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INFINITARY HARMONIC NUMBERS

P E T E R HAGIS J R . AND GRAEME L. COHEN

The infinitary divisors of a natural number n are the products of its divisors of the
form pVl"2 , where pw is an exact prime-power divisor of n and ^j /Q2° (where

a

ya = 0 or 1) is the binary representation of y. Infinitary harmonic numbers
are those for which the infinitary divisors have integer harmonic mean. One of
the results in this paper is that the number of infinitary harmonic numbers not
exceeding a: is less than 2.2 xl/2 2 ( l + e ) '°5 x/ '°8 '°8 x for any e > 0 and x > n<,(e).
A corollary is that the set of infinitary perfect numbers (numbers n whose proper
infinitary divisors sum to n) has density zero.

1. INTRODUCTION

Unless otherwise noted, in what follows lower-case letters will be used to denote

natural numbers, with p and q always representing primes. If r(n) and c(n) denote,

respectively, the number and sum of the positive divisors of n , Ore [5] showed that the

harmonic mean of the positive divisors of n is given by H(n) = nr(n)/cr(n). We say

that n is a harmonic number if H(n) is an integer. It is easy to see that every perfect

number is a harmonic number.

The unitary analogue of H(n) was studied by Hagis and Lord [3]. Thus, if

Tr(n) and &*(n) denote, respectively, the number and sum of the unitary divisors

of 7i (see Definition 1, below), then the unitary harmonic mean of n is given by

H*(n) = TIT*(n)Ia*(n), and n is said to be a unitary harmonic number if H*(n)

is an integer.

In [1], Cohen initiated the study of the infinitary divisors of a natural number. In

the present paper we investigate H^n), the harmonic mean of the infinitary divisors

of n. Particular attention is paid to / / / , the set of natural numbers n for which H^n)

is an integer.

2. INFINITARY DIVISORS

The following three definitions may be found in [1].

DEFINITION 1: If d \ n, d is said to be a 0-ary divisor of n. A divisor d of n. is
called a 1-ary (or unitary) divisor of n if the greatest common divisor of d and n/d is
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1. In general, if k ^ 1 then d is called a fc-ary divisor of n (and we write d |*n) if
d | n and the greatest common (fc — l)-ary divisor of d and n/d is 1.

It is immediate that for any n and k, 1 |/t n and n |j. n. Also, px |j. p* if and only

i f P y ~ x \ k P y • I t d \ i n , w e s h a l l w r i t e d \ \ n .

DEFINITION 2: We say px is an infinitary divisor of py (and we write p* |oo pv ) if

P*\y-lPy-

In [1] it is proved that if p* \y^ p* then p 1 |fc p» for Jk > y - 1.

DEFINITION 3: Suppose that </ | n . We say that d is an infinitary divisor of n

(and we write d\oon) if p r || <f implies that if py || n then p1 looP*- The only infinitary
divisor of 1 is 1.

Now let P be the set of all primes and let

From the fundamental theorem of arithmetic and the fact that the binary representation
of a natural number is unique, it follows that if n > 1 then n can be written in exactly
one way (except for the order of the factors) as the product of distinct elements from / .
We shall call each element of I in this product an /-component of n.

Let the number of /-components of n be denoted by J(n). Then ,7(1) = 0 and,
OO

if y = 5Z y>2* where y; = 0 or 1, J(py) = Y^Vi- ^ ls obvious that J is an additive

function so that, if n = \~\ p», then J(n) = £ J{py)-
pV\\n pV\\n

We shall say that d is an /-divisor of n if every /-component of d is also an

/-component of n. (Thus, if n = 233456 = 2-22 • 34 • 52 • 54 then 2252 is an /-divisor of

n while 3254 is not.) If crj(n) is the sum of the /-divisors of n , we see that <7/(l) = 1

and <ri{py) = II (l h P2 ) if y = ^Vi^ • It is obvious that crj is a multiplicative

function so that, if n = J"[ pv then <T[(n) = \\ ]1 (l + p2 ) . It follows that if Ti{n)
py\\n pV||n!/,= l

is the number of /-divisors of n then 77(71) = [] 2 J ( p V ) = 2 J ( n ) .

Py\\n

It is proved (implicitly) in the first four sections of [1] that the set of infinitary
divisors of n is equal to the set of /-divisors of n. Therefore, if T^H) and crco(n)
denote the number and sum, respectively, of the infinitary divisors of n, we have (see
Theorem 13 in [1]):

P R O P O S I T I O N 1 . II n - Jl p* and y =
pV\\n

o(n) =
pV||n
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where J(n) = £ J(py) = £ £ yt, and
Pv\\n p»||n

It is easy to show that the infinitary harmonic mean of n (the harmonic mean of
the infinitary divisors of n) is given by

(1)

We shall say that n is an infinitary harmonic number if Hoo^n) is an integer and shall
denote by IH the set of these numbers. A computer search was made for the elements
of / / / in the interval [1,106] and 38 were found. They are listed in Table 1 below.

Cohen [1] has defined n to be an infinitary perfect number if o"oo(n) = In and
has found fourteen such numbers. Since J(n) ^ 1 if n > 1, the following result is
immediate from (1).

PROPOSITION 2 . The set of infinitary perfect numbers is a subset of III.

3. SOME ELEMENTARY RESULTS CONCERNING Hoo{n) AND IH

LEMMA 1 . Let J{n) = J. Then, if n > 1,

(2) | ^ ^ Hoo(n) < 2J.

PROOF: Since x/(x + 1) is monotonic increasing and bounded above by 1 for pos-
itive values of x, it follows from (1) that

2 = .

D

NOTE. We have equality on the left in (2) if and only if n = 2 or n = 2 • 3 or n = 23 • 3

or n = 23 • 3 • 5. Also, using (2) it is clear that H^n) = 1 if and only if n = 1.

LEMMA 2 . Suppose that there are s zeros in the binary representation of y. Then

T(PV) > 2 ' + l
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t
PROOF: Set y = ^ y{21 where yt = 1. Since s values of j/j are 0,

«=o

2 / > l + 2 + 2 2 + - - + 2l~'-1 + 2 ' = 2l + 2 ' - * - 1.

Therefore, T ( p » ) _ y + 1 2' + 2 ' " ' _ 2 ' + 1

Too(p») = 2s*" " 2 t ' - 1 — ~ 2 '

D

THEOREM 1 . For all n, H*[n) < H^n) < / / ( n ) . For n > 1, equality holds on
the left if and only if py || n implies y = 2 a , and on tiie right if and on7y if pv || n
implies y = 2@ — 1 .

PROOF: Since /f*(i) = //oo(l) = / / (1) , we may suppose that n > 1.

If p» || n implies that y = 2a then, since H* (p2") = 2p2° / ( l + p2") = H^p2"^

and since //* and /foo are each multiplicative, it follows that H"{n) = / / ^ ( n ) .

Now suppose that py || n and y / 2 ° . Then j / = 2a» + 2a2 + V 2°u , where
a i > a2 > • "" > au ^ 0 and u > 2. It follows that

TTp*

Therefore, //*(?») < H^p*), so that //*(n) < / / ^ ( n ) .

If p" || n implies that y = 2 * - l then, since F (p2""1) = p 2 " " 1 2"(p - l ) / (p 2 ^ - l )

= Hoo\P2 ~l) a n ( i since II and //oo are each multiplicative, it follows that H^n) =

H(n).

Now suppose that py \\ n and y ^ 2^ — 1. We consider several cases.

Suppose first that, in Lemma 2, s ^ 2. Then

r(p») (7O O(P! ') 5 (p» + J.)(p - 1) _ Sp^1-1 - Spy + 5p - 3
) " Tro(pv) • a(py) " 2 • pv+i _ 1 +

 2(pv+i 1)

since p > 2.

Now suppose that y is odd. From Theorem 3 in [1], p |oo py and hence p y - 1 !„, py .

Therefore, using Lemma 2 with s ^ 1,

/ / (Py) 3 gy^p") 3 (py + py-1 + l)(p - 1) _ p y + 1 - 3P"-1 + 3p - 1
/ /^ (pv) " 2 ' <r(p*) " 2 ' pv+i - 1 + 2(py+i 1)

since p ^ 2.
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One possibility remains: s = 1 and y is even. Then the binary representation of

y has the form 1 1 . . . 110, so that y = 27 — 2, where 7 ^ 2 .

If 7 = 2, then

3 p2 + 1 ( p - I ) 2

T = 2 ' ?;2 + P + 1 = * + 2(p2 + p + l ) > 1 J

since p ^ 2 .

If 7 ^ 3 , then

11oo(pV) Hooip2^ 2)

27 — 1 ( 1 "

2^ - 1 ( ?

-ifi-1)
3V 2-W

2

4

" 3

+ P4+!
?

1 ) ( P -

7

' 8 > [

.»• + •

1)

- 1 ) '

••+P2 7-2

2 T - 1

* - .

)(T"i

P -.
P + l

)

2 7 - 1 2

2T 3

Therefore, //(py) > 7/oo(py), and it follows that Hx{n) < H(n). This completes

the proof of Theorem 1. LJ

Since 2a = 2" - 1 if and only if a = 0 and (3 = 1, it follows from Theorem 1 that

//*(n) = //oo(n) = H{n) 'f a n c ' o l uy 'f n is square-free (or n = 1). Ore [5] proved that

6 is the only square-free harmonic number (he did not count 1 in this context; nor shall

we), so the following result is immediate.

COROLLARY 1 . 1 . The only square-free infinitary harmonic number is 6.

Since 2 | f 1 + p2' ) if p is odd, and since 4 | (1 + p) if p = Am + 3, the next two

results follow from (1) and the fact that p|ooPy if and only if y is odd (Theorem 3

in [1]).

PROPOSITION 3 . U n is odd and n S / / / , then //«,(JX) is odd.

PROPOSITION 4 . If n is odd, n 6 / / / , py || n and p = 4m + 3, then y is even.

P R O P O S I T I O N 5 . If n e IE, (p,n) = 1 and o-00(p
!') | r o o ( p y ) F o o ( n ) J <lien

p » n € IH.

This follows from (1) and the fact that II^o is multiplicative.

As an example of Proposition 5, 409500 € / / / and #,,0(409500) = 30; since

(29,409500) = 1 and (1 + 29) | 2 • 30, it follows that 29 • 409500 £ IH. Other results
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like P r o p o s i t i o n 5, bu t where p \ n, a re easily ob ta ined . For example , it m a y be shown

t h a t if n € / / / , 3 | tfooW a n d 2 2 a II n > t h e n 2n £ IH•

4. TWO CARDINALITY THEOREMS

THEOREM 2 . If Sc is the set of natural numbers n such that Hoo{n) = c, then

Sc is finite (or empty) for every real number c.

PROOF: Since 2J+1/(J + 2) > / , it follows from Lemma 1 that if / /^(n) = c

then the number of /-components of n is bounded above by c. Assume that Sc is

infinite. Then Sc must contain an infinite subset, say Scm, each of whose elements

has exactly ni /-components. It follows that an infinite sequence n^, n2 , n3 , . . . of

distinct integers exists with the following properties.

(i) n-i € Scm, so that //oo('*i) = c for i — 1, 2, 3, . . . .

( i i ) n i = v r . . . j C r - P f • • • l € m = P \ \ v T r , w h e r e p p < • • • <
)='

j)\_l[ < P i , " < • • • < Vim™ f°r * = 1, 2, . . . . (The ps are primes which

are not necessarily distinct; P may be an empty product, but s — 1 ^ m.)

(iii) p\jtl —* oo as i —» oo for j — s, ... , TO.

(Tiiat is, each n.j is composed of a fixed constant block of elements from / and a

variable block of elements from / arranged monotonically within the block and such

that each element of tliis variable block goes to infinity with i.)

From (i) and (ii) and (1) and the fact that H^ is multiplicative, we see that

T n / a • • \

Therefore, there exists a fixed positive number v such that J J -ffoo(p;,*'7 ) = 2m~""1"1 —

v. But, from (iii), it follows that lim Hooiph'1 ) = 2 for j = s, ... , m. Therefore,
i — oo \ ' /

for large i,

j=s

This contradiction completes the proof. D

THEOREM 3 . There exist at most finitely many infinitary harmonic numbers with

a specified number of I-components.

PROOF: Consider the elements of / / / with precisely K /-components. There are

only finitely many integers between 2li+1/(K +2) and 2K. From Theorem 2, if / is

one of these integers then Si is finite (or empty). U
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COROLLARY 3 . 1 . There is at most a finite number of infinitary perfect numbers

with a specified number of I-components.

5. T H E DISTRIBUTION OF THE INFINITARY HARMONIC NUMBERS

For each positive number sc, we shall denote by A(x) the number of integers n
such that n ^ x and n <E / / / .

THEOREM 4 . For any e > 0 and for all sufficiently large values of x,

A{x) < 2.2a;1/2 2(1+e) l os l / l os l o8*.

PROOF: A positive integer T?I is powerful if p | m implies that p2 \ m. Every
positive integer can be written uniquely as a product NpNp, where (Np,Np) = 1,
Np is powerful and Np is square-free. (We consider I to be both powerful and square-
free.) If P(x) denotes the number of powerful numbers not exceeding x, it is proved in
[2] that P(x) ~ cz1/2 , where c = <(3/2)/C(3) = 2 .173. . . . Therefore, P{x) < 2.2 x1'2

for all large values of x.

If Np is a (fixed) powerful number, let g(Np,x) denote the number of square-free
numbers NF such that (NP,NF) = 1, NPNF < x and NPNF G IE. If G(x) =
max{g(Np,x)} for Np ^ a;, it follows that

(3) A{x) < 2.2 x1'2 G(z) for large x.

We now investigate the magnitude of G(x). Let Np be a powerful number for
which distinct square-free numbers nil, rn2, . . . , "IG(X) exist such that (Np,m,i) — 1,
Npirii < x and NPmi € III for i = 1, 2, . . . , G{x). Then II^Nprn-i) = H^Np) •
IIoo{ini) = Zi, where Zi is an integer, for i = 1, 2, . . . , G(x). Suppose that Zj = Zk
where j ^ k. If (mj,Tnjt) = d then, of course, Hoo(Mj) = H^M^) where Mj = rrij/d
and il/fc = rrik/d. Since A/j ^ Aft, we cannot have Mj — 1, so we may suppose that
2 ^ A/ j < A / t . If Mj - pi ... p , a n d Mk = qi •••qt, w h e r e pi < • • • < p , , qi < • •• < qt

and pu ^ qv, then from (!) it follows tha t

2*pi • • -P . ( l + ?i) • • • (1 + ?t) = 2*gi . . . qt{L + P i ) . . . (1 + P. ) .

Then <ft | (1 + qr) for some r, 1 ^ r < t. This implies that <?t = 3 and qr — q1 = 2 ,

which is a contradiction since we require 1 < Mj < Mk • Hence Zj ^ Zk, unless j = k.

Therefore, without loss of generality, Z\ < Z2 < ••• < ZG(X) SO that G(x) ^ ^G(x) —

Hoo{N PmG(x)) < Toa^Npmc^)). Since TTO(7i) ^ r ( n ) , and since NPmG^ ^ a;, and

since it follows from Theorem 317 in [4] that T(U) ^ 2(1 + e) '°8 "/'ogiog* ;f n ^ x a n c j

a; > n o ( e ) , we conclude that

(4) G - ( a . ) < 2 ( 1 + e ) I o 8 j ; / l o 6 l o g I for aU large a;.
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Theorem 4 follows from (3) and (4).

COROLLARY 4 . 1 . / / / has density zero.

COROLLARY 4 . 2 . The set of infinitary perfect numbers has density zero.

TABLE 1. The infinitary harmonic numbers in [1,106]

n

1
0 = 2-3
45 = 325

60 = 223 • 5
90 = 2 - 3 2 5

270 = 2 - 3 3 5
420 = 223 • 5 • 7
G30 = 2 - 3 2 5 - 7

2970 = 2 - 3 3 5 - l l
5460 = 2 2 3 - 5 - 7 - 1 3
8190 = 2 • 325 • 7 • 13

9100 = 2 2 5 2 7 - 1 3
15925 = 5 2 7 2 1 3

27300 = 2 2 3 - 5 2 7 - 1 3
36720 = 24335 • 17

40950 = 2 - 3 2 5 2 7 - 13
46494 = 2 - 3 4 7 - 4 1

54600 = 2 3 3 - 5 2 7 - 13
81900 = 2 2 3 2 5 2 7 - 1 3

1
2
3
4
4
6
7
7

11
13
13
10

7
15
16
15
9

20
18

n

95550 = 2 - 3 - 5 2 7 2 1 3
136500 = 223 • 537 • 13
163800 = 2 3 3 2 5 2 7- 13

172900 = 2 2 5 2 7 - 1 3 - 1 9
204750 = 2 • 32537 • 13
232470 = 2 - 3 4 5 - 7 - 4 1
245700 = 2233527 • 13
257040 = 24335 -7 17
409500 = 2232537 • 13
404940 = 2 2 3 4 5 - 7 - 4 1
491400 = 2333527 • 13
640425 = 325213217
716625 = 32537213

79U398 = 2 - 3 4 7 - 1 7 - 4 1
791700 = 2 2 3 - 5 2 7 - 1 3 - 2 9

819000 = 2 3 3 2 5 3 7 - 1 3
900900 = 2 2 3 2 5 2 7 - 11 -13

929880 = 2 3 3 4 5 - 7 - 4 1
955500 = 223 • 537213

14
25
24
19
25
15
27
28
30
18
36
13
21
17
29
40
33
24
28
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