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Abstract

Genetic clustering algorithms require a certain amount of data to produce informative

results. In the common situation that individuals are sampled at several locations, we show

how sample group information can be used to achieve better results when the amount of

data is limited. New models are developed for the STRUCTURE program, both for the cases of

admixture and no admixture. These models work by modifying the prior distribution for

each individual’s population assignment. The new prior distributions allow the proportion

of individuals assigned to a particular cluster to vary by location. The models are tested on

simulated data, and illustrated using microsatellite data from the CEPH Human Genome

Diversity Panel. We demonstrate that the new models allow structure to be detected at

lower levels of divergence, or with less data, than the original STRUCTURE models or principal

components methods, and that they are not biased towards detecting structure when it is

not present. These models are implemented in a new version of STRUCTURE which is freely

available online at http://pritch.bsd.uchicago.edu/structure.html.
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Introduction

Clustering algorithms for genetic data have become an

important tool inanumberoffields includingconservation

andpopulationgenetics (Dawson&Belkhir2001;Corander

et al. 2003; Purcell & Sham 2004; Corander & Marttinen

2006;Francoiset al.2006;Pattersonet al.2006).Suchmethods

are often used to understand the structure of populations,

as well as to identify migrant or admixed individuals.

They are also used to detect cryptic population structure,

as undetected structure may lead to false positives when

searching for disease-associated markers in case-control

studies.

STRUCTURE is a Bayesian, model-based algorithm that is

widely used for clustering genetic data (Pritchard et al. 2000;

Falush et al. 2003; Falush et al. 2007). Given the number of

clusters (K) and assuming Hardy–Weinberg and linkage

equilibrium within clusters, STRUCTURE estimates allele

frequencies in each cluster and population memberships

for every individual. In the simplest, ‘no-admixture’ model,

it assumes that each individual belongs to a single cluster,

whereas in the more general ‘admixture model’, it esti-

mates admixture proportions for each individual. It uses

Markov chain Monte Carlo (MCMC) to integrate over the

parameter space andmake cluster assignments. Although

the value of Kmust be provided to the algorithm, a heuristic

method for selecting K is often used, which is based on

comparing penalized log likelihoods over independent

runswith differing numbers of clusters.

When the data contain relatively little information

about population structure, STRUCTURE sometimes produces

results that are difficult to interpret. For example, the

samplesmayhave come from several distinct populations,

andperhapsFSTvalues calculatedbetween the samples from

somepairsof the labelledpopulationsaresignificantlydifferent
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fromzero,andyet theresults indicatenoevidenceof structure.

Or, the population assignments made by the algorithm

may hint that there is indeed structure, and yet the highest

penalized log likelihood is provided by the model with

just one cluster. When such situations arise, it is unclear

whether one should conclude that thedata arehomogeneous

after all, or that the amount of data collected is insufficient

tomake a convincing case for structure.

Although such results may be discouraging, it is worth

noting that in a sense, STRUCTURE aims to solve a rather

difficult problem. There is an enormous number of ways

that N individuals can be partitioned into K populations.

The basic STRUCTURE models assume that all partitions of

the N individuals into K populations are equally likely,

a priori. This means that any particular clustering solution

is highly unlikely, a priori, and it takes a considerable

amount of statistical evidence to provide strong support

for any particular partition. This explains why there can

be data sets with significant FST values between samples

of individuals collected at different locations, and yet

STRUCTURE does not provide a clear indication of popu-

lation structure.

In this paper, we extend the basic models to allow

STRUCTURE to make use of information about sampling

locations, when the data indicate that this information

would be helpful. In effect, we place much more prior

weight on clustering outcomes that are correlatedwith the

sampling locations. The new models allow much better

performance on somedata setswhere there are too few loci

or individuals, or not enough divergence, for the standard

STRUCTURE models to perform well. Our approach could

also be used in settingswhere individuals can be classified

into discrete groups on the basis of a phenotypic chara-

cteristic. The new models have the desirable properties

that (i) they do not tend to find structure when none is

present; (ii) they are able to ignore the sampling informa-

tion when the ancestry of individuals is uncorrelated with

sampling locations; and (iii) the old and new models give

essentially the sameanswerswhen the signal ofpopulation

structure is very strong. Hence, we recommend using the

new models in most situations where the amount of

available data is limited, especially when the standard

STRUCTUREmodelsdonotprovide a clear signal of structure.

The idea of using sampling locations to help infer

population structure has also been considered elsewhere.

One approach was taken by Corander et al. (2003), and

implemented in the program BAPS. BAPS allows the user to

pre-specify a set of sample groups; all individuals in the

same sample group are assumed to have the same ances-

try. The authors have shown that the use of sample group

information can greatly improve power to detect structure

when the amount of data is limited (Corander et al. 2003;

Corander & Marttinen 2006). Once the allele frequencies

are estimated, migrants and admixture events can be

detected in an additional step that does not take the

sampling groups into account. By contrast, the methods

that we develop here allow for amore flexible relationship

between sample groups and ancestry, allowing for the

possibility that sample group information might be

partially (or even not at all) informative about genetic

population structure, and providing simultaneous estima-

tion of allele frequencies and ancestry.

Asecondtypeofapproach tousing location information

makesuseofspatiallyexplicitmodels.Forexample,Wasser

et al. (2004) used elephant samples from known locations

acrossAfrica toestimatethegeographicaloriginofpoached

ivory. Their method, implemented in SCAT, assumes that

allele frequencies vary smoothly across the regionof study.

Another type of approach has been implemented in the

program GENELAND (Francois et al. 2006; Guillot et al. 2008),

and in a recent version of BAPS (Corander et al. 2008). The

methodologiesofthetwoprogramsaresomewhatdifferent,

but they both use a coloured tessellation to model the

distribution of the population clusters across space. These

spatiallyexplicitmethodsdiffer fromthemodelsdiscussed

here in that we do not consider the specific geographical

coordinates for each individual, but instead simply group

together individuals collected at the same sampling

location. This allows us to make fewer assumptions about

thegeographicalstructureofpopulations,whilestilloffering

improved performance in the common scenario that

individuals are sampled at a modest number of distinct

locations.

Our new methods are also substantially different from

the ‘Model with prior population information’ introduced

in the original STRUCTURE paper (Pritchard et al. 2000). That

earliermodelwas designed for the situation inwhich there

is both strong evidence of population structure and in

which the sampling locations correspond almost exactly to

the inferred clusters. That model allows a user to test

whether a small number of individuals might be migrants

from a different location than where they were sampled

and is only useful for highly informative data. In contrast,

the new models presented in this paper help to provide

useful inference in settings where the data are not highly

informative, and in this case it will usually not be possible

to identifymigrantswith any confidence.

Methods

We present both a no-admixture model and an admixture

model that allow the individuals’ sampling locations to

inform cluster assignments. In order to understand how

these models work, it is useful first to review the original

model. We provide a brief description here, and Table 1

provides a brief summary of the key model parameters.

For the complete details, see Pritchard et al. (2000) and

Falush et al. (2003).
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Overview of the STRUCTURE algorithm

Consideradataset consistingofgenotypes forN individuals

at L loci. We assume that the sampled individuals have

ancestry inKdiscreteclusters,wheretheclusterscorrespond

to unobserved populations. K is fixed by the user. Each

cluster is characterized by a set of allele frequencies at

each locus. The three-dimensional vector P contains the

allele frequencies in each cluster for each allele at every

locus; the allele frequencies are typically unknown in

advance. In theno-admixturemodel, the algorithmassigns

each individual to one of the K clusters. The vector Z

records these cluster assignments. In the admixturemodel,

each individual is allowed to have partial ancestry in each

of the K clusters. The vector Q describes the proportion of

each sampled individual’s genome that comes from each

cluster. As detailed in Table 1, we use the convention that

elements within the vectors P, Q and Z are indexed by

lower-case ‘p’, ‘q’, and ‘z’ with appropriate subscripts. The

likelihood of an individual’s genotype is determined as

the roduct of the relevant frequencies of the individual’s

alleles across all loci (the loci are assumed to be independent

given cluster memberships). Our goal is to estimate P, Q

andZ from thedata.

STRUCTURE uses MCMC to sample from the posterior

distribution of the parameters P,Q, and Z. To estimate the

appropriate number of clusters (K), the algorithm is

usually run many times independently, varying the value

for K. Although there is some debate as to the best method

for choosing K (e.g. Evanno et al. 2005), here we use the

method suggested in the original STRUCTURE paper, which

involves comparing mean log likelihoods penalized by

one-half of their variance (Pritchard et al. 2000). Although

a model of linked loci has been developed (Falush et al.

2003), themethods in this paper aremost useful when there

is a scarcity of data. We assume that when only a small

number of loci are genotyped, theyare likely tobeunlinked,

andwewill not address the linkagemodel in this paper.

No-admixture model with sample group information

In the original version of STRUCTURE, an individual is a priori

assumed to be equally likely to come from any of

the K clusters. In the no-admixture model, the prior prob-

ability that individual icomesfrompopulationk (that is,zi ¼ k)

is simplygivenby:

The idea, then, is to modify this prior to take sampling

locations into account. We do this by saying that the

probability that an individual is assigned to each cluster

may vary among the locations:

Here clk is the prior probability that an individual from

location l will be assigned to cluster k, and li denotes the

locationwhere individual iwas sampled. The clkvalues are

estimated from the data, and these parameterize the extent

to which each sampling location is informative about

Table 1 Summary of STRUCTURE parameters

STRUCTURE parameters

K: number of clusters

N: number of individuals

L: number of loci

qij: admixture proportion of individual i in cluster j

zilm: cluster of origin for locus l, individual i, copym

(a1, ... , aK): parameters to Dirichlet distribution which forms a prior for qi
pklj: frequency of allele j in locus l, cluster k

k: parameter to Dirichlet distribution which forms a prior for pkl.
Fk: the amount of drift from ancestral population to cluster k in the model of correlated allele frequencies

Newmodel parameters

S: number of sampling locations

r: parameter which estimates the informativeness of the sampling location data

(g1, ... , gK): for the no-admixture model, these parameters reflect the relative proportion of individuals assigned to each cluster

(cs1, ... , csK): for the no-admixture model, these parameters reflect the relative proportion of individuals from location s assigned to each

cluster

( ): for the admixture model, these parameters reflect the relative levels of admixture from each cluster over all individuals

(as1, ... , asK): for the admixture model, these parameters reflect the relative levels of admixture from each cluster for an individual from

location s
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ancestry. If theclkareall~1/K, thenthelocationinformationis

relatively uninformative, and this model is similar to the

original STRUCTURE model. In contrast if, for each location,

onevalueofclk is estimated tobe~1and the rest~0, then the

location information will strongly influence the estimated

ancestry.

Therefore, while the clkmight help us to improve inference,

it is important that they do not overstate the amount

of information contained in the location information. To

achieve this, we place the following prior structure on c:

cl: � Dirichletðg1r, g2 r, ::: gK rÞ,

where

r � uniform ð0, rMAXÞ,

and

g � Dirichletð1, ::: 1Þ:

Here, g is a vector of positive real numbers that,

roughly speaking, estimates the overall proportion of

individuals from each of the K clusters in the entire data

set. Then, r parameterizes the extent to which the ances-

try proportions at individual locations can deviate from

the overall proportions. rMAX is an upper bound for r,

preset by the user. If r is large (>>1), then all the locations

have essentially the same prior ancestry proportions (i.e.

approximately equal to g). In contrast, if r is ~1 or smal-

ler, then the values of cl. may vary substantially across

locations, implying that the location data are informative

about ancestry. These priors are chosen so that if either

there is no evidence for population structure, or the

locations are uncorrelated with ancestry, then r will tend

to be large, and we will not be misled by the location

information.

For the analyses presented here, we set rMAX ¼ 1000.

This choice of rMAX puts considerable prior mass on large

values of r, corresponding to the situation where the loca-

tions are uninformative. In some circumstances (e.g. with

very small data sets, and good prior information that the

locations are likely to be informative), a smaller value of

rMAX would probably be preferable. We also found that

the algorithm converged best if we started r at a small

value (rINIT ¼ 1 in our simulations). Appendix I gives

details about the MCMC updates for the parameters in

thismodel.

Admixture model with sample group information

The new admixture model works similarly, by modifying

the prior distribution for Q. In the original version of

STRUCTURE, the prior distribution for qi, the ancestry of

individual i, is given by a Dirichlet distribution with

parameters a1, ... ,aK. Usually, the a parameters are set equal

to each other (a: ¼ a1 ¼ a2 ¼ ... ¼ aK), and are estimated

during the MCMC. Small values of a (i.e. near 0) indicate

that most individuals have little admixture, whereas

large values indicate that most individuals have substan-

tial ancestry from multiple clusters.

In order tomodify the prior forQ, we now infer a differ-

ent vector of a’s for each location. This is similar in spirit to

the newno-admixturemodel, in that it allows the distribu-

tion of cluster assignments to vary by location. If indivi-

dual i comes from location l, then:

qi e Dirichletðal1, ::: ,alKÞ:

Asfortheno-admixturemodel, it is important toprevent

the model from over-fitting the location data when the

locationsarenot truly informative.For this reason,weplace

the following prior structure on the a values,which has the

effect of pulling them towards a set of global values unless

the locations aregenuinely informative.That is,wedefinea

setofglobalavalues:

where a
ðgÞ
i denotes the global value of a for the ith cluster.

Then the localavalues for the lth locationaredistributedas

where

r e uniformð0; rMAXÞ:

In this model, the global values, a(g), can be thought of as

estimating the overall distribution of ancestry. Each is

(roughly) proportional to the overall amount of ancestry

in cluster i. As in the standard STRUCTURE model, the mean

of a(g) measures the amount of admixture. The distribu-

tion of the local a values is constructed so that each ali

has mean a(g) and variance a
ðgÞ
i /r. Hence, large values of r

imply that the local values of ali are very similar to the

global values, and the location information has little

impact on the model. Conversely, small values of r allow

the local values of ali to differ substantially from the glo-

bal values, implying that the location information is

potentially very informative. As in the no-admixture

model, the simulations presented here used rMAX ¼ 1000,

although again we note that smaller values would be

appropriate for data sets with strong prior reason to

expect structure.

Simulations without admixture

Datawere simulatedwith in-house softwareusing amodel

of correlated allele frequencies (Nicholson et al. 2002) with

either two or five populations. It was assumed that each

population corresponds perfectly to a sampling location.

� 2009 Blackwell Publishing Ltd

TECHNICAL ADVANCES 1325



All simulated data setswere composed of 100 biallelic loci,

to model single nucleotide polymorphisms (SNPs). Each

individual had an equal probability of being assigned

to each of the populations, and the data sets had 100 and

250 diploid individuals for two and five populations,

respectively. FST was varied in intervals of 0.005, with

50 independent repetitions for each value of FST. Allele

frequencies pR for the root populationwere simulated from

a beta distribution with parameters a ¼ 0.8, b ¼ 0.8. With

twopopulations, therootpopulationwasusedaspopulation

1, and otherwise a star-like phylogeny of populations was

assumed. The allele frequencies for non-root populations

were simulated as beta random variables with parameters

a¼pR(1 ) FST)/FST,b¼ (1 ) pR)(1 ) FST)/FST, assuggested

byBalding&Nichols (1995).

Simulations with admixture

Data were simulated using a model of independent allele

frequencies for K ¼ 3, with 100 individuals and a varying

number of loci. Each individual had an equal chance of

being sampled from each of four locations. The admix-

ture proportions for an individual were drawn from

Dirichlet distributions with parameters (10, 0.5, 0.5), (0.5,

10, 0.5), (0.5, 0.5, 10), (0.5, 0.5, 0.5) for locations 1, 2, 3, and

4, respectively. FST for these simulated data sets was

approximately 0.20. An additional set of simulations was

performed to demonstrate the behaviour of the admix-

ture model with a large number of sampling locations.

Data sets were simulated for K ¼ 5 with 100 individuals

and 10 microsatellites, for a range of values of FST. Each

individual was assigned to one of 25 sampling locations,

and population assignments for each individual were

highly determined by the sampling location. Specifically,

each location was randomly assigned to one of the five

clusters, and admixture proportions were drawn from a

Dirichlet distribution with parameter 1 for the main clus-

ter, and 0.01 for each other cluster. For example, if a loca-

tion was assigned to cluster 3, then every individual from

that location would have admixture proportions drawn

from a Dirichlet distribution with parameters (0.01, 0.01,

1.0, 0.01, 0.01). The microsatellite data were simulated

using the correlated allele frequencies model of Falush

et al. (2003). We assumed that all microsatellites had four

possible alleles, and the ancestral allele frequencies were

simulated from a Dirichlet distribution with parameters

(0.8, 0.8, 0.8, 0.8). For this data set, each STRUCTURE run was

repeated four times to ensure proper convergence.

Finally, to illustrate how the results depend on the

strength of correlation between location data and popula-

tion structure, we performed a series of simulations in

which we reassigned locations randomly for a fraction

f of individuals and re-analysed the data using the new

models. This was done for each of the 50 data sets simulated

without admixture, assuming five sampling locations,

K ¼ 5, and FST ¼ 0.03, for values of f in 0, 0.04, ... , 1.0.

For all the above data sets, STRUCTUREwas runwith each

value of K ranging from 1 to KT + 1, where KT is the true

value of K used in the simulation. The estimate for K was

then taken as the K with the highest penalized log likeli-

hood as reported by STRUCTURE, which calculates the mean

log likelihood minus half of its variance. The model of

independent allele frequencies was used for the simula-

tions with admixture in which the number of loci was var-

ied. All other runs used the model of correlated allele

frequencies, and estimated a separate FST for each popula-

tion. For all runs using the original admixture model, a

separate value of a was estimated for each population as

well. All runs consisted of 20 000 burn-in steps followed

by 10 000MCMCsteps.

CEPH Human Genome Diversity Panel (HGDP)
microsatellite analysis

Amicrosatellite data set consisting of 377 loci genotyped in

1056 individuals from 52 human populations (Rosenberg

et al. 2002) was downloaded from http://rosenberglab.

bioinformatics.med.umich.edu/data/rosenbergEtAl2002/

diversitydata.stru. We chose one population from each

continent for analysis (Surui from South America, Han

fromAsia, Basque fromEurope,Melanesian fromOceania,

and Mandenka from Africa), resulting in a data set with

126 individuals. FST among populations from different

continents is about 7% in this data set (Rosenberg et al.

2002). All STRUCTURE analyses were done using the model

ofcorrelatedallele frequencies, andeveryrunwasrepeated

five times to obtain the run with the highest penalized

log-likelihood score. The analysis was repeated 50 times

on random subsets of the data for a range of different

numbersof loci.Eachrandomsubsetwascreatedbychoosing

lociwithoutreplacement.

Principal components analysis methods

Toprovideanadditional, and ratherdifferent, typeof algo-

rithm against which to compare our newmethods, we also

analysed the simulated data using principal compon-

ents analysis (PCA). It has been shown (Patterson et al.

2006) that the resolution of principal componentsmethods

and STRUCTUREare quite similar inmanycases. The software

package EIGENSOFT was downloaded from http://

genepath.med.harvard.edu/~reich/Software.htm and the

program SMARTPCA (Patterson et al. 2006)was used to analyse

the simulated and real data sets. The number of clusters

inferred by SMARTPCA was taken as one plus the number of

eigenvalues with p-value £ 0.05. To get cluster assign-

ments, the k-means algorithm (Hartigan & Wong 1979)

was applied to the topK-1 eigenvectors.
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Similarity score

To measure the similarity between the true and estimated

population assignments, we used an adaptation of the

standard Brier similarity score. That is, let qik be the true

fraction of ancestry of individual i in population k and let

q̂ik be the corresponding estimate of qik. Then, we define a

score S as

where N is the number of individuals. Note that S will be

zero when Q̂ ¼ Q, and can be as large as 2 if there is a

complete mismatch between Q and Q̂. In practice, the

labelling of clusters identified by STRUCTURE is arbitrary,

and thus, we computed S for each of the K! possible per-

mutations of the cluster labels, and recorded the mini-

mum of S across permutations (call this S’). When the

data are completely uninformative, a clustering solution

Q̂* that places a fraction 1/K of each individual into each

cluster would receive a smaller score (call this S*) than a

solution that puts all individuals into a single cluster

(provided that true ancestry is not highly skewed

towards particular clusters). Finally, to obtain a similarity

score which is equal to one when Q̂ ¼ Q, and zero for

any q that performs as poorly as Q̂*, we recorded the

similarity score as 1 − ′min( , )/ .S S S* *

Results

To evaluate the performance of the newmodels, we tested

them on simulated and real data under a variety of condi-

tions. Together, the examples illustrate the performance of

the methods as a function of the amount of divergence

amongpopulations and as a function of the number of loci;

as well as under a variety of different conditions: variable

numbers of loci; variable levels of information in the

location data; discrete populations and admixture;

andSNPsandmicrosatellites. Theparameter values for the

simulations were chosen because they illustrate the

Fig. 1 Results for simulations without admixture. Data were simulated for K ¼ 2 and K ¼ 5, as described in the Methods. On the left is

plotted the mean similarity coefficient between the true and estimated ancestry, as a function of FST, each averaged over 50 simulated

data sets. The middle plots show the average choice of K, with the dotted horizontal lines indicating the true value of K. On the right, the

solid line shows the average estimate of r calculated using the new no-admixture model with sampling locations. The dotted lines show

the 5% and 95% tails of the distribution.
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differencesbetween thenewandoriginalmodels; for larger

or more informative data sets, the differences between the

newandoldmodels tend to be small, and in some contexts,

we prefer the original STRUCTURE models (see below for

furtherdiscussion).

The first set of simulations (Fig. 1) considered a setting

in which individuals are sampled from either two or five

different sampling locations, and where each sampling

location consists of a distinct non-admixed population. As

expected, all the methods struggle to assign individuals

accurately to populations at low divergence (FST near 0),

and provide accurate assignments at high divergence.

However, there is a range of FST values for which the new

models perform much better than the existing methods:

both in terms ofmakingmore accurate cluster assignments

(similarity coefficient), and in choosing the correct value of

K at lower divergence levels. Importantly, all of themodels

predict just one clusterwhen FST ¼ 0.0, suggesting that the

new models do not bias the algorithm towards finding

structurewhen it isnotpresent.

Figure 1 also plots values of the tuning parameter, r,

which measures the amount of information contained in

the location information. Recall that r>>1 implies that the

location labels are uninformative about ancestry, while

small values of r allow the ancestry proportions to vary

substantially among locations.Notice thatwhenFST is near

0, the mean estimate of r is considerably larger than 1,

consistent with the estimates of K near 1. As the amount of

information in the data increases the estimate of r quickly

decreases, indicating that the sampling groups are con-

tributing information.AtFST ¼ 0,onemighthaveexpected

thattheposteriormeanofrshouldbeapproximatelyrMAX/2,

since in this case rMAXwas set to be very large. The fact that

r is much smaller than rMAX/2 suggests that r has not fully

explored its posterior range during the course of the

MCMCrunlengthusedhere (recall that rwas initializedat1).

However this should not be a serious concern as the model

is relatively insensitive to the precise value of r when r

is considerably larger than 1, and in practice, we would

recommendasmallervalueofrMAX formostapplications.

A second set of simulations was performed with

admixture (Fig. 2). In this case, we setK ¼ 3 and simulated

four sampling locations with different mixtures of ances-

try coefficients. We set FST ¼ 0.20 and varied the number

of genotyped loci. The plot of similarity coefficients shows

that again the new models substantially improve the

ancestry estimates when the data sets are small, even pro-

viding some information with just one genotyped locus.

The old and newmodels becomemore similar as the num-

ber of genotyped loci increases. We have observed that

these new methods tend to improve estimation of admix-

ture coefficients for all the individuals in these data sets,

including individuals who are outliers within their sam-

pling group. This indicates that the new methods are not

simply working by grouping the individuals in the same

location together; instead, the location information also

improves the estimation of allele frequencies, leading to

more accurate parameter estimation.

Toassess thebehaviourof thenewmodelwhenthereare

many sampling locations, we also simulated data with 100

individuals sampled from across 25 sampling locations,

withK ¼ 5.Thesimulationswere setupso that individuals

from the same sampling location generally drew most of

their ancestry from the same cluster. Figure 3 shows the

performance over a range of values of FST. Even with a

relatively small number of individuals per group, the new

models still benefit from using the location information,

compared to the original models, although the advantage

appears to be smaller than when larger numbers of indi-

viduals are sampled in each location. We also found that for

these data sets, the estimation of K was a little erratic for

small values of FST. In particular, both models frequently

estimatedK > 1evenwhenFST ¼ 0 (implying that there isno

real population structure, so thatwewouldwant to estimate

Fig. 2 Results for simulations with admixture. Data were simulated with K ¼ 3, as described in the Methods. On the left is the mean

similarity coefficient over 50 simulated data sets as a function of the number of loci. In the middle is the mean estimate of K, with the

dotted horizontal line indicating the true value of K. The right plot shows the average estimate of r calculated using the new admixture

model with sampling locations, with the dotted lines giving the 5% and 95% tails of the distribution.
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K ¼ 1). We believe that STRUCTURE may be struggling with

the relatively small data sets simulated in this case (100

individuals with 10 microsatellites; for example, compare

this to Fig. 1A, which includes 100 individuals genotyped

at 100 SNPs). In the plot shown in Fig. 3, the new model

seems to perform better than the originalmodel at estimat-

ing small K when FST ¼ 0, but this does not seem to be a

general property of the newmodel. For example, whenwe

analysed the same data using the ONEFST model in

STRUCTURE, both models overestimated K in the case where

FST ¼ 0.

We also investigated the performance of the newmodels

as thecorrelationbetweenlocationsandclusterschanges.The

left plot in Fig. 4 shows the effect of similarity coefficients as

the fraction of individualswith randomly assigned locations

is increased. The horizontal lines show the average perfor-

mance of the original STRUCTUREmodels on the same data. As

expected, theperformanceof thenewmodels isbestwhenthe

locations correspond perfectly to the underlying structure.

However, even when the locations are completely random,

thenewmodelsperformalmost identically to theoldmodels.

This implies that there is little cost to using the newmodels,

even when the location data are potentially uninformative.

The right plot in Fig. 4 shows that the value of r estimated

by STRUCTURE seems to be a good indicator of the usefulness

of the locationdata.

Finally, we illustrate the new methods with a simple

application tomicrosatellitedata fromtheHumanGenome

Diversity Panel (Rosenberg et al. 2002).We selected a set of

126 individuals representing five populations on five dif-

ferent continents. Figure 5A shows the average results of

choosing subsets of the microsatellites at random. We see

that the newmodels almost always estimate K ¼ 5with as

few as 6 random loci, whereas 16 or more loci are required

tomake the sameestimatewhen the sampling locationdata

are not used. Also, the new models substantially improve

theaccuracyof theestimatedadmixtureproportions,when

the ‘true’ ancestry proportions are estimated using all 377

microsatellites. Figure 5B shows some example results,

using thefirst 2, 6, and10microsatellites, respectively, from

the data set (in a single random order), compared to the

complete data set. It is clear that with 2 and 6 microsatel-

lites, the new models have much more success at separat-

ing thecontinental groups thando theoriginalmodels.

Once thedata set increases to 10microsatellites ormore,

the differences among the results become quite subtle.

However, for the complete data set of 377 loci, there is a

slight but noteworthy difference between results from the

Fig. 3 Results for simulations with admixture, using 25 sampling locations with an average of 4 individuals per location, and K ¼ 5. See

Figs 2 and 3 for descriptions of the plots. Each data point is an average over 50 simulated data sets for a given value of FST.

Fig. 4 Effect of varying the amount of

information contained in the location

data. The simulations assumed 250 indivi-

duals, five sampling locations, K ¼ 5,

FST ¼ 0.03, and no admixture. The x-axis

shows the fraction of individuals whose

location data were randomized. For all

other individuals, the location number

matched the true population number.
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new and original admixture models (Fig. 4B). Unlike the

original admixture model, the new admixture model esti-

mates that all the Han Chinese individuals contain a small

amount of ancestry from both the Melanesians and the

Surui. Since it is implausible that therehasbeen recent gene

flow of this magnitude from Native Americans and Ocea-

nians into the Chinese population, this argues that the new

prior model is subtly shifting the performance of the

methodon this highly informativedata set.

Discussion

The new models presented in this study are designed to

help detect population structure and to produce more

accurate ancestry estimates for data sets with low infor-

mation content. Our simulation studies suggest that the

models can help considerably in such cases. As the infor-

mation content in the data increases, the results become

similar to those obtained using the original models. In

general, our simulations show that the new models pro-

vide an appropriate balance between the potential value

of incorporating location information into the inference,

while still remaining reasonably robust when there is no

population structure. Moreover, the new models are able

to ignore the sampling information when there is clear

evidence of population structure, but the structure is

uncorrelated with sampling locations.

For these reasons, we feel that it will often be beneficial

to use the newmodels for analysing small- ormedium-sized

data sets, such as are currently typical in studies ofmolecular

Fig. 5 Analysis of five populations from the Human Genome Diversity Panel microsatellite data set. In Fig. 5A, the mean similarity

coefficient and choice of K are plotted, averaged over 50 runs using a number of randomly chosen microsatellites, shown on the x-axis.

Figure 5B shows Structure results for the first 2, 6, and 10 loci, as well as the entire data set.
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ecology or conservation genetics. However, wewould still

encourage users to run the original models as well, and to

check that substantial differences between results from the

new and old models seem biologically sensible. We also

suggest that the value of r can be a useful indicator of

whether the location information is relevant to the model:

values of r near or below 1 imply that the ancestry propor-

tions differ substantially between sampling locations.

However,we also caution that the newmodels are not a

panacea. For example, STRUCTURE sometimes overestimates

thenumberofclusters: forexamplewhenthereisinbreeding

or relatedness among some individuals. Moreover, the

number of clusters is notwell-defined in settingswhere the

allele frequencies vary smoothly across the landscape

(Wasser et al. 2004). The new models are likely to be

affected similarly by these issues. Finally, for very inform-

ative data sets, the new and old models should provide

very similar results. However, in one example (the HGDP

data,describedabove),wenotedslightdifferencesbetween

resultswith the old andnewpriors. Given this, and the fact

that there is now a great deal of accumulated experience

with the standard STRUCTURE models, we recommend that

the standard models should continue to be the default for

datasets inwhichthedataarehighly informative.

Finally, we remind users that the new models serve a

very different purpose froman existingmodel in STRUCTURE

that also uses location information (obtained in the soft-

ware by setting USEPOPINFO ¼ 1) (Pritchard et al. 2000).

That model was designed for identifying migrant indivi-

duals in data that are highly informative, in contrast to the

goal here of detecting veryweakpopulation structure.

The models presented here have been implemented in

a forthcoming version of STRUCTURE, version 2.3. The use of

the new models will be described in detail in the next

release of the STRUCTURE manual. The new software and

documentation will be available online at http://

pritch.bsd.uchicago.edu/structure.html.
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Appendix: MCMC updates

No admixture model with sample groups

To sample from Pr(P, Z, r, g, c|X), the algorithm pro-

ceeds as follows:

1. Sample P(m) from Pr(P|Z(m–1), c(m–1), g(m–1), r(m–1), X).

2. Sample Z(m) from Pr(Z|P(m), c(m–1), g(m–1), r(m–1), X).

3. Update r using a Metropolis–Hastings step.

4. Update g using a Metropolis–Hastings step.

5. Update c using a Metropolis–Hastings step.
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Because the new models have only modified the prior

for Z, Pr(P|Z(m–1), c(m – 1),g(m–1), r(m–1),X) does not depend

on c, g, or r, and step 1 does not need to be modified from

theoriginal STRUCTUREalgorithm.

For step 2, we note that since g and r form a prior for c,

Pr(Z|P(m),c(m–1),g(m–1), r(m–1),X) is equivalent toPr(Z|P(m),

c(m–1),X). Then, for each individual i from location liwecan

samplezibasedonthedistribution:

where Pr(zi ¼ k|c) ¼ clik, and Pr(X|P, Zi ¼ k) is a product

of allele frequencies in cluster k corresponding to the geno-

type data. The exact expression is defined in the appendix

of Pritchard et al. (2000).

For step 3, r¢ is simulated from a uniformdistribution in

(r(m–1) – re, r
(m–1) + re). r¢ is rejected if it is not in the range

(0, rMAX). Otherwise, it is acceptedwith the probability:

where l ¼ 1 ... S indicates the sampling locations, and

where f(cl.|r, g) is given by the Dirichlet distribution:

If r¢ is accepted, than r(m) is set to r¢, otherwise r(m) is set to

r(m–1).

In all the analyses in thismanuscript, rewas set to 0.1.

For step 4, two clusters, i and j, are chosen at random so

that i „ j. A random number e is simulated randomly in

the range (0, eMAX). Then, is set to + e, and is set

to – e. All other elements are set to for k not

equal to i or j. The update is rejected if either or is not

in the range (0, 1). In this way, the elements of theg¢ vector

are guaranteed to sum to 1, given that the elements of

g(m–1)sumto1.Then,g¢ isacceptedwiththeprobability:

If g¢ is accepted, g(m) is set to g¢. Otherwise, g(m) is set to

g(m–1). For all analysis in this paper, eMAXwas set to 0.025.

For step 5, each vector cl. is updated in turn, for each

location l. A cl
0.is generated in exactly the samemanner as

g¢, and is rejected if any of the elements are not in the range

(0,1). Then, is acceptedwith the probability:

Here, I(li ¼ l) is the indicator function which equals 1 if

individual i comes from location l, and zero otherwise, and

g(zi|c) is the probability of observing a particular value of

zi, given c. If is accepted, is set to c0, otherwise c
ðmÞ
l is

set to .

Admixture model with sample groups

To sample from Pr(Z,Q, P, a, r|X), the algorithm proceeds

asfollows:

1. Sample P(m) from Pr(P|Z(m–1), Q(m–1), a(m–1), r(m–1), X).

2. Sample Q(m) from Pr(Q|P(m), Z(m–1), a(m–1), r(m–1), X).

3. Sample Z(m) from Pr(Z|P(m), Q(m), a(m–1), r(m–1), X).

4. Update r using a Metropolis–Hastings step.

5. Update a using a Metropolis–Hastings step.

The new admixture model only affects the prior for Q,

and therefore steps 1 and 3 do not need to be modified

from the original algorithm. To perform step 2, the admixture

proportions for individual i from location l have a distri-

butiongivenby:

qi~Dirichlet(al1+ nil,al2+ ni1, ... ,alK+ niK)

where nik is the total number of copies of each locus

assigned to population k in individual i.

For step 4, r¢ is simulated from a uniformdistribution in

(r(m–1) – re, r
(m–1) + re), where re is the same as in the new

no-admixture model. r¢ is rejected if it is not in the range

(0, rMAX). Otherwise, it is acceptedwith the probability:

where h(alk|r, ) is given by the Gamma distribution with

parameters r, 1/r.

Step 5 is achieved by independently updating every

element of the a vector. First each element of a(g) is up-

dated. is simulated from a normal distribution with

mean and standarddeviationra. It is rejected if it is

outside the range (0, aMAX). Otherwise, it is accepted with

theprobability:

Finally, to update each element of a
lk
, an is simulated

from a normal distribution with mean and standard

deviationr
a
. It is acceptedwith the probability:

For all the analysis in this paper, ra was set to 0.025.
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