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We consider a model for non-static groundwater flow where the saturation-pressure relation 

is extended by a dynamic term. This approach, together with a convective term due to gravity, 

results in a pseudo-parabolic Burgers type equation. We give a rigorous study of global 

travelling-wave solutions, with emphasis on the role played by the dynamic term and the 

appearance of fronts. 

1 Introduction 

Capillary pressure is an essential characteristic of two-phase flow in porous media. It is 

the empirical macroscopic description of the pressure differences, due to surface tension, 

between the phases in the pores of an elementary representation volume. 

In the standard approach, capillary pressure is expressed as a monotone function of 

one of the phase saturations: decreasing in terms of the wetting phase saturation and 

increasing in terms of the non-wetting phase saturation. Such expressions are based on 

static conditions within an elementary representative volume (see, for instance, Bear [3, 4] 

or Bedrikovetsky [5]). 

Recently (see Gray & Hassanisadeh [12]), new and more realistic models have been 

proposed to include non-static conditions as well. ln its simplest form this leads to a 

capillary pressure, which is now a function of the wetting phase saturation and its time 

derivative. The formulation, with this improved capillary pressure, results in a transport 

equation containing higher order mixed derivatives. This equation is subject of study in 

this paper. 

We confine ourselves to the particular case of unsaturated groundwater flow, where 

imbibition takes place under the influence of gravity. The two phases are water (wetting 

phase) and air (non-wetting phase). Throughout we assume relative small values of the 

water saturation, so that regions where the porous medium is fully saturated do not 

occur, as described by Hulshof [13] and van Duijn & Peletier [9] for example. According 

to Bear [3, 4] for water in a homogeneous and isotropic porous medium we have the 

momentum balance equation 

q = -K (S)(Vpw + pgez) (Darcy's law), (1.1) 
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and the mass balance 

f/Jar(pS) + div(pq) = 0. ( 1.2) 

Here q denotes volumetric water flux, S water saturation, K (S) hydraulic conductivity, Pw 

water pressure, p water density, cp porosity and g the gravity constant. Further e= is the 

unit vector in positive z-direction, i.e. against the direction of gravity. To solve equations 

(1.1) and (1.2), an additional relation between Pw and Sis needed. This relation is based 

on the assumption that the air pressure, Pa, is constant in space and time. This assumption 

is common practice in unsaturated groundwater flow. 

Under static conditions (see Bear [3, 4] and Bedrikovetsky [5]), one uses 

Pa - Pw = Pc(S), ( 1.3) 

where Pc denotes the monotone capillary pressure. Under non-static conditions, Gray & 

Hassanisadeh [12] proposed 

Pa - Pw = Pc(S) - c/JL(S)o 1S ( 1.4) 

to capture the difference between drainage and imbibition. Here L(S) is a nonlinear 

damping term. Using homogenization techniques, Bourgeat & Panfilov [6] derive a similar 

model for the capillary pressure in water-oil system containing small scale heterogeneities. 

Equations (1.1), (1.2) and (1.4) can be combined into a single equation for S, which 

reads 

cjJa1(pS) = div{pK(S)pg e= + pK(S)'V(-pc(S) + f/JL(S)o 1S)}. ( 1.5) 

Assuming now a one-dimensional flow in the vertical z-direction, with p and </> constant, 

and applying a straightforward scaling, equation (1.5) reduces to 

(1.6) 

In previous work, Barenblatt [2, 1] proposed a different model to describe the non-static 

situation. He modified (1.1) and (1.3) by replacing S by S + ro 1S (r > 0), into Pc(S) and 

K (S ). The resulting equation then is of the form 

orS = Ozz { <1>1 (S + rarS)} +oz{ <1>2(S + roiS)}, 

where <1> 1 and <1>2 are nonlinear positive functions, and the equation is degenerate at 

S + ro1S = 0. This equation admits a splitting into two equations which decouple the 

space and time derivatives, namely, 

Thus, it can be studied as an ODE problem in Banach spaces. Moreover maximum 

principles are applicable [8]. There is a similar splitting for (1.6), which reads 

{ 
w = orS - Pc(S) 

-0 2 (K(S)o 2 w) + w = ozK(S) - Pc(S). 

The appearance of K (S) as a coefficient in the w-equation, however, does not allow the 

maximum principle to be applied as in Dibenedetto & Pierre [8]. 
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We note here that if the Barenblatt ansatz (S +-J> S + ro,S) is applied only in (1.3), then 

(1.6) would result with 

r dpc 
L(S) = -efy dS' 

implying that L(S) becomes unbounded as S l 0. However, experiments carried out by 

Smiles et al. [15] (see also Hassanizadeh [11] for an overview) show that L(S) vanishes as 

s l 0. 

To investigate the role of the nonlinear terms (i.e. K(S), Pc(S) and L(S)), we replace 

them by power-law relations. Note that this is consistent with the assumption of small 

water saturation. We approximate 

K(S) = S' (ex> 1), 

Pc(S) = -1 + s-/3 (/3 > 0), 

L(S) = r.S'' (!' > 0), 

(1.7) 

( 1.8) 

( 1.9) 

where r. > 0 is introduced as a parameter to investigate the consequence of the third­

order mixed term. The parameter ranges are chosen to capture the relevant physical 

properties of unsaturated flow. In particular, we want K and L to be non-negative, with 

L(O) = K(O) = K'(O) = 0, and p,(O+) = OCJ. Using these power-law relations, equation (l.6) 

reduces to 

(1.10) 

The static capillary pressure relation ( 1.3) would have resulted in the convection-diffusion 

equation 

(1.11) 

It is well-known (e.g. see Gilding [10]) that this equation has finite speed of propagation 

if and only if 

j 

f' D(~dS < oo for some c) > 0, with D(S) = {3s~-/3- 1 • 
Jo S 

(1.12) 

This requires r:t. - f3 > 1. Because the occurrence of fronts is of particular interest, we 

analyse equation (LI 0) in the parameter range 

/3, }' > 0 and /3 < ex - 1. (l.13) 

In this paper, we analyse travelling-wave solutions of (1.10). They are conjectured to 

describe the large time behaviour of solutions resulting from a certain class of initial 

conditions. The stability properties of travelling waves are the subject of a separate future 

study. 

Thus we consider 

S(z, t) = f(ry) with IJ = z +et, (l.14) 

subject to the boundary conditions 

f(oo)=A>O, f(-w)=b;:::O (b<A). ( 1.15) 

Hence, the fluid moves downwards whenever the wave speed c is positive. For f we obtain 
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the equation 

cf' = {r + pr-/3-lf' + cer(JYJ')'}' on JR. 

Integration and application of boundary conditions give the equation 

c(j -J) = r - Ja+ pr-/3-l f' + cer(JY f')', 

and the second-order boundary value problem 

{ 
c(f - <>) = r - 6(/. + f3 r-P-1 f' + cef'1'(P f')' 

(TW) 

f(-oo) = 6, f(+oo) =A, 

where c is given by 

on JR., 

(1.16) 

(1.17) 

Aa -Ja 
c= A-o, (l.18) 

which is the Rankine-Hugoniot wave speed if we interpret (l.10) as a regularization of 

the hyperbolic equation o1S = a,scc. Note that c L Aa-I as o L 0, c j o:Aa-l as o i A, with 

* > 0 for 0 < o < A. 
In §2 we show existence of travelling waves for fixed positive values of e and o. They are 

unique up to translations in 17. This analysis also shows an oscillatory, but non-periodic, 

behaviour of the profiles. Here the value of e is crucial; fore sufficiently small (depending 

on rt., {3, y, (J and A) we obtain monotone profiles. 

In §3 we study the limit case e - 0, while o > 0 is kept fixed. Using monotonicity for 

small e, we obtain convergence to travelling waves of equation ( 1.11 ), i.e. the standard 

model based on the static pressure saturation relation (1.3). 

In §4 we analyse existence of front solutions to Problem T W with o = 0. It turns out 

that there are two relevant ranges of powers a, {3, y for which fronts appear. In the range 

2{3 > rt. - y - 2 there exists a family of solutions which degenerate at a finite value of 

17. When 2/3 = a - y - 2 existence of fronts is shown provided e :::; 4A/f,_ 11 • Uniqueness 

does not hold. Nevertheless, we have discerned in each of the previous cases a unique 

(up to translations in ri) exceptional profile, which is the limit profile to (TW) when 

letting (J - 0. This is shown in §5. In the other cases, 2/J = rt. - y - 2, e ;3: 4Aff,_,,, and 

2/3 < rt. - y - 2, bounded travelling-wave solutions do not exist. These results correspond 

to the formal asymptotic analysis in Hassanizadeh & Gray [14]. 

It is worth observing that the limits e - 0 and o - 0 do not commute. We can 

always take the limit e - 0 followed by o - 0. However, the reverse is only possible if 

2/3 ;3: !Y. - y - 2. 

Remark 1.1 Fixing c5 E (0, A), the existence is demonstrated for rt. > 1 and {J, y > 0. All 

other results require in addition f3 < a - 1. 

2 Existence, uniqueness and monotonicity 

The main result of this section is: 

Theorem 2.1 Let rt. > 1. {J, y, e > 0 and 0 < o < A. Further, let c be given by ( 1.18). Then 

there exists a C00 solution of Problem TW, unique up to translations in Y/· 
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Proof We transform equation ( 1.17) into a planar system and apply a phase plane analysis. 

First we set u = j 1+;·, which gives 

f3 ( -- I __ 11 , 1:c 
+ -- u 1 1, 11 + -- 11 11 on IR 

1 + ')' 1 +)' 
(2.1) 

with boundary conditions 

u(-co) = 01+;, u(oc) = A1+:·. 

Next we put this equation in the Lienard phase-plane, by considering u and r 

t~v u' - u-1~, as independent variables. This results in the system 

{ 
w' = F(u, v) = 1;.-1· (v + u-&o) 

(P) 
1---J ,) 

v' = G(u) = -1 +cur+: - (co - 6')u-r~~. 

A solution f of ( T W) is an integral curve of (P) connecting the equilibria P- = 

(o 1+r,-()-f!) and P+ = (A 1+Y,-A-f1). The phase plane, with the isoclines I'u = [(u,r): 

F(u, v) = O} and 1,, = {(u, v) : G(u) = O}, is drawn in Fig. l. 

p 

I 

FIGURE 1. Phase plane for ( P ). 

The matrix of the linearised system is 

ec 

( 

_!}_x-fi-1-',' 1+·/ ) 

x-,~~ (c( I ~' ")X +(c X - X')a) 0 

where X = () corresponds to the equilibrium P-, and X = A to P+· The eigenvalues in P­

and P+ are, expressed in terms of X, 

G- . f3 1 C-Cl:X'-l 

A.= -a± v a2 + b with a= 2ec xfi+;·+i and b = -·-x,+:·;,~.--. (2.2) 
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It is clear that a > 0 for positive X, and b has the sign of c - x~- 1 a. Introducing its 

primitive 

i(X) = cX -x~. (2.3) 

we note that A and (J are related by i(A) = i(b) > 0, so that b > 0 in X = c5 and b < 0 in 

X = A. Therefore, at P- the two eigenvalues are real and of opposite sign, whence P- is 

a saddle point. The point P+ is a sink and 

0 :::; a2 + b < a2 implies two real eigenvalues, A.1 :::; A.2 < 0, and 

(2.4) 

a2 + b < 0 implies two complex eigenvalues, with negative real part. 

To prove Theorem 2.1 we have to show that an orbit leaving P- connects to P+· Because 

P- is a saddle point there exist locally two orbits containing solutions (u(l'/),v(17)) of (P), 

satisfying 

lim (u(I'/ ), v(I'/)) = P-· 
Y/--+-OC! 

Let C be the orbit for which u', v' > 0. Inspection of Figure 1 shows that the other orbit 

will never reach P+· The only possibility giving existence of a travelling wave is for C 

to end up in P+· The corresponding solutions will satisfy (T W}, and uniqueness up to 

translations in I'/ will hold. 

Introducing the sets (see also Figure 1) 

S1 = {(u, v) E IR.2 : c)Y+l < u < AY+1, v > -u-Tt }, 

S2 = {(u, v) E IR.2 : u > AY+I, v > -u-Tt }, 

S3 = {(u,v) E IR.2 : u > AY+1,v < u-Tt}, 
2 .Jj_ 

S4 = {(u, v) E IR. : c)Y+t < u < AY+1,v < -u-1+; }. 

we have by straightforward phase plane arguments that either the orbit C rotates around 

P+• going from S; to S;+1mod4, or it enters P+ from St or S3. Note that 

div (!F(u,v),G(u)) = _f!_u-~ < 0 for all u > c)Y+ 1, (2.5) 
e ce 

so it is not possible for C to connect back top_, or to exit S4 through u = c5 1+1. 

To complete the proof suppose that (u(17),v(I'/)) does not tend to P+ as I'/ ~ w. It 

then follows from arguments similar to the proof of Poincare-Bendixon theorem that C 

approaches a periodic orbit, again contradicting (2.5). D 

Next we derive a sufficient condition for the travelling-wave solution to have a monotone 

profile. This condition is related to the value of e. Therefore we write C = Ce and P = P, 

whenever appropriate. 

From (2.2) we see that for all e such that 

• ._ /3 2 A~-2p-y-2 ( • O) (2.6) 
e < e .- 4 (A I ) e > ' c ~-Cl. - c 

the eigenvalues A.1, A.2 are real and strictly negative, which is a necessary condition for the 

travelling wave profile to be monotone. Henceforth, we suppose we are in this situation. 

With A.2 < A.1 < 0 we call (ui, vi) the slow eigenvector and (u2, v2) the fast eigenvector at 
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P+, where 

(uu, vu)= ( 1, 2(1-~ y) ~_t__if3 +-4(cA_:_-;p-~)~~~-iii~~~_:_) . 

By standard local analysis (e.g. see Coddington & Levinson [7] ), there exist exactly two 

orbits entering P+ tangent to the (u2, v2)-direction: one along (u 2, v2 ), the other along 

(-u2, -v2). The connecting orbit goes around P+ at most a finite number of times. 

Proposition 2.1 Let (1.13) be satisfied. For 6 > 0 fixed, there exists 0 < 8 < r::*, such that 

for every 0 < e < 8 the travelling wave obtained in Theorem 2.1 is strictly increasing on JR. 

Proposition 2.1 is a direct consequence of Lemma 2.1 below, in which we construct an 

invariant region which contains C and which itself is contained in S1• 

More specifically, for fixed 6 E (0, A) and µ E (0, l ), let S$ denote the set enclosed by 

the curves 

·!+'" _ _!!_ ( L /1) u = (J ',V = -u 1+; and v = gµ(u) := -µu-i+o -(1- µ)A- . 

We will show in Proposition 2.1 that for s sufficiently small (i.e. c < e~), S$ is invariant for 

Problem P, or, equivalently, C, Es;:. Proposition 2.1 will also be helpful in the study of 

the limits s -+ 0 and c5 -+ 0. In particular, we want to bound c~ away from zero as 6 -+ 0. 

It will appear that this is only possible if 2/J + y + 2 - a ;;:: 0. 

Lemma 2.1 For any fixed 6 in (O,A) and µ E (0, 1) there exists 8~ E (O,s*), such that for 

every e E (0, e~). C E S$. Further, if 2{J + y + 2 - a ;;:: 0, 

and 

lime:°= 4µ(1-µ)lims" = µ(1- µ)·--f
2
-A-2/!-7-I, 

D->0 ft J_,Q 4( IX - 1) 

Jim Sµ6 is invariant for Problem T W with c5 = 0. 
b->O 

Proof Observe that the eigenvectors at P+ satisfy 

(u1, vi)-> (1, (l + y~A l+;•+fi ), and (u2, 112)-> (1, 0) as s-> 0, 

where (1, (l+i·/fr+::+/I) is the tangent vector at P+ to I' 11 • The invariant region S$ is below the 

horizontal line v =-A-I', and only contains orbits entering P+ along the slow eigenvector 

(u1, v1). Observe that g,i(u) > -u-lf, for all 0 < u < Al+·;, and g,,(Al+"i) = -A-11• 

Obviously, the vector field is pointing inwards at boundary points of S$ on u = c5 1+1• and 

I' 11 • It remains to examine the vector field on v = gµ(u). We clearly must have 

dv 

du 

for S$ to be invariant. This is equivalent to 

eHg(u) ~ µ(1 - µ), 

(2.7) 

(2.8) 
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where 
l-:t -~ 

c -1 + cuT+; - (cb - b"')u 1+; 1+_i!__ 
HJ(U) = - JL u I+, 

f3 (u-1+1 - A-P) 
(2.9) 

Note that H6(c5 1+;·) = 0 and, by L'Hopital's rule, 

A0(-1 
1 •. • a - cA2p+y+2-a 

HJ(A +,) = hm u-.A'+;H,,(u) = c /32 

~ (a - 1) A2P+y+a as b ~ 0. 

/32 
2f!+y+2-:t • . 

For u > O fixed, lim 6_,0HJ(u) behaves as u 1+; near 0, which suggests we wnte HJ(u) 

as 

c 2{!+j·+1~:i 

H6(u) = {Ju 1+; h,,(u) (2.10) 

-u'~" +cu 1!,. -(cb-ba) 
hJ(U) = I JL 

u1+r(l-A-Pu1+r) 
where 

Observe that, for every u E (O,A1+Y) and every 6 > 0, recalling (l.18), 

(cb - £5<X)- u'~' (c -Aa- 1) 
ho(u) - h,,(u) = , JL > 0, 

ui+r(l -A-Put+;·) 
(2.11) 

so that 

' 1 I 1 •-I 
-u1+r +Aa- ui+, 11-A -"'u1+;· 

hli(u) < ho(u) = 1 JL =A"- ~-, (2.12) 
u1+;·(l-A-Pu1+1·) l -A-fiu1+1· 

which is increasing for u E (0, A l+Y). Here we used f3 < o: - 1 from ( 1.13 ). 

Setting 

(a - l)Aa-l 
M := sup ho(u) = f3 , 

uE(0,A 1+<) 

an upper bound for Hli(u) is given by 

and 

Hli(u) < M ~A 2 P+r+l-a if 2/3 + y + 2 - a ~ 0, 
f3 

Hli(u) < M ~c5 2 P+Y+ 2 -oc if 2[3 + y + 2 - o::::;:; 0. 
f3 

Thus, a sufficient condition for (2.8) to hold is 

{ 
µ(1 - µ)c£l)A-2P-y-l if 2/3 + y + 2 - a~ 0 

a< et := 

µ( 1 - µ) c(ocJ;A, 1 b"'-Z{J-y-l if 2[3 + Y + 2 - a :::;:; 0. 

(2.13) 

This completes the proof of the first statement. The statements about the £5 ~ O limit 

follow immediately from (2.13) with 2[3 ~a - y - 2, (2.6) and (1.18). D 
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1.2 1.2 

0.8· 

.2 

10 20 30 ----40 10 20 30 40 

(a) Monotone profile: e = r:· -0.01 ~ 0.048. (b) Oscillatory profile: e = 1. 

FIGURE 2. Travelling-wave solutions for different values of e, where f(O) = At", a= 1· f3 = ~' 
}' -IA-1"-1 " - 2' - , u - 6• 

3 The B ---+ 0 limit case 

Let f> E (O,A) be fixed and (l.13) be satisfied. In this section we examine the behaviour 

of the connecting orbit Ce and that of the corresponding travelling wave f = fe as e---+ 0. 

Fore <ewe denote Ce by 

V = <p0(u), (jY+I :E; u :E; A'+1• (3.1) 

As a first convergence result we have 

Proposition 3.1 <fJe(u)---+ -u--&, uniformly on [() 1+r,A1+Y] as B---+ 0. 

Proof Lemma 2.1 implies 

(3.2) 

for all u E (f> 1+Y,A1+l") and for all a E {0,e~). Since gµ(u)---+ -u-m asµ i 1, the result is 

immediate. D 

For the travelling waves f,, we have 

Theorem 3.1 Translate f, so that f,,(0) = 6iA for all e > 0. Then f e ---+ f E C:xc(IR) as 

e ~ 0, uniformly on IR., where f satisfies Problem T W with e = 0. 

Proof First we employ the scaling ri = ar, so that in the r-variable (Pel reads 

(P.){ u=F(u,v), 
" iJ = eG(u). 

(3.3) 
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Unlike (P0 ), the limit system (Po), is well defined. The one-dimensional manifold of critical 

points 

Mo= { F(v,u) = O} = {v = -uiJ~} 

is invariant and normally hyperbolic in the sense of geometric singular perturbation 

theory (see Smoller [16]), because for (Po) the only pure imaginary eigenvalue is zero, 

and has a one-dimensional eigenspace tangential to Mo. Let K be a neighbourhood of 

{(u,v) E Mo : 61+1· ~ u ~ Al+Y}, and choose 0 < 6t < 61+r < A 1+Y < A1 such that 

{(u,v) E Mo : 61 ~ u ~Ai} cc K. By Fenichel's invariant manifold theorem [16], there 

exists, for given k E N, a number eo > 0 and a function h E Ck( [61, Ai] x [O, coll with 
jJ__ 

h(u,0) = -u-1+"1, such that for every 0 < 8 <Bo 

Me= {(u,v) EK: v = h(u,e), 6t ~ u ~Ai} 

is locally invariant. The manifold M, is not uniquely determined, However, between 

u = 6l+;' and u =A l+y it must coincide with the connecting orbit v = <p,;(u), because this 
/I 

is the only orbit which remains close to {v = -u-H1 : 61 < u <Ai}. 

Using (3.1) and the v-equation in (P8 ), we note that U8 = f,~+i' satisfies, 

u' 

and connects the two zeros of G. 

G(u) 

qi;,(u)' 
(3.4) 

Since h E ck and h(u,s) = qi6(u) for c5 1+·1 ~ u ~ A 1+"1, we have as a result of 

Proposition 3.1, that <p~(u)--+ 1!ru-tf:r-1 uniformly on [6 1+Y,A 1+Y], and thus 

G(u) G(u) 
~(-) --+ . /;1 _ JL _1 
<p~ u T+); u r+i 

uniformly on [c5 1+1',A1+Y] as 8--+ 0. In this limit, the differential equation (3.4) is identical 

to equation (2.1) with e = 0. Using the fact that u,;(0) is fixed for all e > 0, standard 

arguments imply that u,, converges uniformly on JR. to the corresponding solution of the 

limit equation. D 

4 The 6 = 0 system 

In this section we consider the limit case 6 = 0 directly. Thus, we study the system 

(P,o) { c:u' = Fo(u,v) = 1 ~;· (i; ~ u- ) , 

v' = Go( u) = -1 + curt;, 

where c = Ax-1, and we look for orbits connecting u = 0 to u = A 1+Y. The critical point 

corresponding to the latter now has real eigenvalues (see also (2.6)) for 

f12 
0 < 8 :< e* = _ .. ____ A-x-2/J-1· 

"" 4( (X - 1 ) . 

The phase plane (see Fig. 1) clearly implies that the desired orbit has to originate from the 

segment { ( u, v) : u = 0, v ~ 0} where the equations are singular. Since we are interested in 

(P,0) as limit of (P/ ), and in particular of a possible limit orbit of the connecting orbit C, 
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we expect such a limit orbit, if it exists, to behave as v ~ -du- , 0 < d :::::; 1, as u ---> 0. 

Thus, a convenient new dependent variable is Z = uqv, where q, for later purposes, is not 

fixed yet. Whenever u' =!= 0, Z satisfies the equation 

;(--\ 

dZ c;c 1+ 24+1=' c-ur+: 
u- = qZ + --u I+, (4.1) 

du 1 + Y z + uq-

Below we investigate the solvability of (4.l) for 0 < u <A'+'. The analysis and results 

critically depend on the value of the parameters a, f3 and }'· In particular, the value of 

2P - et.+ y + 2 plays a crucial role, which is to be expected considering the results of the 

formal analysis by Hulshof & King [14]. With q appropriately chosen, we consider the 

cases below. 

4.1 The case 2(3 > a - }' - 2 

Here we take q = ,!,;,and set W = u~Bf:,1'. Then (4.1) becomes 

( ,_, ) 
dZ {JZ c:c c - W 111+;::+T-.::; 

(2(3 + y +? - a)----- = --- + ---- ------. 
- dW W Z + 1 

(4.2) 

We look for solutions of ( 4.2) with Z > -1 as W ---> 0 (i.e. u' > 0 as u ---> 0). In 

Fig. 3 we sketch the (W,Z)-phase plane. Equation (4.2) and the phase plane imply that 

Z---> Z 0 E {O, -1} as W---> 0, where orbits with Zo = 0 have v = o(-u-rf; ), while orbits 
_JJ_ 

with Zo = -1 have v ~ -u- 1+-,.. 

Proposition 4.1 For 2(3 > rx-y-2 there is a unique orbit c0 with u---> 0 and v ~ -u- as 

11 decreases. This orbit reaches (u, v) = (0, -co) at some finite 11-value, implying the existence 

of a travelling wave with a front. The local behauiour of the front is determined by the 

relation 
c f' ~ f f!+l-~ as f ---> 0. 
f3 

Proof We first prove existence. Choose W0 small and denote the solution of (4.2) with 

Z = ( in W = Wo by Z = Z ( W, 0. Let 

S+={(E(-1,0): Z(W,0-->0as W lO} 

S_ = {~ E (-1,0): :JW. E (0, Wo) Z(W,0--> -1 as W l W. > 0} 

So= {( E (-1,0): Z(W,0--> -1 as W l O}. 

By standard arguments we have for W0 sufficiently small that 

( 0, -1) = S_ U So U S+ 

and S_ and S+ are nonempty and open. Hence So is nonempty, which gives existence. We 

observe that for such an orbit (see (4.2)), 

eC2 

z + 1 ~ aW as W l 0 where a= p-. ( 4.3) 

Next we prove uniqueness. Suppose there are two solutions Z = Z1(W) and Z = Z2(W) 
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with Z --> -1 as Hi l 0. Since 

where 2 lies between Z 1 and Z2, we have for Y = Z1 - Z2 > 0, say, 

!lY_ - b!_ ,...,, -b' _!_ as W-> 0, 
dW W W2 

where b = ---.§ ___ and b' = _,,-2a ~~).Here we used (4.3). Hence, Y -> oo as W l 0, 2/!+:·+2->' ec-( ,,+y+.-> 
contradicting (4.3). 

Expressing W and Z in terms off we observe that (4.3) implies the behaviour 

c f' "" - Jfl+2-x as f -> 0. 
fJ 

Since fJ + 2 - tt. < 1, we find that f reaches zero at some finite 17-value, i.e. the travelling 

wave has a finite front. D 

w 

. ] 

FIGURE 3. Phase plane related to (4.2), with q = 1 ~.," 

Note that we did not put any restriction on e. Thus the conclusion about the behaviour 

as f -> 0, provided 2[3 > rx - y - 2, is valid for any value of e ;:;: 0. This <:-uniformity is 

lost in the next case. 

Indeed, the behaviour of the travelling wave near the front when it vanishes corresponds 

to criterion ( 1.12) in the case where the capillary damping is absent. 

4.2 The case 2fJ = ex - y - 2 

Now we take q = i!;" and set W = u ;~;. Then ( 4.1) becomes 

(rx _ l) dZ = ([Jz ec(c - W)) ~ 
dW + (Z+l) w· (4.4) 
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gain, we look for solutions satisfying Z > -1 and Z --+ Zo as W --+ O. It follows that 

+ 1 1 ( 41:c2 ) ~ 
Zo = -2 ± 2 1 - {J ' 

tplying e ~ !c2 • With reference to Fig. 4 we have 

·oposition 4.2 (i) {f 1; < -J}1 , there exists a family o_f orbits satisfying v ""' zt u- 1 ~; as 

u-> 0, and a unique orbit, denoted hy c0• which satisfies v ~ z0-u-(J:; as u-> 0. All 

cases give travelling waves with finite fronts. In particular, the orbit c0 implies 

1 1 4£C- - · i+?--o 
( 

? 1) 
f ,.,,_, ec I - ( l - -f] -) j I - , as f--+ 0. 

(ii) {le= !c2 there exists a family c~f orbits having v ""' -~ u-l!o as u-> 0. In particular, 

there is a unique orbit, again denoted by c0 . sati4ying LI u 1' -~ as u -> 0. The 

orbit c0 implies again a travelling wave with a .finite front, such th~t 

f' ~ ~ JfJ+2-~. as f--+ 0. 

(iii) ff e > !c2 • there is no orbit with v > -LI f!: and LI --+ 0. 

ernark 4.1 (i) Comparing (2.6) and (2.13), we observe that 

implying that, depending on the £-value, monotone and oscillatory waves with finite 

fronts occur. 

(ii) Since now f3 + 2 - :x = -(3 - y < 0, finite front waves have f'--+ oc as f-> 0. 

roof 

(i) It is immediate from the phase plane in Fig. 4 that (0, ZJ) is a source, and (0, Z0) 

is a saddle, with one unique orbit Z = Z( W) leaving in the direction W > 0. It 

behaves as Z - Z0 ,...., 0 - ~ ( 1 - 41J') ~) as W --+ 0. 

(ii) Now a local analysis near Zo = -~ shows that (O,Zo) is a saddle-node, with a 

unique orbit in the direction of W ; 0. This orbit does not cross the isocline, and 

behaves as Z - Zo,...., ~ W. 

(iii) Now the segment {(W,Z): W = O,Z E (-1,0)} is disconnected from the isocline, 

and hence no connecting orbit exists. 

D 



394 C. Cuesta et al. 

z z 

0 

w w 

-1 

e < J3 E = _!3 
4c' 4c 2 

z 

0 

w 

-I 

FIGURE 4. q = l/:y, 2/3 = rx - }' - 2 phase plane for different c:-values. 

4.3 The case 2(3 < r:1. - y - 2 

Here we choose q = ~(;~'; > 1!.1 and W = u4-tl:,, yielding the equation 

(Cl. - y - 2 
( 

21,-11 ) 

dZ z 2c:c c - w,:::;;-:'2-2/i 

2(3)- = (r:1. - y - ?)- + ---------------------
dW -w (W+Z)W 

(4.S 

Proposition 4.3 There exists no orbits with v > -u-4 and u--> 0. 

Proof Suppose such an orbit exists. Then we would have 

dZ 1 ( 2c:c2 ) 
c(r:1. -y - 2- 2(3) dW """' W (r:1. - y - 2)Z + z , Z > 0, 

as W l 0. Since (ix - y - 2)Z + 2 ~ 2 is negative and bounded away from zero, this gives 

contradiction. [ 
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5 The limit 6 -> O 

~or the purpose of.this ~ection, we de~~te the connecting orbit of (P,'.i) by r = q\i(u) and, 

m the cases for which C from Propos1t10n 4.1 and 4.2 exists, we call its graph r = <'Po(u). 

Lemma 5.1 There exists (5* > 0 such that, with c = c(l)) = .~:::.<?~. 
A-tl 

.?u(6) = c(6)G6(11) = c(6) (-1 + c(b)u - c(l5)A - A'u-i~c) 

is decreasing in 0 ~ b < 6* for any fixed 0 < u::::; ( 1) t+;·. 

Proof Since 

d§,, de ( ) 
dl5- = d"J -1 + 2cu +(A' - 2cA)u- , 

and ~ > 0, we need to show that the term in large brackets is negative for small 6. At 

6 = 0 it becomes 

( A)l+" for all 0 < u < 2 ' . D 

Proposition 5.1 For a, [3, y such that 2[3 > rJ. -y- 2, or 2[3 = 'J. -1- 2 and r. E (0, ;/~)fixed, 

translate fJ such that !J(O) = 1 for al/ 15 E (0, 15*). Then h -+ f E C'(JR) uniformly on JR. 

Hence f satisfies Problem T W with 15 = 0. 

Proof It will be sufficient to show that qJc1(u) -+ ip0(u) locally uniformly. By Lemma 5.1 

we have for any 0 < 3 ::::; (5* 

_.J!_ 
-u 1+; < cp01 (u) < <po1 (u) < <po(u) 

for 0 < 151 < 152 < 6* and u E (3, ( 1) i+-,·). Also 

r.c(6) G0(u) eA'-1 Go(u) . 
-···· ---··---- -+ ·------ as () -+ 0 
l+yF6(u,v) l+yfo{u,11) 

uniformly on [31+", ( 1) I+;·]. Therefore, 

<pi(u) i i{J(u) ~ <po(u) 

where v = i{Jo(u) is a solution of (P2). The reasoning above holds for every 0 < 8 ~ 15', 

which implies that tp0(u) exists for all u E (0, ( 1) 1+1). In view of §4 and iP ~ <po, this 

implies that <Po( u) = <po( u ). 

Using that Jo (0) = 4 is fixed for all 0 < 6 < ()*, standard arguments imply that 

f6 converges uniformly -on (-w, 1) to the corresponding solution of the limit equation. 

Existence of global travelling waves and uniqueness of the initial value problem for all 

0::::; 6 < 15*, implies uniform convergence on JR. 0 

6 Concluding remarks 

In this paper we present a study of a model for unsaturated groundwater flow which 

includes expression (1.4) for the non-static phase pressure difference. Replacing the non-
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linearities in the transport equation by power-law expressions we arrive at ( 1.10). We 

study travelling-wave solutions representing moisture profiles moving downwards due to 

gravity. 

For positive initial saturation (b > 0) we demonstrate existence and uniqueness (up 

to translations). Small values of the damping coefficient e result in monotone saturation 

profiles. Large values oft: result in profiles which exhibit oscillatory behaviour near the 

injection saturation A. 

When initially no moisture is present (b = 0), the existence of bounded travelling waves 

depends critically upon the exponents of the power-law expressions. This is related to the 

occurrence of finite fronts in the moisture profiles, i.e. descending planes (in the direction 

of gravity) below which the water saturation remains zero. Related to equation (1.10) we 

have shown the following. 

If 2/J > ex. - }' - 2, then travelling-wave solutions with fronts exist for all e > 0. In other 

words, for S(z, t) = f(IJ ), with 11 = z +et, there exists 110 E IR such that f(IJ) = 0 for all 

11 ~ 110. Moreover, near 11 = 110 the profile satisfies 

A"-1 f' ~ _
73 

__ Jf1+2-x. 

This corresponds to the front behaviour of solutions of the convection diffusion equation 

under static conditions (equation (1.11)), i.e. e and y are absent in this asymptotic 

expression. 

If 2/3 = rx - y - 2 we obtain a similar result provided the damping coefficient c: 

is sufficiently small: i.e. e ~ !iA. 2 {~-I r For larger values of e, no waves exist satisfying 

f (-oo) = 0. Finally, if 2/J < ::t. - y - 2, again no such waves exist, regardless the value of 

e > 0. 

Let us interpret this in terms of the nonlinear functions, K(S), pc(S) and L(S), as they 

were approximated in ( 1.7), ( 1.8) and ( 1.9). If we write the condition for existence of 

travelling-wave solution with fronts as y > rx - 2(/3 + 1 ), this implies that if rx < 2(/3 + 1 ), 

then for any positive value of y fronts exist. But instead, if rx > 2(/3 + 1 ), then y needs 

to be sufficiently large to have fronts solutions. In other words, if K (S) is small near 

S = 0 in the sense that rx > 2(/3 + 1 ), then L(S) must decay sufficiently fast near S = 0, 

i.e. I' > ::t. - 2(/3 + 1 ), to have fronts. We can express the condition for existence of 

travelling-wave solutions with fronts as 

L(S) = o(K (S) p'..(S)2) as S -+ 0. 

We also investigate the limit c: -+ 0 (for c5 > 0, fixed) and c5 -+ 0 (for e > 0 fixed). In 
particular, the latter provides a uniqueness criterion for the degenerate case when fJ = 0. 

We also note that the limits i:-+ 0 and fJ-+ 0 do not commute: e-+ 0 followed by b-+ 0 

is always possible, while c5 -+ 0 followed by c: -+ 0 is only possible when 2/3 ;:::: ::1. - y - 2. 
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