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Abstract

Background: The microbiome has been shown to affect the response to Immune Checkpoint Inhibitors (ICIs) in a

small number of cancers and in preclinical models. Here, we sought to broadly survey cancers to identify those in

which the microbiome may play a prognostic role using retrospective analyses of patients with advanced cancer

treated with ICIs.

Methods: We conducted a retrospective analysis of 690 patients who received ICI therapy for advanced cancer. We

used a literature review to define a causal model for the relationship between medications, the microbiome, and ICI

response to guide the abstraction of electronic health records. Medications with precedent for changes to the

microbiome included antibiotics, corticosteroids, proton pump inhibitors, histamine receptor blockers, non-steroid

anti-inflammatories and statins. We tested the effect of medication timing on overall survival (OS) and evaluated

the robustness of medication effects in each cancer. Finally, we compared the size of the effect observed for

different classes of antibiotics to taxa that have been correlated to ICI response using a literature review of culture-

based antibiotic susceptibilities.
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Results: Of the medications assessed, only antibiotics and corticosteroids significantly associated with shorter OS.

The hazard ratios (HRs) for antibiotics and corticosteroids were highest near the start of ICI treatment but remained

significant when given prior to ICI. Antibiotics and corticosteroids remained significantly associated with OS even

when controlling for multiple factors such as Eastern Cooperative Oncology Group performance status, Charlson

Comorbidity Index score, and stage. When grouping antibiotics by class, β-lactams showed the strongest

association with OS across all tested cancers.

Conclusions: The timing and strength of the correlations with antibiotics and corticosteroids after controlling for

confounding factors are consistent with the microbiome involvement with the response to ICIs across several

cancers.
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Background
Treatment with Immune Checkpoint Inhibitors (ICIs)

has improved patient outcomes across a wide variety of

cancers. Not all patients respond to these drugs and

there is a need to identify biomarkers of response. Three

recent studies have shown that microbes are associated

with response and overall survival (OS) in renal cell car-

cinoma (RCC), non-small cell lung cancer (NSCLC) and

melanoma [1–3]. The microbiome may be a key player

in response to ICI therapy and a potential biomarker of

treatment response.

The microbiome is known to interact with the im-

mune system, but how it affects response to ICIs is not

fully understood. The effectiveness of ICI treatment re-

lies on active T-cell infiltration of a tumor; microbes

have been associated with increased Tumor Infiltrating

Lymphocytes in an IL12-depended manner [2]. How-

ever, other immune cells dampen response to ICIs such

as myeloid-derived suppressor cells and FOXP3 &

CD4 + CD25+ T-regulatory cells, the levels of which

have also been associated with the microbiome [4].

Moreover, the microbiome has been associated with an-

other, systemic form of immune repression characterized

by the production of prostaglandins [5–8].

Several medications commonly used during routine

oncologic care and ICI treatment can influence inflam-

mation pathways and/or the microbiome. Corticoste-

roids (CS) affect both of the aforementioned T-cell

subtypes and the prostaglandin-related inflammatory

pathways [9]. Additionally, antibiotics (ABx) have a dir-

ect effect on the microbiome by killing or halting the

growth of bacteria. Proton pump inhibitors (PPIs), hista-

mine 2 blockers (H2Bs), non-steroid anti-inflammatory

drugs (NSAIDs), and CS have also been associated with

changes in the microbiome but, in contrast to antibi-

otics, this mechanism is indirect [10]. PPIs, by inhibiting

gastric acid secretion, alter the pH of the gut and change

the number and types of bacteria that pass through the

stomach [11]. Notably, if the taxa enriched by the PPI-

induced pH change are also important for response to

ICIs, then PPI treatment during ICI may influence clin-

ical outcomes. The effect of other medications on clin-

ical response may be challenging to interpret given that

the effects may influence both the microbiome and ICI

response.

In order to disentangle these complex interactions, we

created a model of the relationship between patient

characteristics, medications that affect the microbiome,

inflammation, and survival. Second, we performed a

retrospective analysis of patients who received ICI

therapy for advanced cancer between 2011 and 2017 in-

cluding medications with known effects on either the

microbiome or its pathway toward affecting ICI re-

sponse. Third, we estimated the association for each

medication with OS. Fourth, we analyzed the effects of

medications longitudinally, in order to decouple con-

founding variables at different time points. Fifth, we con-

trolled for variables that broadly describe differences in

baseline statuses (e.g. Eastern Cooperative Oncology

Group performance status (PS)) of individuals who re-

ceived concomitant medications and those who did not.

Sixth, we compared the associations across several can-

cers, for which the medications are prescribed in subtly

different ways that can be leveraged to gain further

insight into the causal effects. Finally, we related these

results to the microbes shown to be enriched or depleted

in individuals who respond to ICIs. The combination of

these strategies gives layers of support to defining the

role of the microbiome in the context ICI treatment of

cancer.

Methods
Causal model

We performed a literature review of the relationship be-

tween the microbiome and response to ICIs and medica-

tions that affect the microbiome (Fig. 1, references in

Figure S1). From these references, a causal model was

then constructed such that the nodes correspond to ob-

servable endogenous variables (Vi), as a subset of a set of

U exogenous and unobserved variables that affect the
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relationship between the microbiome and OS in pa-

tients treated with ICIs. Directed edges denote a rela-

tionship between variables when the following

conditions are met: (1) there is a reported relation-

ship between variables in which both variables were

either observed or defined by intervention, and (2)

the relationship cannot be explained through using an

existing path. For example, Gopalakrishnan et al. re-

ported a correlation between the microbiome and ICI

response (1). This relationship exists in the graph as

mediated by the nodes Microbiome → T-cell Medi-

ated Inflammation → ICI Response, therefore no edge

is drawn directly from Microbiome → ICI Response.

The resulting directed acyclic graph was constructed

using the igraph and dagitty packages in R [33, 34].

Retrospective data collection

We identified patients with advanced cancer treated be-

tween 2011 and 2017 at the Ohio State University

Comprehensive Cancer Center/Arthur G. James Cancer

Hospital (OSUCCC-James) who received at least one

dose of ICIs as part of an IRB approved retrospective

study (OSU-2016C0070, OSU-2017C0063). Patient data

were collected and housed in REDCap [35]. Medication

timing, dose and names were collected from the elec-

tronic medical record information warehouse and vali-

dated by manual chart review. Additional diagnoses

prior to ICI start were manually recorded from the

Problem List, Medical History, and Encounter Diagnoses

in the electronic medical record and compiled using the

Charlson Comorbidity Index (CCI) [36], which includes

record of myocardial infarction, congestive heart failure,

peripheral vascular disease, cerebrovascular disease, de-

mentia, chronic pulmonary disease, connective tissue

disease, ulcer disease, mild liver disease, diabetes, hemi-

plegia, moderate or severe renal disease, moderate or se-

vere liver disease (e.g., cirrhosis with ascites), or HIV

AIDS.

Medication history curation

ABx and CS data were retrieved from the information

warehouse within 180 days of ICI start. All medications

matching a comprehensive list of steroid generic and

brand names were collected with dates and routes of ad-

ministration. Medications were filtered to those con-

firmed to be administered and the results checked

against a manually-curated subset of the records.

Survival analysis

Overall survival (OS) was reported in days from the ini-

tiation of ICI to the date of death or last follow-up. All

univariate and multivariate analyses were conducted

using the survminer package in R [37, 38]. Univariate

analyses used Kaplan-Meier survival curves with log-

rank tests. Multivariate analyses used Cox-Proportional

Hazards models, defining the hazard function for each

patient k as:

Fig. 1 Causal model for the effect of concomitant medications on Immunotherapy Response and Overall Survival. Numbers along edges refer to

references supporting the connection. Hypothesized dominant pathways are shown in heavily-weighted edges [1–3, 9–32].
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hk tð Þ ¼ h0 tð Þe
Pn

t¼1
β1Aþβ2Sþβ3Bþβ4Eþβ5Gþβ6Tþβ7Xf g

Where h(t) is the hazard function at time t = 1 to n,

A is a binary indicator of antibiotic use (+/− 28 days

from start of ICIs), S is a binary indicator of cortico-

steroid use (+/− 28 days from start of ICIs), B is BMI,

E is the Eastern Cooperative Oncology Group per-

formance status score [1–5], G is age, T is stage and

X is sex. We constructed the models using the sur-

vival package and evaluated model fits using a likeli-

hood ratio tests in R [39–41].

Timing analysis

A 30-day sliding window was used to evaluate the effect

of medication timing on the association with OS. Pa-

tients prescribed medications within the window were

compared to a cohort of individuals who were not pre-

scribed those medications within 180 days before or after

the start of ICI treatment. Kaplan-Meier survival curves

were used to estimate a hazard ratio (HR) of association

with each treatment window, incremented by single-

days, e.g. prescribed 180–150 days before ICI start vs no

prescribed medications, and then prescribed 179–149

days before ICI start vs no prescribed medications. HRs

and confidence intervals were calculated in the survival

package and plotted with ggplot2 in R [40–42].

Antibiotics and corticosteroids classes

ABx and CS were collapsed into categories by DrugBank

v5.0 accession numbers [43]. HRs were estimated for

medication class and cancer combinations if the total

sample set included at least 20 individuals. Cox Propor-

tional Hazards models for the effects of ABx and CS

class were used to allow for simultaneous estimation of

the effects of more than one class, when applicable. Plots

showing prescriptions of more than one class were cre-

ated with the UpSetR package in R [44].

Regularized cox regression

Regularized Cox survival models for each cancer were

implemented in the glmnet and coxnet packages in R

[45, 46]. We optimized the regularization parameter by

coordinate descent via 10-fold cross-validation and then

tested the robustness of the parameter selection and

resulting covariates with 1000 bootstrap replicates of dif-

ferent random samples of the dataset [45, 46].

Reproducibility

Scripts to reproduce all figures and analyses can be

found at https://github.com/spakowiczlab/co-med-io.

Results
Causal model

The relationships between clinical variables, medica-

tions, the microbiome, ICI response and OS are strongly

interconnected. Our literature review to predict their re-

lationships (Fig. 1) led to several hypotheses testable

within retrospective data. First, medications that affect

ICI response via the microbiome will proceed through

T-cell mediated inflammation (i.e. ABx→Microbiome

→ T-cell mediated inflammation → ICI Response →

OS). Second, the use of these medications is driven by

comorbidities, which must be controlled for. Here we at-

tempt this using the Charlson Comorbidity Index (CCI)

to capture and simplify several disease states [47]. Non-

ICI-response effects on OS proceed through Prostaglan-

din Inflammation. For example, the path CCI→ABx→

Microbiome → Prostaglandin Inflammation → OS may

include sepsis, through which inflammatory processes

may lead to low blood pressure or multi-system organ

failure and therefore OS. Third, CS and ABx may have

additive effects on ICIs through a collider effect on T-

cell mediated inflammation (i.e. ABx→Microbiome →

T-cell mediated inflammation ← CS). Finally, the

clinical variables of stage, BMI, and age, and medications

such as CS confound the relationship between the

microbiome and ICI response, mediated by

Prostaglandin-based inflammation (which itself is a col-

lider), and therefore must be controlled for in order to

infer the role of the microbiome on OS (Fig. 1).

Patient characteristics

Retrospective analysis of electronic medical records from

2011 to 2017 at the OSUCCC-James identified 690 pa-

tients treated with ICIs (Table 1). Most (76.6%) had a PS

of 0 or 1 and 0–1 co-morbidities (CCI 0–1, 66.7%). The

most common diagnoses were melanoma (28.5%) and

non-small cell lung cancer (NSCLC) (23.4%). Cancers

represented by fewer than 20 patients were categorized

as “Other” (23.4%). The majority of patients (90%) had

metastatic disease. ICI treatments included nivolumab in

52.8% of patients, ipilimumab in 18.0% and pembrolizu-

mab in 15.1%.

Microbiome and inflammation-related concomitant

medication use

Among the medications included in the causal model,

ABx, CS, PPIs, H2Bs, statins and NSAIDs were identified

in this cohort. ABx were prescribed in 36% of patients

within 28 days of the start of ICIs (Table 1). The most

commonly prescribed ABx were β-lactams (Figure S1).

CS were prescribed in 40% patients within 28 days of the

start of ICIs. The most commonly prescribed CS were

dexamethasone and prednisone (Figure S2). PPIs were

prescribed in 37% of patients. Some patients received a
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single medication and no others during the study period,

however, more frequently patients received several

medications, e.g. CS with PPI and ABx, consistent with

prophylaxis for developing an ulcer or pneumonia

(Figure S3). The analysis strategy first tested for an asso-

ciation of a medication with OS without controlling for

confounding effects of other medications and then

further explored those medications with strong

associations.

Across all cancer types, patients who were prescribed

ABx within 28 days of the start of ICIs showed decreased

OS (Fig. 2a). This was also true of patients prescribed

CS (Fig. 2b), but not of patients prescribed other medi-

cations (Fig. 2c). ABx showed a strong negative correl-

ation with OS in RCC, NSCLC, melanoma, and bladder

cancer. CS showed a strong negative correlation with OS

in NSCLC, melanoma and other cancers. While other

medications were not significantly associated with OS

across all cancers, several showed significant associations

with specific cancers. For example, H2Bs and NSAIDs

associated with decreased OS in sarcoma and NSCLC,

respectively. On the other hand, PPIs and Statins posi-

tively associated with OS in sarcoma. However, we ob-

served the strongest associations for ABx and CS, and

therefore followed these medications in further analyses.

Timing of medication use

Next we focused on the timing of ABx and CS prescrip-

tions and their associations with OS in each cancer,

using a 30-day sliding window (see Methods). ABx

showed a greater HR than CS over nearly the entire

period, and both were negatively associated with OS

(Fig. 3a). ABx treatment showed the highest HR more

than 100 days before the start of ICIs, a second peak

near day 50, and a third, lesser peak around day 0. CS

showed a single, strong peak at day 0. We therefore fo-

cused the timing analyses around ICI day 0 to capture

the largest HR for both ABx and CS and to best com-

pare the results to previous findings, and then examined

the effects across cancers and drug subclasses.

Antibiotics and corticosteroids classes

The effect of ABx on overall survival in different cancer

types was not consistently associated with ABx class

(Fig. 3b). For example, β-lactams showed the highest HR

in melanoma, but vancomycin (oral) had the highest HR

in head and neck squamous cell carcinoma (HNSC). In

addition, the overall effect of ABx was sometimes associ-

ated with a single ABx subclass and sometimes distrib-

uted over many. Additionally, NSCLC strongly

associated with fluoroquinolone ABx, and this effect was

stronger than the effect observed for all ABx combined.

By contrast, the combined effect of all ABx in melanoma

was much stronger than any individual ABx class. In

fact, tetracycline was positively associated with OS in

melanoma patients, despite the overall effect of ABx be-

ing negatively associated. On the other hand, the effects

of CS classes on different cancers was more consistent

(Fig. 3c), though these comparisons were often limited

by the sample size. Particularly with small sample sizes,

confounding effects of patients receiving multiple drugs,

e.g. ABx and CS, may dominate associations with OS.

Table 1 Cohort characteristics

Overall n 689

BMI (mean (sd)) 27.76 (6.62)

Age (mean (sd)) 62.27 (13.21)

Sex = Male (%) 402 (58.3)

ECOG (%)

0 185 (31.0)

1 272 (45.6)

2 113 (19.0)

> 2 26 (4.4)

CCI = 0–1 (%) 458 (66.7)

Cancer (%)

Bladder Cancer 32 (4.9)

Head and Neck Carcinoma 42 (6.5)

Melanoma 184 (28.4)

Non-Small Cell Lung Cancer 152 (23.5)

Renal Cell Carcinoma 65 (10.0)

Sarcoma 21 (3.2)

Other 152 (23.5)

Staging (%)

1 1 (0.2)

2 4 (0.7)

3 44 (7.2)

4 547 (90.0)

Unknown 12 (2.0)

Immune Checkpoint Inhibitors (%)

Atezolizumab 22 (3.2)

Durvalumab 12 (1.7)

Durva + Tremelimumab 6 (0.9)

Ipilimumab 126 (18.3)

Nivolumab 364 (52.8)

Nivolumab + Ipilimumab 37 (5.4)

Pembrolizumab 104 (15.1)

Tremelimumab 3 (0.4)

Other 15 (2.2)

ATB within 28 days of ICI (%) 241 (35.0)

CS within 28 days of ICI (%) 273 (39.6)
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We therefore used combined models of ABx and CS to

examine the effects of each.

Combined modeling of ABx and CS, controlling for

covariates

Models containing both ABx and CS showed that both

are significantly associated with OS. A Kaplan-Meier

curve stratifying patients by ABx, CS, or both, showed

nearly identical intermediate effects of either ABx or CS,

and an additive combined effect (Fig. 4a). We next

sought to control for confounding covariates using a

Cox Proportional Hazards model. Including CCI, PS,

BMI, sex, stage, and age in the model confirmed that

ABx and CS remained highly significant, as were PS,

BMI and age (Fig. 4b). This suggests that ABx and CS

are affecting OS in the context of ICI therapy by a

mechanism other than that which is captured by PS,

BMI or age, and is consistent with the microbiome par-

ent to T-cell inflammation and child of ABx (Fig. 1).

In order to estimate the effects of ABx and CS within

each cancer, we applied a method that (1) allowed

different covariates to be included in each cancer,

Fig. 2 The effect of medications at the start of ICI treatment across all cancers for a Antibiotics, b Corticosteroids, and c other medications. The

cell color indicates the p-value of the Kaplan-Meier curve and the “+” or “-”the direction of the HR, in reference to its association with OS (i.e. a

“-”indicates an association with decreased OS, therefore a HR > 1)

Fig. 3 Associations of ABx and CS over time and by drug class. a Hazard ratios with 95% confidence intervals of a Cox Proportional-Hazards

model comparing individuals treated with ABx or CS during a 30-day sliding window compared to indivduals who did not receive ABx or CS,

respectively. The significance and direction of associations of Cox Proportional Hazards models by (b) ABx or (c) CS class and cancer, using a

window 28 days around ICI treatment start
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commensurate with the different clinical features of each

cancer, and (2) removed uninformative variables, in-

creasing the power for those cancers with smaller num-

bers of patients in this dataset. In addition, we repeated

the analysis with different random samplings of the data

in order to estimate the robustness of the variable selec-

tion. We found ABx to consistently and significantly as-

sociate with OS in bladder cancer, melanoma and RCC,

but not in HNSC, NSCLC, or sarcoma. The HR was

above 1 in each of the cancers where ABx was a

consistently-selected covariate. Melanoma was notable

in that all variables were consistently selected, with ABx

showing the highest HRs (Fig. 4c).

The relationship between ABx, OS, and the microbiome

While no direct microbiome measurements were made

in this study, we next sought to relate effects of ABx to

the current knowledge about the organisms have been

associated with ICIs. The bacterial taxa that showed the

strongest enrichment in responders or non-responders

to ICIs were selected from the literature and combined

into a phylogenetic tree (Fig. 5) [1–3]. The taxa spanned

several phyla and few ranks were consistently enriched

in either responders or non-responders. For example,

Firmicutes was found to be enriched in responders [1],

but within the phylum are several taxa found to be

enriched in non-responders [2, 3]. An exception to this

was Bacteroidetes, which was found to be enriched in

non-responders and each of the four species in the

phylum were also enriched in non-responders [1, 2]. We

performed a literature review of ABx susceptibilities for

each of these taxa to estimate whether the size of the

HR of the ABx would relate to the taxa for which it is

active. For example, an ABx that target only bacteria

enriched in non-responders may be beneficial because it

may shift the community toward those taxa enriched in

responders. On the other hand, if the overall diversity of

the microbiome is important, broad-spectrum ABx may

have higher HRs than narrow-spectrum.

The ABx class with the largest HR across all cancers

was the β-lactams. Within this group category are the

cephalosporins, which have a relatively narrow spectrum

of activity and a unique pattern relative to other ABx

classes. The cephalosporins are ineffective against the

Fig. 4 Combined models for ABx and CS and controlling for covariates. a Kaplan-Meier curves for ABx and CS in combination. b Cox Proportional

Hazards model incorporating both ABx and CS as well as several covariates. c Cox-LASSO models for each cancer showing the hazard ratios

estimated for covariates and the number of times the covariate was included in the model. The regularization parameter was selection by 10-fold

cross validation, and then the robustness was assessed by 1000 bootstrap replicates using different random samples of the data
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Bacteroidetes, found to be enriched in non-responders,

but so were ABx such as vancomycin and

sulfamethoxazole-trimethoprim (SXT). However, unlike

vancomycin and SXT, cephalosporins effectively target

A. muciniphila, which was shown to causally modify re-

sponse to ICIs. Cephalosporins are also ineffective

against several Firmicutes, similar to clindamycin,

macrolides and metronidazole (Fig. 5).

Discussion
The effects of medications or other variables are difficult

to parse in a dynamic setting such as during treatment

for cancer. We used a variety of methods to show that

ABx and CS are significantly associated with decreased

OS in several cancer types.

The association of CS with ICI response and OS re-

mains controversial. Our observed association is consist-

ent with other observations of decreased OS in NSCLC

[9]. However, Ricciuti et al. showed no effect of CS on

OS in NSCLC when given on the same day as ICI start,

when the CS was prescribed for reasons other than “can-

cer-related palliative indications” [48]. Our records lack

some variables needed to replicate those results, however

our results are consistent with aspects those findings.

For example, dexamethasone treatment showed a strong

negative association with OS across several cancer types,

consistent with its use for brain metastases and anorexia,

which are all indicators of poor clinical outcome. On the

other hand, several of our analyses demonstrated associ-

ations between CS and OS that may not be due to

selecting a sub-cohort with a poor prognosis. Our first

causal strategy, the time analysis, showed similar results

when restricting CS medications to a single day, but a

larger effect when a wider time window was used

(Table 2). Similar effects have been observed previously,

but with little consistency in the time window tested [2,

3, 9, 48–52]. Our second causal strategy, controlling for

covariates, cannot be directly compared because our

dataset did not include central nervous system metasta-

ses. However, when we control for metastatic stage and

PS, the CS association remains. Our third causal strat-

egy, comparisons between cancers, shows that the CS as-

sociation with OS is observed in cancers for which brain

metastases are not common, such as RCC, and for spe-

cific CS not typically used for brain metastases, such as

methylprednisolone in HNSC. This suggests that

Fig. 5 Relating the ABx effect to microbes enriched in responders to ICIs. A dendrogram of the microbes recently shown to be most enriched in

responders (black) or non-responders (red), are related to known ABx susceptibilities (references for each cell in Table S1). The ABx are ordered by

hazard ratio across all cancers (i.e. β-lactams showed the largest hazard ratio and linezolid the smallest)

Spakowicz et al. BMC Cancer          (2020) 20:383 Page 8 of 13



understanding the association between CS and the re-

sponse to ICIs may require more granular assessment of

CS types (i.e. rather than collapsing to 10mg prednisone

equivalent) and cancers.

We applied the same logical framework to ABx treat-

ment to demonstrate an effect on OS. Unlike CS, the

majority of studies have found an association between

ABx use and ICI response, independent of the time win-

dow (Table 2). Our longitudinal analysis showed a global

maximum HR well before the start of ICIs, consistent

with the ABx effects persisting for long periods. Given

this result, it is unlikely that acute illnesses drive the as-

sociation between ABx and OS. However, a recent pro-

spective study found that ABx given currently with ICI

treatment did not significantly affect OS for a group of

patients with lung, skin, or several other cancers [49]

(Table 2). We observe lower HRs for the effect of ABx

after ICI start, however it remains significant until ap-

proximately 120 days post ICI start. We note that within

cancers the effect of ABx is highly variable (Fig. 4c); the

Table 2 Timing of associations between medications and ICI response

Cancer
Type

Drug Type Timing
Window (days)

Sig
PFS

Sig
OS

N Drug
Users

N
Total

PFS
HR

OS
HR

Uni vs Multi
Variate

Controlled Covariates

This
study

Melanoma ABx +/− 28 Yes 48 185 1.66 Multi CS, ECOG, BMI, G, A, CG

[14] Melanoma ABx (−30)-0 Yes No 10 74 0.32 0.52 Multi
(only for PFS)

A, E, G, LT, IR, Serum levels of
lactate dehydrogenase (LDH),
BRAF status

This
study

NSCLC ABx +/− 28 No 64 152 0.81 Multi CS, ECOG, BMI, G, A, CG

[13] NSCLC ABx +/− 28 Yes Yes 20 109 0.29 0.35 Multi A, G, S, E, His, Mut, LT, IR, CT

[22] NSCLC ABx (−30)-0 Yes Yes 48 239 1.3 2.5 Multi A, His, S, PR, E, C, Hos

[13] NSCLC ABx (−60)-0 Yes Yes 20 109 0.29 0.35 Multi A, G, His, S, E, LT, C, IR Mutation,
ABx, PPIs

[22] NSCLC ABx (− 60)-0 No Yes 68 239 1.2 2 Multi A, His, S, PR, E, C, Hos

[2] NSCLC ABx (−84)-0 No Yes 37 140 2.31 Multi A, G, His, S, PR, E, MS

[2] RCC ABx (−30)-0 Yes Yes 16 121 2.2 2.1 Multi A, TB, R

[22] RCC ABx (−60)-0 Yes No 22 121 2.3 1.9 Multi A, TB, R

[2] RCC ABx (−84)-0 Yes No 20 67 2.16 Multi A, G, R, TB

[2] UC ABx (−84)-0 No No 12 42 1.97 Multi Hemoglobin levels, KPS, Liver M

[49] Several Abx (−30)-0 Yes 29 167 7.4 Uni

[49] Several Abx 0+ No 68 128 0.9 Uni

[49] Several Abx (−30)-- Yes 29 167 8.2 Multi Cancer, E, CG, TB, A, CS

This
study

Melanoma CS +/− 28 Yes 66 185 1.57 Multi ABx, ECOG, BMI, G, A, CG

[48] NSCLC CS (Cancer-
related)

+/− 1 No Yes 66 650 1.4 1.6 Multi A, G, S, His, LT, IR, E, Mut, Brain M,
PD-L1 TPS, %, Median TMB

[48] NSCLC CS (Cancer-
unrelated)

+/− 1 No No 27 650 0.62 0.91 Multi A, G, S, His, LT, IR, E, Mut, Brain M,
PD-L1 TPS, %, Median TB

[21] NSCLC CS 0 + 28 Yes Yes 35 151 1.88 2.38 Multi A, G, S, His, MS, E, LT, IR, Brain M
Bone M, Liver M, PD-L1 expression,
CS

This
study

NSCLC CS +/− 28 Yes 67 152 1.85 Multi ABx, E, BMI, G, A, CG

[9] NSCLC CS (−30)-0 Yes Yes 90 640 1.3 1.7 Multi S, E, Brain M

[13] NSCLC PPIs +/− 28 No No 40 109 1.1 1.47 Uni

[2] NSCLC PPIs (−84)-0 No No 35 140 Uni

[2] RCC PPIs (−84)-0 No No 20 67 Uni

[2] UC PPIs −84 No No 7 42

Abbreviations: A Age, G Gender, R IMDC Risk, TB Tumor Burden, His Histology, S Smoking History, PR Number of Prior Regimens, E ECOG Performance Status, C

Clinical Trial, Hos Hospitalization, MS Number of Metastatic Sites, LT Line of Therapy, IR ICI Regimen, CS Corticosteroids, ABx Antibiotics, CG Cancer Stage, M

Metastases, Mut Mutation
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difference may be due to the composition of the cohorts

(e.g. more patients with bladder cancer, where ABx has

a strong effect, and fewer with NSCLC, where the effect

is less). Our results are consistent with a recent meta-

analysis across several cancers, in which the greatest HR

was observed in the 42 days before the start of ICIs [50].

When controlling for illness-related covariates that re-

port on the overall health status of the individual (e.g.

CCI, PS) the effect of ABx remained significant. Third,

the associations of ABx and OS were observed across

cancer types (e.g. patients with bladder cancer versus

melanoma). A larger fraction of bladder cancer patients

were treated with ABx than any other cancer (56%), con-

sistent with their use for urinary tract or as prophylaxis

for invasive urologic procedures. On the other hand,

melanoma patients treated with ABx were the smallest

fraction of any cancer (25%), consistent with this popula-

tion being less likely to undergo procedures in which

prophylactic ABx are used. It is reasonable to suspect

that melanoma patients treated with ABx are therefore

more compromised than those not treated with ABx.

However, an effect of ABx remains, even for bladder

cancer. Although it remains probable that the cohorts

who receive ABx are different from those who did not in

ways that have not been controlled for in analyses, these

three analyses add confidence to the association of ABx

with OS in the context of ICIs.

We next related the strength of the association of ABx

classes with OS and the microbes that those ABx classes

affect. The β-lactam ABx were shown to have the stron-

gest association with OS across cancer types. The litera-

ture review of antibiotic susceptibilities showed that this

diverse class is effective against the Gram-positive

phylum Firmicutes. The literature review of the bacterial

taxa associated with response to ICIs, showed that the

Firmicutes are enriched in responders to ICIs. Moreover,

β-lactams are not consistently effective against members

of the phylum Bacteroidetes, which was found to be

enriched in non-responders. This suggests that the β-

lactams may show the strongest signal across all cancers

in our dataset because they disrupt the microbiome in

such a way that they reduce response to ICIs by deplet-

ing the Firmicutes more so than the Bacteroidetes.

The association between ABx prescriptions and OS

that we observe is consistent with direct measurements

of the microbiome and response to ICIs [1–3]. However,

there is no consensus for which taxa are enriched in the

responders to ICIs (Fig. 5). For example, there is causal

evidence for Akkermansia muciniphila increasing re-

sponse to ICIs, however, it was not among the most

enriched in the other datasets [1–3]. Nonetheless, some

agreement can be observed between the effects of ABx

on isolated taxa and OS. Narrow spectrum β-lactams

(e.g. cephalosporins), which show the strongest

association with OS, are not effective against Bacteroi-

detes (enriched in non-responders (1)) but are against A.

muciniphila (enriched in responders (2)). However, we

note that the effects of ABx can be difficult to predict

over long time scales; some broad spectrum β-lactams

have resulted in increased Firmicutes post-recovery, des-

pite being effective against them [51].

The results presented here contrast with several as-

sumptions gathered from the literature and described by

the causal model (Fig. 1). First, we found that ABx and

CS are the only medications significantly associated with

OS, despite the inclusion of several medications associ-

ated with changes to the microbiome (Fig. 2). This may

be due to the types of changes incurred (e.g. PPIs may

not significantly change the abundances of those taxa

linked to ICI response) or the strength of the effect amid

the noise in the data. However, the other two hypotheses

were borne out by the analyses.

The CS and ABx medications showed an additive ef-

fect on OS, consistent with a collider interaction in the

model (Fig. 4a). Also, there was an effect of ABx after

controlling for many covariates, consistent with its direct

effect on the microbiome and the microbiome playing a

role in ICIs (Fig. 4b). This result was consistent with the

relationship between the strength of the ABx signal and

the bacterial taxa susceptible to that ABx (Fig. 5).

Limitations

A key challenge in this and other retrospective analyses

is inferring causal relationships in non-randomized co-

horts. For example, patients who receive medications

such as antibiotics may be quite different from those

who do not. However, it is difficult to imagine an ethical

trial that could randomize treatment with ABx in this

setting. Therefore, retrospective analyses may be the best

option until direct measurements of the microbiome are

widely available. We used a variety of methods to show

that ABx and CS are significantly associated with de-

creased OS across a variety of cancers and that these re-

sults are consistent with a role for the gut microbiome.

Our study remains limited by being unable to account

for important factors known to affect OS in the context

of ICI treatment. For example, the complete ABx history

of patients -- much longer than the windows reported

here -- are very likely of consequence. Several groups

have studied the recovery of microbiome diversity fol-

lowing ABx exposure and results show reasonable recov-

ery 90 days later [51, 52]. However, multiple courses of

ABx prevented such a recovery; i.e. diversity returned to

baseline after one treatment with ABx, but not after a

second ABx treatment within 60 days [12]. It is therefore

possible that individuals who show extreme effects of

ABx treatment received additional doses outside of the

time scale of this study. Without baseline microbiome
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diversity measures we are unable to capture such infor-

mation. Similarly, estimating the effects of ABx on com-

munities from data on microbes in isolation is, at best,

approximate. A better understanding of how ABx affect

complex communities is needed. Other limitations in-

clude our small sample size relative to the heterogeneity

in the data. Future directions should capture variables

such as the presence of brain metastases, tumor bio-

markers such as tumor mutational burden and PD-1/

PDL-1 status, and outcome variables like ICI response

or the number of tumor-infiltrating lymphocytes.

Conclusions
ABx and CS, but not other medications known to affect

the microbiome, are associated with reduced OS when

administered near the start of ICI treatment. Our results

show this finding several cancer types, and for several

subclasses of these drugs. These results are consistent

with a role of the microbiome in response to ICIs and

identify clinical settings where the microbiome is likely

to play the largest role, namely NSCLC, melanoma,

RCC, HNSC, and bladder cancer. A clear understanding

of which microbes are important for ICI responses and

in what cancers will require the collection of micro-

biome samples across a wide variety of clinical settings.

However, some information can be gathered by indirect

means, which identifies the settings where the micro-

biome is likely to have the greatest effects. Medications

that affect the microbiome given concomitantly with

ICIs provide evidence for where microbes play a role.

Further work is needed to identify which microbes are

important and identify solutions to mitigate these effects

and perhaps promote greater response to ICIs.
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