
Inferring Users’ Preferences from Crowdsourced
Pairwise Comparisons: A Matrix Completion Approach

Jinfeng Yi† Rong Jin† Shaili Jain∗ Anil K. Jain†

†Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
{yijinfen, rongjin, jain}@cse.msu.edu
∗Microsoft, Bellevue, WA 98004 USA

shj@microsoft.com

Abstract

Inferring user preferences over a set of items is an important
problem that has found numerous applications. This work fo-
cuses on the scenario where the explicit feature representation
of items is unavailable, a setup that is similar to collaborative
filtering. In order to learn a user’s preferences from his/her
response to only a small number of pairwise comparisons,
we propose to leverage the pairwise comparisons made by
many crowd users, a problem we refer to as crowdranking.
The proposed crowdranking framework is based on the the-
ory of matrix completion, and we present efficient algorithms
for solving the related optimization problem. Our theoretical
analysis shows that, on average, only O(r logm) pairwise
queries are needed to accurately recover the ranking list of
m items for the target user, where r is the rank of the un-
known rating matrix, r ≪ m. Our empirical study with two
real-world benchmark datasets for collaborative filtering and
one crowdranking dataset we collected via Amazon Mechan-
ical Turk shows the promising performance of the proposed
algorithm compared to the state-of-the-art approaches.

Introduction

In this paper, we focus on the problem of inferring a user’s
preference over a set of items, given his response to a small
number of pairwise comparisons. More specifically, given a
collection of m items and a target user ut, our goal is to in-
fer the ranking list of m items for ut by his preferences over
a small number of item pairs. Similar to collaborative fil-
tering (Goldberg et al. 1992), we assume no explicit feature
representation is provided for items, which distinguishes our
work from the existing studies on learning to rank (Li 2011).
We emphasize the challenge of our problem because accord-
ing to (Jamieson and Nowak 2011), at least O(m logm)
pairwise comparisons are needed to obtain a full ranking list
for m items.

We propose to address this challenge by leveraging the
pairwise preference information obtained from a set of
crowd users via crowdsourcing. More specifically, we as-
sume that besides the target user ut, we have a large num-
ber of crowd users and a set of pairwise comparisons made
by each crowd user. Our goal is to dramatically reduce the
number of pairwise queries needed to infer the ranking list

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for ut by effectively exploiting the pairwise preference in-
formation provided by crowd users. Similar to most stud-
ies on crowdsourcing, our work also divides a major task
into many small pieces and asks individual crowd workers
to solve them; we refer to our problem as crowdsourced
ranking, or crowdranking for short. We note that the prob-
lem of inferring a user’s preferences from a collection of
pairwise comparisons made by many users has been stud-
ied before (Liu, Zhao, and Yang 2009; Rendle et al. 2009).
Since pairwise comparisons generally reveal less informa-
tion about users’ interests compared to numerical ratings,
these algorithms require a large number of pairwise compar-
isons, making them impractical for real-world applications.
The key contribution of this work is to show, both theoret-
ically and empirically, that by intelligently exploiting the
pairwise comparisons made by crowd users, we can accu-
rately infer the list of preferred items by only asking the tar-
get user a small number of pairwise comparison questions.

Crowdranking is closely related to collaborative filtering
where the goal is to infer the numerical ratings of items for
the target user ut based on the ratings of training (crowd)
users. Since numerical ratings of items can always be con-
verted to pairwise comparisons (but not true the other way
around), in this regard, we can view crowdranking as a
generalization of collaborative filtering. Generally speak-
ing, crowdranking with pairwise comparisons is preferable
over traditional collaborative filtering with numerical rat-
ings. This is because pairwise comparisons can be derived
from implicit feedback, such as the click-through informa-
tion in online advertising and web search, when explicit
feedback (e.g. numerical ratings) from users is either un-
available or difficult to obtain. Furthermore, according to
earlier studies (Liu, Zhao, and Yang 2009; Negahban, Oh,
and Shah 2012), often it is more reliable to obtain pairwise
preference information of items from individual users than
their numerical ratings, due to the subjectiveness when users
provide numerical ratings.

In order to effectively explore the pairwise preference in-
formation from a collection of crowd users, we assume that
despite the diversity in the ranking lists from different users,
there exist a small number of underlying intrinsic ranking
functions such that all the ranking lists are derived from a
linear combination of these intrinsic ranking functions. We
refer to this assumption as the low rank assumption, which

207

Proceedings of the First AAAI Conference on Human Computation and Crowdsourcing

Figure 1: The proposed framework for crowdranking. The
target user ut is augmented with the n crowd users
u1, · · · , un to form a (n+ 1)×C2

m partially observed pair-
wise comparison matrix, where m is the number of objects
to be ranked. The entry of 1 in the p-th row of the ma-
trix indicates that user up prefers item oi to oj , −1 if up

prefers item oj to oi, and ? if the pair is not rated by up. The
(n+1)×m user-item scoring matrix is completed under the
low rank assumption. The preference ordering of the target
user ut is derived from the sorting of his scores over the m
items.

was first introduced in recommender systems by (Sarwar et
al. 2000). We have developed a matrix completion frame-
work for crowdranking based on this low rank assumption.
Figure 1 depicts the proposed framework. We show that,
when there are only r intrinsic ranking functions among the
crowd (r is also referred to as rank of the rating matrix) ,
on average, only O(r logm) pairwise queries are needed to
accurately recover the ranking list of m items for the tar-
get user, provided the size of crowd is sufficiently large.
We verify the effectiveness of the proposed algorithm for
crowdranking using two benchmark datasets for collabora-
tive filtering and one crowdsourced dataset that we collected
through Amazon Mechanical Turk. Our results show that the
proposed algorithm is effective for crowdranking and com-
parable to the state-of-the-art algorithms for collaborative
filtering.

Related work

In this section, we review the related work on collaborative
filtering, crowdsourced ranking and learning to rank, given
a set of pairwise comparisons.

Collaborative filtering can be divided into two cate-
gories: memory-based approaches, and model-based ap-
proaches (Su and Khoshgoftaar 2009). Typical examples of
memory-based collaborative filtering approaches are item-
based and user-based methods. They assume that similar
users would give similar ratings, or similar items would
also be rated similarly. Several different similarity functions
have been exploited to measure the similarity between two
users/items based on their ratings, including Cosine simi-
larity (Sarwar et al. 2001), Pearson Correlation (Herlocker,
Konstan, and Riedl 2002) and conditional probability-based
similarity (Deshpande and Karypis 2004). In contrast to the
memory-based approaches, model-based approaches learn a
generative model from the observed ratings that can be used

to predict the unobserved ratings (Heckerman et al. 2000;
Canny 2002; Xue et al. 2005). Many state-of-the-art algo-
rithms for collaborative filtering are based on matrix factor-
ization (Salakhutdinov and Mnih 2008; Rennie and Srebro
2005). The key idea behind them is to find a low rank user-
rating matrix that best approximates the observed ratings.
Finally, several algorithms were developed to infer lists of
items preferred by individual users from a collection of pair-
wise comparison made by the users (Liu, Zhao, and Yang
2009; Rendle et al. 2009). The key difference between this
study and the existing algorithms is that we focus on the sce-
nario when the number of available pairwise comparisons is
small (i.e., less than 20 in our experiments).

Learning to rank trains a statistical model for ranking
tasks (Li 2011). Popular approaches for learning to rank with
pairwise comparisons include Active Ranking (Jamieson
and Nowak 2011), RankNet (Burges et al. 2005), IR
SVM (Cao et al. 2006), and LambdaRank (Burges, Ragno,
and Le 2006). Since learning to rank requires a vector repre-
sentation of the items to be ranked, they can not be directly
applied to crowdranking.

Crowdsourced ranking focuses on learning a single rank-
ing function from the ranked items. In (Chen et al. 2013), the
authors proposed a Bayesian framework to actively select
pairwise comparison queries, and effectively combine the
pairwise comparisons acquired by crowdsourcing to form a
single ranking list. In (Negahban, Oh, and Shah 2012), the
authors developed an iterative rank aggregation algorithm
to effectively infer ratings for items from pairwise compar-
isons using Bradley-Terry-Luce model. Since all these stud-
ies assume that there exists a common ranking list shared
by all the crowd users, they can not be applied to our prob-
lem where a different ranking list is learned for an individual
user. The authors in (Tamuz et al. 2011) use crowdsourced
data to learn a similarity matrix for a given set of objects.
While the proposed method uses pairwise queries (i.e. is a
better than b?) for recommendation, their learning method is
based on triplet queries (i.e. is a more similar to b than to
c?).

Crowdranking by Matrix Completion
We first present the problem of crowdranking from the view-
point of matrix completion. Let u1, . . . , un be the crowd of
n workers or users, and o1, . . . , om be a set of m items to
be ranked. We introduce the notation oj ≻ui

ok if item oj is
preferred by user ui over item ok. We encode each pairwise
comparison oj ≻ui

ok by a triple (ui, oj , ok), and denote by
Ω = {(ui, oj , ok) : oj ≻ui

ok} the set of triplets that en-
code all the pairwise comparisons obtained from the crowd
of n users. In addition, we have a target user ut who pro-
vides pairwise preferences for a small subset of item pairs,
denoted by Ωt = {(i, j) : oi ≻ut

oj}. Our goal is to in-
fer the full ranking of m items for the target user ut by ef-
fectively exploiting the pairwise preference information ob-
tained from the crowd.

We will examine two setups for crowdranking. In the first
setup, we do not distinguish between the target user and the
crowd users. Instead of only inferring the ranking list for
the target user, our goal is to infer the ranking lists for all the

208

(n+1) users, including the n crowd users and the target user,
ut. We refer to this setting as transductive crowdranking. In
the second setup, we only aim to infer the ranking list for the
target user ut, which we refer to as inductive crowdranking.
Although a transductive crowdranking method can always
be applied to the inductive setting, it is computationally ex-
pensive as it needs to first infer the ranking lists for all the
users. We address the computational issue by developing an
approximate algorithm for inductive crowdranking.

Significance of Pairwise Comparison in Learning
User Preference

In this study, we emphasize the reason to infer user’s prefer-
ence list from pairwise comparisons. Alternatively, we can
also infer the user’s preference list based on the numerical
ratings provided by crowd users, an approach that is fol-
lowed by most collaborative filtering methods. The funda-
mental limitation in using numerical ratings arises from the
fact that two users sharing the same preference list may give
different ratings to the same set of items. This will lead to
a small similarity between the two users computed based
on ratings and as a result, the incorrect conclusion that they
share different preference of items. In other words, due to
the subjectiveness in users’ ratings, the user-item-rating ma-
trix may not accurately reflect the underlying correlation in
preference among different users. Pairwise comparison ad-
dresses this limitation by asking the users to provide their
preferences between pairs of items which is more reliable in
capturing the correlation among users’ preferences.

To illustrate the limitation of numerical ratings, we con-
struct a toy example consisting of 50 users and 60 items.
We divide the 60 items into three groups, each with twenty
items. We assume all the 50 users share the same preference
list of items, i.e. items in the first group are more preferred
than items in the second group, and items in the second
group are more preferred than items in the third group. Let
f = (f1, . . . , f60)

⊤ be the canonical rating vector that gives
rating 5 to items in the first group, 3 to items in the second
group, and 1 to items in the third group. To capture the sub-
jectiveness in user’s ratings, we introduce five random vec-
tors vi = (vi,1, . . . , vi,60)

⊤ ∈ {−1,+1}60, i = 1, 2, . . . , 5,
where each entry vi,j has equal chance to be +1 and −1,
with each random vector modeling a different type of rating
subjectiveness. The final rating vector for user ui is given
by f + vk, where k is an integer randomly sampled from 1
to 5. Since the gap between groups of items in rating vector
f is at least 2, the perturbation vector vi does not change
the ordering between groups of items. We construct a matrix
F = (f1, . . . , f50) that includes the ratings of all 50 users.
Figure 2 (a) shows a heat map for the matrix F .

Since in this example, all the users share the same pref-
erence list of items, we would expect the ratings of differ-
ent users to be linearly dependent and therefore matrix F
to be of rank 1. Figure 2 (b) shows the distribution of sin-
gular values for matrix F , indicating that the rank of F is
5, significantly larger than 1. On the other hand, we can

construct a pairwise comparisons matrix Z ∈ R
50× 60×59

2

for the 50 users, where each column corresponds to a user

(a) (b)

Figure 2: A toy example that illustrates the limitation of inferring
user’s preference based on numerical ratings of 60 items. (a) Heat
map representation for the ratings of 50 users. The brighter the
color, the higher the rating. It shows that all the 50 users share the
same preference list of items, i.e. items in the first group are more
preferred than items in the second group, and items in the second
group are more preferred than items in the third group. (b) Plots of
singular values for the rating matrix and pairwise comparison ma-
trix. It shows that although all the users share the same preference
list of items, the rank of the rating matrix F is significantly larger
than 1. As a comparison, the pairwise comparison matrix Z, which
uses pairwise comparisons instead of numerical ratings, is a rank-1
matrix.

pairwise comparison between two items. Figure 2 (b) shows
the distribution of singular values for Z, indicating that Z
is a rank-1 matrix. This simple example illustrates that user-
pairwise-comparison matrix is more reliable than user-item-
rating matrix in capturing the dependence among the prefer-
ence lists of different users. Thus, by focusing on the pair-
wise comparisons of preference, we are able to remove the
artifacts caused by the subjectiveness in users’ ratings in
modeling user’s preference.

Transductive Crowdranking

Since we do not distinguish between the crowd users and the
target user in transductive crowdranking, we will simply fo-
cus on predicting the ranking lists for the crowd users. Let
f1(·), . . . , fn(·) be the unknown ranking functions adopted
by the n crowd users. Let fi = (fi(o1), . . . , fi(om))⊤ ∈ R

m

be the vector of rating scores given by the user ui to m items,
and let F = (f1, . . . , fn)

⊤ ∈ R
n×m be the rating matrix that

includes the rating scores by all the users. Note that each
crowd user only rates a small subset of the m items, the
matrix F is a partially observed matrix with a majority of
its entries to be unobserved. In order to infer the ranking
lists for all the crowd users, it is equivalent to inferring the
rating matrix F . Below, we will first present a matrix com-
pletion based framework for recovering the rating matrix F ,
and then present an algorithm that efficiently solves the re-
lated optimization problem.

A Matrix Completion Framework for Transductive
Crowdranking We first discuss how the low rank assump-
tion affects the choice of the rating matrix F . Under the
low rank assumption, there exist r intrinsic ranking func-

tions f̂1(·), . . . , f̂r(·), where r ≪ n, such that every fi(·)

is a linear combination of {f̂i(·)}
r
i=1. More specifically, let

f̂i = (f̂i(o1), . . . , f̂i(om))⊤ ∈ R
m be the rating scores

given by the intrinsic ranking function f̂i. Then, there ex-
ists a vector of coefficients ai = (ai,1, . . . , ai,r)

⊤ ∈ R
r

209

for each user ui such that fi(·) =
∑r

j=1 ai,j f̂j . As a result,

the low rank assumption implies that there exists a matrix

A = (a1, . . . ,an) ∈ R
r×n such that F = A⊤(f̂1, . . . , f̂r),

which is equivalent to assuming that the rank of F is at most
r.

To measure the consistency between the rating matrix F
and the observed pairwise comparisons from crowd users,
we introduce a convex loss function ℓ(z) that is monotoni-
cally decreasing in z. Given a pairwise comparison oj ≻ui

ok, the inconsistency of F is measured by ℓ(Fi,j − Fi,k):
the larger the loss function, the larger the inconsistency be-
tween F and the pairwise comparisons. Example loss func-
tions include hinge loss ℓ(z) = max(0, 1 − z) and logistic
loss ℓ(z) = log(1 + e−z). Using the loss function, the in-
consistency between F and all the observed pairwise com-
parisons encoded by the triplets in Ω is then given by

∑

(i,j,k)∈Ω

ℓ(Fi,j − Fi,k)

Our goal is to search for a low rank matrix F ∈ R
n×m that is

consistent with most of the observed pairwise comparisons
in Ω, leading to the following optimization problem

min
F∈Rn×m

λ rank(F) +
∑

(i,j,k)∈Ω

ℓ(Fi,j − Fi,k) (1)

where λ > 0 is introduced to balance the tradeoff between
minimizing the rank of F and reducing the inconsistency
with respect to the observed pairwise comparisons in Ω.
Since rank(F) is a non-convex function, we approximate
rank(F) by the trace norm |F |tr, the convex envelope of
rank(F) (Candès and Recht 2009), and convert (1) into a
convex optimization problem

min
F∈Rn×m

L(F) = λ|F |tr +
∑

(i,j,k)∈Ω

ℓ(Fi,j − Fi,k)(2)

Let F̂ be the solution obtained from (2). The following
theorem, known through our personal communication with
Robert Nowak1 provides a theoretical guarantee for the so-

lution F̂ .

Theorem 1. Assume ℓ(z) in (2) is a hinge loss function.
Suppose the true rating matrix F ∗ is at most rank r and Ω
is the set of pairwise comparisons chosen uniformly at ran-
dom. Then with a probability 1− δ, the normalized Kendall

tau distance between rankings estimated from F̂ , the opti-
mal solution for (2), and the true rating matrix F ∗is upper
bounded by

r(m+ n)(log(m) + log(1/δ))

|Ω|
,

where the normalized Kendall tau distance is within the
range [0, 1].

1http://nowak.ece.wisc.edu/

Remark Given two ranking lists τ1 and τ2, the normalized
Kendall tau distance between τ1 and τ2 is given by

K(τ1, τ2) =
2

m(m− 1)

m∑

j=1

m∑

i>j

K̄i,j(τ1, τ2)

where K̄i,j(τ1, τ2) = 0 if i and j are in the same order in τ1
and τ2 and 1, otherwise. As a result, the normalized Kendall
tau distance can also be interpreted as the probability of any
two randomly sampled items to be in different order in the
ranking lists τ1 and τ2. To be more precise, let τ̂i and τ∗i be

the ranking lists for user ui derived from rating matrices F̂
and F ∗, respectively. If we set the number of observed pair-
wise comparisons in Ω to be |Ω| = 30r(m + n) logm =
Ω(r(m + n) logm), then, with a probability 1 − m−2, for
any user ui and for 90% of randomly sampled item pairs oj
and ok, they will be in the same order in the ranking lists
τ̂i and τ∗i . This result implies, in order to obtain accurate
ranking lists for all the crowd users, on average, we only
need to query each user with O(r logm) pairwise compar-
isons, significantly smaller than O(m logm) pairwise com-
parisons that are required when the training set of pairwise
comparisons from crowd users is not available.

An Efficient Algorithm for Transductive Crowdranking
Following Theorem 1, we set the loss function in (2) to be a
hinge loss, i.e. ℓ(z) = max(0, 1− z). One popular approach
for solving the optimization problem in (2) is gradient de-
scent. At each iteration t, given the current solution Ft for
(2), we first compute a subgradient of the objective function
L(F) at F = Ft, denoted by ∂L(Ft), and then update the
solution by

Ft+1 = Ft − ηt∂L(Ft) (3)

where ηt > 0 is the step size at the t-th iteration. Let Ft =
UtΣtV

⊤
t be the singular value decomposition of Ft. Since

UtV
⊤
t is a subgradient of |F |tr at F = Ft, we have

∂L(FT)=

 ∑

(i,j,k)∈Ω

ℓ′(Fi,j − Fi,k)e
n
i (e

m
j − e

m
k)⊤

−UtV

⊤
t

where e
n
i is a vector of n dimensions with all the elements

being zero except that its ith entry is 1.
The main computational challenge in implementing the

gradient descent approach for optimizing (2) arises from the
high cost in computing the singular value decomposition of
Ft, particularly when both n and m are large. We address
this computational challenge by exploiting the stochastic
subgradient descent algorithm that was recently proposed
for matrix completion (Avron et al. 2012). The key idea is
to approximate the gradient ∂L(Ft) by a low rank matrix,
and update the solution Ft using the low rank approxima-
tion of the gradient. To this end, we introduce a low rank
probing matrix Y ∈ R

m×k, where k ≪ m. We assume
E[Y Y ⊤] = Im, i.e. Y Y ⊤ forms an unbiased estimate of the
identity matrix Im. Using the probing matrix Y , we approx-
imate the gradient ∂L(Ft) by

∂̃L(Ft) = ∂L(Ft)Y Y ⊤

210

There are two important properties of the approximated gra-

dient ∂̃L(Ft) that can be used to facilitate our computa-

tion. First, ∂̃L(Ft) is an unbiased estimate of ∂L(Ft), i.e.

E[∂̃L(Ft)] = ∇L(Ft). Second, ∂̃L(Ft) is a low rank ma-

trix, i.e. rank(∂̃L(Ft)) ≤ k. The unbiased property of

∂̃L(Ft) ensures that the solution generated by the proposed
algorithm will converge to the true optimal solution when

the approximate gradient ∂̃L(Ft) is used for updating. The

low rank property of ∂̃L(Ft) allows for more efficient sin-
gular value decomposition.

Given the approximate gradient ∂̃L(Ft), we update the
solution by

Ft+1= Πr(F
′
t+1), (4)

F ′
t+1=Ft − η∂̃L(Ft) = [UtΣt,−η∇L(Ft)Y]

[
V ⊤
t

Y ⊤

]
(5)

where operator Πr(Z) = Ur(Z)Σ(Z)Vr(Z)⊤ computes the
best rank-r approximation of Z. If the rating matrix Ft is of
rank r, the rank of matrix F ′

t+1 is upper bounded by r + k,
and as a result, the singular vector decomposition of F ′

t+1
can be computed more efficiently by explicitly exploring the
low rank structure of F ′

t+1 (Avron et al. 2012). In particu-
lar, the cost of computing the first r eigenvalues and eigen-
vectors of F ′

t+1 is O(r(r + k)max(n,m)). Compared to
directly computing the first r singular values and singular
vectors of F ′

t+1 whose cost is O(rnm), this is significantly
more efficient. In our implementation, we follow (Avron et
al. 2012) who randomly sample k vectors from the following
set

e
m
1 , em2 , . . . , emm,

and form the probing matrix Y =
√

m
k

(
e
m
i1
, . . . , emik

)
,

where e
m
ij
, j = 1, . . . , k are randomly sampled vectors. It

is easy to verify that the probing matrix generated in this
way will guarantee to be an unbiased estimator of the iden-
tity matrix.

Inductive Crowdranking

The main limitation of transductive crowdranking arises
from its high computational cost, i.e. in order to predict the
ranking list of items for the target user ut, we have to make
the predictions for all the n crowd users as well. To improve
the computational efficiency, we divide the algorithm for in-
ductive crowdranking into two phases: learning phase and
prediction phase. In the learning phase, we estimate the rat-

ing matrix F̂ for the n crowd users based on the observed
pairwise comparisons in Ω; in the prediction phase, we esti-

mate the rating vector f̃ ∈ R
m for the target user ut based

on his pairwise comparisons in Ωt and the estimated rating

matrix F̂ . Since the learning phase overlaps with the trans-
ductive crowdranking, we will focus our discussion on the
prediction phase.

By fixing the rating matrix F̂ for the crowd users, the rat-
ing matrix for both the crowd users and the target user is

given by [F̂⊤, f̃]⊤. By replacing F in (2) with [F̂⊤, f̃]⊤, we

have the following optimization problem for f̃

f̃ = argmin
f∈Rm

λ

∣∣∣∣
[

F̂
f
⊤

]∣∣∣∣
tr

+
∑

(i,j)∈Ωt

ℓ(fi − fj). (6)

Directly solving the optimization problem in (6) is com-
putationally expensive because it requires evaluating the

trace norm for a large matrix [F̂⊤, f]⊤. We address this chal-
lenge by exploiting the following lemma that gives an alter-
native expression for trace norm of a matrix.

Lemma 1. (Rennie and Srebro 2005) For any matrix X ∈
R

n×m, we have

|X|tr = min
UV ⊤=X

1

2
|U |2F +

1

2
|V |2F

where |X|F measures the Frobenius norm of matrix X .

Using Lemma 1, we obtain the following upper bound for

|[F̂⊤, f̃]⊤|tr.

Lemma 2. Let v1, . . . ,vr be the right singular vectors of

F̂ and let σ2
1 , . . . , σ

2
r be the corresponding singular values.

Then, for any vector f lying in the subspace spanned by the

row vectors in F̂ , we have
∣∣∣∣
[

F̂
f
⊤

]∣∣∣∣
tr

≤ |F̂ |tr +
1

2

r∑

i=1

|f⊤vi|
2

σ2
i

The proof of Lemma 2 can be found in the appendix. By
replacing the trace norm in (6) with the upper bound given in
Lemma 2, we have the following approximate optimization

problem for learning the rating vector f̃ for the target user

f̃ = argmin
f∈Rm

λ

2

r∑

i=1

|f⊤vi|
2

σ2
i

+
∑

(i,j)∈Ωt

ℓ(fi − fj) (7)

Remark Compared to (6), the optimization problem in (7)
is significantly simplified because it does not involve evalu-
ating the trace norm of a large matrix. In addition, the first

term in the objective function in (7), i.e. λ
2

∑r

i=1
|f⊤vi|

2

σ2

i

, es-

sentially plays the role of regularizer: it restricts the solution

f̃ to the subspace spanned by the singular vectors of F̂ ; by

weighting f
⊤
vi by σ−2

i , it essentially favors the solution f̃

that aligns with the eigenvectors of the largest r eigenvalues.
We briefly discuss how to efficiently solve the optimiza-

tion problem in (7). In order to take advantage of the existing
algorithms for solving the optimization problem in (7), we
introduce a variable a ∈ R

r, and write f as

f =
r∑

i=1

aiσivi

We also introduce a vector representation xi =
(xi,1, . . . , xi,r)

⊤ for each item oi as xi,j = σjvj,i. It

is easy to verify that fi = x
⊤
i a, based on which eq. (7) is

changed to the following optimization problem

a = argmin
a∈Rr

λ

2
|a|2 +

∑

(i,j)∈Ωt

ℓ([xi − xj]
⊤
a) (8)

211

Since (8) is a standard optimization problem found in learn-
ing to rank, it can be efficiently solved by using the existing
tools such as LIBLINEAR2.

Experiments

In this section, we verify the effectiveness of the proposed
algorithms for crowdranking by conducting two sets of ex-
periments. In the first set of experiments, we apply the pro-
posed algorithms to collaborative filtering problems where
user ratings for individual items are provided. Instead of di-
rectly modeling user ratings like most collaborative filtering
methods, we first convert user ratings into a set of pairwise
comparisons, and then apply the proposed algorithms to in-
fer user’s preference of items based on the pairwise com-
parisons. We compare the performance of the proposed al-
gorithms to the state-of-the-art algorithms for collaborative
filtering. In the second experiment, we collect crowdsourced
data on pairwise comparisons from many users where the
items of interest are ladies hand-bags. We evaluate the per-
formance of the proposed algorithms by comparing the rank-
ing lists inferred by the proposed algorithms to the rank-
ing lists provided by the target users. Throughout this sec-
tion, we will refer to the proposed algorithm for transduc-
tive crowdranking and inductive crowdranking as T-CR and
I-CR, respectively, for brevity.

Experiment (I): Application to Collaborative
Filtering

Two real-world collaborative filtering data sets are used in
our experiments:

• MovieLens 1M Data Set3 is comprised of 3, 952 movies
rated by 6, 040 users. Each movie is rated on a scale from
1 to 5, with 5 indicating the best movie and 1 indicating
the worst movie. There are a total of one million ratings
in this dataset.

• Jester Data Set4 is a subset of a larger Jester
database (Goldberg et al. 2001). It is comprised of 100
jokes rated by 10, 000 users. Each joke is rated from −10
to 10, with 10 for the best joke and −10 for the worst joke.
There is a total of 56, 350 ratings in this dataset.

Following the standard evaluation protocol of collaborative
filtering, for both the datasets, we randomly sample 70% of
users as the crowd users (training set), and use the remain-
ing 30% as the target users (test set). Since the proposed
algorithm is designed for pairwise comparisons, we convert
the rating information into a set of pairwise comparisons.
More specifically, we create a triplet oj ≻ui

ok if item oj is
rated higher by user ui than item ok. We note that some in-
formation is lost through this conversion. For instance, the
derived pairwise comparisons do not reflect the difference
in ratings between two items, which could be potentially
valuable in inferring user’s preference list. In addition, no
pairwise comparison data is generated if two items are given
the same rating. Despite this information loss in converting

2http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
3http://www.grouplens.org/node/73
4http://eigentaste.berkeley.edu/dataset/

ratings to pairwise comparisons, our empirical study shows
that the proposed algorithms yield comparable performance
as the state-of-the art algorithms for collaborative filtering
that explicitly model the rating information.

To simulate the process of querying a target user ut, we
randomly select 5, 10, 15, and 20 pairwise comparisons
made by ut, and infer its ranking list of items based on the
limited pairwise comparisons and the pairwise comparisons
from the crowd users. We note that we focus on the realistic
scenario when only a small number of pairwise comparison
questions can be asked to infer the user’s preference, a prob-
lem that is often referred to as “cold start” in collaborative
filtering (Schein et al. 2002).

We compare the proposed algorithms (T-CR and I-CR) to
the following state-of-the-art baseline algorithms:

• M3F: maximum-margin matrix factorization algo-
rithm (Rennie and Srebro 2005),

• PMF: probabilistic matrix factorization algo-
rithm (Salakhutdinov and Mnih 2008), and

• BPR: Bayesian personalized ranking (Rendle et al. 2009).

Among them, M3F and PMF are state-of-the-art collabora-
tive filtering algorithms which directly apply users’ ratings
to learn their preferences. Instead of using pairwise com-
parisons, both of them are applied directly to users’ ratings
to learn their preferences. BPR, similar to the proposed al-
gorithm, learns the users’ preferred items from a collection
of pairwise comparison made by many crowd users. For a
fair comparison, for each target user, we feed the baseline
collaborative filtering algorithms with ratings for 5, 10, 15
and 20 randomly selected items, and feed the BPR with the
preferred items in the same numbers of randomly selected
pairwise comparisons.

Since the proposed algorithms (T-CR and I-CR) are only
able to predict ranking lists for users, we can not evaluate the
performance of the proposed algorithms using the standard
evaluation metrics for collaborative filtering (e.g. Mean Ab-
solute Error (MAE)) that require comparing the true numeri-
cal ratings with the inferred ones. We thus adopt the normal-
ized discounted cumulative gain (NDCG for short) (Järvelin
and Kekäläinen 2002) as our evaluation metric. It evaluates
the prediction performance based on the first p items ranked
by the prediction model, where p is set to be 5 and 10 in our
study. All the experiments are performed on a PC with In-
tel Xeon 2.40 GHz processor and 64.0 GB of main memory.
Each experiment is repeated five times, and the performance
averaged over the five trials is reported in Table 1.

We first observe that for both the testbeds, the proposed
algorithms (T-CR and I-CR) yield very similar performance,
which validates that the approximation made by the I-CR
algorithm is accurate. Compared to the baseline collabora-
tive filtering algorithms, we observe that overall, the pro-
posed algorithms for crowdranking yield slightly better per-
formance measured by NDCG. We want to point out that
in the evaluation of recommender systems, a small numeri-
cal improvement is usually expected, as it is clearly demon-
strated by the Netflix Prize (Bennett and Lanning 2007).
The results are still impressive since we can use more eas-
ily generated pairwise comparisons to achieve slightly bet-

212

Table 1: Performance comparison of the proposed Crow-
dRanking algorithms (T-CR and I-CR) and the baseline col-
laborative filtering algorithms (M3F, PMF, BPR) on Movie-
Lens 1M and Jester datasets.

Datasets #pairs T-CR I-CR M3F PMF BPR

/ratings

MovieLens

5

NDCG@5 0.72 0.73 0.71 0.70 0.68

NDCG@10 0.73 0.73 0.71 0.70 0.68

10

NDCG@5 0.73 0.75 0.73 0.72 0.69

NDCG@10 0.73 0.75 0.73 0.71 0.69

15

NDCG@5 0.76 0.76 0.75 0.75 0.72

NDCG@10 0.76 0.75 0.75 0.75 0.73

20

NDCG@5 0.76 0.77 0.77 0.75 0.74

NDCG@10 0.76 0.77 0.77 0.76 0.75

Jester

5

NDCG@5 0.37 0.37 0.36 0.34 0.33

NDCG@10 0.40 0.40 0.39 0.38 0.37

10

NDCG@5 0.40 0.40 0.39 0.36 0.35

NDCG@10 0.42 0.43 0.42 0.40 0.38

15

NDCG@5 0.40 0.41 0.41 0.39 0.38

NDCG@10 0.44 0.44 0.43 0.42 0.41

20

NDCG@5 0.42 0.43 0.44 0.42 0.41

NDCG@10 0.46 0.47 0.46 0.44 0.44

ter performance than using numerical ratings. Besides, the
improvement is statistically significant when the number of
observed ratings/pairwise-comparisons for each target user
is restricted to 10 or less. This may appear to be counter
intuitive as a significant amount of information is believed
to be lost through the process of converting user’s ratings
into pairwise comparisons. However, in our opinion, the suc-
cess of the proposed algorithms can be attributed to the fact
that pairwise comparisons are more reliable in reflecting a
user’s preference of items than his numerical ratings. Thus,
despite the perceived information loss, modeling pairwise
comparisons can be more effective for recommender sys-
tems particularly when the number of ratings given by the
target user is small. This makes the proposed algorithms es-
pecially useful for the “cold start” problem in recommender
systems (Schein et al. 2002), when making recommenda-
tions for new users with limited information.

We also evaluate the computational efficiency of the pro-
posed crowdranking algorithms as well as baseline collab-
orative filtering algorithms. Table 2 shows that although
the proposed transductive Crowdranking algorithm (T-CR)
is not as efficient as the baseline algorithms, the proposed
inductive Crowdranking algorithm (I-CR) is significantly
more efficient than all the baseline approaches. In particu-
lar, I-CR is able to predict ranking lists of 1, 800 users’ for
4, 000 movies in 5.1 seconds and also predict ranking lists
of 3, 000 users’ for 100 jokes in less than 1 second.

Experiment (II): A Crowdsourced Study for
Crowdranking

In this experiment, we evaluate the proposed algorithms for
crowdranking by conducting a crowdsourced study in the
domain of ladies handbags. We downloaded a total of 500
images of ladies handbags from the Internet. Figure 3 shows
some of the images from our handbag collection. Our goal
is to infer a user’s preferences of ladies handbags based on a
limited number of pairwise comparisons she provides.

In order to collect the pairwise comparisons for crowd
users, we employed 200 workers through the Amazon Me-

Table 2: CPU time (s) for learning the preferences for all the
target users. All the algorithms were run on an Intel Xeon
2.40 GHz processor with 64.0 GB of main memory.

Datasets #pairs T-CR I-CR M3F PMF BPR
/ratings

MovieLens

5 3552 5.1 1180 101 10
10 4395 5.1 1268 113 11
15 4446 5.1 1303 115 11
20 4549 5.1 1588 117 12

Jester

5 422 0.6 262 25 5.2
10 460 0.6 231 28 5.4
15 466 0.6 271 28 5.5
20 471 0.7 297 29 5.7

Figure 3: Example images from our collection of 500 ladies
handbags

Figure 4: The user interface we designed in the Amazon
Mechanical Turk to collect pairwise comparison data from
crowd users

chanical Turk. For each worker, we randomly generated 100
pairs of handbags, and asked the worker to indicate which
handbag she prefers in each pair. The total number of Hu-
man Intelligence Tasks (HIT) is 200 and we require that
each worker can only work on one HIT, for the reason that
we want to collect enough diverse ranking lists. Each HIT
consisted of 100 image pairs and we paid the workers $1.60
per HIT. Figure 4 shows the user interface that we devel-
oped in the Amazon Mechanical Turk to collect pairwise
comparison data from 200 workers. As indicated in several
studies (Zhou et al. 2012; Yi et al. 2012a), spammers could
pose a serious problem to the integrity of crowdsourced
data. In order to filter out the spammers or malicious work-
ers, we introduced eight duplicate image pairs in each HIT,
and determined whether a worker is a spammer based on
the consistency of the pairwise comparison responses for
the eight duplicate pairs. We note that the term “spammer”
is slightly abused here by including any worker that is in-

213

consistent in providing her answers. We observed that only
76 of the 200 workers provided the same preference deci-
sion for more than 75% of the eight duplicate pairs. Al-
though the percentage of spammers here may appear to be
high, it is consistent with the findings in (Yi et al. 2012b;
Zhou et al. 2012).

To collect the preference information for target users, 10
female students in our lab were requested to serve as the
target users. The reason we chose female students as target
users is that they are more likely to have stronger prefer-
ences on ladies handbags than males. We collected the pair-
wise comparisons of the 10 target users by asking each of
them to make pairwise comparisons for 100 pairs of hand-
bags that are randomly sampled from our collection. We also
collected the preference information of the same 10 target
users by asking each of them to indicate the top 25 hand-
bags that they like the most. This allows us to compare the
ranking list inferred by the proposed algorithms with the top
25 preferred handbags indicated by each target user. We did
not choose the crowd workers as the target user because this
task requires users going through the entire list of handbags,
which is time consuming and not suitable for crowd work-
ers.

In this study, for each target user ut, we first randomly
sample 10, 20 and 30 pairwise comparisons provided by
ut. Then we predict her ranking list of handbags based on
the limited pairwise comparisons provided by her and the
pairwise comparisons from the crowd users. To evaluate the
quality of the inferred ranking list, for each target user ut,
we measure the commonality between the first 25 handbags
appearing in the ranking list and the 25 handbags preferred
by ut. The experimental results show that, given 10, 20 and
30 randomly sampled pairwise comparisons provided by ut,
the average number of common handbags in the two ranking
lists (inferred and preferred) for the proposed transductive
crowdranking algorithm are 5.3, 7.1, and 10.1, respectively.
As a comparison, the baseline BPR method can only achieve
4.9, 6.7, and 9.8 common handbags with 10, 20 and 30 ran-
domly sampled pairwise comparisons. It is not surprising to
observe that the performance of the proposed crowdranking
algorithm improves, as measured by the number of common
handbags in the inferred and preferred lists, with increasing
number of pairwise comparisons in the query. Compared to
the BPR algorithm, the proposed algorithm is significantly
more effective when the number of pairwise comparisons
is small (i.e. 10 or 20), and, as expected, the difference be-
tween two algorithms dimmish when the number of pair-
wise comparisons provided by the target users reaches 30.
Again, this is not surprising because the proposed algorithm
is specifically designed for a small number of pairwise com-
parisons. Figure 5 shows the first 25 handbags selected by
our 10 female target users, one row per user. A handbag im-
age is highlighted by a red box if it also appears in the first
25 handbags inferred by the proposed algorithm.

Conclusions

In this paper, we have introduced a crowdranking problem
where the goal is to infer the ranking list of m items for a

Figure 5: Each row contains the top 25 handbag images se-
lected by one target user. The images highlighted by red
boxes are those that also appear in the first 25 handbag pre-
dicted by the proposed algorithm. There are a total of 10
target users, one per row.

.

target user ut by effectively exploiting the pairwise compar-
isons made by n crowd users. We present a crowdranking
framework based on the theory of matrix completion. We
examine two scenarios for crowd ranking: (i) transductive
crowdranking, where the goal is to infer the ranking lists
for both the crowd users and the target users, and (ii) induc-
tive crowdranking, where we only need to infer the ranking
list for a given target user. We present efficient algorithms,
based on stochastic subgradient descent, for solving the re-
lated optimization problems. Our empirical studies with two
benchmark datasets for collaborative filtering and one real-
world dataset collected by us for crowdranking show that the
proposed crowdranking algorithm can reliably predict target
users’ preferences based on their responses to only a small
number of pairwise comparisons of the m items.

Acknowledgements
This research was supported by ONR grant no. N00014-11-
1-0100, N00014-12-1-0522 and N00014-12-10431.

Appendix

In this appendix, we prove the Lemma 2. Let F̂ = UΣV ⊤

be the singular value decomposition of F̂ . Define D =
diag(σ1, . . . , σr). According to Lemma 1, for A ∈ R

n×k

and B ∈ R
m×k, where k ≥ r can be any integer, such that

AB⊤ =

∣∣∣∣
[

F̂
f
⊤

]∣∣∣∣
tr

, (9)

we have ∣∣∣∣
[

F̂
f
⊤

]∣∣∣∣
tr

≥
1

2
|A|2F +

1

2
|B|2F

If we choose B = V D, due to the condition in (9), A is
given by

A =

[
UD

f
⊤V D−1]

]

214

We complete the proof by using the fact that

1

2
|V D|2F+

1

2
|UD|2F+

1

2
|f⊤V D−1|2 = |F̂ |tr+

1

2

r∑

i=1

|f⊤vi|
2

σ2
i

.

References

Avron, H.; Kale, S.; Kasiviswanathan, S. P.; and Sindhwani,
V. 2012. Efficient and practical stochastic subgradient de-
scent for nuclear norm regularization. In ICML.

Bennett, J., and Lanning, S. 2007. The netflix prize. In KDD
Cup and Workshop in conjunction with KDD.

Burges, C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds, M.;
Hamilton, N.; and Hullender, G. 2005. Learning to rank
using gradient descent. In ICML, 89–96.

Burges, C. J. C.; Ragno, R.; and Le, Q. V. 2006. Learning
to rank with nonsmooth cost functions. In NIPS, 193–200.

Candès, E. J., and Recht, B. 2009. Exact matrix comple-
tion via convex optimization. Foundations of Computational
Mathematics 9(6):717–772.

Canny, J. F. 2002. Collaborative filtering with privacy via
factor analysis. In SIGIR, 238–245.

Cao, Y.; Xu, J.; Liu, T.-Y.; Li, H.; Huang, Y.; and Hon, H.-
W. 2006. Adapting ranking svm to document retrieval. In
SIGIR, 186–193.

Chen, X.; Bennett, P.; Collins-Thompson, K.; and Horvitz,
E. 2013. Pairwise ranking aggregation in a crowdsourced
setting. In WSDM.

Deshpande, M., and Karypis, G. 2004. Item-based top-n rec-
ommendation algorithms. ACM Trans. Inf. Syst. 22(1):143–
177.

Goldberg, D.; Nichols, D.; Oki, B.; and Terry, D. 1992. Us-
ing collaborative filtering to weave an information tapestry.
Commun. ACM 35(12):61–70.

Goldberg, K. Y.; Roeder, T.; Gupta, D.; and Perkins, C.
2001. Eigentaste: A constant time collaborative filtering al-
gorithm. Inf. Retr. 4(2):133–151.

Heckerman, D.; Chickering, D. M.; Meek, C.; Rounthwaite,
R.; and Kadie, C. M. 2000. Dependency networks for infer-
ence, collaborative filtering, and data visualization. JMLR
1:49–75.

Herlocker, J. L.; Konstan, J. A.; and Riedl, J. 2002. An
empirical analysis of design choices in neighborhood-based
collaborative filtering algorithms. Inf. Retr. 5(4):287–310.

Jamieson, K. G., and Nowak, R. D. 2011. Active ranking
using pairwise comparisons. In NIPS, 2240–2248.

Järvelin, K., and Kekäläinen, J. 2002. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst. 20(4):422–
446.

Li, H. 2011. Learning to Rank for Information Retrieval and
Natural Language Processing. Morgan & Claypool Publish-
ers.

Liu, N. N.; Zhao, M.; and Yang, Q. 2009. Probabilistic la-
tent preference analysis for collaborative filtering. In CIKM,
759–766.

Negahban, S.; Oh, S.; and Shah, D. 2012. Iterative ranking
from pair-wise comparisons. In NIPS. 2483–2491.

Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. Bpr: Bayesian personalized ranking from
implicit feedback. In UAI, 452–461.

Rennie, J. D. M., and Srebro, N. 2005. Fast maximum
margin matrix factorization for collaborative prediction. In
ICML, 713–719.

Salakhutdinov, R., and Mnih, A. 2008. Bayesian probabilis-
tic matrix factorization using markov chain monte carlo. In
ICML, 880–887.

Sarwar, B. M.; Karypis, G.; Konstan, J. A.; and Riedl, J. T.
2000. Application of dimensionality reduction in recom-
mender systems–a case study. In ACM WebKDD Workshop.

Sarwar, B. M.; Karypis, G.; Konstan, J. A.; and Riedl, J.
2001. Item-based collaborative filtering recommendation al-
gorithms. In WWW, 285–295.

Schein, A. I.; Popescul, A.; Ungar, L. H.; and Pennock,
D. M. 2002. Methods and metrics for cold-start recom-
mendations. In SIGIR, 253–260.

Su, X., and Khoshgoftaar, T. M. 2009. A survey of col-
laborative filtering techniques. Adv. Artificial Intellegence
2009:1–20.

Tamuz, O.; Liu, C.; Belongie, S.; Shamir, O.; and Kalai, A.
2011. Adaptively learning the crowd kernel. In ICML, 673–
680.

Xue, G.; Lin, C.; Yang, Q.; Xi, W.; Zeng, H.; Yu, Y.; and
Chen, Z. 2005. Scalable collaborative filtering using cluster-
based smoothing. In SIGIR, 114–121.

Yi, J.; Jin, R.; Jain, A.; Jain, S.; and Yang, T. 2012a. Semi-
crowdsourced clustering: Generalizing crowd labeling by
robust distance metric learning. In NIPS, 1781–1789.

Yi, J.; Jin, R.; Jain, A. K.; and Jain, S. 2012b. Crowdclus-
tering with sparse pairwise labels: A matrix completion ap-
proach. In AAAI Workshop on Human Computation.

Zhou, D.; Platt, J. C.; Basu, S.; and Mao, Y. 2012. Learning
from the wisdom of crowds by minimax entropy. In NIPS,
2204–2212.

215

