and/or source of data23,57.
Our results suggest that such filtering is beneficial only when it is
directly relevant to the prediction task at hand (Supplementary
Table 7); in fact, we observe that the model trained on the entire
data set without filtering performs well across all prediction tasks,
thereby reducing the need for specialized models. We attribute
this good generalization performance to the availability of more
data (the data set size decreases drastically when frequency-based
filtering is applied) and reduced ascertainment bias.

There has been debate about the precise fraction of missense
variants in an individual’s genome that contributes to disease.
Estimates for the proportion of missense variants in a genome
that have deleterious effects on protein function, and hence
phenotype, have ranged between 10 and 25%, depending on the
operationalization of pathogenicity58–60. However, other works
have suggested that this proportion could be much lower61–63. In
general, the calculation of this fraction on real data has been
confounded by the use of small and biased data sets, the accuracy
of the underlying pathogenicity prediction method, the need to
make estimates at a predetermined FPR, the limitations of sim-
plifying assumptions on the parameters of the relevant theoretical
framework, and differences in terminology.

The combined use of MutPred2 and AlphaMax13 on exome-
scale data allowed us to address these issues in a rigorous manner,
with few assumptions. We established that, on average, ~100
heterozygous and 25 homozygous variants in an individual may
cause disease, on a par with estimates derived using disease-
causing variants from HGMD63. Although these numbers are
large enough to yield disease phenotypes, our estimates do not
account for epistatic interactions, such as compensatory var-
iants64. However, our estimates are the lowest among those
derived directly from data generated thus far, and support the
views of early studies62,64.

From a practical perspective, the extent of noise in current
training sets for pathogenicity prediction is also important. Our
results suggest that incorrectly labeled pathogenic variants con-
stitute a small fraction of our training set and may not seriously
impact predictive performance. Our estimates also suggest that
~10,000 pathogenic amino acid substitutions in dbSNP and
UniProt may currently be unannotated. We believe this result is
reasonable, considering that we did not filter out rare variants in
our unlabeled set. However, it is important to note that our work
does not address the issues of bias in current training sets13,65.

Whole-exome sequencing studies in autism and other neuro-
developmental disorders demonstrated an excess of de novo
mutations in individuals affected by these disorders44,45,50,54,66–69.
Furthermore, several studies have demonstrated that the protein
products of the genes with de novo mutations physically interact
and form tightly connected protein interaction networks70–72.
However, how specific mutations impact interactions between
proteins, and which mutations are pathogenic remains an open
question.

MutPred2 predicts more pathogenic de novo missense muta-
tions in cases than in controls. This is particularly remarkable
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given that brain-relevant information that could increase the
predictor’s performance for this type of disease was not exploited.
In fact, the only filtering step involved the removal of genes
common to both the case and control sets. Although the log odds
are moderate, each missense variant can now be associated with
potential molecular alterations that should prompt further
investigation (Supplementary Data File 1). For example, the
L834P mutation in CHD8 identified in a patient with autism73 is
predicted to disrupt a catalytic site along with the allosteric site
and PPI residue. The mutation K842R nearby has been shown to
abolish the ATPase activity of CHD8 (ref. 74), which is consistent
with the MutPred2 prediction of catalytic site disruption by an
adjacent L834P mutation. Likewise, the M2679T mutation in the
RYR3 calcium channel identified in an autism patient69 is pre-
dicted to disrupt calmodulin binding along with a loss of helical
propensity. By similarity with other ryanodine receptors, RYR3
probably binds calmodulin at its C-terminus, and the prediction
of the loss of calmodulin binding due to the M2679T C-terminal
mutation concurs with the known function of this protein. Thus,
MutPred2 predictions offer viable biological hypotheses that can
be tested in the laboratory to improve our understanding of
disease mechanisms.

Traditionally, researchers have adopted a top-down or disease-
driven approach, where one starts with specific phenotypes and
works one’s way down toward causes at the molecular level.
MutPred2 enables the adoption of a bottom-up or mechanism-
driven approach toward understanding genetic disease. In this
approach, one can envision experts specializing in molecular
mechanisms studying germline and somatic variants across dif-
ferent diseases, and providing functional insights that can sub-
sequently lead to hypotheses at the phenotypic level75,76. We
loosely refer to this mechanism-driven approach as disease
agnostic because the study and validation of impactful variants is
determined by molecular mechanisms one is equipped to study,
not necessarily the high-level phenotype.

By grouping disease classes together based on frequently
affected molecular mechanisms in current data sets, one can
consider the prospect of identifying common targets and repur-
posing drugs from one class of disease to its neighboring disease
in this new space. For example, MutPred2 predicted a close
relationship between the endocrine and immune systems at the
molecular level (Supplementary Fig. 6). This agrees with obser-
vations related to the interactions between the two systems during
ontogeny77.

Methods
An input to MutPred2 is an amino acid sequence s; i.e., a wt protein sequence, and
an amino acid substitution XiY, where X, the ith amino acid in s, is replaced by Y.
We refer to the mutated (mt) sequence as sXiY. The output of MutPred2 consists of
a pathogenicity score, a number from [0,1], and a list of molecular mechanisms,
each with its own score, that may be impacted by XiY. A pathogenicity score of 1
indicates near certainty that the variant is pathogenic, whereas a score of 0 indicates
near certainty that the variant is benign. In the next several sections, we discuss
data sets, data representation, and training of MutPred2. The details regarding
classification models used to assess specific functional impacts are provided in
Supplementary Methods.

Data sets. A data set of pathogenic amino acid substitutions was created by
integrating HGMD17 (June 2013; “DM”-annotated substitutions only), Swiss-Prot
(release 2012_09 through SwissVar18), and dbSNP19 (build 137). The set of
unlabeled (putatively neutral) substitutions was compiled from Swiss-Prot and
dbSNP, and then supplemented with additional variants in a way similar to the
HumDiv training set for PolyPhen-2 (ref. 23): for every human protein, pairwise
alignments to other mammalian proteins were first extracted from a 46 species
multiple sequence alignment, obtained from the UCSC Genome Browser78. Only
those alignments where the two sequences shared at least 99% sequence identity
were considered, and positions where a residue in the nonhuman sequence was
replaced by a different one in the human sequence were identified.

Data representation and training. Given a sequence s and variant XiY, we
extracted 1345 (including 20 optional) features. These features are subcategorized
into six groups: (1) sequence-based features, (2) substitution-based features, (3)
PSSM-based features, (4) conservation-based features, (5) homolog profiles
(optional due to time necessary to compute), and (6) changes in predicted struc-
tural and functional properties. A detailed list of features and how they were
extracted and encoded is provided in Supplementary Data File 2 and Supple-
mentary Methods, respectively. Feature selection using a two-sample t test was
performed and only those features that returned P values < 0.01 were retained. To
remove (near) colinear features, z-score normalization and principal component
analysis were performed on the selected features, with the retained variance set to
99%. An ensemble of 30 feed-forward neural networks was then trained on the
resulting feature matrix. Each network consisted of a single hidden layer with four
neurons and a single output neuron (the hyperbolic tangent activation function
was used in both layers). A bootstrap aggregating (bagging) approach was adopted
for training, where each network was trained on a balanced random sample (with
replacement) of the original training set. To determine the number of iterations
required for training, 25% of the training data were retained as a validation set. The
final model was trained using the resilient propagation algorithm79 and stopped
when, either this optimal number of iterations was reached, or 1000 epochs were
completed, or 500 validation checks were reached. Prediction scores were then
calculated as the mean of all 30 scores.

Inferring molecular mechanisms of pathogenicity. The local effects of a variant
on predicted structural and functional properties were modeled and utilized, both
as features and for the assignment of putative molecular mechanisms. First, over 50
protein property predictors were developed within a unified positive-unlabeled
learning framework (Supplementary Methods). The wt sequence s was first pro-
vided to these predictors to score the substitution site i and ±5 adjacent positions.
The amino acid substitution was then introduced into the sequence in silico and
the mt sequence sXiY provided to all property predictors. The probabilities of
changes in structural and functional propensities, given the substitution XiY, were
calculated from the property predictors as follows10

Pr loss of property p s;XiYjð Þ ¼Pr presence of property p sjð Þ

� Pr absence of property p sXiYjð Þ

¼Pr P ¼ 1 sjð Þ � 1� Pr P ¼ 1 sXiYjð Þð Þ;

ð1Þ

Pr gain of property p S;XiYjð Þ ¼ Pr absence of property p sjð Þ

� Pr presence of property p sXiYjð Þ

¼ 1� Pr P ¼ 1 sjð Þð Þ � Pr P ¼ 1 sXiYjð Þ;

ð2Þ

where P is the random variable indicating presence (1) or absence (0) of
property p. In the above equations, the wt residue at the ith position of the protein
is X and the replacement amino acid is Y. Appropriate transformations were
applied to ensure that the property predictors accurately approximate posterior
distributions (Supplementary Methods). The posterior probability from the
predictor for property p for the wt sequence can be interpreted as Pr P ¼ 1 sjð Þ, and
the posterior probability for the substituted sequence can be interpreted as
Pr P ¼ 1 sXiYjð Þ.

The property score was interpreted as the posterior probability of loss or gain,
whichever was greater. Naively, if the wt posterior is 0.5 and the mutant posterior is
0.5 (i.e., no effect upon substitution), then the loss and gain probabilities will be
0.25, which we treated as a baseline threshold to implicate the property as a
molecular mechanism in disease. It is important to note that the terms loss and
gain are more appropriately interpreted as decreased and increased propensities for
a certain property, respectively. Furthermore, in the case of properties that can be
affected in both directions due to a single-residue change, interpretation becomes
complicated. For instance, a substitution can increase a protein’s propensity to bind
one protein partner, but decrease its propensity for another. For simplicity, the
term altered is reported in MutPred2 predictions for such properties along with the
maximum of the loss and gain score.

In addition to posterior probabilities of loss and gain, we also provide empirical
P values that the observed loss/gain score is as high or higher than the score
randomly generated from the distribution of putatively neutral substitutions. The
lower this P value, the more likely that the predicted property is involved in
pathogenicity, under the assumption that nonpathogenic variants do not affect
protein structure and/or function.

Predictor evaluation. All predictors were evaluated through per-protein cross-
validation experiments. Unless otherwise noted, the training data for each predictor
was first split into ten randomly generated partitions, such that all data points from
a given protein were in the same partition. Then, in an iterative manner, each
partition was treated as the test set and the remaining nine partitions constituted
the training set. To avoid information leak, feature selection, normalization, and
dimensionality reduction parameters were obtained on the training partition, and
then applied to the test partition within each iteration. After ten iterations, every
data point was assigned a prediction score. These scores were then used to estimate
the accuracy of the model.
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Evaluation of MutPred2 was performed in a similar manner, except that the
cross-validation partitions were defined more stringently. Instead of a per-protein
partition definition, a more stringent per-cluster partition definition was adopted as
proposed by Calabrese et al.31. Protein sequences in the data set were first clustered
using CD-HIT at the 50% sequence identity threshold. We then ensured that all
substitutions from the same cluster were either entirely in the training set or
entirely in the test set.

Independent validation and comparison. For the purposes of additional eva-
luation and comparison with other methods, an independent test set was compiled
from mutations deposited in ClinVar32 (March 5, 2015) and UniProt80 (“humsa-
var.txt”, release 2015_04). Fragments of length 25 residues centered at the mutation
position were extracted and compared to similarly constructed fragments from the
training sets of five methods (MutPred2, MutPred, PolyPhen-2 (both models),
SNPs&GO31, and FATHMM27), using CD-HIT-2D81. In the case of FATHMM,
the additional “humsavar” data set that it was tested on (with similar performance)
was used, because FATHMM training sets were not publicly available. All muta-
tions whose local neighborhoods shared at least 50% sequence identity with those
from at least one of the training sets were filtered out. Predictions for MutPred2,
MutPred, and PolyPhen-2 were obtained using locally installed versions of the
software. Scores for SNPs&GO were obtained through multiple queries to its web
server. The FATHMM scores, along with predictions for other methods, such as
CADD26, SIFT22, MutationTaster2 (ref. 29), GERP++28, and PhyloP30 (20-way)
were directly obtained from the dbNSFP database82 (v3.0) of all possible single-
nucleotide substitutions. In cases where the chromosomal positions in this database
mapped to multiple protein positions, one-to-one correspondence of isoforms (and
positions) was verified. Although other methods for the prediction of pathogenicity
exist, we chose this representative set based on recommendations recently made by
the ACMG/AMP11. The entire procedure remained the same for the threshold of
80% sequence identity.

Score distributions on genomes. Two individuals from each of the five super
populations represented in the 1000 Genomes Project35 (phase 3) were randomly
selected, such that they came from different populations. In total, variants for ten
genomes were extracted from the integrated variant call format files: NA19026,
HG02014, HG02002, HG01075, HG02384, NA18632, NA12829, HG01615,
HG04206, and HG02651. ANNOVAR83 was used to identify and retain non-
synonymous single-nucleotide substitutions, map their coordinates to amino acid
positions in protein sequences, extract their zygosity information, and obtain
MAFs from the ExAC browser84. The “coding_change.pl” program in ANNOVAR
was used to obtain protein sequences for MutPred2. Both MutPred2 and PolyPhen-
2 (both models) were locally installed and run on this data set. Scores for SIFT,
FATHMM, and CADD were obtained from the dbNSFP database and were
transformed to ensure the scores fit within the 0–1 range. For SIFT, all scores were
subtracted from one. For FATHMM and CADD, min–max transformation was
performed. For FATHMM, signs of the scores were changed to ensure that higher
scores indicated pathogenicity. The resulting scores were binned into fixed intervals
for each individual separately. The mean fraction of variants within each bin and its
standard error over all ten individuals were then plotted. Similarly, in the case of
MAFs, the mean allele frequency and its standard error were plotted.

Enrichment of properties in the MutPred2 disease set. Frequently altered
properties in the set of all disease variants in MutPred2’s training set (Fig. 3) were
identified by first deciding a threshold for loss and gain scores based on a pre-
determined FPR (here, 1%). Assuming that the vast majority of the nonpathogenic
substitutions do not affect protein properties, one can use the fraction of these
substitutions with a score greater than or equal to the threshold to approximate the
rate. For instance, if an FPR of 5% is desired and if 5% of nonpathogenic variants
have a loss score of 0.4 or greater, then the threshold would be 0.4. Based on this
threshold, the numbers of disease-causing variants with and without the given
mechanism were then counted. Thus, two proportion values were obtained: one for
the fraction of disease-causing variants affecting the property (df), and one for the
fraction of nonpathogenic variants affecting the property (nf). Then, the enrich-
ment E was calculated as:

E ¼
df � nf

df þ nf
: ð3Þ

If E was positive, the property was considered to be enriched, and if it was
negative, the property was treated as depleted in the disease set. Significance to
these enrichment/depletion values was assigned using a one-sided Fisher’s exact
test with subsequent correction for multiple hypothesis testing, using the
Benjamini–Hochberg method85. Since PTMs are known to occur on specific
residues, these were further divided into two separate categories when generating
the counts: when a substitution occurred at the predicted PTM site exactly, and
when it occurred in its neighborhood. Note that although this data set was
dominated by mutations from HGMD, the diseases covered are not strictly
monogenic. Nevertheless, we refer to this set as the data set of Mendelian diseases.

Analyses on neurodevelopmental disorder mutations. A data set of 4324 de
novo mutations identified through whole-exome or whole-genome sequencing of
the individuals diagnosed with ASD, intellectual disability, epileptic encephalo-
pathy, and schizophrenia44,45,50,51,54,56,66,68,69,73,86–101, along with a control set of
1316 de novo mutations from the healthy siblings44,45,54,66,69,91,95,97,99,102 was
curated from the published literature. Genes with mutations shared by both case
and control sets were removed from the analyses. Unlike the MutPred2 disease set,
there was no prior knowledge of which mutations in the case and control sets were
pathogenic or benign. Therefore, MutPred2 pathogenicity scores (at the 5% FPR
threshold; score of 0.79) were used to divide each set into pathogenic and benign
mutations. Only the mutations above this score threshold were considered for
further analyses. To identify structural and functional signatures for each sub-
stitution, property scores were ranked in decreasing order. Then, the fractions of
substitutions with a given property in the top three were compared between the
case and control sets using a one-sided binomial test. The resulting P values were
then FDR corrected using the Benjamini–Hochberg method.

Yeast two-hybrid assays. Candidate genes for experimental validation were
selected based on their MutPred2 scores and the availability of the corresponding
clones in the human ORFeome v8.1 collection49. An additional constraint was
placed: a PPI-related mechanism had to be one of the top ten properties disrupted.
The common SNPs in close proximity to the potential disease mutation were
extracted from dbSNP. We also verified that the selected SNPs are not present in
ClinVar. All genes are stored in ORFeome v8.1 in the pDONR223 vector.

Missense mutations were introduced into the ORFs by the site-directed
mutagenesis using PCR overlap103. The M13 primers were used as the flanking
primers for the PCR overlap reactions, and the sequences for the forward (5′–3′

direction) primers used for the site-directed mutagenesis were as follows:
STXBP1 R551C: GAGCCTGAATGAGATGTGCTGCGCCTACG

AGGTG;
STXBP1 G544D: CATTTTCATCCTTGGGGATGTGAGCCTGA

ATGAG;
STXBP1 G561R: GTGACCCAGGCCAACAGAAAGTGGGAG

GTG;
STXBP1 A113T: CTGACTCTTGTCCAGATACCCTGTTTAA

TGAACTG;
STXBP1 V84I: CATCCGAGAAGTCCATCCACTCTCTCATC;
ZBTB18 R486G: GTACAGCTCGGTGGTCTCGGAACTGGGCA

TCTCC;
ZBTB18 G416R: GTGCTCGCTGTGTAGGAAGACTTTCTC;
ZBTB18 A502T: GGTCAAAAGCGAAACACTGAGCTTGCC;
ZBTB18 T507A: CTGAGCTTGCCTGCTGTCAGAGACTG;
DNMT3A R635W: GAGAAGAGGAAGCCCATCTGGGTGCTG

TCTCTCTTTG.
The conditions for the PCR reaction were as follows: 94 °C for 5 min, 30 cycles;

94 °C for 30 s, 55 °C for 30 s, 68 °C for 1 min in the PCRs 1 and 2, and for 2 min
and 30 s in the PCR 3; and lastly 68 °C for 7 min. The resulting mutant ORFs were
Gateway cloned into the pDONR223 vector, and verified by Sanger sequencing.
Then, the mutant ORFs were Gateway cloned into the pDB_DEST vector and
transformed into yeast for pairwise interactions testing. Briefly, miniprep plasmid
DNA of all DB-X clones, both wt and mutant constructs, were transformed into the
Y2H strain MATαY8930. The interacting partners of the wt proteins were extracted
from BIOGRID104; only the partners that are present in the human ORFeome v8.1
collection were subsequently tested for interactions. The binary PPI Y2H screens of
all DB-X baits against AD-Y preys (i.e., partners) were performed70,105. Briefly, the
DB-X and AD-Y clones were mated in YEPD media for 24 h, and then plated on
Sc-Leu-3AT and Sc-Leu-His-CHX plates (i.e., test for autoactivation) for selection.
Only colonies that grew on the Sc-Leu-3AT plate, but not on the Sc-Leu-His-CHX
plates were counted as positives. All the pairwise Y2H screens were repeated three
times in independent experiments, and only interactions that scored as positives at
least twice were considered as positives (Supplementary Fig. 9).

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
A modified version of the training data for MutPred2 that does not contain variants

exclusively from HGMD is available at http://mutpred.mutdb.org/#dload. Since we used

the professional version of HGMD, restrictions apply to the availability of these data.

These variants are however available under the appropriate license agreement at http://

www.hgmd.cf.ac.uk/ac/index.php.

Code availability
The source code for MutPred2 is available at https://github.com/vpejaver/mutpred2.

Trained models and other data files relevant to the source code are hosted at http://

mutpred.mutdb.org. A web server and standalone version of MutPred2 are also available

at http://mutpred.mutdb.org and http://mutpred.mutdb.org/#dload, respectively.
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