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ABSTRACT

Motivated by the desire to give vehicles better information about
their drivers, we explore human intent inference in the setting of a
human driver riding in a moving vehicle. Speci�cally, we consider
scenarios in which the driver intends to go to or learn about a spe-
ci�c point of interest along the vehicle’s route, and an autonomous
system is tasked with inferring this point of interest using gaze
cues. Because the scene under observation is highly dynamic —
both the background and objects in the scene move independently
relative to the driver — such scenarios are signi�cantly di�erent
from the static scenes considered by most literature in the eye
tracking community. In this paper, we provide a formulation for
this new problem of determining a point of interest in a dynamic
scenario. We design an experimental framework to systematically
evaluate initial solutions to this novel problem, and we propose
our own solution called dynamic interest point detection (DIPD). We
experimentally demonstrate the success of DIPD when compared
to baseline nearest-neighbor or �ltering approaches.
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1 INTRODUCTION

In recent years, automakers have started adding bio-sensing tech-
nologies to vehicle interiors as a means by which to give vehicles
better information about the occupants inside. Information from
these sensors can be used to infer, e.g., driver distraction or drowsi-
ness [3], driver identity [4], occupant type [21], occupant proximity
[1], or occupant health and wellness [29]. This information not
only has the potential to enable more useful vehicle functionality
and better safety features, but also novel forms of human-machine
interaction. These interactions will be inherently multimodal, with
opportunities for visual and audio two-way communication, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ICMI ’18, October 16–20, 2018, Boulder, CO, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5692-3/18/10. . . $15.00
https://doi.org/10.1145/3242969.3243018

Figure 1: A use case of intention inference. In the setting of

a human driver riding in a vehicle, a DMC captures the dri-

ver gaze, and a road camera captures the street view. Based

on the captured images, an autonomous agent infers which

point of interest in the street view that the driver is inter-

ested in going toward or obtaining more information about.

might involve anything from touch sensors to interaction in free-
form natural language.

One particularly interesting type of occupant information that
can be obtained using bio-sensors is human eye gaze. Neurophsy-
chology studies have suggested that, by observing a partner’s gaze,
humans can infer their partner’s intention or goal towards a par-
ticular object [5]. Therefore, we expect that providing automated
agents with a similar ability will provide a better user experience
in human-machine interaction. Indeed, several examples in the
literature (e.g., [7, 10, 18, 19, 24, 32]) have demonstrated that an
autonomous agent utilizing human gaze cues can better interpret
the human’s intent and thus make for a better partner. By under-
standing a human’s attentiveness and intention, the vehicle may,
for example, take additional safety measures if it �nds the human’s
actions to be dangerous, or provide intelligent assistance by react-
ing to inferred human intent. This inferred human attentiveness
and intention can then be combined with touch and/or voice com-
mands and feedback with a larger multimodal system. For example,
the driver may look at a store’s sign and request information about
the store’s hours of operation.

Inspired by that literature, we seek here to explore the use of dri-
ver gaze information obtained using imaging sensors in intelligent
vehicles. We are particularly concerned with the setting in which a
human driver rides in a moving vehicle, and we assume that the
driver’s intent is to go to or learn about a speci�c point of interest
along the vehicle’s route. Although a human’s point of interest
may not fully align with her intention, previous studies on theory
of mind [2] have shown it to be highly correlated. We envision a
two-camera system that is able to capture views of both the interior
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and exterior of the vehicle, where we refer to the interior-facing
camera as a driver-monitoring camera (DMC) that captures images
of the human’s head and face and the exterior-facing camera as
a road camera (RC) that captures images of the surrounding envi-
ronment. By correlating the information about the human’s gaze
captured by the DMC with the information about the environment
captured by the road camera, the vehicle’s task is that of inferring
which point of interest is associated with the human’s intent, i.e.,
the intended point of interest. A representative illustration of such a
system is shown in Figure 1. The DMC can be seen in the middle
of the steering wheel, and the road camera is located behind the
rear view mirror.

Inferring the driver’s intended point of interest in this setting
is a new problem, and it is challenging for many reasons. First,
many potential points of interest may be clustered together in a
relatively small area, causing confusion regarding which one the
driver is concerned with. Second, the vehicle’s motion changes
the location of the points of interest relative to the human within
the vehicle, which causes ambiguity in the meaning of shifts in
the driver’s gaze. For example, in a challenging driving scene as
shown in Figure 2, the vehicle’s motion changes the location and
dimensions of the points of interest relative to the human within
the vehicle. These interest points are hard to distinguish as they
are clustered in a small region, causing confusion regarding which
one the driver is concerned with. As the vehicle moves along the
street and takes a left turn, the size and position of points of interest
change dynamically and non-linearly in the road camera view. Such
a highly dynamic environment leads to ambiguity in the meaning of
shifts in the driver’s gaze. These challenges are made more di�cult
due to multiple sources of noise in the gaze information coming
from the DMC, e.g., eye blinks, misalignment, and vehicle shaking.
Because most classical techniques in eye tracking were developed
mainly for static scenes, the problem outlined above requires new
solutions.

The contributions of this paper are twofold. First, we develop
a new dynamic gaze tracking problem for detecting the user’s
point of interest in highly dynamic environments. We address this
new problem and design an experiment through which it can be
systematically investigated. We assume that the interior of the
vehicle is equipped with a DMC that is able to capture the human
driver’s face, and that the vehicle is also equipped with a road
camera to capture the scene outside of the vehicle. Under these
conditions, the question of interest is: given both the DMC and road

camera videos, to which interest point in the road camera video is the

person attending? Secondly, we propose our own solution called
dynamic interest point detection (DIPD), which seeks to address
the above challenges in order to determine the driver’s intended
point of interest. As in other work [31], our own DIPD method
takes as input the observations of gaze in the form of points in
the environment. However, we do not necessarily assume that the
raw gaze point aligns perfectly with the human’s intended point
of interest, as would be done in a nearest-neighbor (NN) approach
where the point of interest with nearest distance to the gaze point is
considered to be the inferred point of interest. Instead, DIPD treats
the observed gaze points as noisy inputs into a more robust dynamic
Markov random �eld (MRF) model that seeks to estimate the correct
point of interest. We evaluate DIPD to the new problem mentioned

above and quantify its bene�t over baseline nearest-neighbor and
�ltering approaches.

2 RELATED WORK

In this section we review prior work in two speci�c related areas.
First, since the problem of inferring the driver’s intended point of
interest using gaze information is relevant to the problem of identi-
fying �xations, we review the literature in which eye movement
data �ltering and �xation detection has been previously studied.
Second, since our overall goal is to infer the driver’s intent for
multimodal interaction, we also review the �eld of multimodal
interaction using intent recognition. While there has been much
work done in both areas, our work considers a unique situation and
proposes a unique solution.

2.1 Filtering and Identifying Fixations in Eye
Movement Data

In order to extract and analyze gaze information from eye move-
ment data, previous work has employed �ltering techniques that
smooth and denoise the eye tracking data. Finite-impulse response
(FIR) �ltering is a technique that computes the weighted average of
several latest gaze points, where di�erent weighting functions may
be applied. One study has shown that FIR �lters with triangular or
Gaussian kernel weighting functions outperform other real-time
�lters for HCI purposes [28]. In practice, a simple low-pass �lter
(LPF) that computes the weighted sum of the current raw gaze point
and the previous �ltered gaze point is commonly used for fast, real-
time gaze point �ltering [20]. Unfortunately, these conventional
�ltering techniques fail to remove the low-frequency noise caused
by eye blinks and vehicle shaking. In dynamic environments where
the eyes are tracking a moving interest point, conventional �lter
methods may even degrade inference success rate due to the delay
introduced by the �lters.

Human visual perception involves six types of eye movements:
�xations, saccades, smooth pursuits, optokinetic re�ex, vestibulo-
ocular re�ex, and vergence [17]. Algorithms to identify the two
most important types of eye movements, �xations and saccades, are
usually based on velocity, acceleration, or area-based thresholding
of the eye tracking data [26]. A common algorithm for �xation
and saccade detection is the I-DT (dispersion-threshold identi�ca-
tion) algorithm, which assumes that �xation points tend to cluster
closely together as they have low velocity, and identi�es �xations
as groups of consecutive points within a particular dispersion. In
prior literature, �xation detection is usually performed under the
setting where a static object is presented to a human subject, and a
�xation detection algorithm classi�es the eye movement data into
�xation and saccade types. Only a few recent works speci�cally
address the problem of detecting smooth pursuit eye movement
under the setting where a constant velocity target or a periodically
moving target is presented. Examples of existing methods include
using a three stage algorithm [16], a threshold-based algorithm, or
a probabilistic-based algorithm [27] to distinguish smooth pursuit
eye movement from �xation or saccade eye movement data. Im-
portantly, the aforementioned works cannot tell which object is
being �xated or pursued if there are multiple, and they assume that
the background is static, the object is of constant size, there is only
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Figure 2: In a challenging driving scene, the vehicle’s motion changes the location and dimensions of the points of interest

relative to the human within the vehicle. The points of interest in this �gure are marked by magenta bounding boxes.

one moving object, or some combination of these. In this work, we
instead deal with the problem of eye-tracking in the presence of
multiple moving objects and a moving background scene, where the
object sizes are time-varying, and further infer human’s attention
to one of the moving objects.

2.2 Intention Inference

An important aspect of successful human-machine interaction de-
sign is the autonomous agents’ ability to infer the human agent’s
intent [6, 11, 30]. One line of intention inference work relies on
knowledge-based models which allow the autonomous agent to
reason about human’s actions and goals from current state infor-
mation [12, 22, 34]. Since our work focuses on utilizing bio-sensing
data to infer a human’s intent, we now review the literature related
to these data-driven approaches.

A human’s physical status (e.g., pose, action, and other physi-
ological signals) and their interaction with the surrounding envi-
ronment can sometimes reveal their intent. Therefore, intention
inference can be partially achieved by analyzing one or more of
these physical statuses. For example, some works have shown that
modeling the relationship between human poses and objects in an
image can be used to infer the person’s next activity [8, 15]. In a
driving application, head motion has been used as an important
cue for predicting a driver’s intent to change lanes [9]. Further,
employing multi-modal data including GPS, speed, street maps,
and driver’s head movement can allow ADASs (advanced driver
assistance system) to anticipate the driver’s future maneuvers [13].

Gaze cues, which implicitly include head pose information, can
help to infer human intent as it pertains to �ner-grained points of
interest (e.g., shop signs far away from a driver). A deep learning
based method was proposed for doing so from a single image that
combines gaze and saliency maps predicted using convolutional
neural networks (CNNs) in order to form a predicted gaze direction
[25]. The method was shown to be useful in both surveillance and
human-robot teaming as ameans bywhich to understand a person’s
intention from a third party perspective. In cases where the person’s
face and gaze targets were captured by di�erent cameras, one needs
to correlate the gaze tracking data from the face camera with the
objects from the scene camera. Prior work on DAS has shown how
to correlate a diver’s gaze with road signs in the environment [10].
The system calculates the disparity between the scene camera and
gaze angles for the sign, and then uses this disparity to determine

whether or not the driver sees the road sign. Another approach is
to divide the scene into several regions and train a classi�er on a
dataset which contains the face images with annotated regions to
predict the region of user attention. For example, nine gaze zones in
the vehicle such as driver’s front, rear viewmirror, passenger’s front,
etc., were de�ned and a CNN classi�er was trained to categorize
the face images into the prede�ned �xed nine gaze zones so as to
recognize the point of driver’s attention [7]. In other application
areas such as hand-eye coordination tasks and player-adaptive
digital games, machine learning-based methods (e.g., SVM, kNN,
LSTM, etc.) have been shown to be e�ective in predicting user
intent from gaze observations [19, 24].

The above methods deal with coarse-grained regions of interest.
In this paper, however, we are instead interested in inferring a
human’s point of interest at a �ne-grained scale such as that of
an object or a sign board in a driving scene. To the best of our
knowledge, this type of eye tracking in the scenarios we have
described has not been substantially explored in previous literature.

3 PROBLEM FORMULATION AND SOLUTION

In this section, we describe the formulation of the question we
outlined in Section 1 (i.e., given both the DMC and road camera

videos, to which interest point in the road camera video is the person

attending?) and the method we developed that attempts to provide
an answer to this question.

3.1 Dynamic Gaze Tracking

One factor that complicates the problem is the fact that the DMC
and the road camera each capture video in a separate coordinate
system. While geometrically rectifying this di�erence in coordinate
systems is, in general, an important and interesting problem, our
interest here is in a more abstract problem that exists even after
the recti�cation has been done. Therefore, we instead formulate
the problem on a projection plane A, where plane A is the vertical
plane that is co-located with the DMC. As illustrated in Figure 3,
we calculate the gaze point on plane A, and we assume that the
scene captured by the road camera has the same �eld of view as
what the human can see. Both the gaze point and the bounding box
location of interest points in the 3D world can then be projected
onto plane A for correlation, i.e., gaze points can be represented by
two-dimensional coordinates b = (bx ,by ) and the ith interest point
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Figure 3: Illustration of the dynamic eye-tracking problem

on a virtual plane.

can be represented by a two-dimensional bounding box centered
at ui = (ux

i
,u

y
i
).

We now make the problem even more explicit by describing a
representative experiment we have designed for the purposes of
evaluating the accuracy of using di�erent eye-trackingmethods that
aim to solve the challenge set out above. The testing environment
is a driving scene, where the possible points of interest are densely
located and they move non-linearly in the road camera video due
to the vehicle turning. In order to simulate a dynamic environment
for a human participant, we set up a screen that displayed a street
view video pre-recorded using a real RC in a real moving vehicle.
The screen is used to de�ne the two-dimensional coordinate system
on the projection plane A in Figure 3. An imaging sensor taking
the role of DMC should be co-located with the vertical plane of the
screen. We use a standalone eye tracker mounted on the screen to
compute the human’s gaze points. Then, we calculate the user’s
gaze coordinates b in terms of two-dimensional coordinates on the
screen. A computer connecting to the screen is con�gured to run
the intention inference algorithms we would like to evaluate.

The experiment requires human subjects to perform individual
trials in the above setting. For each trial, the subject is asked to
�nd a speci�c point of interest in the street view video and �xate
their gaze onto that point (i.e. the user’s intent is cued by the
experimenter). This speci�ed point of interest is the ground truth
intended point of interest, denoted by zt . For each time frame, the
inferred point of interest yt is correct if yt = zt . The success rate
of inferring user intention can then be de�ned as the ratio of the
total number of correct inferences to the total number of frames
when the users �xate their gaze onto the speci�ed point of interest.

3.2 DIPD

We now propose our own novel solution to the dynamic gaze-
tracking problem, and we call this solution dynamic interest point

detection (DIPD). Figure 4 shows the system diagram for DIPD. The
system receives gaze data points from the eye tracker and object

Figure 4: A system diagram of the DIPD method for infer-

ring a human’s point of interest in a driving scene. The in-

tention inference engine obtains the gaze point of the hu-

man driver (from the DMC) and the object bounding boxes

in the driving scene (from the road camera) to infer the user

intent among �ner-grain objects by using a dynamic MRF

model and energy minimization.

Figure 5: Illustration of the dynamic MRF model in our

DIPD method for addressing dynamic eye-tracking chal-

lenges.

bounding boxes from an object-detection algorithm applied to the
images from the road camera. The bounding boxes provide the
position and dimension information for the possible gaze points
in the scene. The observed gaze point is treated as a probabilistic
input into a dynamic MRF model, which spans both space and time
in order to take into account gaze points in previous frames. An
energy function associated with the dynamic MRF model is then
minimized to infer the driver’s intended point of interest.

The DIPD method performs inference using an MRF model. For
each frame, we build a new MRF model as in Figure 5. This model
takes into account not only the gaze points at current time T but
also the historical gaze points upto w − 1 previous frames (i.e.
we consider gaze points in a windoww). The top layer nodes are
denoted as {bt = (bx

t
,b
y
t
) : t ∈ Z,T−w+1 ≤ t ≤ T } to represent the

observed gaze pixel coordinates during this window. The window
size w may be adapted to the camera frame rate and the speed
of the moving objects. The bottom layer nodes are denoted as
{ct,i : t ∈ Z,T −w + 1 ≤ t ≤ T ; i = na, 1, 2, ...,N } to represent the
points of interest in the scene, where N is the number of interest
points in the scene, and where i = na represents the case that the
human is not attending to any of the points of interest. Each gaze
point node bt is connected to all the interest point nodes ct,i in
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every time frame. The array of ct,i=na,1, ..,N under a gaze point
node bt is a one-hot vector, which consists of 0s in all elements with
the exception of a single 1 used uniquely to identify the attended
interest point. To infer ct,i from bt , nodes bt and nodes ct,i are
related by an energy potential that represents the likelihood of
bt given ct,i . The nodes in the model are dynamically changed
based on the number of available interest points in the dynamic
environment.

We assume that the likelihood of the gaze point bt given a point
of interest ct,i is attended follows a Gaussian function centered
at the interest point’s bounding box center ut,i with a covariance
matrix Σ related to the bounding box dimensions (i.e., width and
height). Therefore, the likelihood of bt given ct,i = 1 can be written
as

P(bt |ct,i = 1) ∝ exp[−
1

2
(bt − ut,i )

T
Σ
−1(bt − ut,i )] . (1)

Next, we formulate an energy function that can remove the
undesirable e�ects caused from eye blinks and moving/shaking
environment, and use this energy function to derive the most prob-
able point of interest that is attended by the user (i.e., the user’s
point of interest). Assuming the inference results ct will be highly
correlated with the probability value P(bt |ct,i ), we form a “track-
ing” energy term as −

∑

N

i=1 ct,i · P(bt |ct,i = 1). This energy term
will be lower when the likelihood of the gaze point bt given a point
of interest ct,i is attended is higher. Therefore, the location of the
high (1) bit in the one-hot vector ct will have the tendency to align
the point of interest i which corresponds to the highest probability
value P(bt |ct,i = 1). In addition, we assume that the likelihood of
a gaze point not attending any of the interest points is uniformly
distributed in the space of all possible gaze point locations. We de-
note the probability value of this case as a constant k , and form an
additional energy term −k · ct,i=na . Finally, we assume that people
typically �xate their eye gaze at their point of interest for a while
when they perceive it, and so the inferred point of interest should
be fairly steady during this time period. Therefore, we form a “time-
consistency” energy term that contains

∑

T

t ′=T−w+1

�

�ct,i − ct ′,i
�

� so
that the energy is lower if the inference results are consistent over
the windoww . The complete energy function for the dynamic MRF
model then takes the form

E(ct ; bt , ct ′=T−w+1..T ,i ) = −

N
∑

i=1

ct,i · P(bt |ct,i = 1)

−k · ct,i=na + α
∑

i

T
∑

t ′=T−w+1

1

w

�

�ct,i − ct ′,i
�

�

(2)

where α is a positive constant. The �rst two terms essentially act as
a high-pass �lter that tracks moving location of the interest points,
and the last term essentially acts as a low-pass �lter that removes
spikes and outliers due to eye blinks and moving/shaking e�ects.

The inference results ct can be found by optimizing the energy
function. That is, we would like to solve

c
∗
t = argmin

ct

E(ct ; bt , ct ′=T−w+1...T ,i )

s.t. ct,i ∈ {0, 1},
∑

i

ct,i = 1
(3)

We use iterated conditional modes (ICM) [14] to �nd the c∗
t
that

minimizes the total energy in the MRF model. The inference results
c
∗
t
are typically obtained after a few iterations. The node with

ct,i = 1 corresponds to the inferred user’s point of interest, denoted
by yt .

In practice, the number of available interest points may change
dynamically with respect to time. For example, the number of avail-
able interest points usually changes as the vehicle is moving along a
street. Some interest points may be occluded by other scene objects
and so they may disappear for a few frames during the window
w . This may also be the case if the object recognition system fails
to identify all the interest points in the scene. To handle these sce-
narios, DIPD constructs the dynamic MRF nodes for all interest
points that appear in any frame within the windoww and computes
the likelihood for all of them. If an interest point was missing in a
frame, DIPD simply assigns a zero probability to its corresponding
node in the dynamic MRF model. The energy function corrects such
outliers when we compute the inference results c∗

t
.

4 EXPERIMENTS

In this section, we describe our experiment design and the reasons
behind the design. Then, we describe the mathematics behind the
baseline approaches we compare to. Finally, we provide the exper-
iment results of our human study, which shows that DIPD has a
28% better inference success rate than the baseline approaches.

4.1 Experimental Design

We performed a laboratory study to validate our proposed tech-
niques since it allowed us to collect experiment data from multiple
participants experiencing the same road scenes and same point of
interests and compare di�erent methods statistically. Further, it al-
lowed us to more easily overcome low-level eye tracking and coordi-
nate transformation problems and instead focus on the higher-level
goals of DIPD.

The street view video used in our experiment is about 13 seconds
long (404 frames).1 Note that, although the study was done in a
laboratory setting, it used real data in the sense that it was gath-
ered using an in-car camcorder to pre-record a challenging scene
with a cluster of high density signs and emulates the road scenes
by a computer screen. We identi�ed 3-5 interest points and their
bounding boxes in each frame. A unique ID number between 0 and
4 was assigned to each of the interest points (i.e., Hancock, HEB,
Fitness, Petco, and Sears). Due to occlusion by other vehicles, some
interest points did not appear in all frames of the video. During the
experiment, the street view video was displayed in full-screen view
so that the screen pixel coordinates of the bounding boxes directly
represent the two-dimensional coordinates of the bounding boxes
on plane A.

We ran the experiment described in Section 3.1 for 70 trials
collected over 4 human subjects. In our experiment, we set up a
15-inch laptop showing a street view video of the environment
recorded by a road camera. A Tobii Eye Tracker 4C [33] mounted at
the bottom of the screen was used to simulate the setup of a DMC
with eye-tracking function for obtaining gaze points on the screen.
The eye tracker computed the user’s gaze coordinates b in terms

1The video is available at http://www.cs.utexas.edu/~larg/index.php/Gaze_and_Intent

http://www.cs.utexas.edu/~larg/index.php/Gaze_and_Intent
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of two-dimensional coordinates on the screen. We used the gaze
coordinates information to process the data discussed in Sections
4.2 and 3.2.

The objective of this experiment is to test whether the systems
give correct inference results when the user is intended to the
speci�ed point of interest. The users are asked to search for the
speci�ed point of interest after video of the road camera starts. As a
result, the system often reports a null of POI (i.e. N/A) in the �rst 2
seconds due to the fact that typically the participant is searching for
the speci�c point of interest at the beginning of a trial. Therefore,
the data of the �rst 60 frames are dropped when calculating the
success rate.

4.2 Baseline Approaches

Since inferring a human’s point of interest in dynamic environ-
ments is a new problem, we �rst propose two baseline approaches
which are adapted from the classical eye-tracking literature. These
baseline approaches will be described in detail below.

4.2.1 Nearest-neighbor-based Approach. Given gaze point coor-
dinates and the bounding box locations of the interest points on
plane A, one intuitive way to infer which interest point is attended
by the human is to use a nearest-neighbor (NN) approach. In this
approach, the point of interest with nearest distance to the gaze
point is considered to be the inferred point of interest.

More speci�cally, for every frame, we obtain a set of interest
points indexed by i ∈ {1, . . . ,N } that have been extracted by, e.g.,
and object detection algorithm. Each interest point is represented
by a two-dimensional bounding box centered at ui = (ux

i
,u

y
i
). We

also receive the coordinates of the current gaze point, denoted by
b = (bx ,by ). If no valid gaze point can be obtained from the eye
tracker, we simply use the gaze point coordinates from the previous
time step. The NN approach computes the inferred point of interest,
i∗, as

i∗ = argmin
i

d(b, ui ) (4)

where d(b, ui ) = | |b − ui | | is the Euclidean distance between gaze
point and the center of the ith interest point bounding box.

4.2.2 Filter-based Approach. Because the source of error in our dy-
namic gaze-tracking problem can be regarded as a form of noise, the
second baseline approach we develop uses �ltering in an attempt
to reject this noise. This is similar to approaches used in the static
eye-movement analysis problem. Here, we propose baseline ap-
proaches that are based on processing the gaze observations using
two �ltering techniques: low-pass �ltering (LPF) and �nite-impulse
response (FIR) �ltering.

In the LPF method, we �st apply an LPF to the observed gaze
points bt in order to compute a �ltered gaze point, b̃LPF

t
. We then

calculate the distance from b̃
LPF
t

to the center of each interest point,
and then select the interest point with the shortest distance as the
inferred point of interest. The LPF itself is implemented according
to the following equation [20]:

b̃
LPF
t = λb̃LPF

t−1 + (1 − λ)bt (5)

where λ is a coe�cient chosen to be between 0 and 1. Higher λ
results in more rejection of high-frequency noise, but also slower
system reaction to abrupt changes in the gaze point location.

In the FIR method, we �rst apply a FIR �lter with a Gaussian
kernel (weighting) function to the observed gaze points in order to
calculate �ltered gaze points b̃F IR

t
. We then compute the distance

from b̃
F IR
t

to the center of each interest point, and select the interest
point with the shortest distance as the inferred point of interest.
To implement the FIR �lter, we use a bu�er to store the latest gaze
points, and compute a weighted sum of each of these gaze points
according to a Gaussian kernel function [28]. The Gaussian kernel
function is expressed as follows:

Wi = e
− i

2

2σ 2 (6)

where the σ is a chosen parameter. The output value from the FIR
�lter is computed by the following equation:

b̃
F IR
t =

∑

N

i=0Wi × bt−i
∑

M

i=0Wi

(7)

Here, higher σ means more previous frames are taken into account
for �ltering the current gaze point.

4.3 Experimental Results

Table 1: The success rates of inferring a driver’s point of in-

terest using the methods discussed in Sections 4.2 and 3.2.

ID NN LPF FIR DIPD @w = 30 DIPD @w = 60

0 0.97 0.94 0.85 1.00 1.00

1 0.91 0.89 0.83 1.00 0.97
2 0.71 0.69 0.65 0.89 0.99

3 0.86 0.85 0.84 0.91 1.00

4 0.83 0.83 0.84 0.88 1.00

Table 1 compares the success rate of our intention inference
method (DIPD) to baseline approaches described in Section 4.2.
Each row contains the results of an experiment in which the user’s
point of interest is speci�ed in the �rst column (i.e., ground truth
point of interest).

For the LPF method, a value of 0.667 was used as the hyperpa-
rameter λ . For FIR �ltering, the Guassian kernel width used was
σ = 10. When calculating the Gaussian kernel function, we only
take the latestM gaze points which correspond toWi ≥ 0.05 and
ignore other gaze points which correspond toWi < 0.05. For DIPD,
in Eq. 2, the hyperparameter k , which represents the probability
value of a gaze point not attending any point of interest, was set at
1/(N + 1). The hyperparameter α represents the assumed relative
importance of each term, and we used a value of α = 1 so that the
tracking energy term and the time-consistency energy term are
equally weighted. By using ICM, we vary the value of each node
individually subject to the constraint in Equation (3) to �nd the
values c∗

t
that minimize the local potentials. Since the typical mean

�xation duration of human gaze is 260-330 ms for scene perception
and 180-275ms for visual search [23] and the fps (frame-per-second)
of our system is 30, we sweep the window sizew from 6 to 60 in our
experiment. Experimental results for our DIPD method using two
di�erent window size settingsw = 30 andw = 60 (equivalent to 1
sec and 2 sec, respectively) in the dynamic MRF model are shown in
Table 1. Figure 6 plots the success rate of our method for di�erent
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Figure 6: Success rate versus window size setting for DIPD.

Figure 7: Average and standard deviation of the improve-

ment percentage compared to the NN baseline for di�erent

methods. The �lter-based approaches (i.e., LPF and FIR) gen-

erally perform much worse than PIPD.

window size settingsw . The success rate is in general higher when
setting the hyperparameterw to be 60 (i.e., 2 sec).

We calculate the inference success rate for each method evalu-
ated on each ground truth point of interest as described in Section
3.1. We can see in Table 1 that DIPD has a 28% better inference
success rate than the baseline NN approach, and even more for
the �lter-based approaches. Figure 7 shows the statistical results of
�lter-based approaches (i.e., LPF or FIR) and DIPD from 70 trials
of user experiment. The e�ectiveness of each method is quanti�ed
by the improvement percentage of success rate compared to the
NN baseline. We notice that conventional �lter-based approaches
perform much worse than DIPD, and most of them are even worse
than pure NN. We posit that this is because these �lters are linear
�lters, which cannot completely remove the outliers caused by eye
blinks. Further, if larger �ltering parameters (i.e., λ for the LPF and
σ for the FIR �lter) were selected to smooth the eye tracking signal
further, it may introduce a longer delay in the system. This longer
delay might degrade the system success rate since the system needs
to be agile enough to follow the changing gaze location when the
eyes are tracking a moving interest point.

(a)

(b)

Figure 8: Selected experiment data. (a) Traces of gaze points

(in cyan) and intended object bounding boxes (in yellow)

in a trial. The �gure compacts the moving sequence of the

gaze point and the object bounding box during the whole

trial into one image. (b) Inferred point of interest for di�er-

ent methods. The DIPD method can eliminate most of the

glitches and outliers for better inference success (i.e., better

alignment with the ground truth point of interest ID 2 in

this case).

Our experiments show that the dynamic MRF model and energy
function can help to tolerate poor eye-tracking accuracy or stability
and can remove noise that arises due to blinking, a moving back-
ground, and vehicle shaking. To illustrate this, Figure 8a shows a
shifting gaze point and intended object bounding box in a trial. The
noise and outliers are mainly caused by eye blinks, high-speed track-
ing misalignment, and the eyes searching for the speci�ed point
of interest at the beginning of the video, which can be observed
in all trials. DIPD successfully eliminates the noise and outliers
and is able to achieve a better success rate. Figure 8b shows the
point of interest inference results from the NN approach and DIPD
approach in a time series. The ground truth point of interest ID is
2 for this case. The results of our DIPD method for two di�erent
window size settingsw = 30 andw = 60 (in frames) are shown. The
�gure shows that inference results from the NN approach (i.e., blue
dots) have more glitches and outliers than our DIPD method. In our
experiment, ID #2 (Fitness) is the most di�cult one since it is the
smallest interest point located in the middle of the interest point
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clusters, and our experimental results show that the DIPD method
has signi�cantly higher inference success rate for such challenging
objects (for DIPD with w = 60, ID #2: Mean = 16.45, S .D. = 8.45,
Others:Mean = 7.11, S .D. = 7.46; z = 4.85, p < 0.00001).

5 DISCUSSION AND FUTUREWORK

In this section, we highlight the unique problems DIPD resolves
and provide a better context for our baseline methods. We also
discuss the high-level di�erence between DIPD and NN, LPF/FIR
approaches, how DIPD hyperparameters such asw , k , and α would
a�ect the experiment results, the limitations of DIPD, and how they
might be overcome (i.e., lessons learned).

The output of DIPD is an inferred user point of interest, which
is fundamentally di�erent (higher-level) than simply smoothed
gaze points. In particular, it additionally requires rejecting dynamic
environmental disturbances (e.g., vehicle shaking) and must deal
with the size and variance of detected points of interest, which
are challenges that are not addressed by simple gaze �ltering tech-
niques. After detecting and modeling moving interest points in a
dynamic scene, we must then correlate the gaze points with a POI
while rejecting noise from many sources. DIPD aims to infer user
intention, which goes beyond smoothing gaze points. This is what
motivates us to propose using intuitive extensions of gaze-�ltering
methods for a baseline, i.e., the NNmethod and higher-level �ltering
techniques. DIPD is e�ectively a special kind of �ltering operation,
whereas the NN approach does not have �ltering over time. More
speci�cally, DIPD uses graphical modeling in order to be robust to
noise in high-speed tracking environments. This is in contrast to
the LPF/FIR baseline approaches that �lter over time, but do not
leverage any higher-level information in order to accomplish the
high-speed tracking needed in dynamic environments.

The DIPD algorithm has several hyperparameters that can be
adjusted to make the algorithm workable in di�erent dynamic
environments.With respect to theDIPDwindow size in particular, it
seems that, in general, setting a larger window size results in a larger
success rate. Setting 30-60 frames as the window size in a 30fps
system represents 1-2 seconds, which is based on the assumption
that a driver being interested in an object would spend at least 1-2
seconds of attention on it. The window size is tuned empirically but
is an adjustable hyperparameter. While using even larger window
sizes (e.g.,w = 90) may result in an even better success rate, it also
requires more computing time for inference. The computing time
grows about linearly with respect to the window size. Therefore,
in practice, an upper bound on window size is desirable due to
increased computation time. Regarding the DIPD hyperparameter
k , i.e., the assumed probability that the driver is not attending to
any of the interest points, we assumed this value to be 1/6 in our
experiments. However, if k is set to 0, the inference result always
“snaps” to one of the interest points (i.e. the inference result is
always among one of the interest points even if the eye movement
is in a saccade phase). If we set k to a higher value, this behavior
is relaxed. The selection of this hyperparameter may be improved
and is left for future work, where it may adapt to �xation/saccade
probability of eye movement patterns.

In our experiment, we observed that the eye-tracker we used
requires per-session calibration and that there are accuracy issues

for freely moved/rotated heads. These �aws would limit the applica-
bility of DIPD in vehicles unless more-robust low-level tracking is
used. Moreover, an in-vehicle DIPD system would need to account
for things like perspective transformation to translate the camera
position of the road scene to the human’s head position since the
road camera is often set up near the rear-view mirror.

In our experiment, the DIPD method is applied to inferring the
attended shop sign along the road, though it can be applied to
other inference applications as well, such as other vehicles on the
road, third party objects in a human-robot interaction task, and
the holograms in a mixed-reality world. Interesting directions for
future work include deploying the DIPD method in a real vehicle
and investigating ways to improve the proposed energy function.

6 CONCLUSION

In this paper, we have proposed using multimodal interactions
based on gaze with voice/touch commands to enable safer and
more e�cient human machine interaction for intelligent vehicles.
We identi�ed gaze analysis as an important component of such
multimodal interactions, and introduced the problem of inferring a
human’s intended point of interest in a dynamic scene for scenarios
in which human drivers are riding in moving vehicles. This is a
new problem with many challenges beyond those considered in the
classical eye-tracking literature, and requires solutions that work
in highly dynamic environments and are robust to di�erent sources
of noise. We de�ned this new problem, designed an experiment to
evaluate di�erent inference methods, and proposed a new DIPD
method for addressing these challenges. The DIPD method utilizes
a dynamic MRF model with an energy function designed to be
robust to noise caused by eye blinks, vehicle shaking, and eyes
and gaze tracker inaccuracy. We evaluated DIPD experimentally
and quanti�ed its bene�t over a NN method and other �ltering
based methods. The DIPD technique outperforms both the NN
approach and the �ltering-based baseline techniques, especially for
small, challenging objects in congested scenarios. In light of the
encouraging initial results from our DIPD method, we hope that the
problem, new challenges, and experimental procedure developed
here will spur research and new solutions in this area.
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