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Inferring the perturbed microRNA regulatory
networks from gene expression data using a
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Abstract

Background: MicroRNAs (miRNAs) are a class of endogenous small regulatory RNAs. Identifications of the dys-regulated

or perturbed miRNAs and their key target genes are important for understanding the regulatory networks associated

with the studied cellular processes. Several computational methods have been developed to infer the perturbed

miRNA regulatory networks by integrating genome-wide gene expression data and sequence-based miRNA-target

predictions. However, most of them only use the expression information of the miRNA direct targets, rarely considering

the secondary effects of miRNA perturbation on the global gene regulatory networks.

Results: We proposed a network propagation based method to infer the perturbed miRNAs and their key target genes

by integrating gene expressions and global gene regulatory network information. The method used random walk with

restart in gene regulatory networks to model the network effects of the miRNA perturbation. Then, it evaluated the

significance of the correlation between the network effects of the miRNA perturbation and the gene differential

expression levels with a forward searching strategy. Results show that our method outperformed several compared

methods in rediscovering the experimentally perturbed miRNAs in cancer cell lines. Then, we applied it on a gene

expression dataset of colorectal cancer clinical patient samples and inferred the perturbed miRNA regulatory networks

of colorectal cancer, including several known oncogenic or tumor-suppressive miRNAs, such as miR-17, miR-26 and

miR-145.

Conclusions: Our network propagation based method takes advantage of the network effect of the miRNA

perturbation on its target genes. It is a useful approach to infer the perturbed miRNAs and their key target genes

associated with the studied biological processes using gene expression data.
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Background
MicroRNAs (miRNAs), a class of ~22 nt endogenous

small regulatory RNAs, can induce the degradation or

translational repression of mRNA transcripts through

sequence-specific binding to their 3’-UTRs [1,2]. To date,

many miRNAs and their target genes have been found to

play important roles in various biological processes. The

dys-regulations or perturbations of miRNA regulatory

networks are closely related to many cellular phenotype

changes and diseases [3,4]. Identifications of the per-

turbed miRNAs regulatory networks are important for un-

derstanding the molecular mechanisms of the studied bio-

logical processes.

To study miRNA functions, biologists usually over-

express or knockdown specific miRNAs in cells and ob-

serve their impacts on cellular states and functions [5,6].

The miRNA regulatory networks are usually cell-type

specific [4], which makes it impractical to test and verify

all miRNAs in all cellular conditions due to the high

experimental cost. Currently, most miRNA-target anno-

tations come from sequence-based predictions without

cell-type or condition specific information [7]. There-

fore, some computational methods are developed to

infer the perturbed miRNAs regulatory networks
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associated with specific phenotype changes by integrating

the sequence-based miRNA-target predictions [8-10] with

the high throughput genome-wide gene expression data.

One popular method is gene set enrichment analysis

(GSEA), which determines whether a pre-defined set of

genes show statistically significant, concordant differences

between two biological states or phenotypes [11]. The

hypothesis is that if the expressions of the miRNA targets

are significantly changed, the corresponding miRNA

should be aberrant or perturbed in the studied process

[12]. In addition, miRNAs generally fine-tune the expres-

sion of target genes [13-15]. The methods (such as GSEA)

which only consider the expression changes of the direct

target genes frequently fail to identify the perturbed

miRNA regulatory networks. The intracellular system can

be regarded as a complex molecular network, some

studies combine the network information and the expres-

sion data to improve prediction performances [16]. For

example, GeneRank algorithm takes gene expression im-

portance into account and employs random walk on gene-

gene interaction network to re-score all genes [17]. The

new score better reflects the systematic importance of

genes in cells and it can also be used to analyze miRNA

target set enrichments. However, the gene expression

changes should be the responses of driver perturbations

on the global gene regulatory networks: when a miRNA is

perturbed, it will firstly impact its direct targets and subse-

quently affect the expression of the downstream genes

through intracellular molecular regulatory networks, and

finally change the global gene expression patterns in cells.

Therefore, a network propagation based model should be

more reasonable for interpreting the global transcriptional

response to miRNA perturbations than the methods only

considering the differential information of miRNA target

genes.

In this study, we proposed a network propagation

based method (NP-method) to identify the perturbed

miRNA regulatory networks from the gene expression

data. It used random walk with restart [18,19] in gene

regulatory networks to estimate the global network ef-

fect of miRNA perturbation on its direct target genes,

and meanwhile use a forward searching strategy [20] to

find the key target genes regulated by the perturbed

miRNAs, which are most likely to generate the observed

global gene expression changes. We tested it on several

gene expression datasets generated from miRNA over-

expression or knockdown experiments. Resuls show that

it can better rediscover the perturbed miRNAs than se-

veral compared methods. Then it was used to infer the

perturbed miRNA regulatory networks in colorectal can-

cer from a gene expression dataset of clinical patient

samples. Several known oncogenic and tumor-suppres-

sive miRNAs, including miR-17, miR-26 and miR-145

were identified by NP-method.

Methods
Overview

The network propagation based method (NP-method) is

developed to infer the key miRNA regulatory networks

whose perturbation is most likely to induce the observed

global gene expression changes (See workflow in Figure 1).

By integrating gene differential expression information

with biological prior knowledge, such as the miRNA-

target regulations and the TF-gene regulatory network, a

novel network-based random walk with restart (RWR)

plus forward searching algorithm is carried out to

calculate the network perturbation effect score (NPES) of

miRNAs and extract their leading-edge target genes. Gene

set permutation analysis is implemented to normalize the

score and estimate the p-value for each miRNA. The soft-

ware is freely available at [21].

Materials

Gene expression profiles

To verify the efficiency of NP-method in identifying per-

turbed miRNAs, we analyzed seven case-ctrl gene ex-

pression datasets, which were generated from the miRNA

overexpression or knockdown experiments, and one of

them was a time-course data involving seven time-point

gene expression observations (Table 1). We also applied

the method on a cancer-normal gene expression dataset to

infer the perturbed miRNA regulatory networks in colorec-

tal cancer. All raw microarray data or series matrixes were

downloaded from the Gene Expression Omnibus (GEO)

[22]. These raw data were firstly quantile-normalized with

the robust multichip average (RMA) method [23]. All gene

expression values were transformed into log2 scale and

their IDs were mapped into Entrez Gene IDs [24].

Prior molecular regulation information

It is well known that some miRNAs belong to the same

families with the same seed sequence, which is typically

defined as position 2–8 from the 5' end of a mature

miRNA and is very important for deciding which targets

the miRNA regulates [25]. The miRNAs within the same

families may regulate similar targets and are often thought

to have interrelated or redundant functions [25,26]. So we

focused our study objects on the miRNA families, which

could also reduce the number of candidates and thus be

better for the multiple testing correction in statistics [27].

Therefore, for the miRNA-target regulation information,

We collected the conserved targets of 153 miRNA fami-

lies from the widely-used miR-target prediction database

TargetScan v6.2 [8].

For the gene regulatory network information, we em-

ployed and compared two networks. One is a high-quality

human gene transcriptional regulatory network, which

comes from an open-access database of experimentally

verified human transcriptional regulation interactions –
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HTRIdb [28]. This network contains 18,310 nodes and

51,871 directed edges. The other one is a protein-protein

interaction (PPI) network, which comes from the PPIs

scored higher than 0.9 in database STRING v9.0 [29]. This

network contains 9,598 nodes and 57,326 edges, and is

often used as a highly-reliable PPI network in systems or

network biology. However, it is known that prior network

knowledge usually contains some noises. To discuss the

influence of the noisy edges, we randomly added and de-

leted 10% edges in the TF-gene regulatory network.

Table 1 Gene expression data analyzed in this work

Dataset Cell miRNA Treatment Sample

GSE33420 CRC (DLD-1) miR-143 Overexpression 4 case + 4ctrl

GSE18625 CRC (DLD-1) miR-145 Overexpression 4 case + 3ctrl

GSE7754 CRC (HCT116) miR-34a Overexpression 2 case + 2ctrl

GSE16568 OVCA (ES-2) miR-22 Overexpression 3 case + 3ctrl

GSE16569 OVCA (OVSAYO) miR-30a/30d Knockdown 3 case + 3ctrl

GSE16572 OVCA (ES-2) miR-182 Knockdown 3 case + 3ctrl

GSE6207 HCC (HepG2) miR-124 Overexpression Case-ctrl, time-course (4 h, 8 h, 16 h, 24 h, 32 h, 72 h, 120 h)

GSE4107 Colonic mucosa NA NA 12 cancer + 10 normal

Figure 1 Overview of the network propagation based method to infer the perturbed miRNA regulatory networks from gene expression

data.
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Methods

Random walk with restart from miRNA targets for modeling

the network effect of miRNA perturbations

In viewpoint of network biology, perturbation of a

miRNA firstly impacts its direct targets, and then the

effect will propagate through intracellular molecular

networks and ultimately influence the expression of all

genes in cells (Figure 1 and Additional file 1: Figure S1).

The exact gene regulatory parameters are unavailable, so

we utilized a method named random walk with restart

(RWR) to make use of the network topology for estima-

ting the network effect of miRNA perturbations [18].

Assume that a gene regulatory network G contains N

genes, and an adjacent matrix A with N*N dimension

represents the gene regulatory interactions. Aij = 0 means

no interaction between gene i and gene j. For the tran-

scriptional regulation network, A is an unsymmetrical

matrix where Aij = 1 means gene j regulates gene i. To

make it nonsingular and reversible, we set its diagonal

elements as 1e-10. While for the PPI network, A is sym-

metrical and Aij =Aji = 1 means gene i and gene j inter-

act with each other. Each column of A was firstly scaled

to have sum 1, and this produced a normalized adjacent

matrix A’.

Besides, suppose a miRNA that has x targets is per-

turbed, then the influence will spread across the network

starting from the target genes. In our RWR model, a

random walker starts from the x seed nodes (i.e. the

miRNA targets) in network G with an initial probability

distribution P0, whose length is N and elements corre-

sponding to the seed nodes are equally set as 1/x while

the others are 0. The walker appears in the network with

a probability distribution P following an iterative rule as

Eq. (1): at each step, the walk is decided iteratively by a

Markov chain with a probability transition matrix A’,

and the restart of the walk at the seed nodes is allowed

with a restart probability r.

Pnþ1 ¼ 1−rð ÞA
0

Pn þ rP0 ð1Þ

When the system becomes stable and the P is con-

vergent, which means Pn+1=Pn, so the steady-state pro-

bability distribution P can be directly worked out as

below without the time-consuming iteration steps:

P ¼ I− 1−rð ÞA
0

h i

−1

rP0 ¼ MP0 ð2Þ

Here P represents the probability of each gene in the

network to be perturbed when the cell gets stable. The

expression of the gene with larger p is more likely to be

influenced by the miRNA perturbation. Under this hy-

pothesis, we calculated a network perturbation effect

score (NPES) for the miRNA, which is defined as the

Pearson correlation coefficient (PCC) between the global

gene perturbed probabilities (P) and the corresponding

gene differential expression levels (DE):

NPES ¼ PCC P;DEð Þ

¼

XN

i¼1
Pi−

�Pð Þ DEi−DE
�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1
Pi−

�Pð Þ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1
DEi−DE

�� �2
q ð3Þ

Here DE can be any measure of the gene differential

expressions between two biological situations, such as

fold-change, t-statistic or z-score, and it is transformed

into the absolute value. N is the size of P and DE. �P and

DE
�

are the mean values. The score NPES quantifies the

degree of miRNA-induced gene perturbed probabilities

matching gene differential expression levels. The larger

the score is, the better the miRNA interprets the ob-

served gene expression changes.

Forward search the leading-edge targets of miRNAs

Averagely, a miRNA have hundreds of predicted targets,

but not all of them are regulated in a specific cellular

condition, and the same miRNA may regulate different

subsets of targets under different conditions. Therefore,

uncovering the key miRNA targets with relation to spe-

cific conditions is very important for understanding the

function and regulatory mechanism of a miRNA. In this

study, we borrowed the concept of leading edge subset

of genes introduced by GSEA, which is a small group of

genes in a specified gene set that can generate a maximal

enrichment score to evaluate the differential expression

of the gene set [11], and defined these key targets of a

miRNA to be its leading-edge (LE) targets, which can

maximize the NPES score and best explain the observed

gene expression changes for the specified miRNA.

In our method, miRNA targets are regarded as the

RWR seeds, so identifying the LE targets is actually opti-

mizing the seed set to generate a best network perturbed

probability P that can maximize the NPES. Here we

propose a forward searching strategy to achieve this

goal. Note in Eq. (2) M depends on the network adjacent

matrix A and the RWR restart probability r. When they

are fixed, M will be a constant matrix and the steady-

state probability P will only depend on the initial prob-

ability P0, which is decided by the seeds. Thus to search

the LE targets turns out to optimize the P0. Our sear-

ching procedures are shown as follows (given a miRNA

with x targets):

1. Let each target be the RWR seed at each time and

calculate the corresponding NPES, then get a score

vector [NPES1, NPES2, …, NPESx];

2. Sort this score vector in descending order and

sort targets accordingly, then get a target rank

[t(1) , t(2) , …, t(x)];
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3. Start from the first target in the rank and add the

rest one by one to compose new RWR seed sets and

calculate the corresponding NPESs, then get a new

score vector [NPES1', NPES2', …, NPESx'];

4. Extract the maximum score and the corresponding

seed set to get the final NPES and the LE targets of

the miRNA (Figure 1 S2).

Gene set permutation analysis to normalize NPES and

estimate p-value

To avoid producing bias towards the miRNAs with large

target set, we performed a permutation-based statistical

analysis to normalize the NPES and assess its statistical

significance. The gene labels of miRNA targets were ran-

domly assigned from whole network genes, and then a

group of new scores were calculated using the rando-

mized miRNA target sets through all the above steps.

This process was repeated several times (e.g. 1,000) to

generate null distribution of the NPES for each miRNA.

Subsequently, we computed the empirical p-value for

the score of each miRNA, which is the proportion of

obtaining NPES in the null distribution not less than the

one actually observed [30]. We implemented the false

discovery rate (FDR) multiple testing correction to

adjust the p-values of all miRNAs with the Benjamini &

Hochberg method [27] using a widely used R package

“p.adjust”. In addition, to eliminate the set size effect, we

normalized NPES as a z-score:

NPESzscore ¼ NPES−NPES
�

Þ=SD NPESð Þ
�

ð4Þ

Here the mean and standard deviation were calculated

from the null distribution. Then the scores of different

miRNAs were comparable, larger score implied the

miRNA took more responsibility for the observed gene

expression changes and should be more important for the

studied biological process. We finally ranked miRNAs

according to the normalized scores.

Comparisons with other methods

We compared NP-method with two other methods on

predicting the perturbed miRNAs. One is the popular

gene set enrichment analysis (GSEA), which determines

whether an a priori defined set of genes shows statisti-

cally significant, concordant differences between two

biological states or phenotypes [11]. We used software

GSEA v2.0.14 Java version to analyze the differential

expression of each miRNA’s target set and estimate the

activity of corresponding miRNA. GSEA only uses the

gene expression information, while the other method,

termed GR.GSEA, further integrates gene-gene network

information. It firstly applies the GeneRank algorithm to

re-score all genes by using both gene differential expres-

sion and gene network information [17], then uses the

new gene scores to execute GSEA and estimate the

miRNA activities.

During the analysis of gene expression data coming

from miRNA overexpression or knockdown experiments,

we sorted miRNAs in descending order according to the

normalized scores (i.e. the NPESzscore in NP-method, the

normalized enrichment score in GSEA and GR.GSEA

generated by the GSEA software), and compared these

methods using the putative rank of the experimentally

perturbed miRNAs. If the desired miRNA is ranked at the

top, it implies the corresponding method can predict well

enough. While analyzing the gene expression data from

CRC patient, we used the area under the receiver ope-

rating characteristic (ROC) curve, named AUC, to eva-

luate the prediction of cancer associated miRNAs. Larger

AUC means better prediction [31]. For this analysis, we

extracted those miRNAs associated with CRC from a

miRNA-disease relationship database called miR2Disease

to be gold standard miRNAs [32].

Results
Rediscovering the experimentally perturbed miRNAs from

gene expression data

To verify the efficiency of identifying the perturbed

miRNAs, we firstly applied our method on several gene

expression datasets generated from miRNA overex-

pression or knockdown experiments (Table 1), and tried

to rediscover the experimentally perturbed miRNAs

through data analysis. We firstly calculated gene expres-

sion fold changes to be the gene differential expression

inputs, and then estimated the network perturbation

effect for each miRNA. We compared the putative rank

of each experimented miRNA using different r in NP-

method. When r = 0, P will be independent on P0, which

means the perturbation effect will be determined only by

the network topology and there will be no difference be-

tween any miRNAs; while when r = 1, P will always be

P0, which means a miRNA only influences its target

genes and there will be no network effect. So we tested

r = 0.1, 0.2, …, 0.9. The results show little differences

(Additional file 1: Table S1), so we used r = 0.5 as default

in this study, which intuitively means that a miRNA’s im-

pact is half on its direct targets and half on other genes

through the network propagation. We compared the re-

sults of inferring the perturbed miRNAs by using the

three different methods, and found that NP-method

nearly always ranked the desired miRNAs better than

the other two methods (See the first three columns in

Table 2, more details can be found in Additional file 2).

GSEA studies the expression of miRNA target set with-

out considering the influence of gene-gene interactions,

so it is not comprehensive enough to interpret the cel-

lular gene expression responses after miRNA perturba-

tions. For the GR.GSEA, although GeneRank integrates
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network information to reprioritize genes, it performs not

so well as NP-method. The latter is more consistent with

the nature of intracellular molecular regulatory mecha-

nism and is a better model for explaining the miRNA-

induced global gene expression changes. In addition, the

results of NP-method using HTRI, HTRI10%add and

HTRI10%del networks shows little differences, which

imply that our method is robust in the transcriptional

regulation network even with a few noisy edges. While

using the STRING network, the method ranked these

perturbed miRNAs not as good as that using the HTRI

network (See the last four columns in Table 2). Therefore,

we recommend the HTRI network, which should be more

appropriate for analyzing intracellular gene expression

regulations than the PPI network, in the future applica-

tions of NP-method.

Except for detecting the perturbed miRNAs, NP-

method can also identifies their key targets, called leading-

edge (LE) targets, which are most likely regulated by the

perturbed miRNAs in the specified condition and give rise

to the observed gene expression changes. Take the CRC

dataset GSE18625 for example, it found 49 LE targets for

miR-145 in the transfected DLD-1 cells. Among them the

Src family member YES1 has been reported as a direct

miR-145 target that plays oncogenic function in colon

cancer [33], FSCN1 and PPP3CA are also directly regu-

lated by this miRNA in esophageal squamous cell carci-

noma and urothelial carcinoma [34,35]. Hence miR-145

may induce the observed transcriptional responses pri-

marily through this regulatory sub-network. Since GSEA

can also extract LE subset of genes, we used Fisher’s exact

test to analyze their enrichments of validated miR-145 tar-

gets that are also related to colorectal cancer. To obtain a

gold standard gene list for this analysis, we firstly collected

89 validated miR-145 targets from miRTarBase [36], which

is one of the most comprehensive databases of experi-

mentally validated miRNA-target interactions in various

cells. Then we employed a literature mining approach to

capture the genes associated with CRC: we automatically

downloaded all PubMed abstracts related to a query

of “(colon OR colorectal) AND cancer” using the NCBI

Entrez E-Utilities and captured 5,943 unique genes/

proteins. By intersecting these two gene sets, we obtain

58 gold standard genes that are proved direct targets of

miR-145 and also functionally related to CRC. In the end,

the LE target set extracted by our NP-method is signifi-

cantly enriched with the gold standard genes although its

size is small, while the p-values of other methods’ LE tar-

get sets are not significant (Table 3). These indicate that

our method can efficiently identify the authentic and

functional targets of the perturbed miRNAs. In fact, the

NP-method always outputs less LE targets than the

GSEA-based methods (Additional file 1: Figure S1), but it

is more convenient for the scientists to select candidate

miRNA targets for experimental dissection.

It is known that miRNAs tend to fine-tune the expres-

sions of genes [13,14], and some miRNAs may regulate

some targets only at protein level but not mRNA level

[37,38]. Considering the systematic propagation effect,

the impact of miRNA perturbation on target genes could

be explained by neighbor genes, so the NP-method

should be appropriate for the condition that the

Table 2 Results of inferring the experimentally perturbed miRNAs using different methods and different networks

Datasets GSEA GR.GSEA NP-method

HTRI HTRI10%add HTRI10%del STRING

GSE33420.CRC.mir-143 a1 (*) 1 (*) 1 (*) 1 (*) 1 (*) 1 (*)

GSE18625.CRC.mir-145 26 (0.033) 19 (0.035) 1 (*) 2 (*) 1 (*) 1 (*)

GSE7754.CRC.mir-34a 98 (0.672) 80 (0.796) 45 (0.484) 40 (0.539) 47 (0.503) 122 (0.99)

GSE16568.OVCA.mir-22 5 (*) 5 (*) 1 (*) 1 (*) 1 (*) 1 (*)

GSE16569.OVCA.mir-30a/30d 77 (0.004) 66 (0.245) 18 (0.011) 30 (0.037) 15 (0.01) 46 (0.192)

GSE16572.OVCA.mir-182 15 (*) 24 (0.044) 5 (0.008) 3 (0.005) 4 (0.007) 9 (0.03)

aPutative rank of the perturbed miRNA according to the normalized score (p-value of the miRNA); *< 0.001.

Table 3 Enrichment results of validated and also CRC related miR-145 targets in the LE target sets

NP-method.LE GSEA.LE GR.GSEA.LE miR-145.target

Validated 6 12 12 25

Other 43 216 282 655

Total 49 228 297 680

ap-value = 0.014 ap-value = 0.194 ap-value = 0.204

aP-value result of Fisher’s exact test using a contingency table integrating the data of the current and the 4th columns, it indicates the statistical significance of

the current LE target set enriching with larger proportion of validated and functional miR-145 targets than the background target set.
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expressions of miRNA targets are not markedly changed

but the downstream genes are. Take the dataset GSE7754

as an example, by comparing gene expressions of the

HCT116 cells with and without enforced miR-34a expres-

sion we found that the fold change of miR-34a targets

were too indistinctive to be distinguished from the back-

ground genes (Figure 2A). From the putative ranks of

miR-34a in Table 2, we see that the GSEA-based methods

hardly predict this miRNA but NP-method performs

much better. Figure 2B shows the fold changes and NPESs

of the miR-34a targets. According to the multi-target-

based NPESs (red dots), we extracted 36 leading-edge tar-

gets that appear at and before the peak point. In the figure

we see a special LE target (CUX1), whose fold change is

small (marked in a red circle) but NPES is relatively large.

To illustrate the network perturbation effect of this target

gene, we investigated its surrounding gene regulatory

network (Figure 2C), where only CUX1 was target of

miR-34a. And we found that CUX1 had a small fold

change (0.138858, in log2 scale) but three downstream

genes (KIF23, ECT2 and RACGAP1) had remarkable fold

changes. Besides, CUX1 is a homeodomain transcriptional

regulator known to be involved in the development and

cell cycle progression, and its activity is associated with in-

creased migration and invasiveness in numerous tumor

cell lines including HCT116 or resistance to apoptosis in

pancreatic cancer [39,40]. And some other studies have

reported that KIF23, ECT2 and RACGAP1 play important

roles in the cell cycle and cell proliferation [41,42]. These

findings indicate that miR-34a can regulate the cancer

process in an indirect and inconspicuous way, and it can

be discovered only by our NP-method.

Analyzing time-course gene expressions in HepG2 cells

transfected with miR-124

Since NP-method can identify key target genes of miRNAs,

exploring the similarities and differences among the key

targets of the same miRNA under different situations can

further help to understand roles of miRNAs in different

context. Besides, it is said that the influence of miRNA per-

turbation on gene expression is time-dependent [43]. To

check this and further test our method, we applied it on a

time-course gene expression dataset from a miRNA trans-

fection experiment (GSE6207). In detail, pre-miR-124 and

negative control miRNA duplex were transfected into

HepG2 cell line using the Reverse Transfection protocol

recommended by Ambion, then the paired gene ex-

pressions at 7 time points (4, 8, 16, 24, 32, 72, 120 h) were

measured using Affymetrix HG-U133Plus2 microarray

platform [44]. To avoid noise signals, we firstly filtered the

low-expressed genes using a rank-based strategy: the genes

whose expression values ranked at the lowest 20% in more

than 80% samples were removed. This process generated

an expression profile containing 15,444 genes, whose fold

changes at each time point were then calculated to be the

differential expression inputs of the three methods.

Results demonstrate that NP-method ranks miR-124

much better than GSEA and GR.GSEA at 4 h and slightly

better than them at 120 h, and in the middle period all

methods perform very good (Table 4). According to the

prediction of miRNA-target interactions in TargetScan

[8], there are 1,564 conserved target genes for miR-124

family. Figure 3A shows the clustering diagram of the ex-

pression fold change of all miR-124 targets, from which

we see at 4 h after miRNA transfection the expressions of
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Figure 2 A case study on the miR-34a overexpressed HCT116 cells. (A) Fold change of all genes and miR-34a targets. The p-value is estimated

by K-S test. (B) Fold change and NPES score of miR-34a targets. Blue dot represents the absolute value of gene expression fold change, which is

normalized by the maximum of all genes; Green dot represents the NPES computed by using single target as the RWR seed in the step 1 of forward

searching, and all the miRNA targets are sorted according to this score; Red dot stands for the NPES generated by using multiple targets as the RWR

seed, the peak value is the optimal score and those targets appearing at and before this point are the leading-edge targets. (C) Neighbor sub-network

of the miR-34a target CUX1. Gene name and expression fold change are labeled in each node.
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targets vary not much, and as time goes on more and

more targets’ expressions are markedly repressed, while at

120 h their differential expressions return indistinctive.

Maybe at the very beginning (4 h) the transfected miRNA

cannot rapidly and greatly affect the mRNA concen-

trations of target genes, but their protein translations are

directly repressed and further influence other genes within

network, so the NP-method performs much better than

the other two methods due to its innovative consideration

on the network propagation effect. However, after five

days (120 h) the influence of miRNA transfection fades

away because of the molecular degradation and some cel-

lular adaptation or robustness mechanisms [15,45,46],

then all methods cannot well predict miR-124, but still the

NP-method ranks it best. Since the score NPES represents

to what degree the miRNA-induced network perturbation

can explain the gene differential expression levels, so we

checked the NPES of miR-124 at every time point and

found it got the maximum at 24 h (Figure 3B), and also

we found most overlaps between consecutive LE target

sets at 24 h (Figure 3C). Maybe at this time period, the

impact of the miR-124 transfection gets sufficient and

stable in the HepG2 cells, and thus all the methods are

efficient in rediscovering the overexpressed miRNA from

gene expression data.

At the same time, NP-method identified 188, 165, 172,

184, 168, 197 and 231 LE targets respectively at the seven

time points (Figure 3C, see more details in Additional

file 3). These LE targets mostly have very large fold change

ratios among all the miR-124 targets and also they can ge-

nerate the largest NPES score (Additional file 1: Figure S2),

which means that these key targets are principally regu-

lated by the miRNA and contribute a lot to the observed

gene expression changes. There are 523 LE targets in total,

including some known functional targets of miR-124. For

example, the oncogenes ROCK2 and EZH2 that are direct

targets of tumor-suppressive miR-124 in hepatocellular

carcinoma [47], and the IQGAP1 who is directly repressed

by miR-124 in HCC cell lines and plays important func-

tions in the cell adhesion and motility [48]. We analyzed

the functional enrichment of all these 523 LE targets using

the DAVID Functional Annotation Tool [49], and found

Table 4 Putative ranks of miR-124 at each time point after its transfection

GSE6207.HCC.miR-124 4 h 8 h 16 h 24 h 32 h 72 h 120 h

NP-method a2 (*) 1 (*) 1 (*) 1 (*) 1 (*) 1 (*) 15 (0.021)

GSEA 19 (0.081) 2 (*) 1 (*) 1 (*) 1 (*) 2 (*) 19 (*)

GR.GSEA 15 (0.04) 1 (*) 1 (*) 1 (*) 1 (*) 1 (*) 20 (*)

aPutative rank of miR-124 according to the normalized score (p-value of miR-124); *< 0.001.
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Figure 3 Analysis on the time-course data of miR-124 transfection. (A) Clustering diagram of miR-124 target expression fold changes. (B) NPES

of miR-124 at each time point. (C) Size and overlap number of the LE target sets of miR-124. Blue bar represents the LE target set at current time point;

red bar represents the overlap between the LE target sets of current and next time point. (D) Fold change patterns of the 7 common LE targets of

miR-124 that appear at every time point.
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they were significantly enriched in the protein localization,

transport and signal transduction functions (Additional

file 1: Table S2, adjusted p-value Benjamini ≤ 0.05). Besides,

there were seven common genes shared by every time-

point’s LE target set. These genes should be regulated

by miR-124 all the time after its transfection. They are

CDK4, CD164, AMMECR1, RPIA, FAM177A1, RRBP1 and

MBOAT5. The fold change patterns of these genes look

very similar (Figure 3D), and according to the miRTarBase

[36] the first five genes have been validated as direct targets

of miR-124, so we guess RRBP1 and MBOAT5 are also its

true targets in the HepG2 cells, which deserve further

experimental verification.

Uncovering the perturbed miRNA regulatory networks in

colorectal cancer

Above analyses indicated that NP-method could identify

the perturbed miRNAs as well as the leading-edge targets

from the gene expression data of miRNA-perturbed can-

cer cell lines. Then we applied it on a gene expression

dataset of clinical patient samples to infer the perturbed

miRNA regulatory networks in colorectal cancer. The

dataset GSE4107 profiled gene expressions from colonic

mucosa cells of 12 patients and 10 healthy controls [50].

We firstly filtered low-expressed genes using the same

strategy as the above time-course data analysis, and this

left 15,996 genes. Then we calculated the gene expression

fold change and respectively applied NP-method, GSEA

and GR.GSEA to infer CRC associated miRNAs. From the

results of each method, we obtained a list of miRNA

families sorted in descending order according to the out-

put normalized scores. In the meantime, we searched

“colorectal cancer” in the miR2Disease, which is a ma-

nually curated database providing a comprehensive re-

source of miRNA deregulation in various human diseases,

and got 89 CRC related miRNAs. In our work the miRNA

family that contains at least one cancer miRNA was

marked as a positive family, this produced 58 CRC asso-

ciated miRNA families (See details in Additional file 4). Fi-

nally, we applied R package “pROC” [51] to calculate the

sensitivity (i.e. true positive rate) and 1-specifity (i.e. false

positive rate) along the miRNA family lists, and then drew

the ROC curves and calculated their AUCs (Figure 4A).

Results showed that NP-method had the largest AUC and

thus best predicted the CRC related miRNA families.

From the results (More details can be found in

Additional file 4) we selected 10 most significant miRNA

families with p-value < 0.01 to be the perturbed key

miRNAs, of which most had been reported playing im-

portant roles in the colorectal cancer progression. For

example, the miR-27a [52], miR-17 [53], miR-155 [54],

miR-9 [55] and miR-23a [52] can promote CRC cell pro-

liferation, invasion or motility, and the miR-26b [56],

miR-145 [57], miR-93 [58] and miR-23b [59] can inhibit

CRC tumor growth, proliferation and induce apoptosis.

Together with their LE targets we constructed a miRNA

regulatory network in Figure 4B, where the 10 diamond

nodes represent the miRNA families and 538 circular

nodes are the LE target genes. The colors of genes

characterize their expression fold change: red means sig-

nificant up-expression (fold change ≥ 1), green means

significant down-expression (fold change ≤ -1) and pink

means not significant change. In the network, miR-9 has

the largest out-degree and regulates 142 genes, which

again highlights its importance in CRC development;

while ACVR1C, also known as ALK7, has the largest in-

degree of 7 and is down-expressed in the studied patient

samples (log2 fold change −0.91), it is a type I receptor

for the TGFB family of signaling molecules and has been

found inducing apoptosis through activating SMADs and

MAPKS in tumor cells [60]. Then we also applied the

DAVID tool to analyze the functional pathway enrichment

of these 538 LE target genes, and found they were signifi-

cantly enriched in 5 KEGG pathways (Benjamini ≤ 0.05,

Figure 4C), which are all directly relevant to the cancer

development and progression. All these results indicate

that our method successfully finds out the key miRNA

regulatory sub-network that is functionally perturbed or

dys-regulated in colorectal cancer.

Discussion
We hypothesize that the miRNA’s impact on target genes

should propagate across the whole gene network and this

impact could be better interpreted by integrating the

differential expressions of all network genes not just the

miRNA target genes. So we propose a novel network

propagation based method (NP-method) to infer the per-

turbed miRNA regulatory networks using the differential

expression information of global gene network. It executes

random walk with restart (RWR) from the miRNA targets

in the gene regulatory network to model the intracellular

propagation effect of the miRNA perturbation, and mean-

while adopts a forward searching strategy to find the

leading-edge targets that are principally regulated by the

perturbed miRNAs and result in the observed global gene

expression changes.

The analyses of the miRNA perturbed cell line data

demonstrated that NP-method could detect perturbed

miRNAs from gene differential expression profiles better

than GSEA and GR.GSEA. Except for the prediction of

pivotal miRNAs, another advantage is to extract the

context-specific leading-edge targets for miRNAs at the

same time. Even those low-key but functional targets,

whose differential expressions are not much prominent

but their down-stream gene expressions are significantly

changed in response to the miRNA perturbation, can be

discovered by our method. For example the miR-34a

regulates CUX1 in HCT116 cells. Besides, the analysis of
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time-course gene expressions from the miR-124 trans-

fected cells revealed that the influence of miRNA

perturbation in cells might be time-dependent and

our method was more suitable for analyzing the

perturbation effect at early time than other methods. In

brief, NP-method can help to uncover the perturbed key

miRNA regulatory networks in cellular processes of

interest.

ROC curves of predicting CRC related miRNAs

Specificity

S
e
n
s
it
iv

it
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

NP-method
GSEA
GR.GSEA

AUC:
0.6906

0.6086

0.6307

A

B

0 0.5 1 1.5 2 2.5

Adherens junction

Pathways in cancer

Regulation of actin cytoskeleton

Focal adhesion

ECM-receptor interaction

Top enriched KEGG pathways with adjusted p-value < 0.05

-log10 (Benjamini)

n=13

n=19

n=19

n=24

n=10

C

CYR61
DPYSL2

NR4A2

MAB21L2
MEIS1

MAP7
GREM1NRARP

CTSA

LRP4

TNS1

RECK

NUDT4

PBX3

ARHGEF3

TIMP3

RGMA

LMO3

PAM

PSIP1

RELA

CAB39
SPOCK1

MYLK

TSHZ3

RGL1

DYRK2

RAPGEFL1

PHLPPLTMEM9B

RESTKLF3

JAZF1

HEG1

SOCS6

TCF7L2

MAP1B

ZAK
MIER3 RCOR1

GLS

C1orf34PSEN1

FAM117A

TMEM87B
KLF5

ZEB2

CLMN

MYO1D PANK3
PKD2

BTBD3

DKFZP761M1511

SNF1LK
SACS

ARL4C

SDC1

EDG1 BCL6

BNC2

GPR124

DIP

C14orf129

CDX2

HISPPD1

ID4

SRF

TNFRSF21

LYVE1

RNF128

GPD1L
FZD5

EFNA1

GPD2
RHOQ

COL4A1

WASF3
SULF1

ARHGAP29

MTCH2
SNX30

ANGPTL1

SASH1TMEM100

IRF1

CPDACVR1C

ANKRD43

BHLHB2 SLC9A2

YES1

RTN1

FZD7

TCEAL1

SYNPO2

GPM6A

ARHGEF10

ABHD3

CFL2

RASSF2

DIP2C

KLHL5

PODXL

MPP5

ZFPM2

RBM47
MEST

NAPE-PLD

WASL

PPARGC1A

CXCL12

DDEF2

TCF7L1

TMEM16F
PBK

TOX3

P2RX4
SLC46A3

GUCY1A3

KIAA1522

ERBB3
SYTL4

CDCA7

SLC16A9

HLF

RNF150

CHMP2B

PPAPDC2

RUNDC3B

PTBP2
OPN3

ROD1

MGC13057
TNFAIP8

FLNB

PEA15

OLFML3

STON1

BAIAP2L1

MGP

OGNSLC35F5

GCNT1

GPM6B

FGF7

TNC

PRRX1
CEBPB CSF1R

SLC25A24

PIAS3

CNNM4

CALB2

ADAM10

COL18A1
CENTG2SLC25A43

MYOCD

SLC35B3

ATP1B1

GPC6

PPP1R12B

THBS4
PRIMA1

ADAMTS1

NUDT12

C4orf16 GATA6

LRRK2 LRRC59

F13A1

BOC

LNX2

ETNK1

FOXA1
C10orf56

ELMO1

RBMS1

GALNT7
ARHGEF6 BTG2KIAA0528

MAN2A1

GRAMD1C

STK39

SLC12A2

EGR3

PLEKHH1
SLC35A3

ITPR1

COL1A2

PFKFB2

PLOD2

COX5A

miR-26

SHROOM2
TGFBR3FAM108C1

RBPMS2

SLC4A4

PFKFB3

LPHN2

MYH10

CTH
HIP2

HNF4G

PAG1

KIAA0922
CASP7

ELK3

MGAT4A

ATP1A2

FNBP1L

PDCD4
ERLIN1

ABI3BP
USP53

MEIS2

APCDD1
CMTM4

SFRP1 SATB2 FOSB

NAP1L5

TMEM135

KLF4

TP63
RBM35A

ADAM19

KIAA1737

ATP5G3
FNBP1

MN1ZFP36

GOLM1

PKIBBAG2

SOX8

ATP2B1

PHLDB2 SLC39A11 CSRP2

ITGA2

STMN2

ITGA5

A1CF

GNG12

SLC1A1

ABHD5

ZNRF2
SEMA6D

TMEM109
CALD1

PLS1

SERINC5

TFRC

KCNJ2
AUH

ANK2

MSN

HMGCR

SNAI1

VEGFC

HBEGF

AXUD1

TFAP2B ATP10B

IER3

ADORA2B
ACTA2

RELN

KBTBD11

SLC16A1

RAB11FIP1

SDPR

FBLN5

MAGI3

CDS1

PPARG

CDH5

ANK3

STYK1

ST14

TSPYL5

FBLN2

EDEM3

LBH

NRBF2

miR-27

PANK1

GALNT3

SLC38A4

AYTL2

KLHL29

COL21A1

SH3BGRL2

FAM59A

C20orf194

FLRT2

SLC20A1

PPAP2B

CA12

PIP5K1B

PDZK1IP1

HOOK1

FBN1

LITAF

EML1

RBM24

SP7

CHP
TMOD3

HHEX
NT5C3

HOXB6

SOX9

DKFZP686E2158

EBF1

CAV2

PMP22

C6orf115

CFTR

MPZL2

TCEA3

MYO6

TMOD1

NUAK1

AKAP12

TSPAN6

USP30

CRISPLD2

NDFIP2

B3GNT5

LRRC31

PLCE1

RBPMS

MGAT4B

SWAP70

SLC35D1

ANKRD25

NRXN3

PSD3

miR-145

MKRN1

VDR

CORO2A

PAFAH2

FEM1C

SLC22A5

MTUS1

FAT4

PNMA1

MAG1

NEU1

CA2

GLCE

ADRA2A

GAP43

RAB8B

MYO5C

KIAA1804

MFAP5

TNFSF13B

PNRC1
KCNK5

REEP1

ATP2B4

TTC7B

GMFB

GOLPH3L

CLCN3
MRLC2

miR-23

FOXF2

LATS2

TRHDE

RDX

HN1

miR-93

GALNT12

CEBPA

IDH1
NEFL

GHITM

KCNIP4

APOLD1

CDC14B

GOT1

PPP1R14C

PRC1

NDRG1

KIAA1450

ENTPD1

SNX7

miR-9

TUFT1

SHROOM3

ATP8B2

COL4A2

AP1S2

CD46

GCLM

EFEMP1

PDCD6IP

JUP

RGS1

COL15A1

FSTL1

CXCR4

COLEC12

VCL

FLJ11171

CNTN3

SDC2

CTNNA1

AMOTL2

FRMD6

TRIM2

PIGZ

RCAN2

NR5A2

LHFP

VAV3

CDH1
GLDN

AMMECR1

SRGNSLC20A2

DACT3

ENAH

FLJ21986

PRELP

RAB31

ASPN

ERMP1

ATP9A

CXADR

OVOL2

TMEM200B

PTER

CDKN1C

CILP

MYO5B
SLC25A20

NUAK2

PDE4B

FRAT2
MTM1

NDRG4

MGC4172
KIAA1598

TRIB2

CTGFPECAM1

FLVCR1KCNK1

PCK1

PTGS2

FLJ14213

GMDS

NID1

HPGD

CEBPG

NRAS

KIAA1754

TOM1L1

SPP1

KIAA0802

PRICKLE2

LCP1

POF1B

EPS8

UEVLD

CNN1

EXPH5

TSPAN7

PLP1

HAND2

CYBRD1

miR-543

TMEM168

CX3CL1

STK38 TIMP2

SLC41A1

EGR2 ZBTB4

CD69
TGFB1I1

ITPKB

COQ2

KCNMA1

ELAVL4

COL16A1

NBEA

EGR1

NR3C1

PHOX2B

TCF4

FOXF1

CANT1

GABBR1

DMN

MPDZ

CRTC3

SH3BP5

miR-17

FAM129A
RASL12SEMA5A

LIMA1

KIF5C

PDGFRBVGLL3
ZKSCAN1

FAM110C

NME4

SYT1

KCTD12
SMAP1L

HK2

ATP8A1

CSF2RB

CDX1

PKP2

ITGA6

THBS2

TMEM47

HOXD1

MYB

miR-155

SPG20

RBMS3

C5orf30
C8orf4

ChGn

RAB34

FRYL
EGLN3

FAM13C1

EHF

ATP8B1

FOS

MBOAT1

EVI2A

RSPO2

MAMDC2

miR-181

miRNA

LE target

fold-change >= 1

-1 < fold-change < 1

fold-change <= -1

Figure 4 Inference of perturbed oncogenic miRNA regulatory network in colorectal cancer. (A) ROC curves of predicting CRC related

miRNAs (families) using different methods. (B) The perturbed key miRNA regulatory sub-network in CRC. Genes are colored on the basis of their

expression fold change. (C) Enrichment results of the 538 LE target genes in KEGG pathways. The number of LE genes included in each pathway

is shown beside the bar.

Wang et al. BMC Bioinformatics 2014, 15:255 Page 10 of 13

http://www.biomedcentral.com/1471-2105/15/255



When analyzing the gene expression data of CRC

patients, NP-method predicted the disease associated

miRNAs better than other methods, which again proved

its efficiency. And based on the results we successfully

built a key miRNA regulatory sub-network that should be

perturbed and play important functions in colorectal can-

cer. However, it is known that cancers are usually caused

by multiple factors not just a single molecular deregula-

tion like a miRNA overexpression or inhibition, so explo-

ring the synergetic effect of a miRNA group should be

more reasonable and meaningful. In this work, the NP-

method considered the miRNAs or miRNA families as in-

dependent determiners of global gene expression changes

and prioritized them according to the estimated network

perturbation effect score (NPES). The top-ranked miRNAs

are more likely to cause the observed gene differential

expressions and are considered more important for the

studied cellular process. In the future, we will take the

miRNA cooperative regulation into account and try to

infer the combination of miRNAs for better deciphering

the miRNA-mediated cancer pathologies.

NP-method is not only applicable for analyzing miRNAs,

but other problems about multiple interventions on a net-

work are also theoretically appropriate. For example, some

small-molecule drugs targeting several genes, proteins or

enzymes in molecular networks [61]. So our approach can

also be used to study the transcriptomic influence of the

pharmacological interventions in cells. And with the in-

creasing concerns on multi-target therapeutics [62,63], we

believe that our method can be further developed and help

to design high-efficient combinatorial therapies for com-

plex diseases.

Conclusions
Here we developed a network propagation based method,

which took advantage of the differential expression infor-

mation of global gene network, to infer the perturbed

functional miRNAs as well as their leading-edge targets.

We demonstrated its reliability and usefulness on several

cell line datasets and a clinical cancer dataset. Taken to-

gether, our method is a useful approach for studying the

miRNA-mediated molecular mechanisms of complex bio-

logical processes.
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