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Abstract

Inferring the full genealogical history of a set of DNA sequences is a core problem in evolutionary 

biology as it encodes information about the events and forces that have influenced a species. 

However, current methods are limited, with the most accurate able to process no more than a 

hundred samples. With data sets consisting of millions of genomes being collected, there is a need 

for scalable and efficient inference methods to fully utilise these resources. We introduce an 

algorithm to infer whole-genome histories with comparable accuracy to the state-of-the-art but 

able to process four orders of magnitude more sequences. The approach also provides an 

“evolutionary encoding” of the data, enabling efficient calculation of relevant statistics. We apply 

the method to human data from the 1000 Genomes Project, Simons Genome Diversity Project and 

UK Biobank, showing that the inferred genealogies are rich in biological signal and efficient to 

process.

Introduction

Trees are fundamental to evolutionary biology. From Darwin’s speculative sketches1 and 

Haeckel’s phylogenetic imagery2 to modern syntheses encompassing all species of life3, 

trees elegantly encode and summarise the outcomes of evolutionary processes. A large 

number of methods now exist to infer evolutionary trees4, which are used as input in many 

downstream applications5. However, a tree can only be used to describe the ancestry of a set 

of DNA sequences if they are transmitted across generations as a single unit. Any process 

that causes different parts of a sequence to have different ancestors results in a history that 
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cannot be described by a single tree, but instead requires a network6. This presents 

difficulties when inferring ancestry within a sexually reproducing species, where DNA is 

inherited from both mother and father through recombination.

The need for structures more general than trees to describe ancestry has long been 

understood7. Multiple representations of such “phylogenetic networks” exist which model 

non-vertical transmission of genetic information arising from horizontal gene transfer and 

hybridisation6. The Ancestral Recombination Graph (ARG)8,9 models the network arising 

from inheritance within sexually reproducing species, encoding the recombination and 

common ancestor events in the history of a sample. In principle, ARGs contain all knowable 

information about genetic history, hence are central to population genetics10,11,12,13; 

however, practical applications have been limited by the prohibitive computational cost of 

inferring them. The problem of finding an ARG with the minimum number of recombination 

events required to explain a set of sample sequences is NP-hard14,15,16,17 and, while there 

exist non-minimal polynomial time algorithms18,19 and various techniques to reduce search 

space9,20,21, in practice these are too slow to apply to even moderately sized data sets. 

Several heuristic methods for inferring ARGs have been developed10,22,23,24,25, though most 

are limited to tens of samples and a few thousand variant sites. The ARGweaver program13 

is the current state-of-the-art and a substantial advance over earlier methods, as it performs 

statistically rigorous inference of ARGs over tens of thousands of variant sites. However, 

computational time grows rapidly with the number of samples, limiting use to a few tens of 

samples. The widespread use of ARGs is also hindered by the lack of interchange standards 

and community toolkits, despite several efforts to standardise26,27. Consequently, the ARG 

remains a structure that is known to be fundamental to our understanding of the ancestry of 

populations, but one that is practically never used.

Here we introduce a method, tsinfer, that removes these barriers to the adoption of ARGs 

in the analysis of genome variation data. Crucially, tsinfer vastly expands the scale over 

which ancestry can be inferred, simultaneously increasing the number of variant sites and 

sample genomes by several orders of magnitude, with accuracy comparable to the state-of-

the-art. Moreover, we show that the data structure produced by tsinfer, the succinct tree 

sequence (or tree sequence, for brevity)28,29 has the potential to store genetic data for entire 

populations, using a fraction of the space that would be required by present-day methods. As 

an encoding of the data based on the evolutionary history of the samples, many statistics of 

importance in evolutionary biology and statistical genetics can be computed efficiently using 

this structure. The tree sequence toolkit (or tskit) is a free and open source library 

providing access to these efficient algorithms. Thus, the two main practical obstacles to 

using ARGs (the lack of efficient inference methods and software to process the output) 

have been removed. We demonstrate utility by applying tsinfer to three large-scale human 

data sets (1000 Genomes30, the Simons Genomes Diversity Project31 and the UK 

Biobank32) and show how biological signals can be easily inferred from the resulting 

genealogical representation.
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Results

Succinct tree sequences

The tangled web of ancestry describing the genetic history of recombining organisms is 

conventionally encoded via common ancestor and recombination events in an ARG. The 

result of this process is a sequence of marginal trees, each encoding the genealogy for a 

particular segment of DNA16. Moving along a chromosome, recombination events alter the 

trees in a well-defined way17, with adjacent trees tending to be highly correlated. The 

succinct tree sequence is an encoding for recombinant ancestry that takes advantage of this 

correlation structure by storing each edge shared by multiple adjacent trees exactly 

once28,29. This simple device captures shared structure among trees and leads to efficient 

processing algorithms28. The ARG, which encodes the events that occurred in the history of 

a sample, is formally distinct from the succinct tree sequence, which encodes the outcome of 

those events, although we note that it is possible to augment a tree sequence to contain all 

information in an ARG.

The succinct tree sequence has the potential to dramatically reduce the space required to 

store genomic variation data. Such information is usually encoded as a matrix, with columns 

representing samples and rows corresponding to sites along the genome at which variation is 

observed (Fig 1a). For n samples and m sites we need O(nm) space to store the matrix. 

Studies such as the UK Biobank32 contain hundreds of thousands of samples, and such large 

datasets are expected to become increasingly common33. As many species have millions of 

variant sites per chromosome, storing and processing such huge matrices is a major burden. 

Tree sequences provide an efficient alternative. The variation that we observe is the result of 

mutations that occurred in the ancestors of our samples. If we know the genealogy at a 

particular site, we can fully describe genetic variation by recording where in the ancestry 

these mutations arose34(Fig. 1b); multiple mutations at a given site are rare, and each site 

therefore requires O(1) storage space rather than O(n). Fig. 1c shows the space required to 

store variation data for simulations of up to 10 million human-like chromosomes, 

extrapolated out to 10 billion. In this idealised case, storing the genotype data in the most 

widely used format (VCF35) would require 25PiB (i.e., approximately 25,000 1TiB hard 

disks) whereas the tree sequence encoding would require only around 1TiB. Thus, if we 

were able to store variation data using the tree sequence encoding we could store and 

process any conceivable data set on a present-day laptop. Existing specialised methods can 

also achieve much better compression levels than compressed VCF; in particular, the 

Positional Burrows Wheeler Transform (PBWT) is an extremely concise method of storing 

genotype matrices which supports efficient exact haplotype matching36. Notably, Figure 1 

shows that even though the compressed tree encoding also stores the full genealogy at every 

site (and therefore the haplotypes of every genetic ancestor), it is competitive with PBWT 

and even smaller at the largest scales.

Converting data into a highly compressed form usually requires costly decompression before 

use. A great advantage of the tree sequence encoding is that we can compute many statistics 

directly from the trees without decoding the genotypes. For example, computing the 

frequency of specific variants within subsets is a key building-block of many genetic 
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statistics. The algorithm for recovering trees from the encoded tree sequence representation 

allows us to compute allele frequencies far more efficiently than is possible when working 

with a raw matrix representation of the data28. Consider, for example, the largest tree 

sequence simulated in Figure 1, which represents the ancestry of 107 chromosomes, each 

100 megabases long. It takes about 2.2 seconds to load this 1.2GiB tree sequence; about 7.5 

seconds to iterate over all 650K trees; and about 17 seconds to compute allele frequencies 

within an arbitrary subset of 106 samples at all 670K sites. In contrast, just decompressing 

and decoding the corresponding 6.1 TiB of genotype data from BCF (a more efficient binary 

encoding of VCF) would require an estimated 1.8 hours (based on extracting the first 10K 

variants using cyvcf2 37). Moreover, BCF and other existing formats for storing variant 

data do not consider ancestry in any way. If we wished to store the actual trees from this 

simulation of 107 samples using the most efficient and popular interchange format (Newick), 

we would need approximately 256 TiB of space and it would take an estimated 5.3 CPU 

years to parse (based on BioPython’s38 Newick parser—one of the most efficient available

—taking about 262 seconds per tree).

Inference algorithm

DNA sequences can be considered mosaics of sequence fragments that have been inherited 

from recent ancestors via an error-prone copying process. Likewise, these ancestors are 

themselves mosaics, copied imperfectly from yet older ancestors. Further back in time these 

ancestral sequence fragments (or haplotypes) become shorter, as recombination breaks up 

the contributions of different ancestors over the generations. Our inference method is based 

on the premise that if these ancestral haplotypes were known it would be possible to infer a 

plausible copying history for large numbers of input DNA sequences. Critically, this 

approach means that we do not need to compare sample haplotypes with each other, 

avoiding the resulting quadratic time complexity.

We do not usually know these ancestral haplotypes, but we can attempt to infer them. If we 

assume that the contemporary variation we observe at each site on the genome is the result 

of a single mutation, we know that every sample haplotype that has the mutated (or derived) 

state at this site must have inherited it from a single ancestor. Moreover, these samples will 

also have inherited some fragment of the ancestral haplotype around the focal site. For 

mutations that arose recently, the shared haplotype will tend to be long, as recombination 

will not have had time to break it up. Conversely, for ancient mutations the shared ancestral 

haplotype will tend to be short (Fig. 2).

The first step in our algorithm is to infer ancestral haplotypes based on the variation present 

in the sample sequences, for which we use a simple heuristic. Briefly, we first use the 

frequency of the derived state at each site as an approximation of the relative age of the 

corresponding ancestor (Supplementary Figure 1). Then, for each ancestor we work 

outwards from the focal site taking a consensus value among samples carrying the derived 

state at the focal site (see Supplementary Figure 2 and Methods for details). Although 

heuristic, this method is reasonably accurate and robust to errors (Supplementary Figure 3).

After estimating ancestral haplotypes we then infer how they relate to each other using a 

variation of the Li and Stephens (LS) model39, which regards a haplotype as an imperfect 
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mosaic of the haplotypes in some reference panel. For a given ancestral haplotype, our 

reference panel consists of all older ancestral haplotypes. Because our reference haplotypes 

are ancestral rather than contemporary, we make a slight modification to the standard LS 

process: alongside the usual 0/1 states, a third haplotypic state is used to represent non-

ancestral material from which copying can never occur. Computing the most likely path 

under the LS model allows us to estimate the immediate ancestor for each segment of DNA 

in the focal haplotype. Figure 2B shows an example of such a copying path for a focal 

haplotype and how it copies from different ancestors along its length. Once we have found 

copying paths for all ancestors and input sample haplotypes, we are guaranteed to have 

complete genealogical trees for every position along the genome, albeit ones that may 

contain nonbinary nodes (“polytomies”). Furthermore, these copying paths correspond to 

‘edges’ in the tree sequence formulation29, and so the copying process directly generates a 

succinct tree sequence. Representing the ancestral haplotypes as a tree sequence lends 

significant flexibility, as it allows us to combine information from diverse sources; for 

example, we can use a tree sequence estimated from one data set as ancestors for another 

(see Applications). Encoding the inferred ancestors as an incrementally-updated tree 

sequence also allows us to find copying paths under the LS model far more efficiently than 

is possible using existing approaches (see Methods).

We evaluated tsinfer for accuracy and scalability using population genetic simulations to 

generate ground-truth data, and compare against three other tools for ancestry inference: 

ARGweaver 13, Rent+ 25 and fastARG (https://github.com/lh3/fastARG). Fig. 3 compares 

the accuracy of inferred ancestral topologies; we use the Kendall-Colijn tree distance 

metric40, as it is more sensitive than alternative metrics (Supplementary Figure 4) and is 

robust to the presence of nonbinary nodes in trees (see Methods). We find that tsinfer is 

consistently more accurate than fastARG and Rent+ and has similar accuracy to 

ARGweaver under a range of different models of error and demography (Supplementary 

Figures 5–7), while scaling to vastly larger input sizes (Supplementary Figures 8 and 9). In 

particular, Supplementary Figure 7 shows that tsinfer’s accuracy is substantially higher 

than ARGweaver’s in the presence of a selective sweep, suggesting that our nonparametric 

approach is more robust to departures from the assumptions of the neutral coalescent model. 

See the Methods for details of how these comparisons were performed.

Applications

To evaluate tsinfer’s performance on empirical data we inferred tree sequences for three 

data sets on human chromosome 20: the 1000 Genomes Project (TGP), consisting of low-

coverage whole genome sequencing data from 2504 individuals across 26 worldwide 

populations30; the Simons Genome Diversity Project (SGDP), consisting of high coverage 

sequencing data from 278 individuals from 142 worldwide populations31; and the UK 

Biobank (UKB), consisting of SNP array data from 487,327 individuals within the UK32. 

Table 1 summarises input data, inferred tree sequences and computing resources required. 

For UKB, we considered multiple strategies, augmenting the data with ancestors inferred 

from TGP and subsets of haplotypes from the UKB itself as potential ancestors. For each 

data set we used statistically inferred haplotypes as input.
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Across chromosome 20, the TGP data consisted of 860K sites after filtering (see Methods 

for details). After inferring ancestors and matching sample haplotypes to these ancestors, we 

obtained a 297MiB tree sequence (46MiB compressed, compared to the 141MiB BCF 

encoding of the same genotypes). Under the standard neutral model we expect the number of 

distinct trees to be roughly equal to the number of variable sites within human data, and the 

number of edges to be roughly four times the number of trees28,29. We observe similar 

numbers of distinct trees (550K) as filtered sites (860K, from 1.8M unfiltered), but the 

number of edges is 7.3M, which is greater than expected and suggests that the differences 

between adjacent inferred trees are larger than expected under idealised conditions. Loading 

the tree sequence required c. 3 seconds; iterating over all 550K trees c. 0.6 seconds; and 

decoding all genotypes c. 9 seconds. In comparison, decoding the same genotypes from BCF 

required c. 15 seconds using cyvcf2. The SGDP data consisted of 348K sites after filtering, 

and this resulted in an 83MiB tree sequence (11MiB compressed, compared to the 11MiB 

BCF encoding of the same genotypes). Loading the tree sequence required c. 1.6 seconds; 

iterating over all 196K trees c. 0.1 seconds; and decoding all genotypes c. 1.8 seconds. 

These results demonstrate the feasibility of representing existing data sets through tree 

sequences, with file sizes comparable to current standards and excellent analytical 

accessibility.

To assess the validity of the inferred tree sequences we computed a series of metrics 

summarising reconstructed ancestral relationships. We first calculated the number of edges 

for each sample, which measures the extent to which an individual’s genome can be 

compressed against the inferred ancestors. In TGP, samples have an average of 648 edges 

(with a median length of 44kb and an average N50 of 236kb), with those of African ancestry 

having a greater number (750) than those of European (551) or Asian (665) ancestry 

(Supplementary Figure 10a and Supplementary Figure 11). These findings are likely to 

primarily reflect known differences in the long-term effective population size, though will 

also be affected by sampling strategy and error modes. We find higher values in SGDP 

reflecting the lower sample sizes (overall average: 1113 edges, African ancestry: 2178, 

European ancestry: 803 and Asian ancestry: 879; Supplementary Figure 10b and 

Supplementary Figure 12). In both data sets we identified a few outlier samples with very 

high edge counts, suggesting error (see Supplementary Note).

We next considered whether the inferred tree sequences could be used to characterise 

ancestral relationships in TGP and SGDP by computing, for each individual, the population 

distribution of their genealogical nearest neighbours (GNN). Given K sets of reference nodes 

(e.g., the samples for each of the 26 TGP populations), the GNN statistic for a specific node 

is a K-vector describing the proportion of its immediate neighbours within the tree from 

each of these reference sets (see Methods). We find that, despite the noise generated by 

uncertainty in tree reconstruction (manifest as polytomies), the chance nature of the 

genealogical process and data error, the tree sequences can characterise global population 

structure (Fig. 4a,b), within-population relatedness (Fig. 4c) and identify regions of 

differential ancestry within an individual (Fig. 4d). These analyses demonstrate the potential 

of interrogating the inferred genealogical structure at different resolutions to describe both 

broad and fine-scale patterns in contemporary human genomic diversity.
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Finally, to assess the performance of tsinfer on vast data sets we analysed the ~500K 

individuals within UK Biobank. The sparsity of variant sites and inherent lack of rare 

variants in the UKB SNP array data is insufficient for accurate ancestor inference directly. 

However, we considered two alternative strategies: using ancestors estimated from other data 

and using subsets of the sample to act as proxies for ancestors. In the first approach, we 

matched the UKB haplotypes to the tree sequence inferred for TGP, generating a 5.8GiB tree 

sequence (740MiB compressed). Supplementary Figure 13 shows the self-reported ancestry 

in UKB tallies with TGP GNN values and adds granularity. Furthermore, by analysing the 

copying patterns in this tree sequence, we found 9 individuals that are likely to be in both the 

TGP and UKB data sets (see Supplementary Note).

Our second strategy for improving ancestor inference involves sequentially adding subsets of 

the sample itself as potential ancestors. By iteratively adding samples, the approach of 

generating putative ancestors from shared recombination breakpoints (“path compression”; 

see Methods) constructs many more ancestors that would be possible if all samples were 

added simultaneously. Thus, we began by updating the ancestor’s tree sequence with the 

paths for two arbitrarily chosen samples; then updating the resulting tree sequence with the 

paths taken for four other samples; and then again for eight; and so on up to 131,072. After 

matching all 1M sample haplotypes against these augmented ancestors we obtained a 

2.1GiB tree sequence (318MiB compressed, compared to the equivalent 1.4GiB BCF file). 

Loading this tree sequence required c. 9 seconds and iterating over all 15.8K trees c. 11 

seconds. Decoding genotypes for the first 1000 sites required 9.5 seconds; in comparison, 

decoding the genotypes for the first 1000 sites in the original BGEN file using the bgen C 

library required 49 seconds. Analysis of the GNN structure of the tree sequence (Fig 5) 

demonstrates strong geographical clustering of relatedness at this level of resolution, with 

connections between birth locations reflecting geographical proximity. Although signals of 

population structure are evident here, further work is required to understand the implications 

for statistical analysis of association and other applications.

Discussion

Inferring genealogical relationships from patterns of genomic variation is a long-standing 

problem in evolutionary biology that connects to the fundamental forces and events shaping 

a species. However, our ability to infer such histories has, to date, been limited by the 

computational complexity of the problem. The work presented here represents a major 

advance by providing a principled, yet scalable approach that can be applied to data sets of 

unprecedented size. While the algorithms presented are both heuristic and deterministic, the 

approach of breaking down the problem into inferring relative variant age, ancestral 

haplotypes and the genealogical relationships between these ancestors results in a modular 

framework that scales to vast sample sizes (Supplementary Figure 9). Moreover, each 

component can be improved independently, potentially accommodating uncertainty through 

stochastic approaches.

Nevertheless, the method does make a number of fundamental assumptions. First, we 

assume that each variant in a population has a single mutational origin. While this is unlikely 

to be true in practice (particularly in large samples), our ancestor estimation method is likely 
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to find the dominant ancestral haplotype. Recurrent and back mutations will therefore not be 

handled well by the current algorithm, though in principle could be addressed by iterative 

approaches. Second, we assume that frequency is a proxy for relative variant age. 

Importantly, our algorithms only require accuracy about relative age within genealogically 

connected parts of the tree sequence. Under simple demographic models, we estimate that 

relative frequency indicates relative age for roughly 90% of closely located pairs of variants 

(Supplementary Figure 1). In theory, methods for dating genomic variants could be used to 

improve ancestor estimation and also assign dates to nodes within the tree sequence, though 

these remain open problems. Third, we assume that the ratio of mutation to recombination is 

sufficiently high to use mutations as the starting point for ancestor inference. However, the 

path compression approach used here (see Methods) identifies additional ancestors through 

shared recombination events and, within the SNP array analysis on UKB, performs well, 

compensating for the low variant density and lack of rare variants. Finally, the current 

methodology works well for low error rates, but its performance is degraded (typically 

characterised by an excess of edges) by genotyping and, in particular, haplotype phasing 

error. In the future, population-scale high coverage and routine long-read genome 

sequencing will reduce the source of such errors and it may be feasible to construct steps of 

the algorithm that are more robust than those currently implemented. Our method does not 

estimate the times of internal tree nodes beyond a simple ordering, which is a significant 

limitation in terms of evolutionary analyses. Inferring nodes times conditioned on a tree 

sequence topology—at scale—is therefore an important goal for future work.

Tree sequences have many potential applications. The most obvious is as an efficient lossless 

storage format for population-scale data sets. While compression performance on simulated 

data (Supplementary Figures 14 and 15) is close to the theoretical possibilities shown in Fig. 

1, tsinfer’s compression of real data does not currently fulfil this potential. More careful 

modelling of the complexities of genetic data—in particular the various error modes—will 

likely be required to effectively compress millions of whole genomes. Nonetheless, 

compression performance is comparable to existing formats while providing exceptional 

analytical accessibility. Recent, unpublished work on data compression using a 

genealogically-informed PBWT41 also offers a related and promising approach to genome-

scale inference of tree sequence topologies. The integration of genealogical relationships 

with genomic variation data has value beyond population and personal genetics, for example 

in potentially correcting for the differential geographical confounding of rare and common 

variants in genetic association, and, as Speidel et al.42 have shown, enables powerful 

inference of underlying evolutionary events, processes and parameters, such as mutation age, 

natural selection and ancient contacts between populations. Moreover, our combined 

analysis of the UKB and TGP data sets demonstrates the potential of also using tree 

sequences to integrate data sources and, more generally, to build a reference tree sequence 

structure for human genomic variation that can be updated as new variants are discovered. 

Such a structure, coupled with efficient algorithms that make use of the tree sequence could 

enable (and make optimally powerful) diverse statistical genetic operations including 

genotype refinement, genotype imputation and haplotype phasing. It could also be used to 

share data effectively and in a manner that preserves privacy, by describing data sets in terms 

of inferred ancestors rather than individual samples.
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Online Methods

Age of alleles

The first step in our algorithm is to estimate the relative time at which the mutation for each 

variant arose (we are assuming a single origin for each mutation). Classical results in 

population genetics provide a theoretical expectation for the age of an allele based on its 

frequency43,44. There are several existing methods for estimating allele age, but are either 

computationally expensive or require detailed knowledge about historical population 

processes45,46,47, although a more efficient non-parametric method has recently been 

introduced48.

If we are interested in estimating topologies, however, we do not need precise esimates of 

allele age: all we require is the order in which nodes occur. The frequency of alleles provides 

a computationally inexpensive way of ordering allele ages, which is surprisingly accurate for 

our purposes (Supplementary Figure 1), as we only need the relative age ordering of alleles 

to be locally accurate. If variants on opposite ends of a chromosome are incorrectly ordered 

it makes little difference to the outcome of our algorithms, since the ancestral haplotypes 

involved are unlikely to overlap. By default tsinfer uses frequency as a proxy for relative 

allele age, but we also allow external sources of allele age to be provided as input.

Inferring ancestral haplotypes

Once we have assigned an age order to sites, the next step in our inference process is to 

generate a set of putative ancestral haplotypes. We assume that there are two alleles at every 

site: the ‘ancestral state’, which was inherited from the ancestor of the entire population and 

the ‘derived state’ which is the result of a mutation that occurred on the ancestor of the 

samples carrying this allele. We assume that these ancestral and derived states have been 

identified via existing methods49. Each variant site is therefore the result of a mutation that 

occurred on an ancestor: samples that inherit from this ancestor have the derived state, and 

the rest carry the ancestral state. By definition this ancestor carries the derived state at the 

site in question; our task then is to reconstruct the state of the ancestor around this focal site.

For a given focal site ℓ let S be the set of samples that carry the derived state. We are 

attempting to reconstruct the ancestral haplotype a on which the mutation occurred, and so 

we begin by setting aℓ = 1, following the usual convention of labelling the ancestral state for 

a site 0 and the derived state 1. For all other sites 1 ≤ k ≤ m, k ≠ ℓ we set ak = −1, indicating 

non-ancestral material that cannot be copied from; these non-ancestral values will be 

overwritten for sites around ℓ where we can estimate the state of the ancestor. We then work 

leftwards and rightwards from ℓ independently, computing the state of the ancestor at each 

site. The set S initially contains the samples that we believe descend from the current 

ancestor (assuming infinite sites and no error), and we use this set to compute a plausible 

state at other sites. As recombination modifies the tree topology, we update S to remove 

samples that are no longer in the clade induced by the focal site. We stop moving left or 

right from the focal site when we judge that we no longer have sufficient information to 

construct the ancestral haplotype. We use heuristics to determine when to remove a 

particular sample from S and when to end the ancestral haplotype.
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Supplementary Figure 2 illustrates a simplified example of this process, showing the 

ancestral haplotype estimated at the focal site 8. We begin by setting S = {e, f, g, h}, i.e. the 

set of samples that carry the derived allele at site 8. We then proceed rightwards, considering 

each site in turn. For younger sites, the corresponding mutation cannot have occurred yet by 

definition, and so we always set the ancestor to 0 at these sites (e.g. 9 and 10). When we 

reach a site that is older than the focal one, we compute a plausible value for our ancestor by 

taking the consensus among the samples in S. For example, at site 11 the estimated value for 

the ancestor is 1 because all haplotypes in S carry 1; similarly, at site 13, three of four 

samples in S carry 1, and so the consensus is 1 (the consensus can also be 0, as in site 4). We 

interpret disagreement with the consensus value as evidence that the samples in question 

have recombined away to another part of the tree. Thus, after we have computed the 

ancestor’s state at a site, we remove (or “evict”) any samples from S that conflict with this 

consensus (but see below for a slight modification used in practice). In the example, we 

therefore evict h at site 13 and g at site 17. We continue rightwards in this way until we 

determine that we have insufficient information to accurately estimate ancestors. The 

heuristic we have chosen is to stop when the size of S is ≤ half of its original size. After 

completing the rightwards scan, we then repeat the process independently leftwards.

Variants with an age equal to the focal mutation are considered to be younger than the focal 

site (and hence always assigned the ancestral state) except in one special case. If several sites 

exist with precisely equal distribution of genotypes, we assume that these all arose on a 

single branch of the tree and that no recombination occurred between these sites. We 

therefore compute consensus values for older sites between these identical focal sites in the 

usual way, but we do not update S when conflicts occur (assuming these to be caused by 

error). Once outside of the region enclosed by the identical sites, the process outlined above 

resumes and we update S in the usual way.

Although this method is approximate and heuristic, it generates surprisingly accurate 

ancestors. Supplementary Figure 3 shows a plot of the lengths of the estimated vs true 

ancestors from simulations, colour-coded by the accuracy of the estimated states. We see 

that there is a strong bias towards ancestral haplotypes being longer than the truth; this is by 

design, as long haplotypes can be compensated for by the copying process, but short 

haplotypes cannot. Inferred haplotypes are also quite accurate, with many ancestors being 

inferred perfectly. Genotyping errors can result in many generated ancestors being too short, 

as errors often lead to samples being prematurely evicted from S. To add some resilience to 

this, we include a slight “dampening” to our eviction rule: we remove a sample from S only 

if it disagrees with the consensus at two consecutive older sites. Supplementary Figure 3 

shows that this slightly more complex heuristic used in practice is reasonably robust to 

genotyping error.

Copying process

The Li and Stephens (LS) model39 is central to many techniques in population genomics50. 

Given an input haplotype with m sites and a reference panel of n haplotypes, the most likely 

copying path under the LS model is found using the Viterbi algorithm, which proceeds 

iteratively over sites. At each site, we compute the maximum likelihood that the input 
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haplotype has copied from a particular reference haplotype given their states and the 

maximum likelihood values at the previous site; the particular form of the LS model allows 

this to be done in O(n) time. Once the last site is reached, the most likely reference 

haplotype at the end of the sequence is identified, then the algorithm traces back through 

sites, switching to other haplotypes where required. The overall time complexity is therefore 

O(nm) to find a copying path for an input haplotype, since we must compare with all n 

reference haplotypes at each of the m sites. In tsinfer the reference panel is the set of 

inferred ancestral haplotypes. Because there may be a different ancestor for every site, n ≈ 
m, hence the time complexity of finding a copying path is O(m 2). Modern sequencing data 

sets contain millions of variant sites, thus standard LS methods are not feasible. Moreover, 

in tsinfer, haplotypes can only copy from older haplotypes and the reference panel must 

be updated dynamically; algorithms that require a linear-time preprocessing step50 are 

therefore also not feasible.

To solve this problem we use the LS model on the tree sequence directly. Each copying path 

generated is equivalent to a set of edges in a tree sequence29, where the child is the focal 

haplotype and the parents are ancestors. Forwards in time (i.e. towards the present) we are 

therefore incrementally building a tree sequence. We use this partially built tree sequence as 

the substrate for computing LS copying paths for subsequent ancestors. The computational 

properties of the tree sequence data structure allow us to find exact copying paths far more 

efficiently than using standard methods.

The algorithm for computing Viterbi paths using a tree sequence works in the same way as 

the standard method. We proceed iteratively over sites, computing the maximum likelihood 

when copying from each ancestor at each site and recording the locations of potential 

recombination events. Once the last site is reached, trace-back proceeds as before, resolving 

a full copying path. The difference when using tree sequences is that we avoid needing to 

compute and store a likelihood for each reference haplotype by using the tree sequence to 

compress the associated likelihoods. Each ancestor corresponds to a node in the marginal 

tree at a given site, thus we compress the likelihoods by marking any node that has the same 

likelihood as its parent with a special value. Because the likelihood values are driven by the 

underlying tree structure of the data, they tend to cluster on the partially inferred trees and 

therefore compress well. Updating the likelihoods at a given site is then straightforward. We 

compute the likelihood for each node by reasoning about the state of the input haplotype and 

the location of the site’s mutation in the tree. Having updated the likelihoods for the nodes 

corresponding to the compressed subtrees, we then recompress to take into account the new 

likelihood values, and proceed to the next site. In many cases, moving to the next site will 

also involve a change in the tree topology, hence we redistribute the compressed likelihoods 

accordingly using logic common to other tree sequence algorithms28,29. For simplicity, the 

current implementation only allows for exact haplotype matching. Under this assumption, 

we need only five discrete values to encode the node likelihoods in the LS Viterbi algorithm, 

simplifying the logic considerably. Methods to incorporate mismatch and integration with 

tskit are currently underway.

To validate the correctness of our implementation of the copying process, we devised a 

strong test, referred to as ‘perfect inference’, under which the correct tree sequence should 
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be inferred. We begin with a simulated tree sequence with no mutations and derive the true 

ancestral segments from it. We then add a specific pattern of mutations that are designed to 

precisely identify the endpoints of each ancestor and use the resulting ancestral haplotypes 

as input to tsinfer. We then find copying paths for these ancestors and samples in the 

usual way. Using this method we are able to reproduce the input tree sequence topology 

perfectly, recovering every marginal tree and recombination breakpoint exactly for 

arbitrarily large inputs. Indeed, the numerical tables29 representing the input and output tree 

sequences are byte-for-byte identical. Although not a formal proof, this identity holds for all 

tested inputs. It also strongly suggests that the key areas for further research are better ways 

to infer ancestral haplotypes and demarcate their endpoints.

Path compression

The algorithm for inferring ancestors discussed above is primarily based on signal arising 

from shared mutation events, and is only weakly informed by recombination. However, we 

can also derive information about ancestors from shared recombination events. If we assume 

that each recombination event is unique, i.e., that all samples that inherit the local haplotype 

resulting from a breakpoint did so from a single ancestor, we can then estimate the state of 

this ancestor. Note that this is equivalent to assuming an ‘infinite-sites’ like model for 

recombination events, an idea with a long history51. We use this signal of shared 

recombination breakpoints in a specific way, which we refer to as ‘path compression’.

When generating copying paths for successive ancestors, we often find that subsets of two or 

more paths are identical. Such identical path subsets is evidence for the existence of a single 

ancestor that consisted of the concatenation of the corresponding haplotype segments. We 

therefore add this ‘synthetic’ ancestor, and adjust the original identical path subsets to copy 

from the newly inserted ancestor. Ancestors corresponding to a given allele age are inserted 

at the same time, and path compression is run at the end of each of these time slices. 

Supplementary Figure 17 shows an illustrative example of this process.

Inference accuracy

To compare the accuracy of tsinfer to other inference methods we used simulation to 

generate known topologies. We assessed the effect of genotyping errors on inference 

accuracy by simulating errors on the haplotypes using an empirically determined genotyping 

error profile48. We then provided the corresponding haplotypes (with and without simulated 

genotyping errors) to the various tools, and measured the difference between the estimated 

and true tree topologies using tree distance metrics. We considered four tools: tsinfer, 

ARGweaver, Rent+ and fastARG. ARGweaver requires several parameters to be specified: 

in all cases we used the known simulation values for mutation rate, recombination rate and 

effective population size parameters, and used the default number of timesteps for time 

discretisation (20) sampling 10 ARGs for each simulation (one every 20 MCMC cycles, 

after a burn-in period of 1000 cycles).

Although the succinct tree sequence data structure can fully represent node timing (and 

hence branch length) information, tsinfer does not currently attempt to infer the precise 

times of ancestors. Therefore, we limited our investigation of the accuracy of inference to 
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assessing the quality of the inferred topologies using tree distance metrics. For each replicate 

simulation we computed the average distance between pairs of true and inferred trees along 

the sequence, weighted by the distance along the sequence that these trees persist. We report 

the average distance over replicate simulations. Metrics were calculated using the R 

packages treespace 52 and phangorn 53. Some metrics (such as Robinson-Foulds) are 

undefined for trees that contain nonbinary nodes (“polytomies”), which indicate uncertainty 

in tsinfer and therefore occur frequently. We therefore also show results where tsinfer 

trees have been randomly resolved into fully bifurcating trees (averaged over 10 replicates). 

The Kendall-Colijn (KC) metric40 provides the greatest discrimination (Supplementary 

Figure 4) and is well-defined for all tree topologies, hence was used exclusively in 

subsequent analyses. At low mutation rates, the KC metric shows a notable difference 

between the accuracy of tsinfer’s inferred trees before versus after random resolution of 

polytomies. This is because there is little information available to resolve the nodes, and 

generating a random binary subtree on average results in something further from the truth 

than the original polytomy. Thus, tsinfer’s innate strategy of using polytomies to indicate 

uncertainty in a principled and systematic way has a significant advantage over methods that 

always fully resolve trees.

To evaluate the sensitivity of tsinfer to changes in the underlying simulation model, we 

also tested accuracy on more complex simulations. In Supplementary Figure 6 we show 

results of simulations of a three population Out-of-Africa model of human demography54. In 

this case, tsinfer does not seem to be affected by the underlying population structure and 

is a little more accurate than ARGweaver (although ARGweaver is less affected by error). In 

Supplementary Figure 7 we show inference accuracy on a simulated selective sweep, where 

we performed forward time simulations using SLiM 55,56. In this case, once the 

advantageous mutation has swept to a reasonable frequency tsinfer becomes substantially 

more accurate than the other tools and continues to be so for many generations after fixation. 

In Supplementary Figure 18 we show the effect of running inference on a subset of the 

available haplotypes on tsinfer’s accuracy. We see that, in the absence of error, having 

extra samples has little effect on the accuracy of inference, but that larger samples can 

potentially help to correct for the presence of genotyping errors.

To evaluate the computational performance of the different inference methods we measured 

the total user time and maximum memory usage (taking the mean over replicates). All 

experiments were run on a server with two Xeon E5-2680 CPUs and 256GiB of RAM. 

Supplementary Figure 8 shows the CPU time required for all four tools for varying sample 

sizes. The disparity in the running times is too large to show on a single scale, and tsinfer 

and fastARG are many times faster than ARGweaver and Rent+. Supplementary Figure 9 

compares tsinfer and fastARG at a much larger scale, where tsinfer shows far better 

scaling in terms of CPU time and memory when increasing both sequence length and sample 

size. Empirically, tsinfer’s running time grows approximately linearly with sample size 

and super-linearly with sequence length on simulated data (Supplementary Figure 9).
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All code for running the evaluations, including the precise version of each tool used, is 

included in the accompanying GitHub repository (https://github.com/mcveanlab/treeseq-

inference/).

Genealogical nearest neighbours

We use Genealogical Nearest Neighbours (GNN), a statistic based on the topological 

properties of trees and defined with respect to a collection of reference sets, to summarise 

the identity of nearest neighbours (Supplementary Figure 19). For a given tree and focal 

node u, GNN values are computed by traversing upwards from u until we find a target node 

v that has one or more descendants (not including u) present in any of the reference sets. The 

GNNs are then the proportions of each reference set among the descendants of v, not 

including u.

More formally, let R be a list of K sets of “reference nodes”, and let Cv, k
t  be the number of 

nodes descending from (and including) v in tree t from the set Rk, with Cv
t = ∑k = 1

K
Cv, k

t .

For a given focal node u and tree t, the GNN statistic is then defined as

Gu, k
t =

Cv, k
t − [u ∈ Rk]

Cv
t − δ(u)

where [x] is an Iversonian condition such that [x] = 0 if x is false and [x] = 1 otherwise; 

δ(u) = [u ∈ ∪j = 1
K Rj]; and v is the first node on the path from u to root in t such that 

Cv
t > δ(u) .

The average GNN along a tree sequence  is

Gu, k =
1
L ∑

t ∈ T
LtGu, k

t ,

where each tree t ∈  covers a span of Lt units of genetic sequence and L = ∑t∈  Lt. Thus, 

the average GNNs are equal to the treewise GNN values weighted by each tree’s genomic 

span.

Note that if the reference sets do not include all leaf nodes in a tree, the sister clade to a leaf 

u may not contain any individuals in a reference set. In this case we will ascend to an older 

target node v, higher in the tree, and the GNN statistic will represent a more distant 

relationship.

Data visualisation

Data processing was performed using the Python data science stack including numpy 57, 

pandas 58, matplotlib 59 and seaborn (https://doi.org/10.5281/zenodo.1313201).

Figure 5 shows patterns of genetic relatedness in UK Biobank on a map of Britain and 

Ireland. We grouped birth locations for individuals according to the NUTS 201860 
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classification. Reverse-geocoding of birth locations was performed for all 444,848 UKB 

participants with recorded birth coordinates using bng_latlon (https://pypi.org/project/

bng-latlon/) and Shapely (https://pypi.org/project/Shapely/). 8315 samples, whose NUTS-2 

birth locations were not found or did not tally with their reported country of birth, were 

removed. A different GNN matrix was computed for the NUTS-2 (Figure 5 A,B) and 

NUTS-3 (Figure 5 C,D,E) mappings. Maps were drawn with cartopy (http://

scitools.org.uk/cartopy) using publicly available vector shape data. Shape data for NUTS 

areas was provided by the Office for National Statistics (https://data.gov.uk/) under the Open 

Government License. Shape data for the coastal outline of Ireland was downloaded from the 

Database of Global Administrative Areas, which is free to use for academic publishing 

(https://gadm.org/license.html).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of tree sequences with standard methods for storing genetic variation data. a). 

The variant matrix underlying conventional storage methods for genetic variation data. b). A 

genealogical encoding for data; if we know the tree we can store each variant site in constant 

space. c). Estimated sizes of files required to store the genetic variation data for a simulated 

human-like chromosome (100 megabases) for up to 10 billion haploid (5 billion diploid) 

samples. Simulations were run for 101 up to 107 haplotypes using msprime 28, and the sizes 

of the resulting files plotted (points). In each case we show the original tree sequence file 

uncompressed and compressed using tszip (retaining only topological information needed 

to represent genotypes using the --variants-only option). We also show the 

corresponding variation data encoded in the VCF35 and PBWT36 formats, along with their 
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gzip-compressed equivalents. The VCF files for 107 samples were too large and time-

consuming to process. The projected file sizes for VCF/compressed VCF are based on fitting 

a simple exponential model. Projected files sizes for tree sequences are based on fitting a 

model based on the theoretical growth of tree sequences28. Where we have extrapolated, the 

largest data point was withheld from fitting to assess the model fit. We do not extrapolate for 

the PBWT files as there is no theoretical model to predict their size.
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Figure 2. 
A schematic of the major steps of the inference algorithm. Starting from a set of sample 

haplotypes extending over the genome (1), we use the ancestral haplotype inference method 

(2) to reconstruct fragments of ancestral sequence (3), then infer copying paths among these 

ancestors (4). The ancestral copying process is shown on the right, using an arbitrary 

haplotype (p) for illustration. As we move from left to right along p we infer that it has most 

recently copied from j, e, c and then m. Incorporating the copying history of all older 

haplotypes (for example, m copied partly from c and partly from h), partial coalescent trees 

emerge in the bottom-right panel. Once copying paths have been found for all ancestors and 

samples, we output a tskit tree sequence (5).
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Figure 3. 
Accuracy of ancestry inference under different methods (lower values indicate greater 

accuracy). Coalescent simulations for 16 sample haplotypes of 1Mb in length under human-

like parameters (Ne = 5000, with recombination rate ρ = 10−8 per base per generation) and 

an infinite sites model of mutation were simulated using msprime 28. The reported tree 

topology distance is the Kendall-Colijn metric, weighted by the genomic distance spanned 

by each tree. Each point is the average of 100 independent replicates at a given mutation 

rate. The point where mutation rate equals recombination rate (similar to humans) is marked 

with a vertical dotted line. Standard errors are smaller than the plotted symbols in all cases.
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Figure 4. 
Tree sequence characterisation of global genome diversity. a). Z-score normalised GNN 

proportions for SGDP by population (n = 278 individuals). The GNN matrix was first z-

score normalised by column and the rows then hierarchically clustered. See Supplementary 

Figure 16 for a larger version with population labels. b). As for (a), but for the TGP data (n 

= 2504 individuals). c). Average GNN proportions for all individuals within the PEL 

population in TGP. Colours indicate continental-level groupings. d). The GNN proportions 

across the chromosome for the two haplotypes of HG01933, from the PEL population in 

TGP. HG01933 was chosen as an example of an individual showing evidence of very recent 

admixture from multiple source populations. We note that apparent short tracts of different 

ancestry most likely do not reflect true changes in recent ancestry, but arise through the 

stochastic nature of genealogical processes and errors in inference.
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Figure 5. 
Tree sequence characterisation of the UK Biobank data. a). Normalised GNN proportions 

for 628,651 haplotypes self-reported as born in Britain or Northern Ireland (the 262,136 

sample haplotypes used for ancestor augmentation were removed from this analysis) 

calculated relative to birth location (grouped according to NUTS 2018, level 2; see 

Methods), i.e., reporting the fraction of each sample’s genealogical nearest neighbours who 

were born in a given geographical area. The columns in the GNN matrix were z-score 

normalised before the rows were hierarchically clustered. b). Geographical areas colour-
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coded by group clustering. The 6 areas correspond to the first 6 clusters obtained by 

hierarchical clustering of the 41 birth locations in (a). c, d and e). GNN proportions 

computed for specific NUTS level 3 areas: c) City of Edinburgh (n = 7571 individuals); d) 

North Yorkshire CC (n = 3416 individuals); e) Camden and City of London (n = 4726 

individuals). For each area, the GNN proportions were computed over 170 geographical 

areas (169 NUTS-3 areas and Northern Ireland). The z-scored proportions were translated 

and log-normalised. The tree sequence constructed by iteratively augmenting ancestors (see 

text) was used as the basis for plots (a)–(e).
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Table 1

Summary of input data, output tree sequences and computing resources required for TGP, SGDP and UKB 

chromosome 20. Input sizes reported are of tsinfer’s input .samples files, which uses the Zarr library 

(https://zarr.readthedocs.io/) to achieve similar compression levels to BCF. File sizes are reported using binary 

multipliers (i.e., 1M = 220 bytes); all other values use decimal multipliers (i.e., 1M = 106). The times reported 

are the total wall clock time required to produce the output tree sequence from the .samples file on a server 

with two Xeon Gold 6148 CPUs (40 cores in total; no hyperthreading) and 187GiB of RAM. For SGDP, TGP 

and UKB we used the standard tsinfer inference pipeline. In UKB+TGP, we matched the UKB samples to 

the inferred TGP tree sequence (time reported is just for sample matching phase). In UKB+UKB we 

incrementally added samples from UKB to the ancestors inferred from UKB (see text).

Input Output Resources

n sites   size nodes edges trees   size time RAM

SGDP 277 348K 15M 236K 1.7M 196K 83M  5m 3.6G

TGP 2504 860K 135M 735K 7.3M 550K 296M  2h  11G

UKB 487K 15.8K 1.6G 1.9M 484M 15.8K 14.5G  3h 160G

UKB+TGP 487K 15.6K 1.6G 5.5M 185M 15.6K 5.8G 15h  66G

UKB+UKB 487K 15.8K  1.6G 2.0M 62M 15.8K  2.1G 50h  40G
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