
Abstract
Graphs can be used to represent such diverse entities as chemical
compounds, transportation networks, and the world wide web.
Stochastic graph grammars are compact representations of probability
distributions over graphs. We present an algorithm for inferring
stochastic graph grammars from data. That is, given a set of graphs
that, for example, correspond to a set of chemical compounds, all of
which have some desirable property, the algorithm uncovers the
structure shared by the graphs and represents it in the form of a
stochastic graph grammar. The inferred grammar assigns high
probability to the graphs from which it was learned and low
probability to other graphs. We report results of preliminary
experiments in which inferred graph grammars are compared to target
grammars used to generated training data.

1. Introduction
Graphs are used to represent chemical compounds [Dehaspe et al., 1998],
world wide web [Guillaume and Latapy, 2002], networks, system states,
objects, images [Dupplaw and Lewis, 2000], entity relationship diagrams,
internal states of machines, the aspects to be learned in concept [Gonzalez et
al., 2001, Yoshida and Motoda, 1995] and rule learning, etc. The reason why
graphs have such a wide range of application is that many complex
situations can be easily represented as graphs. Graph models give a
decomposed depiction of complex systems [Gonzalez et al., 2001]. One of the
most interesting applications of graphs is representation of relational
databases [Getoor et al., 2001] and gene mapping [Craven and Shavlik,
1993]. Graph models also provide a framework for understanding and
developing complex learning algorithms. Graph grammars are compact
grammatical representations of sets of graphs or probability distributions
over graphs. In this paper we make use of a fitness function for inferring
graph grammars and learn these grammars from data

Section 2 describes Graph Grammars. Section 3 considers the related work
and our contribution to Graph Grammars. Section 4 presents a learning
algorithm and its experimental results. Finally, section 5 concludes the
paper.

Inferring the Structure of Graph Grammars from Data

Shailesh P. Doshi Fang Huang Dr. Tim Oates
CORAL Lab, CSEE

Department,
University of Maryland,

Baltimore County,
MD-21250, USA.

Email: sdoshi1@cs.umbc.edu

CORAL Lab, CSEE
Department,

University of Maryland,
Baltimore County,
MD-21250, USA.

Email: fhuang2@.cs.umbc.edu

CORAL Lab, CSEE
Department,

University of Maryland,
Baltimore County,
MD-21250, USA.

Email: oates@.cs.umbc.edu

2. Graph Grammars
Graph grammars provide a natural generalization of formal language theory
based on strings and the theory of term rewriting. The extensive
applicability of graph grammars is for the fact that graphs naturally depict
complex situations on a perceptive degree. Graph grammars provide a
methodology for accurate mathematical models of local transformation on
graphs. The key component of graph grammars is a finite set of productions;
which generally is a triple (M, D, E) where M and D are the respective
mother and daughter graphs, and E is an embedding mechanism. Applying a
production corresponds to replacing M with D in the graph G. The
embedding rules E advise how to connect D to M. However as opposed to
strings, there is just not a single canonical way of defining graph grammars.
The two most basic selections for graph rewriting are node replacement and
hyperedge replacement. In the case of node replacement graph grammars, a
node of a given graph is replaced by a new subgraph which is connected to
the remainder of the graph by new edges depending on how the node was
connected to it. In this section, we just gave a brief and informal introduction
to graph grammars. In the following section, we draw out the analogy
between string grammars and graph grammars. Graph Grammars in many
ways are analogous to string grammars and thus a lot of known properties of
string grammars directly map to graph grammars too.

Context-Free Graph Grammars (CFGGs) are similar to context-free language
grammars. Productions have fragments of labeled graphs as their left-hand
and right-hand sides. Just as language grammars define sets of strings,
graph grammars define sets of graphs. To generate a graph from a language
of graph grammar, choose the graph containing a single node labeled with
the starting symbol. A node labeled with a non-terminal is selected and
replaced by the graph on the right-hand side of the production that has the
selected non-terminal node as its left-hand side of the production. This
process is repeated until the graph contains only terminal labeled nodes.
Graph generation is more complex than string generation because a node is
replaced by a new subgraph, which is connected to the remainder of the
graph by new edges, depending on how the node was connected to it
(neighborhood controlled embedding).

We work with context-free (or confluent) node replacement graph grammars.
Node replacements are controlled by productions or replacement rules of the
grammar. In context free node replacement graph grammars, the result of
the replacement does not depend on the order in which they are applied.
Here we basically work with C-edNCE graph grammars. NCE stands for
neighborhood controlled embedding, d stands for �directed graphs� and the e
means not only nodes but edges of the graphs are also labeled. The C in the
beginning is for confluent or context free grammar. An edNCE graph
grammar is a tuple G = (Σ , ∆, Γ, Ώ , P, S, E) where Σ is the set of alphabets
of node labels, ∆ ⊆ Σ is the set of alphabets of terminal node labels, set Γ is
of alphabets of edge labels, set Ώ ⊆ Γ is of alphabets for final edge labels, P
is the finite set of productions, S ∈ Σ - ∆ is the initial nonterminal. A
production is of the form X → (D, C) with X∈ Σ - ∆ and (D, C) ∈ ΓΣ,GRE . E is
the set of Embedding rules. C-edNCE grammars, also called VR (Vertex
Replacement) grammars seem to have more generating power than HR
(Hyperedge replacement) grammars.

Stochastic Context-Free Graph Grammars (SCFGGs) are an extension of
SCFGs for representing formal languages. The only difference being that

graph grammars can be used to generate and parse graphs rather than
strings. Let L(G) be the language generated by a SCFG. L(G) would consists
of all the strings of terminal symbols derivable from the starting symbol of
the grammar (typically S). For a string α ∈ L (LG), the probability of a parse
tree of α is the product of all the probabilities of the productions involved in
its construction. The probability of the string α is the sum of all the
probabilities of its individual parses. SCFGGs are CFGGs with probabilities
assigned to each production. They define a probability distribution over
graphs and can be used to generate graphs according to that distribution and
also to determine the probability of a given graph. In our graph grammar
learning, we used node replacement grammars with neighborhood controlled
embedding. Below is a simple example of a SCFGG.

S -> A-X [1.0] {}
X -> B-X [0.2] {(A, B) (A, X) (B, B) (B, X)}
X -> C-X [0.3] {(A, C) (A, X) (B, C) (B, X) (C, C)}
X -> D [0.5] {(A, D) (B, D) (C, D)}

Fig. 1

Figure 1 shows the application of probabilistic selection of rules to generate
the graph. In the first pass, S is expanded to give A →X with the application
of S→A-X [1.0]. In the next pass, the production with the higher probability
is selected to give A→D with the application of X → D [0.5], {(A, D) (B, D)
(C, D)}. In the grammar, S is the starting symbol, the real number in [] is
the probability associated with each production rule, the tuples in {} are the
neighborhood controlled embedding rules. In the embedding rule, the first
symbol is the neighboring node in the mother graph; the second symbol is
the node in the daughter graph, which means there is a new edge between
such two nodes in the replaced graph.

3. Related Work
Graph Grammars are an active area of research [Rozenberg, 1997]. A wealth
of work is being done in the deterministic representation of graph grammars
but there exists no known work on learning of graph grammars from data.
Cook [Cook and Holder, 2000] discovers frequent substructures in graphs,
but they do not take into consideration the embedding rules or production
probabilities as in graph grammars. The representation of probabilistic
modeling in hyperedge replacement grammars is done by Mosbah [Mosbah,
1992], but not learning of graph grammars was attempted. There�s a lot of
related work on learning probabilistic string grammars from data, [Keller
and Lutz, 1997, Stolcke, 1994] and we draw on similar work.

XA

D A

S

3.1. Our Contribution
There are no methods known that learn graph grammars from data. The
primary aim of the presented work is to learn graph grammars on the basis
of training data, i.e. graphs. This paper describes the robustness of graph
grammars based on the Minimum Description Length (MDL) principle [Cook
and Holder, 1994, Derthick, 1991].

The MDL principle: The Minimum Description Length principle was
introduced by Rissanen in 1989 and it states that the optimal theory is the
one that minimizes the Description Length of a complete data set into
consideration. In the algorithm described later, we find the most frequent
substructure and then replace it by a nonterminal. The details of the
algorithm are described in the later section.

MDL = min {DL(G'/S) + DL(S) + DL(E/S)}

Where DL(S) is the description length of the substructure selected to be
replaced by the nonterminal, DL(G'/S) is the description length of the graph
replaced with the selected substructure S, and DL(E/S) is the description
length of all the probabilistic embedding rules generated given the
substructure S is selected, taking into account the length required to encode
values of the probabilities of every individual production.

Stochastic Context-Free Grammars (SCFGs) are a variant of context-free
grammars (CFGs) in which each production is associated with a probability,
a real number in [0, 1]. The set of production probabilities is referred to as
the parameters of the SCFGs. The sum of the probabilities of all the
productions expanding the same non-terminal must be one for the SCFG to
be proper. SCFGGs define a probability distribution over graphs and can be
used to generate graphs according to that distribution and to determine the
probability of a given graph which maybe new or unseen. Probabilistic graph
grammars provide a tool for describing how production rules are applied.

Here the considered grammars are SCFGGs, the probability of the derivation
will be the product of all the probabilities of all the productions used in the
derivation. Since the grammar might be ambiguous, the probability of the
derived graph is the sum of all probabilities of the derivations generating the
graph. And hence you can estimate the probabilities of a context free set of
graphs. To explore the relationship between a probabilistic context free set of
graphs and its grammar, all the distinct derivations generating any instance
or element of the set must be known.

When generating graphs, production is chosen randomly (or in a specified
manner) independently of all other productions in the derivation and thus
the probability of the derived graph is obtained by multiplying the
probabilities of the productions used in all of the derivation. But since graph
grammars might be ambiguous, a terminal graph has multiple derivations
and thus the probability is the sum of all distinct derivations. This
estimation of the probabilities is therefore computationally very expensive.
Therefore we estimate the probabilities of the embedding rules of the
production grammar, where each embedding for a given production is treated
independently. We describe an algorithm that learns probabilistic graph
grammars. The algorithm described below is able to handle both directed and
undirected graph and chain graphs (these are graphs which have both

directed and undirected edges) to identify a substructure with variable
number of edges with labels and directions on them.

4. The Learning Algorithm
The approach is based on discovering a frequent structure [Cook and Holder,
1994] in the input graph that minimizes the description length of the graph
given that the frequent structure is selected and then estimating
probabilities on the embeddings and thus the productions. The algorithm
requires an input of a set of graphs in text differentiated with distinct graph
ids (graph number in a set of graphs). The graph representation is typical
with labeled nodes and labeled edges along with the graph ids. The edges can
be directed or undirected with no restrictions in the graphs.

The algorithm performs iterative search on the input, which is a set of
graphs. The search for the most frequent substructure is directed with the
aim to minimize the description length of the input. Every iteration
generates a compressed version of the input graph and a production with
probabilities on its embedding rules. At this stage of the algorithm, we look
for subgraphs containing just 2 nodes that occur frequently and make that as
the right hand side of the productions. This iterative process continues till
the description length of the compressed graph with the given probabilistic
production is less than the desired fraction of the description length of the
previous input graph or all the nodes in the graph are merged to a single
node. The algorithm has the ability to be customized to accommodate user
specified limits on the number of production rules generated given the fact
that the description length is less than the threshold selected at the previous
iteration.

For every iteration, the search starts with the estimation of frequencies of all
the uniquely labeled vertices (node labels) and then maintaining a table of
these frequencies. The NodeCount module does this and selects the top
entries of this table. The TwoNode module is a search module which takes a
single node and expands it in all the directions giving a two node (vertex)
structure along with the edge label between them and the direction of the
edge (the no. of edges can be more than one). This TwoNode module is
applied to all the occurrences of the selected node appearing in the set of the
input graph file. The TwoNode module generates a table of two_node
structures along with their respective frequencies. Here the top structures
are selected (according to the specified limit).

The ProductionRule module operates on all the entries of the discovered
structures selected. The ProductionRule module gives embedding rules for
all occurrences of both of the nodes of the selected discovered structures.
These embedding rules consist of all the neighbors of both the nodes of the
selected discovered structures for all graphs in the set of input graphs. The
embedding rules are represented as two labeled nodes and the number of
edges between them with their respective edge labels and edge directions.
One of the nodes of the embedding is from the set of two nodes obtained from
the selected discovered structure. All these embedding rules are maintained
in a table of the production rules along with their respective frequencies.

Each time the ProductionRule module is applied on an occurrence of
discovered structure, the selected discovered occurrence is replaced by a
nonterminal and this nonterminal is connected with all the neighbors of both
the nodes of the selected discovered structure preserving the edges with their

labels and directions. These nonterminal are selected from a set of
nonterminals, one distinct nonterminal for each of the selected discovered
structure. The output of the ProductionRule module is a table of the distinct
nonterminals for the selected discovered structures with the discovered
structures themselves and their embedding rules along with their
probabilities, all of these represented as graph structures.

For each of the selected Node by the NodeCount module, and for each of the
discovered structure for the above, the DL module is applied and the
discovered structure for its respective node which gives the minimum DL is
selected along with its output graph (set of graphs). This is done by the MDL
module. The output of the MDL module at each iteration serves as an input
for the next iteration. For each MDL operation, the file of selected production
rules, i.e. the grammar file is appended. The DL module takes input as a
graph and calculates its description length.

Below is a very simple example:

Fig. 2.

The above structure is converted into the following figure. Below is the graph
grammar representation of the example above. At each iteration, there is
some addition in the set of Productions and Tuples.

∑ = {a, b, c, d, X, Y, Z}
∆ = {a, b, c, d}
Γ = {r, p}
Ώ = {r, p}
P = {}
S = {X}
E = {}

Fig. 3

P = {(a, r/r, b, in)}
E = {(a, p/p, c, out, p1), (b, #/#, d, *, p2)}

Figure 4 is transformed with one nonterminal X and the rest of the nodes are
terminal nodes.

a b

dc

p

c d

X p

Fig. 4

P = {X: (a, r/r, b, in), Y: (X, #/#, d, *, p2)}
E = {(a, p/p, c, out, p1), (b, #/#, d, *, p2), (X, p/p, c, out, p3)}

Fig. 5

P = {X:(a, r/r, b, in), Y:(X, #/#, d, *), Z:(Y, p/p, c, out,)}
E = {(a, p/p, c, out, p1), (b, #/#, d, *, p2), (X, p/p, c, out, p3)}

There is only one node in the graph and thus the final tuple gives the
grammar and the complete set of these tuples defines a language.

4.1. Experimental Results
A number of experiments were conducted on the algorithm to test its
consistency and reliability. The algorithm was tested on individual graph
and a set of variable number of graphs ranging from the size of 1, 5, 10,�,
25. We have used a set of graphs to generate the probabilistic grammar with
the MDL fitness function, then again generated the graphs with the
extracted grammar and used this extracted grammar to generate a set of
graphs. We continue this cycle to generate the graphs from the grammar and
then the extracted grammar from these graphs. These cycle runs were done
to test the stability of the grammars and the graphs generated from these
grammars over multiple phases of compressions and generations. These runs
of cycle were done with variable number of graphs at each run.

The grammar to generate graphs was also tested for the probabilities on the
production rules. These probabilities were varied for different runs and the
graphs obtained were observed for similarity. The results showed that the
number of substructures discovered in the graphs were actually proportional
to the production probabilities that generated these substructures. The tests
conducted on a varying number of similar graphs showed that the quantity
of drop in the DL is proportional to the number of similar graphs. The more
is the number of similar graphs; more is the drop in the DL. But in the case
of graphs with very few similar substructures, there is a very marginal
reduction in the DL. This essentially means that the MDL is a dependable
fitness function.

Z

Y c

p

Fig. 6 Fig. 7

Figure 6 shows the drop in the description length of the graph after each
iteration for variable number of graphs. The results imply that more the
number of graphs with some similarity among them, the larger is the drop in
the description length of these graphs. Thus the fitness of the MDL principle
is quite robust.

There are also some quantitative measures done to compare the generated
graphs and the grammars extracted for a few iterations. Given the grammar,
the graphs generated were compared for their size using the number of nodes
of these graphs as a measure. Figure 7 shows that the number of nodes is
fairly consistent. With the number of iterations increasing, there is a slight
drop in the number of nodes because the size of the generated graph depends
on the number of productions used to generate the graph. The drop for the
number of the production rules is mentioned below.

Figure 8 was plotted for the number of production rules generated after each
iteration against the number of iterations for graph sets with variable
number of graphs. It shows that the number of productions tends to drop
over the number of iterations because of the MDL principle. As the
description length of the production and its embeddings increase, the size of
the grammar generated from the graphs tends to fall so as to have the
optimal encoding length for the compressed graphs, and thus the grammar.
It is also evident from the figure that the rate of drop of the number of
productions is fairly constant. This is due to the MDL principle.

Figure 9 shows the experimental results of a set of graphs with very few
similar structures. This set of graphs was probabilistically generated with
many productions with a fairly equal probability on each of the productions.
Some of the graphs generated from the above grammar had very few similar
structures and thus when they were used for compression to generate the
grammar, the number of productions and their respective embeddings were
also in a larger number.

 Fig. 8 Fig. 9

This accounts for the fact that the description length of these productions
and the embeddings contributed to a huge amount towards the description
length of the compressed graphs and thus for the grammar generated.

Figure 9 shows the variations in DL of the structurally different graphs after
each iteration. The DL after the first iteration actually increased due to the
presence of the large number of productions generated. When these
productions were further iterated for generation and then compression and
repeating the above cycle for a few number of times, the results observed
were interesting. These results showed that the drop in the DL for these
graphs becomes small and steady after the first iteration. Also after the first
iteration, the number of nodes of the generated graphs and the number of
extracted productions from these generated graphs had a consistent behavior
with respect to the experimental results mentioned above.

5. Conclusion
Graphs are a natural representation for a variety of problems, and graph
grammars can be used to compactly represent structure shared by a set of
graphs. In this paper we described what we believe is the first algorithm for
learning stochastic graph grammars from data. The viability of the
algorithm was demonstrated in a set of experiments in which a known graph
grammar was used to generate training data (i.e. sets of graphs) and our
algorithm was used to recover the generating grammar from the data.

In the future we will develop more sophisticated methods for learning the
parameters of stochastic graph grammars, such as a version of the Inside-
Outside algorithm for graphs that uses Expectation Maximization. Also, we
will investigate the use of additional operators in the search for grammar
structure, such the merging operator used in Bayesian model merging
approaches to the inference of stochastic string grammars.

6. References

[Cook and Holder, 2000] D. J. Cook and L. B. Holder. Graph-Based Data
Mining. In IEEE Intelligent Systems, 15(2): 32-41, 2000.

 [Cook and Holder, 1994] D. J. Cook and L. B. Holder. Substructure
Discovery Using Minimum Description Length and Background Knowledge.
In Journal of Artificial Intelligence Research, pages 231-255, 1994.

[Craven and Shavlik, 1993] M. W. Craven and J. W. Shavlik. Machine
Learning Approaches to Gene Recognition. In IEEE Expert, 9(2): 2-10, 1993.

[Dehaspe et al., 1998] L. Dehaspe, H. Toivonen and R. D. King. Finding
Frequent Substructures in Chemical Compounds. In Proceeding of the
Fourth International Conference of Knowledge Discovery and Data Mining,
pages 30-36, 1998.

[Derthick, 1991] M. Derthick. A Minimal Encoding Approach to Feature
Discovery. In Proceedings of the National Conference on Artificial
Intelligence, pages 565-571, 1991.

[Dupplaw and Lewis, 2000] D. Dupplaw and P. H. Lewis. Content- Based
Image Retrieval with Scale-spaced object trees. In M. M. Yeung, B. L. Yeo
and C. A. Bouman, editors, Proceedings of Storage and Retrieval for Media
Databaes, volume 3972, pages 253-261, 2000.

[Getoor et al., 2001] L. Getoor, N. Friedman, D. Koller and B. Taskar.
Probabilistic Models of Relational Structure. In International Conference on
Machine Learning, Williamstown, MA, June 2001.

[Gonzalez et al., 2001] J. Gonzalez, L. B. Holder and D. J. Cook. Graph-
Based Concept Learning. In Proceedings of the Florida Artificial Intelligence
Research Symposium, 2001.

 [Guillaume and Latapy, 2002] J. Guillaume and M. Latapy. The Web Graph:
An Overview. 2002.

[Rozenberg, 1997] Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformation. World Scientific, 1997.

[Keller and Lutz, 1997] B. Keller and R. Lutz. Evolving Stochastic Context-
Free Grammars from Examples Using a Minimum Description Length
Principle. In Workshop on Automata Induction, Grammatical Inference
Language Acquisition, ICML097.

[Mosbah, 1992] M. Mosbah. Probabilistic Graph Grammars. In Proceedings
of the 18th International Workshop, WG �92 on Graph-Theoretic Concepts in
Computer Science.

[Stolcke, 1994] A. Stolcke. Bayesian Learning of Probabilistic Language
Models. PhD thesis, University of California, Berkley, 1994.

[Yoshida and Motoda, 1995] K. Yoshida and H. Motoda. Clip: Concept Learning from
Inference Pattern. In Journal of Artificial Intelligence, 75(1): 63-92, 1995.

