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Abstract (171/250) 24 

In countries/communities at risk of future outbreaks of COVID-19, ascertaining whether cases are 25 

imported or the result of local secondary transmission is important for government to shape 26 

appropriate public health strategies. In this study, we propose a novel approach to identify the 27 

timing of infection, whereby we developed a within-host model to capture viral load dynamics post-28 

symptom onset. We submit our approach allow us to differentiate imported cases from local 29 

secondary cases. To illustrate our method, we use the initial reported cases in Singapore, where 30 

the first reported 18 cases were considered imported, as these individuals had recent travel history 31 

to Wuhan, China, which is a hotspot of COVID-19 outbreak. With additional information regarding 32 

day of entrance in Singapore, we were able to infer whether these were infected locally or prior to 33 

arriving in Singapore. Of all the cases, we identified 6 as likely evidence of ongoing secondary 34 

transmission within Singapore. In an early phase of outbreaks, collecting viral load data over time 35 

from cases from symptom onset is highly recommended. 36 

Keywords: 37 

SARS-CoV-2, COVID-19, mathematical model, infectious disease epidemiology 38 
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Text (1559/1600) 40 

Introduction 41 

On March 11, 2020, World Health Organization declared the new coronavirus disease 2019 42 

(COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as a 43 

pandemic1. However, some countries have yet to report or are still in the initial phase (JHU 44 

tracker2). Even in countries like China, where containment of the disease has been successful so 45 

far, the risk of future outbreaks is not negligible, with a significant proportion of susceptibles in the 46 

population. 47 

To avoid future outbreaks, governments implement various border control programs: 48 

quarantine and isolation of confirmed and suspicious cases, and travel restriction to and from 49 

countries with ongoing outbreaks. Additionally, effort focuses on identification and isolation of 50 

suspicious cases. Suspicious cases that are confirmed, are followed by further investigation - 51 

through interviews, contact tracing, and genomic analysis - to infer whether they are imported 52 

cases or secondary cases3. Secondary cases indicate possible local ongoing transmissions. Thus, 53 

a shift in intervention programs to mitigating the burden of outbreak (e.g., school closure) is 54 

necessary. 55 

Identification and differentiation of secondary transmission from imported cases is essential. 56 

Traditionally, this requires interview-based assessments, which are unreliable (e.g., recall bias 57 

especially when individuals travel frequently). In this study, we propose to use viral load data 58 

coupled with a model to differentiate secondary transmission from imported cases. Our flexible 59 

method is applicable for any countries/communities at risk of future outbreaks. 60 

To illustrate this, we analyzed cases reports from Singapore. In Singapore, the first case 61 

was identified on 23rd January 2020, and currently 345 cases have been confirmed positive using 62 

reverse-transcriptase-polymerase-chain-reaction (RT-PCR) test as of 19 March 20204 (Figure 1A). 63 

The first 18 cases reported had travel history connecting them to Wuhan, China, thus considered 64 

imported cases. Two days after the 18th case was confirmed (3rd February 2020), a new confirmed 65 

case had not traveled to China. To investigate the possibility of some of the original 18 being 66 
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evidence of ongoing local transmission, we leveraged viral load data collected5 for multiple time 67 

points after symptom onset using a within-host viral dynamics model for SARS-CoV-2. This 68 

enables us to infer time of infection (i.e., before or after arrival to Singapore). 69 

 70 

Results 71 

Expected day of infection establishment 72 

Figure 1A depicts the weekly epidemic curve in Singapore from January 21st to March 15th 73 

based on symptom onset and laboratory confirmation. Because the laboratory test is performed 74 

after symptom onset, the epidemic curve based on laboratory confirmation follows the curve based 75 

on symptom onset. For the first few weeks, the epidemic in Singapore was not in the phase of 76 

exponential growth, which suggests secondary transmissions are limited and any long chains of 77 

transmission did not succeed yet. The first 18 cases discussed here are in the first two weeks of 78 

the epidemic. 79 

Figure 1B visualized the reported day of arrival to Singapore and the estimated day of 80 

infection establishment using time since symptom onset as a time scale. Note that the estimation 81 

of the day of infection establishment has some uncertainty (about 6 days) because of the 82 

boundary of viral load threshold. Using the estimated boundary, we found that 6 of the 12 cases 83 

are clearly imported cases, whereas the remainder 6 cases could result from ongoing transmission 84 

locally in Singapore. For those suspicious secondary cases, contact tracing could provide further 85 

confirmation as to the timing of infection. Case 6, for instance may have been infected between 86 

Jan 19 (the arrival date) and Jan 22 in Singapore. 87 

 88 

Discussion 89 

Here we assessed whether the 12 initial ‘imported’ cases were in fact imported or the result 90 

of ongoing transmission in Singapore. We found that 6 of 12 cases were clearly infected before 91 

arrival to Singapore, the other however have likely been infected after the arrival to Singapore. 92 

This provides evidence of within-country transmission prior to the 19th case being reported (3 Feb).  93 
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Our method is useful to infer the timing of infection, discerning between cases imported or 94 

autochthonous (i.e., before or after arrival to the country). The advantage of using this method is 95 

that computation is solely based on viral load data. Collecting viral load in early phase of outbreak 96 

is ideal for the beginning of an outbreak. We suggest this method as a complementary test to the 97 

basic clinical routine for the novel disease identification. Given that recall bias is an issue, our 98 

method reliably assesses the timing of infection. This estimation will be further enhanced if 99 

combined with the complementary information (e.g., travel and contact history and genetic 100 

information) thus reducing uncertainty in our predictions. 101 

There are limitations to our approach. Our approach requires viral load data over multiple 102 

time points; therefore, we may not be able to estimate the timing of infection immediately after 103 

symptom onset. Further, we need to note that both the boundaries and the day of infection 104 

establishment estimated using our approach could be underestimated, because infection is 105 

established after exposure starts. 106 

For countries and communities at risk of future COVID-19 outbreak, which include second 107 

outbreaks after significant decreased transmission (i.e. China), we strongly recommend monitoring 108 

the viral load in the early phase of outbreaks. As such, the method we used may be critical to help 109 

shape a country’s early response to an outbreak. 110 

 111 

Materials and Methods 112 

Data 113 

We obtained two datasets from two published papers5,6 (we have not collected original data in this 114 

study). Nasopharyngeal swabs were collected for the 18 cases reported in Singapore, for up to 30 115 

days from symptom onset. Viral loads were measured by RT-PCR5. We excluded 5 cases who 116 

received lopinavir-ritonavir and 1 case whose viral load was detected only twice.  In total, we 117 

analyzed the first 12 cases. In addition, to find “infection establishment boundary” (see Viral load 118 

boundary for infection establishment) and achieve robust parameter estimation, we obtained 119 

an additional dataset of viral loads measured in nasal swab collected from the 8 cases reported in 120 
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Zhuhai, China6. Three of these cases were confirmed as secondary infections, thus we used them 121 

as a boundary to compute the viral load threshold for the infection establishment. We converted 122 

cycle threshold (Ct) values reported in Zou et al.6 and Young et al.5 to viral RNA copies number 123 

values; these quantities are inversely proportional to each other7. The values under the detection 124 

limit were assumed to be at the detection limit for the purposes of fitting the model (see later for 125 

detail). We used the program datathief III (version 1.5, Bas Tummers, www.datathief.org) to 126 

extract the data from images in those publications. Waiver of informed consent was granted by 127 

public health authorities or written informed consent was obtained from study participants as 128 

described in the original studies. 129 

 130 

Viral load modeling to estimate the day of infection establishment 131 

To model COVID-19 dissemination among susceptible target cells, we used a mathematical 132 

model previously proposed in8.  133 𝑑𝑑𝑑𝑑(𝑡𝑡)𝑑𝑑𝑡𝑡 = −𝛽𝛽𝑑𝑑(𝑡𝑡)𝑉𝑉(𝑡𝑡),
𝑑𝑑𝑉𝑉(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝛾𝛾𝑑𝑑(𝑡𝑡)𝑉𝑉(𝑡𝑡) − 𝛿𝛿𝑉𝑉(𝑡𝑡), 134 

where 𝑑𝑑(𝑡𝑡)  and 𝑉𝑉(𝑡𝑡)  are the ratio of uninfected target cells and the amount of virus, 135 

respectively. The parameters 𝛽𝛽 , 𝛾𝛾 , and 𝛿𝛿  represent the rate constant for virus infection, the 136 

maximum rate constant for viral replication and the death rate of infected cells, respectively. All 137 

viral load data including Singapore and Zhuhai patients were simultaneously fitted using a 138 

nonlinear mixed-effect modelling approach, which uses samples to estimate population 139 

parameters while accounting for inter-individual variation (Table 1). Further, sampled parameter 140 

sets were used to predict the estimated day of SARS-CoV-2 infection establishment, that is, the 141 

start of the exponential growth phase of viral loads9. The infection establishment time, 𝑇𝑇inf, was 142 

estimated by hindcasting, when the viral load reaches the boundary. The viral load boundary for 143 

infection establishment was computed using the three secondary infection cases reported in 144 

Zhuhai, whose start days of exposure to the primary cases are known6. We assumed that the start 145 

day of exposure is equal to the day of infection establishment. If the estimated day of infection is 146 
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before the arrival to Singapore, it suggests that the infection was established outside of Singapore, 147 

otherwise, the case is the result of secondary transmission in Singapore. 148 

 149 

Viral load boundary for infection establishment  150 

We defined viral load boundary for infection establishment using the information of the three 151 

secondary cases with known primary cases in Zhuhai (i.e., Patients D, H and L) reported in6: the 152 

primary infected patient (Patient E) worked in Wuhan and visited Patient D and Patient L on 153 

January 17, then Patients D and L developed symptoms on January 23 and 20, respectively. 154 

Another primary infected patient (Patient I and P) visited Patient H on January 11, and fever 155 

developed in Patient H on January 17. This implies that exposure started on the day when the 156 

primary cases visit those secondary cases. Assuming that infection established on the start day of 157 

exposure in the secondary cases, we computed the mathematical model by hindcasting, and 158 

obtained the viral load on the start day of exposure, which is defined as the infection establishment 159 

boundary: 10−6.67 to 10−5.18 , 10−5.20 to 10−3.88  and 10−1.14 to 100.03  for Patients D, H and L, 160 

respectively. We used the lowest (10-6.67) and highest (100.03) values as the boundary. 161 

 162 

Estimating parameter using the nonlinear mixed effect model 163 

MONOLIX 2019R2 (www.lixoft.com), a program for maximum likelihood estimation for a 164 

nonlinear mixed-effects model, was employed to fit the model to the viral load data. Nonlinear 165 

mixed-effects modelling approaches incorporate a fixed effect as well as a random effect 166 

describing the inter-patient variability in parameters. Including a random effect amounts to a partial 167 

pooling of the data between individuals to improve estimates of the parameters applicable across 168 

the population of cases. 169 

  170 
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Figure legends 220 

Fig. 1. Epidemic curve of COVID-19 and clinical course of patients in Singapore: (A) Epidemic 221 

curves of COVID-19 as of March 10, 2020 in Singapore are shown. The green and red solid bars 222 

correspond to the newly reported cases by date of symptom onset and by date of laboratory 223 

confirmation, respectively. (B) Expected SARS-CoV-2 infection dynamics for the first 13 cases are 224 

described. Each panel presents timeline of infection for each individual with the timing of arrival to 225 

Singapore (red dashed lines), the timing of symptom onset (black dashed lines), the estimated 226 

timing of infection establishment (blue shaded areas), and the detection limit of viral load (grey 227 

dashed lines). 228 

Table 1. Virus dynamics features of patients infected with SARS-CoV-2 229 

Zhuhai patients      

Patient ID 𝛾𝛾 (day-1) 𝛽𝛽 ((copies/ml)-1 day-1) 𝛿𝛿 (day-1) 𝑉𝑉(0) (copies/ml) 𝑇𝑇inf (day) 

C 3.09 1.90 × 10−5 0.80 7.34 × 103 −9.8,−3.6† 

D 4.01 0.24 × 10−5 0.57 7.00 × 103 −7.0,−2.5 

E 3.08 1.41 × 10−5 0.66 6.52 × 103 −9.5,−3.5 

H 3.87 1.77 × 10−5 1.07 1.07 × 104 −8.1,−3.1 

I 3.76 0.82 × 10−6 0.42 3.65 × 103 −7.0,−2.4 

L 3.33 0.30 × 10−5 0.63 3.77 × 103 −8.7,−3.0 

N 3.14 1.05 × 10−5 0.58 5.72 × 103 −9.1,−3.3 

O 2.91 5.22 × 10−5 1.46 3.47 × 104 −6.3,−2.7 

P 3.76 0.70 × 10−5 0.95 5.66 × 104 −8.4,−3.0 

Q 3.12 1.11 × 10−5 0.60 5.81 × 104 −9.3,−3.3 

S 3.08 1.19 × 10−5 0.51 6.20 × 104 −9.1,−3.3 

T 3.03 1.95 × 10−5 0.90 5.59 × 104 −10.6,−3.8 

Median 3.13 1.15 × 10−5 0.64 6.01 × 104 −8.9,−3.2 

Singapore patients      

Patient ID 𝛾𝛾 (day-1) 𝛽𝛽 ((copies/ml)-1 day-1) 𝛿𝛿 (day-1) 𝑉𝑉(0) (copies/ml) 𝑇𝑇inf (day) 

2 2.78 1.44 × 10−5 0.62 3.99 × 103 −10.6,−3.7† 

3 3.64 0.15 × 10−5 0.42 4.01 × 103 −7.4,−2.6 

4 3.11 0.97 × 10−5 0.63 5.24 × 103 −9.4,−3.4 

6 3.53 0.49 × 10−5 0.41 5.25 × 103 −7.6,−2.7 

8 2.11 2.32 × 10−5 0.33 3.08 × 103 −12.6,−4.3 

9 2.53 2.99 × 10−5 0.22 6.30 × 103 −9.6,−3.5 

11 3.79 1.52 × 10−5 1.02 1.01 × 104 −8.3,−3.1 

12 3.08 1.43 × 10−5 0.68 6.37 × 103 −9.6,−3.5 

14 3.41 0.94 × 10−6 0.89 2.05 × 103 −9.1,−3.0 

16 3.20 0.74 × 10−5 0.48 5.27 × 103 −8.7,−3.1 

17 2.32 3.56 × 10−5 0.74 2.09 × 103 −13.6,−4.5 

18 3.20 0.82 × 10−5 0.35 4.79 × 103 −8.3,−2.9 

Median 3.15 1.20 × 10−5 0.55 5.01 × 103 −9.3,−3.3 

† Maximum and minimum days before symptom onset 230 
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