Utah State University
DigitalCommons@USU

Infinite Abelian Groups

Joaquin Pascual

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

Recommended Citation

Pascual, Joaquin, "Infinite Abelian Groups" (1970). All Graduate Plan B and other Reports. 1122.
https://digitalcommons.usu.edu/gradreports/1122

This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

INFINITE ABELIAN GROUPS

by
Joaquin Pascual

A report submitted in partial fulfillment of the requirements for the degree
of
MASTER OF SCIENCE
in

Mathematics

Plan B

Approved:

UTAH STATE UNIVERSITY
Logan, Utah
1970

ACKNOWLEDGEMENT

[^0]
NOTATION

```
Z : Set of integers
Q : Set of rationals
Zp : Group of integer modulo p
{a, ,..., a n
```



```
\sigma(m) : Cyclic group of order m
\sigma(p ( ) : p-primary component of rationals modulo one
tG : Torsion subgroup of G
dG : Maximal divisible subgroup of G
G[p] : {x\inG: px=0}
nG : {nx : x f G}
\sumAk
k}\in
\PiA}\mp@subsup{A}{k}{}\mathrm{ : Direct product of the groups A A
k}\in
```


TABLE OF CONTENT S
Page
INTRODUCTION 1
PRELIMINARY RESULTS 2
INFINITE ABELIAN GROUPS 3
LITERATURE CITED 75
VITA 76

INTRODUCTION

When the theory of groups was first introduced, the attention was on finite groups. Now, the infinite abelian groups have come into their own. The results obtained in infinite abelian groups are very interesting and penetrating in other branches of Mathematics. For example, every theorem that is stated in this paper may be generalized for modules over principal ideal domains and applied to the study of linear transformations.

This paper presents the most important results in infinite abelian groups following the exposition given by J. Rotman in his book, Theory of Groups: An Introduction. Also, some of the exercises given by J. Rotman are presented in this paper. In order to facilitate our study, two classifications of infinite abelian groups are used. The first reduces the study of abelian groups to the study of torsion groups, torsion-free groups and an extension problem. The second classification reduces to the study of divisible and reduced groups. Following this is a study of free abelian groups that are, in a certain sense, dual to the divisible groups; the basis and fundamental theorems of finitely generated abelian groups are proved. Finally, torsion groups and torsion-free groups of rank 1 are studied.

It is assumed that the reader is familiar with elementary group theory and finite abelian groups. Zorn's lemma is applied several times as well as some results of vector spaces.

PRELIMINARY RESULTS

The following results will be used in the support of this paper, but are not directly a part of it.

1. If K and S are groups, an extension of K by S is a group

G such that
a. G contains K as a normal subgroup.
b. $G / K \simeq S$.
2. Every finite abelian group G is a direct sum of p-primary group.
3. Every finite abelian group G is a direct sum of primary cyclic groups.
4. If $G=\sum_{i=1}^{n} H_{i}$, then

$$
\mathrm{mG}=\sum_{i=1} \mathrm{mH}_{\mathrm{i}}
$$

where m is a positive integer.
5. If $G=\sum_{i=1} H_{i}$, then
$G[p]=\sum_{i=1}^{n}\left(H_{i}[p]\right)$
6. Every vector space has a basis.
7. Two bases for a vector space V have the same number of elements.

INFINITE ABELIAN GROUPS

All groups under consideration are abelian and are written additively. The trivial group is the one having one element and is denoted by 0 .

Definition

In the following diagram, capital letters denote groups and the arrows denote homomorphisms.

We say that the diagram commutes if $\beta \alpha=\alpha^{\prime} \beta^{\prime}$.
The following is one example of a commuting diagram

where Z_{6}, Z_{12}, and Z_{36} are the groups modulo 6,12 and 36 respectively and $\sigma(24)$ is a cyclic group of order 24 .

$\mathrm{n} \longrightarrow 2 \mathrm{n}$

$$
\begin{aligned}
& \beta: Z_{12} \mathrm{Z}_{36} \\
& \mathrm{~m} \longrightarrow 3_{\mathrm{m}} \\
& \beta^{\prime}: \mathrm{z}_{6} \longrightarrow \sigma(24) \\
& n \longrightarrow a^{3 n}
\end{aligned}
$$

where a is the generator of $\sigma(24)$.

$$
\begin{aligned}
\alpha^{\prime}: \sigma(24) & \longrightarrow \mathrm{Z}_{36} \\
a^{\mathrm{n}} & \longrightarrow 2 \mathrm{n}
\end{aligned}
$$

Consider now $\beta \alpha(n)=\beta(\alpha n)=\beta(2 n)=6 n . \quad \alpha^{\prime} \beta^{\prime}(n)=\alpha^{\prime}\left(\beta^{\prime} n\right)=\alpha^{\prime}\left(a^{3 n}\right)=$ 6n. Then the above diagram commutes.

Definition

A triangular diagram of the following type is a special type of commuting diagram

where i is an identity homomorphism and commutes if gi $=\mathrm{f}$; we also say that g extends f.

Example

Let G^{\prime} equal the image of the group G by the homomorphism n. Because of the fundamental theorem of the homomorphism for groups, it is possible to find a factorization of η.
$n=\pi n^{\prime}$ where π is the natural homomorphism from G to G / K (K is the kernel of η) and η^{\prime} is a homomorphisnu from G / K to G^{\prime} such that

$$
(\mathrm{aK}) \eta^{\prime}=\mathrm{a} \eta
$$

Consequently, this triangular diafram commutes.
If we have a large diagram composed of squares and triangles, we say that the diagram commutes if each component diagram commutes.

Definition

Let

$$
A_{k+2} \xrightarrow{f_{k+2}} A_{k+1} \stackrel{f_{k+1}}{\longrightarrow} A_{k} \rightarrow A_{k k}
$$

be a sequence of groups and homomorphisms. This sequence is exact
in case the image of each map is equal to the kernel of the next map.

Suppose A and B are isomorphic groups by f. Then,

$$
\mathrm{O} \longrightarrow \mathrm{~A} \xrightarrow{\mathrm{f}} \mathrm{~B} \rightarrow \mathrm{O}
$$

is an exact sequence.

Theorem 1

If $\mathrm{O} \longrightarrow \mathrm{A} \xrightarrow{\mathrm{g}} \mathrm{B} \xrightarrow{\mathrm{f}} \mathrm{C} \longrightarrow \mathrm{O}$ is an exact sequence, then B is an extension of A by C.

Proof
The image of $0 \longrightarrow A$ is the kernel of g, but this image is 0 ; thus, the kernel of g is 0 and consequently, g is one-to-one. In the homomorphism $C \longrightarrow 0$ all elements of C are mapped onto 0 . Therefore, the kernel is all of the set C and by definition, C is the image of f . Therefore, f is onto.

Now, A is isomorphic to A^{\prime}, where A^{\prime} is a normal subgroup of B and the image of A by g .
f is onto and its kernel is A^{\prime}, thus, by the fundamental theorem of the homomorphism

$$
B / A^{\prime} \simeq C .
$$

This proves that B is the extension of A by C.

Theorem 2

In the exact sequence

$$
\cdots A_{k+2}^{f_{k+2}} \longrightarrow A_{k+1} \xrightarrow{f_{k+1}} \xrightarrow{f_{k}} A_{k} \xrightarrow{\longrightarrow} A_{k-1} \longrightarrow . .
$$

f_{k+2} is onto if and only if f_{k} is one-to-one.

Proof
Suppose f_{k+2} is onto, then the image of f_{k+2} is A_{k+1}. Then the kernel of f_{k+1} is A_{k+1}. Consequently, the image of f_{k+1} is 0 and is also the kernel of f_{k+2}. Therefore, f_{k} is one-to-one.

Suppose now that f_{k} is one-to-one, thus the kernel of f_{k} is 0 and this kerne1 is the image of f_{k+1}, so the kernel of f_{k+1} is A_{k+1} and A_{k+1} is the image of f_{k+2}. Therefore, f_{k+2} is onto. Definition

The torsion subgroup of an abelian group G denoted $t G$ is the set of all elements in G of finite order.

Since G is abelian, the set of all elements of finite order is a subgroup of G.

A group G is torsion in the case $t: G=G ; G$ is a torsion-free group in the case $t G=0$.

Theorem 3

Every abelian group G is an extension of a torsion group by a torsion-free group.
$\underline{\text { Proof }}$
We need to prove that there exists a normal subgroup of G that is a torsion group and the quotient group of G by this torsion group is a torsion-free group.

By definition, $t G$ is a torsion group and $t G$ is normal in G. We shall now prove that $G / t G$ is a torsion-free group.

$$
\text { Suppose } n \bar{x}=\overline{0} \text { for some } \bar{x} \in G / t G \text { and some integer } n \neq 0
$$

$\bar{x}=x+t G$ with $x \in G, \overline{0}=n \bar{x}=n x+t G$, then $n x \in t G$; hence there is an integer $m \neq 0$ such that $m(r i x)=(m n) x=0$. Thus x has finite order, x is in tG and $\overrightarrow{\mathrm{x}}=\overline{0}$. This proves the theorem.

Let K be a non-empty set and for each $k \in K$, let there be given a group A_{k}. The set K is called an index set.

Definition

The direct product of the A_{k}, denoted ΠA_{k} is the group consisting $k \in K$
of all elements $<a_{k}$ > in the cartesian product of the A_{k} under the binary operation,

$$
\left\langle a_{k}\right\rangle+\left\langle a_{k}^{\prime}\right\rangle=\left\langle a_{k}+a_{k}^{\prime}\right\rangle
$$

i.e., componentwise addition. We do not require that $A_{k} \neq A_{r}$ if $\mathrm{k} \neq \mathrm{r}$ for $\mathrm{k}, \mathrm{r} \in \mathrm{K}$; thus the same group can be counted many times.

The subgroup of ΠA_{k} consisting of all elements $<a_{k}>$ such that $k \in K$
only finitely many a_{k} are nonzero is denoted $\sum A_{k}$ and called $k \in K$
direct sum of the A_{k}.
If the index set K is finite, then

$$
\begin{gathered}
\Pi A_{k}= \\
k \in K \quad \underset{k \in K .}{ }=\underset{k}{ } .
\end{gathered}
$$

Theorem 4

Let $\left\{A_{k}\right\}$ be a family of abelian groups, then

$$
t\left(\Pi A_{k}\right) \subset \Pi t A_{k}
$$

$$
t\left(\Sigma A_{k}\right)=\Sigma t A_{k}
$$

Proof
Let y be any element of $t\left(\pi A_{k}\right)$, so my $=0$ for some integer $m \neq 0$; that is,

$$
\begin{gathered}
y=<a_{k}> \\
m y=<\mathrm{ma}_{k}>=<0>=0
\end{gathered}
$$

then, $m a_{k}=0$ for $a l l k \in K$ and any a_{k} has finite order. Hence, $y=\left\langle a_{k}\right\rangle$ is one element of $\Pi t A_{k}$. Therefore, $t\left(\Pi A_{k}\right) \subset \Pi t A_{k}$.

In order to prove that $t\left(\sum A_{k}\right)=\sum t A_{k}$, it suffices to show that $\sum t A_{k} \subset t\left(\sum A_{k}\right)$ because $t\left(\sum A_{k}\right) \subset \sum t A_{k}$ is a finite case of the first part of the theorem.

Consider any element $<a_{k}>$ in $\sum t A_{k}$. Then any a_{k} has a finite order. Let m be the least common multiple of the order of the a_{k} 's. Since $m a_{k}=0$, for all a_{k}, then also $<m a_{k}>=0$, so $<a_{k}>$ belongs to $t\left(\Sigma A_{k}\right)$. This completes the proof.

Now we give an example that shows the inclusion $t\left(\Pi A_{k}\right) \subset \Pi t A_{k}$ is proper.

Suppose that $t\left(\Pi A_{k}\right)=\Pi t A_{k}$. Let $x=\left\langle b_{k}\right\rangle \in \Pi t A_{k}$ such that b_{k} is the generator of the $\sigma\left(p^{k}\right)$ for each $k \in K$. The element x has infinite order since, for each m there exists p^{k} such that $m<p^{k}$. But x also is in $t\left(\Pi A_{k}\right)$. Then x cannot have infinite order because this would be a contradiction. Therefore, the inclusion

$$
\mathrm{t}\left(\pi \mathrm{~A}_{\mathrm{k}}\right) \subset \pi t \mathrm{~A}_{\mathrm{k}}
$$

is proper.

Definition

$$
\text { The function pi defined by pi : } \underset{\substack{k \\ k \in K}}{\prod A_{i}} \longrightarrow A_{i}, \text { pi }\left(<a_{k}>\right)=a_{i}
$$

is called the ith projection.

It is obvious that the ith projection is a homomorphism from
ΠA_{k} onto A_{i}.
$\mathrm{k} \in \mathrm{K}$

Theorem 5

Let $\left\{A_{k}\right\}$ be a family of subgroups of G, then $G \simeq \sum A_{k}$ if and only if every nonzero element g has a unique expression of the form $g=a_{k_{i}}+\ldots+a_{k_{n}}$ where $a_{k_{i}} \in A_{k_{i}}$, the k_{i} are distinct and each $a_{k_{i}} \neq 0$.

Proof
Assume that $G \simeq \sum A_{k}$. Let $<a_{k}>$ be any element in $\sum A_{k}$. Almost all coordinates of $\left\langle a_{k}\right\rangle$ are zero. Let $a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{n}}$ be the coordinates of $\left\langle a_{k}\right\rangle$ different from zero with $a_{k_{i}} \in A_{k_{i}}$. Consider the elements in $\left.\left.\sum A_{k}<a_{k_{1}}\right\rangle,\left\langle a_{k_{2}}\right\rangle, \ldots,<a_{k_{n}}\right\rangle$, where $<a_{k_{1}}>$ has all the coordinates zero except in the k_{i} th place that has $a_{k_{i}}$. Hence, $\left.a_{k}\right\rangle=\left\langle a_{k_{1}}\right\rangle+\left\langle a_{k_{2}}\right\rangle+\ldots+\left\langle a_{k_{n}}\right\rangle$ Let f be the isomorphism from G onto $\sum A_{k}$ and let $x \in G$ such that $\left.f(x)=<a_{k}\right\rangle$. Therefore, the inverse of f, f^{-1}, maps $\left.\left.\left.\left.x=f^{-1}\left(<a_{k}\right\rangle\right)=f^{-1}\left(<a_{k_{1}}\right\rangle+<a_{k_{2}}\right\rangle+\ldots+<a_{k_{n}}\right\rangle\right)=$ $\left.f^{-1}\left(<a_{k_{1}}>\right)+f^{-1}\left(=a_{k_{2}}\right\rangle\right)+\ldots .+f^{-1}\left(<a_{k_{n}}>\right)$.

In order to finish the proof, we must show that $f^{-1}<a_{k_{i}}>\epsilon A_{k_{i}}$. Consider the subgroup $A_{k_{i}}^{\prime} \subset \sum A_{k}$, where $A_{k_{i}}^{\prime}=\left\{<a_{k_{i}}>\right\}$ and $<a_{k_{i}}>$ has all the coordinates 0 except the k_{i} th that is $a_{k_{i}} \in A_{k_{i}}$. It is obvious that $A_{k_{i}}$ is isomorphic to $A_{k_{i}}$ under the map $a_{k_{i}} \longrightarrow<a_{k_{i}}>$. Since f^{-1} is an isomorphism, then $f^{-1}\left(A_{k_{i}^{\prime}}\right) \approx A_{k_{i}^{\prime}}$ and consequently, $f^{-1}\left(A_{k_{i}^{\prime}}^{\prime}\right) \simeq A_{k_{i}}$. Therefore, $\left.f^{-1}\left(<a_{k_{i}}\right\rangle\right)$ is in $A_{k_{i}}$ and any element $g \in G$ has a unique expression of the form $g=a_{k_{1}}+\ldots+a_{k_{n}} \cdot$

Conversely, suppose that the last statement is true. We define the function n from G into $\sum A_{k}$ by $\eta(g)=<a_{k}>$ if $g=a_{k_{1}}+\ldots .+a_{k_{n}}$, where $a_{k_{i}} \in A_{k_{i}}$. The function n is well defined because if g has two images then by the uniqueness of the representation of g, both images are equals. n is also one-to-one. Suppose that the elements $g_{1}=a_{k_{1}}+\ldots+a_{k_{n}}, g_{2}=b_{k_{1}}+\ldots+b_{k_{m}}$ are different and have the same image $\left\langle\mathrm{C}_{\mathrm{k}}\right\rangle$, then $\left\langle\mathrm{C}_{\mathrm{k}}\right\rangle=\left\langle\mathrm{b}_{\mathrm{k}}\right\rangle=\left\langle\mathrm{a}_{\mathrm{k}}\right\rangle$ but by hypothesis $a_{k_{i}} \neq b_{k_{i}}$ for some k_{i}; hence, n is one-to-one. Let $<a_{k}>b e$ any element in $\sum A_{k}$, hence $a_{k_{1}}+\ldots .+a_{k_{m}}$ represent some unique g in G, then $<a_{k}>$ is the image of g by η and so η is onto.

If g_{1} and g_{2} have the representation given above, then

$$
\eta\left(g_{1}\right)=\left\langle a_{k}\right\rangle \eta\left(g_{2}\right)=\left\langle b_{k}\right\rangle
$$

$$
\begin{gathered}
\left.n\left(g_{1}+g_{2}\right)=n\left[a_{k_{1}}+\cdots \cdot+a_{k_{n}}\right)+\left(b_{k_{1}}+\cdots \cdot+b_{k_{m}}\right)\right]= \\
<a_{k}+b_{k}>=<a_{k}>+\left\langle b_{p_{k}}>=\right. \\
n\left(g_{1}\right)+n\left(g_{2}\right) .
\end{gathered}
$$

Therefore, η is an isomorphism of G into $\sum_{k} A_{k}$. This completes the proof.

Theorem 6

Let $\left\{A_{k}\right\}$ be a family of subgroup of $G .$. Then $G \simeq \Sigma A_{k}$ if and only if $G=\left[\bigcup_{k} A_{k}\right]$, and for every i, $A_{i} \cap\left[\underset{k \neq i}{\bigcup_{k}} A_{k}\right]=0$.

Proof
Suppose $G=\sum A_{k}$, then by theorem 5 any, element g in G has a unique expression of the form $g=a_{k_{1}}+\ldots .+a_{k_{n}}$, where $a_{k_{i}} \in A_{k_{i}}$ and $a_{k_{i}} \neq 0$, But $a_{k_{1}}+\ldots+a_{k_{n}} \in \underset{k}{\left[U A t_{k}\right] \text {, so } G \subset\left[\cup A_{k}\right] \text { and obviously }}$ $G \subset\left[\bigcup_{k} A_{k}\right]$. Then $\left.G=\underset{k}{\left[\bigcup A_{k}\right.}\right]$. Let g be one element of $\left.A_{i} \cap \underset{k \neq i}{\bigcup} A_{k}\right]$, then $a_{i}=a_{k_{1}}+\ldots+a_{k_{n}}$, but g has a unique representation, so $a_{i}=a_{k_{1}}=, .=a_{k_{n}}=0$. This proves the first part of the theorem.

Suppose now that $G=\left[\bigcup_{k} A_{k}\right]$ and $A_{i} \cap\left[\underset{k \neq i}{\bigcup} A_{k}\right]=0$ for every i.
 $g=a_{k_{1}}+\ldots+a_{k_{n}}$ is a unique represemtation of g where $a_{k_{i}} \in A_{k_{i}}$ and $a_{k_{i}} \neq 0$.

Suppose that g has other representation, $\mathrm{g}=\mathrm{b}_{\mathrm{k}_{1}}+\ldots .+\mathrm{b}_{\mathrm{k}_{\mathrm{m}}}$,
$g-g=\left(a_{k_{1}}-b_{k_{1}}\right)+\cdots+\left(a_{k_{n}}-b_{k_{n}}\right)=0$ but $A_{i} \cap\left[\bigcup_{k \neq i} A_{k}\right]=0$.
Then, $a_{k_{1}}-b_{k_{1}}=\ldots=a_{k_{n}}-b_{k_{n}}=0$. So, $a_{k_{1}}=b_{k_{1}}, \ldots, a_{k_{n}}=$ $b_{k_{n}}$. Therefore, any element in G has a unique representation and by theorem 5, $G=\sum A_{k}$.

Remark 1
It is easy to see that if $G=A \oplus B$, then the direct summand B is isomorphic to the factor group G/A.

Theorem 7

A subgroup A of G is a direct summand of G if and only if there is a homomorphism $p: G \longrightarrow A$ such that $p(a)=G$ for every $a \in A$.

Proof

Suppose that A is a direct summand of G. Then, the projection p defined as before is a homomorphism of G onto A and $p(a)=a$ for every $a \in A$.

Conversely, if there is a homomorphism p : G \rightarrow A, with the property $p(a)=a$ for every $a \in A$, then we claim that the kernel K of p is such that $G=K \oplus A$. First of $a l l$, we will show that $K \cap A=0$. Let b be an element in $K \cap A$, then $p(b)=0$ because $b \in K$ and $p(b)=b$ because $\mathrm{b} \in \mathrm{A}$. Then $\mathrm{b}=0$ 。

Also, we must show that $[A \cup K]=G$. It is evident that $[A \cup K] \subset G$. Let b be any element in G, then $p(b)=b$ if $b \in A$. Suppose, $f(b)=c$ and $b \in G-A$, so $f(b)-c=0, f(b-c)=0$, or $b-c \in K$. Therefore,
$b-c=a ; b=a+c$ where $a \in K$ and $c \in A$ so any element $b \in G$ is also in $[A \cup K]$. Therefore, $G=[K \cup A]$ and by theorem $6, G=A \oplus K$.

Definition

Let $\mathrm{x} \in \mathrm{G}$ and let n be an integer. x is divisible by n if there is an element of $y \in G$ with ny $=x$.

Lemma 1

Let $x \in G$ have order n. If (m, n) $=1$, then x is divisible by m.

Proof

If $\mathrm{x} \in \mathrm{G}$ has order n and (m, n) = 1, then there exists integers p and q such that $\mathrm{mp}+\mathrm{nq}=1$. Hence, $\mathrm{x}(\mathrm{mp}+\mathrm{nq})=\mathrm{x},(\mathrm{xm}) \mathrm{p}+(\mathrm{xn}) \mathrm{q}=\mathrm{x}$.

Since $x n=0$ and $(x m) p=(x p) m$, if we let $y=x p$, then $m y=x$ and thus, x is divisible by m.

Theorem 8

There exists an abelian group G whose torsion subgroup is not a direct summand.

Proof

Let P be the set of all primes and let $G=\underset{p \in P}{\Pi \sigma}(p)$. We claim that tG is not a direct summand.

Assume tG is a direct summand; then, by Remark $1, G \simeq(G / t G \oplus t G)$. Now, we shall prove that $t G=\Sigma \sigma(p)$. Evidently, $\Sigma \sigma(p) \subset t G$. Suppose $x=x_{p} \in G$ and $m x=0$, for some integer $m \neq 0$, then $m x_{p}=0$ for each p. Since $x_{p} \in \sigma(p)$ and by the fact that the order of the element divides the order of the group, then $m \equiv 0(\bmod . p)$ for
every p and $x_{p} \neq 0$. There are only finitely many coordinates x_{p} different from zero, otherwise, m is divisible by infinitely many distinct primes and this is impossible. Hence, $t G \subset \Sigma \sigma(p)$ and so $t G=\Sigma \sigma(p)$.

Our next step is to prove that $G / t G$ has an element different from zero and divisible by every prime p. Consider the element $a_{p}+t G$ in $G / t G$ where a_{p} is the generator of $\sigma(p)$ for every prime p. If q is a prime, then by lemma 1 , for each prime $p \neq q$ there exists $x_{p} \in \sigma(p)$ with $q x_{p}=a_{p}$. Let $\left\langle x_{q}>\in G\right.$ be such that any component has the above property except $\mathrm{x}_{\mathrm{q}}=0$. Thus

$$
q<x_{p}>=\left\langle a_{p}\right\rangle-<y>
$$

where < y > has () in each coordinate save the q th where it has a_{q}. Therefore, $\langle y\rangle \in t G$ and

$$
\begin{gathered}
q\left(<x_{p}>+t G\right)=q_{p}<x_{p}>+t G= \\
<a_{p}>-<y>+t G= \\
<a_{p}>+t G
\end{gathered}
$$

Since $G / \tau G$ is a direct summand of G, then $G / t G$ is isomorphic to some subgroup of G. Therefore, G needs to have some element divisible by every prime. Suppose that this is the case. Assume that the nonzero element $<\mathrm{x}_{\mathrm{q}}>\in G$ is divisible by every prime p , then $\mathrm{p}<\mathrm{y}_{\mathrm{q}}>=<\mathrm{x}_{\mathrm{q}}$ > for some y $\left._{\mathrm{q}}\right\rangle \in G$. Hence, $\left\langle\mathrm{py}_{\mathrm{q}}\right\rangle=\left\langle\mathrm{x}_{\mathrm{q}}\right\rangle \mathrm{i} . \mathrm{e} ., \mathrm{py}_{\mathrm{q}}=\mathrm{x}_{\mathrm{q}}$ for every prime q. In particular, if $q=p$, then $p y_{p}=x_{p}=0$. Therefore, if * x_{q} is divisible by every prime, then each component of $<\mathrm{x}_{\mathrm{q}}$, is 0
and $\langle x\rangle=0$. This is a contradiction. Therefore, our assumption that $t G$ is a direct summand of G is false.

Definition

Let p be a prime. A group G is p-primary (or is p-group) in case every element in G has order of a power of P.

Theorem 9

Every torsion group G is the direct sum of p-primary groups.

Proof

Let $G p$ be the p-primary subgroup of G, i. e., Gp is the set of elements of G that have order of a power of p. We want to prove that $\therefore=\Sigma G p$. Let $x \in G, x \neq 0$, and let the order of x be n. By the fundamental theorem of the arithmetic, $n=p_{k_{1}} \ldots p_{k_{h}}$ where the $P_{k_{i}}$ are distinct primes and the exponents $e_{i} \xrightarrow{=}$. Let
$\bar{r}_{k_{i}}=\frac{n}{P_{k_{i}}^{e_{i}}}$ and consider the greatest common divisor of the $n_{k_{i}}$'s.

It is easy to see that

$$
\left(n_{k_{i}}, \ldots, n_{k_{h}}\right)=1
$$

Inerefore, there exists integers m_{i} such that $\sum_{i=1} m_{i} n_{k_{i}}=1$ and h
hence, $\sum_{i=1} m_{i} n_{k_{i}} x=x$.
Now $p_{k_{i}}^{e}\left(m_{i} n_{k_{i}} x\right)=m_{i}\left(p_{k_{i}} n_{k_{i}} x\right)=m_{i}(n x)=0$. Therefore, the
element $m_{i} n_{k_{i}} x \in G p_{k_{i}}$. Also $m_{i} n_{k_{i}} x \neq 0$ for otherwise $m_{i} n_{k_{i}}=\operatorname{sn}$ or $\mathrm{m}_{\mathrm{i}}=\mathrm{sp}_{\mathrm{k}_{\mathrm{i}}}$ and this contradicts the fact that

$$
\sum_{i=1}^{h} m_{i} n_{k_{i}}=1
$$

We claim that any x in G can be written as unique form $x=x p_{k_{1}}+$
$\cdots+\mathrm{xp}_{k_{h}}$, where $\mathrm{xp} \mathrm{k}_{\mathrm{i}} \in G \mathrm{p}_{\mathrm{k}_{\mathrm{i}}}$, the $\mathrm{p}_{\mathrm{k}_{\mathrm{i}}}$ are distinct and each $\mathrm{xp} \mathrm{k}_{\mathrm{i}} \neq 0$.
We proved above that $x p_{k_{i}}=m_{i} n_{k_{i}} x$; that is, $x=\sum_{i=1}^{n} m_{i} n_{k_{i}} x$. Suppose
that x has another representation, $\mathrm{x}=\mathrm{y}_{\mathrm{k}_{\mathrm{i}}}+\ldots .+\mathrm{y}_{\mathrm{k}_{\mathrm{n}}}$. Thus,

$$
\sum_{i=1}^{h} m_{i} n_{k_{i}} x=y_{k_{i}}+\ldots+y_{k_{n}}
$$

$$
\sum_{i=1}^{n} m_{i} n_{k_{i}} x=n\left(y_{k_{i}}+\cdots \cdot+y_{k_{n}}\right)
$$

$$
\sum_{i=1}^{n} n m_{i} n_{k_{i}} x=n y_{k_{i}}+\ldots .+n y_{k_{n}}=0
$$

Then, ny $\mathrm{k}_{1}={ }^{n y} \mathrm{k}_{2}=\ldots .{ }^{n} \mathrm{ny}_{\mathrm{k}_{\mathrm{n}}}=0$ so that the order of the $\mathrm{y}_{\mathrm{k}_{\mathrm{i}}}{ }^{\prime} \mathrm{s}$ divides n and the divisors of n are the $p_{k_{i}}$'s. Therefore, $y_{k_{i}} \in G p_{k_{i}}$
for $i=1, . . ., h$ and $y_{k_{i}}=x_{k_{i}}$. By theorem 5, $G=\sum G p_{k_{i}}$.

Let G and H be a torsion group. $G \simeq H$ if and only if $G p \simeq H p$ for every prime p.

Proof

Let f be an isomorphism of G onto H and f^{-1} be the inverse of f. Let $x \in G p$, and p^{α} be the order of x. Then $p^{\alpha} f(x)=f\left(p^{\alpha} x\right)=f(0)=0$. Therefore, $f(G p) \subset H p$ and by symmetry, $f^{-1}(H p) \supset G p$. This means $f(G p)=H p ;$ thus, $f \mid G p$ is an isomorphism from $G p$ onto Hp so we have $G p \simeq H p$.

Conversely, if f_{p} is an isomorphism of $G p$ onto $H p$, for every p, then the function $f: G \longrightarrow H$ defined by $f\left\langle x_{p}\right\rangle=\left\langle f_{p}\left(x_{p}\right)\right\rangle$ is an jsomorphism. In fact, let $x, y \in G$, then

$$
\begin{gathered}
f(x+y)=f<x_{p}+y_{p}>=\left\langle f_{p}\left(x_{p}+y_{p}\right)\right\rangle= \\
\left\langle f_{p}\left(x_{p}\right)+f_{p}\left(y_{p}\right)>=<f_{p}\left(x_{p}\right)>+\left\langle f_{p}\left(y_{p}\right)>=\right.\right. \\
f(x)+f(y)
\end{gathered}
$$

f is one-to-one. Let $x, y \in G$,

$$
\begin{aligned}
& y=y_{p_{i}}+\cdots \cdot+y_{p_{n}} \\
& x=x_{p_{i}}+\cdots \cdot+y_{p_{n}}
\end{aligned}
$$

Suppose $x \neq y$ and $f(x)=f(y)$, then

$$
f_{p_{i}}\left(y_{p_{i}}\right)+\ldots+f_{p_{n}}\left(y_{p_{n}}\right)=f_{p_{i}}\left(x_{p_{i}}\right)+\ldots+f_{p_{m}}\left(x_{p_{m}}\right)
$$

but the $f_{p_{i}}$'s are isomorphisms, then

$$
f_{p_{i}}\left(x_{p_{i}}\right)=f_{p_{i}}\left(y_{p_{i}}\right)
$$

for all i, so that $x=y$ contradicting our hypothesis that $x \neq y$.
Therefore f is one-to-one. Let $y \in H, y=y_{p_{i}}+\ldots .+y_{p_{k}}=$
$\mathrm{f}_{\mathrm{p}_{\mathrm{i}}}\left(\mathrm{x}_{\mathrm{i}}\right)+\ldots .+\mathrm{f}_{\mathrm{p}_{\mathrm{k}}}\left(\mathrm{x}_{\mathrm{k}}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}+\ldots . \cdot+\mathrm{x}_{\mathrm{k}}\right)=\mathrm{f}(\mathrm{x})$. Then, f is
onto. Therefore, f is an isomorphism of G onto H.
Up here we have studied arbitrary abelian groups and are making some important reductions. Theorem 3 reduces the study of arbitrary abelian groups to the study of torsion groups and torsionfree groups. Theorems 8 and 9 reduce the study of torsion groups to the study of p-primary groups. We will now study a generalization of the groups of rationals and the group of reals, called the divisible groups.

Definition
A group G is divisible if each $x \in G$ is divisible by every integer $n>0$.

Example

The addition group of the rational numbers, denoted by Q, is divisible. Given any rational a and any integer $n>0$, there exists $a^{\prime}=\frac{a}{n} \in Q$ such that na' $=a$. Also the following groups are divisible: the additive group of reals, the additive group of complex, and the multiplicative group of the reals.

Theorem 11

A quotient of a divisible group is divisible.

Proof

Let G be a divisible group and H a subgroup of G. For any integer $n>0$ and a given $a+H \in G / H$ we assert that there exists $b+H \in G / H$ such that $n(b+H)=a+H$. In fact, it is always possible to find n and b such that $n b=a$ and therefore the element $b+H \in G / H$ has the property that $n(b+H)=n(b+H)=a+H$. Since this is always possible, G/H is divisible.

The converse of this theorem is not true and the following is an example.

In theorem 8, we constructed the group $G=\Pi \sigma(p)$ and also we $p \in P$
proved that G is not divisible. However, we will prove that $G / t G$ is divisible.

Let $\left\langle X_{p}>+t G \in G / t G\right.$ and n any non-prime integer greater than 0. Since $x_{p} \in \sigma(p)$, it is divisible by any $n<p$, by lemma 1 , and also if $n>p$, because $n \equiv r$ (mod. p) where $r<p$. Thus $<x_{p}>+$ tG is divisible by any non-prime integer. We will now prove that $\left.x_{p}\right\rangle^{\prime}+t G$ is divisible by every prime. Let q be any prime, then the above result holds except for $\mathrm{x}_{\mathrm{q}} \in \sigma(\mathrm{q})$. We know that for any $\mathrm{y}_{\mathrm{q}} \in \sigma(\mathrm{q}), \mathrm{qy}_{\mathrm{q}}=0$. Let $\left\langle\mathrm{y}_{\mathrm{q}}>\epsilon \in \mathrm{G}\right.$, where all the coordinates of ${ }^{c} \mathrm{y}_{\mathrm{q}}>$ are zero except the q th that is $\mathrm{x}_{\mathrm{q}} \in \sigma(\mathrm{q})$. Of course, $\left\langle\mathrm{y}_{\mathrm{q}}>\right.$ tG. Let $<x_{p}>+t G \in G / t G$, then there exists $<Z_{p}>+t G$ such that

$$
\begin{aligned}
\mathrm{q}\left(<\mathrm{Z}_{\mathrm{p}}>+\mathrm{G}\right)= & \left(\left\langle\mathrm{x}_{\mathrm{p}}\right\rangle-\left\langle\mathrm{y}_{\mathrm{q}}>\right)+\mathrm{tG}=\right. \\
& <\mathrm{x}_{\mathrm{p}}>+\mathrm{tG} .
\end{aligned}
$$

Therefore, $G / t G$ is divisible.

Remark 2
It is clear that a direct sum (direct product) of groups is divisible if, and only if, each summand (factor) is divisible.

Lemma 2
A torsion-free divisible group is a vector space over Q .

Proof

Let G be a torsion-free divisible group. We define the scalar multiplication as follows: for any $\frac{a}{b} \in Q$ and $x \in G, \frac{a}{b} x=a y$, where $y \in G$ and by $=x$. This scalar multiplication is well defined because of the uniqueness of the number y, i. e., for a given integer n and $x \in G$, ny $=x, y$ is unique. Suppose there exists y_{1} such that $n y_{1}=x$. Then $n\left(y-y_{1}\right)=0$. This means $y-y_{1}$ is either 0 or an element of finite order; since G is torsion-free, $y-y_{1}=0$. Therefore $y=y_{1}$. Now, we shall show that this scalar multiplication satisfies the axioms of a vector space.

1. For any $\frac{a}{b}, \frac{c}{d} \in Q, x \in G, \frac{a}{b} x=a y_{1}$ with $b y_{1}=x, \frac{c}{d} x=c y_{2}$ with $d y_{2}=x,\left(\frac{a}{b}+\frac{c}{d}\right) x=\frac{a d+c b}{b d} x=(a d+c b) y_{3}$ where $b d y_{3}=x$. Now, $\frac{a}{b} x+\frac{c}{d} x=a y_{1}+c y_{2}$, but $x=b y_{1}=d y_{2}=d b y_{3} ;$ thus, $a y_{1}+$ $c y_{2}=\operatorname{ady}_{3}+\operatorname{cby}_{3}=\left(\frac{a}{b}+\frac{c}{d}\right) x$. Therefore, $\left(\frac{a}{b}+\frac{c}{d}\right) x=\frac{a}{b} x+\frac{c}{d} x$.
2. $\frac{a}{b}(x+y)=a y_{1}$ with by ${ }_{1}=x+y$ and $\frac{a}{b} x=a y_{2}$ with by ${ }_{2}=x$ $\frac{a}{b} y=a y_{3}$ with by ${ }_{3}=y$. Then, $x+y=b\left(y_{2}+y_{3}\right)$ and $\frac{a}{b} x+\frac{a}{b} y=$ $a\left(y_{2}+y_{3}\right)=a y_{1}=\frac{a}{b}(x+y)$ so the scalar multiplication is distributive over addition.
3. (a) $\left(\frac{a}{b} \cdot \frac{c}{d}\right) x=a c y_{1}$, with $b d y_{1}=x$.
(b) $\frac{a}{b}\left(\frac{c}{d} x\right)=\frac{a}{b}\left(c y_{2}\right)=a y_{3}$, where $d y_{2}=x$, by $y_{3}=c y_{2}$. Since $b y_{1}=y_{2}$ and $y_{3}=c y_{1}$, then (a) and (b) are equal.
4. 5. $\mathrm{x}=\mathrm{x}$ for any $\mathrm{x} \in \mathrm{G}$. Therefore, the group G over Q is a vector space.

Corollary 1

Let V be a vector space over F. Considering V as an abelian group, V is the direct sum of copies of F.

Proof
Let $B=\left\{x_{k}: k \in K\right\}$ be a basis of V and let F_{k} denote the onedimensional vector space generated by x_{k}.

Let f be the function from F_{k} onto F such that for any $a x_{k} \in F_{k}$ $\mathrm{f}\left(\mathrm{ax}_{\mathrm{k}}\right)=\mathrm{a}$. It is clear that f is one-to-one, onto and also $f\left(b x_{k}+a x_{k}\right)=f(a+b) x_{k}=a+b$. Therefore, F_{k} is isomorphic to the additive group of F.

We claim that the additive group V is isomorphic to $\sum_{k \in K} F_{k}$. Any vector x in V has a unique expression $x=\sum r_{k_{i}} x_{k_{i}}$, where the $r_{k_{i}} \neq 0$ and all the $x_{k_{i}}$ are distinct; furthermore, each $r_{k_{i}} x_{k_{i}} \in F_{k_{i}}$. By theorem 5, $V \simeq \sum \mathrm{~F}_{\mathrm{k}}$.

Lemma 3
An abelian group with $\mathrm{pG}=0$ is a vector space over Zp .

Proof
Let \bar{k} denote the residue class of the integer k in Zp . Define a scalar multiplication on G by $\bar{k} x=k x$, where $x \in G$.

This operation is well defined for if $\bar{k}=\bar{k}^{\prime}$, then $k-k^{\prime}=m p$ for some integer m so that $\left(k-k^{\prime}\right) x=m p x=0$; hence, $\bar{k} x=\bar{k}^{\prime} x$. It is easy to verify the axioms of a vector space in this case.

Corollary 2

1. Every torsion-free divisible group G is a direct sum of copies of Q .
2. An abelian group G in which any nonzero element has prime order p is a direct sum of copies of $\sigma(p)$.

Proof

1. By lemma 2, G is vector space over Q . Therefore, by corollary $1, G$ is the direct sum of copies of Q.
2. By lemma 3, G is a vector space over Zp and by corollary 1, G is the direct sum of copies of $Z p$ but $Z p \simeq \sigma(p)$, then by theorem $10, \Sigma Z p \simeq \Sigma \sigma(p)$. Therefore, $G \simeq \Sigma \sigma(p)$.

Theorem 12

Let V and W be vector spaces over F, then V and W are isomorphic if and only if V and W have the same dimension.

Proof

Let $B_{1}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots.\right\}$ be a basis of V and $B_{2}=$ $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}, \ldots.\right\}$ be the image of B_{1} by the isomorphism f, i. e.,

$$
\begin{aligned}
\mathrm{f}\left(\alpha_{1}\right) & =\beta_{1} \\
\mathrm{f}\left(\alpha_{2}\right) & =\beta_{2} \\
\cdot & \cdot \\
: & \cdot \\
\cdot & \cdot
\end{aligned}
$$

$$
f\left(\alpha_{n}\right)=\beta_{n}
$$

Let x be any element of V , then x has a unique expression of the form $x=a_{k_{1}} \alpha_{k_{1}}+\ldots+a_{k_{n}} \alpha_{k_{n}}$ with $a_{k_{i}} \in F$ and $\alpha_{k_{i}} \in B_{1}$.

$$
y=f(x)=a_{k_{1}} \beta_{k_{1}}+\ldots+a_{k_{n}} \beta_{n} .
$$

Since any y in W is a linear combination of the β_{i} 's, then B_{2}
spans W. Suppose that B_{2} is a linear dependent; that is, there is
a subset $\left\{\beta_{k_{1}}, \ldots, \beta_{k_{n}}\right\}$ of B_{2} such that $a_{k_{1}} \beta_{k_{1}}+\ldots+a_{k_{n}} \beta_{k_{n}}=$
0 where the $a_{k_{i}}$'s are not all 0 . Suppose $a_{k_{i}} \neq 0$, then $a_{k_{1}} f\left(\alpha_{k_{1}}\right)+$
$\cdots+a_{k_{n}} f\left(\alpha_{k_{n}}\right)=0 . f\left(a_{k_{1}} \alpha_{k_{1}}+\cdots+a_{k_{n}} \alpha_{n}\right)=0$ but f is an
isomorphism so $a_{k_{1}} \alpha_{1}+\ldots+a_{k_{n}} \alpha_{k_{n}}=0$. With $a_{k_{i}} \neq 0$ and the
set $\left\{\alpha_{k_{1}}, \ldots, \alpha_{k_{n}}\right\}$ is linearly dependent. This contradicts
the fact that B_{1} is a basis. Therefore, B_{2} is linearly independent and a basis of W with the same number of elements as that of B_{1}.

Conversely, suppose now that V and W have the same dimension, then if $B_{1}=\left\{\alpha_{1}, \ldots, \alpha_{n} \ldots.\right\}$ is a basis of V and $B_{2}=$ $\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}, \ldots\right\}$ is a basis of W and the mapping

$$
\begin{gathered}
\mathrm{f}\left(\alpha_{1}\right)=\beta_{1} \\
\mathrm{f}\left(\alpha_{2}\right)=\beta_{2} \\
: \\
: \\
: \\
: \\
:
\end{gathered}
$$

$$
f\left(\alpha_{n}\right)=\beta_{n}
$$

is one-to-one. Now, we extend the mapping f as follows: if $x \in V$ and $x=a_{k_{1}} \alpha_{k_{1}}+\ldots+a_{k_{n}} \alpha_{k_{n}}$, then $f(x)=a_{k_{1}} \beta_{k_{1}}+\ldots+a_{k_{n}} \beta_{k_{n}}$. It is clear that f is well defined and one-to-one.

Let $y \in W$, then $y=a_{k_{1}} \beta_{1}+\cdots \cdot+a_{k_{m}} \beta_{m}$ and $y=f\left(a_{k_{1}} \alpha_{k_{1}}+\cdots \cdot\right.$ $\left.+a_{k} \beta_{m}\right)=f(y)$. So, f is onto. It is clear, $f(x+y)=f(x)+$ $f(y)$, for every $x, y \in V$. Therefore, $V \simeq W$ as a vector space.

Corollary 3

Let V and W be vector spaces over F. As abelian groups, $V \simeq W$, if and only if, V and W have the same dimension.

Proof

By theorem 12, $V \simeq W$ as a vector space. Let f be an isomorphism from V to W. Then f maps V as abelian group onto the abelian group W and one-to-one. Let $x, y \in V$, then $f(x+y)=v(x)+f(y)$. Therefore, $V \simeq W$ as abelian groups.

Lemma 4

The group Q / Z is a torsion and divisible group.

Proof

Let $\frac{a}{b}+Z \in Q / Z$, the order of $\frac{a}{b}+Z$ is b. Given any integer n and $\frac{a}{b}+Z$, then the element $y=\frac{a}{n b}+Z \in Q / Z$ is such that ny $=\frac{a}{b}+Z$. Therefore, Q / Z is a torsion and divisible group.

The p-primary component of Q / Z is a subgroup and consequently it is also a divisible group.

Definition

If p is a prime, $\sigma\left(p^{\infty}\right)$ denotes the p-primary component of Q / Z. Let $A^{(p)}$ denote the set of all rationals between 0 and 1 of the form m / p^{n}, where $m, n \stackrel{\geq}{=}$. We define on $A^{(p)}$ the binary operation "addition modulo 1 " as usual. For example, if $p=3$, then $\frac{1}{3}+\frac{2}{3}=$ $0, \frac{1}{3}+\frac{8}{9}=\frac{2}{9}$, etc.

Theorem 13
$A^{(p)}$ is a p-primary group and $Q / Z \simeq \Sigma A^{(p)}$.

Proof

First of all, the operation "addition modulo 1 " is well defined and it is associative and commutative; 0 is the identity and $-\frac{m}{p^{n}}$ is the inverse of $\frac{m}{p^{n}}$. The order of $\frac{m}{p^{n}}$ is p^{n}, therefore, $A^{(p)}$ is a p-primary group.

Let $x \in \sigma\left(p^{\infty}\right)$, thus x has order of a power of p, say p^{n}, $x=\frac{a}{b}+Z$ with $(a, b)=1$. So, $p^{n} x=\frac{a p^{n}}{b}+Z=\overline{0}$. Then $\frac{a p^{n}}{b}=$ $h \in Z$ or $h b=a p^{n}$; since $(b, a)=1$, then $b=r p^{n}$ for some integer r that means $x=\frac{a}{r p^{n}}+Z$, but this element does not have order p^{n} so $r=1$ and the element x of order p^{n} has the form $\frac{a}{p^{n}}+2$.

Consider now the mapping f from $\sigma\left(p^{\infty}\right)$ into $A^{(p)}$ defined by $\mathrm{f}\left(\frac{\mathrm{m}}{\mathrm{r}}+\mathrm{Z}\right)=\frac{\mathrm{m}}{\mathrm{r}} . \quad$ Let $\left(\frac{\mathrm{m}_{1}}{\mathrm{r}_{1}}+Z\right) \neq\left(\frac{\mathrm{m}_{2}}{\mathrm{r}_{2}}+Z\right)$ be elements of $\sigma\left(\mathrm{p}^{\infty}\right)$ and suppose $f\left(\frac{m_{1}}{r_{1}}+Z\right)=f\left(\frac{m_{2}}{r_{2}}+Z\right)$, thus $\frac{m_{1}}{r_{1}}=\frac{m_{2}}{r_{2}}$ (mod. 1).

So, $\frac{m_{1}}{r_{1}}-\frac{m_{2}}{r_{2}}=k$ for some integer k. This means $\frac{m_{1}}{r_{1}}-\frac{m_{2}}{r_{2}}+z=\overline{0}$.
$\frac{m_{1}}{r_{1}}+z=\frac{m_{2}}{r_{2}}+z$. Therefore, f is one-to-one and onto because for any $\frac{m}{p^{r}} \in A^{(p)}, f\left(\frac{m}{p}+z\right)=\frac{m}{p}$. Also, $f\left(\frac{m_{1}}{r_{1}}+z+\frac{m_{2}}{r_{2}}+z\right)=$
$f\left(\frac{m_{1}}{r_{1}}+\frac{m_{2}}{r_{2}}+z\right)=\frac{m_{1}}{r_{1}}+\frac{m_{2}}{r_{2}}=f\left(-\frac{m_{1}}{r}+z\right)+f\left(\frac{m_{2}}{r_{2}}+z\right)$. So, f is
an isomorphism and $A^{(p)} \simeq \sigma\left(p^{\infty}\right)$.
We know by theorem $9, Q / Z \simeq \Sigma \sigma\left(p^{\infty}\right)$ and by theorem $10, \Sigma \sigma\left(p^{\infty}\right) \simeq$ $\Sigma A^{(p)}$; therefore, $Q / Z \simeq \Sigma A^{(p)}$.

Theorem 14

Let $a_{1}, a_{2}, \ldots, a_{n}, \ldots$, be nonzero elements of $\sigma\left(p^{\infty}\right)$ such that $p a_{1}=0, p a_{2}=a_{1}, \ldots, p a_{n+1}=a_{n}, \ldots$ If $\left[a_{n}\right]$ is the cyclic subgroup of $\sigma\left(p^{\infty}\right)$ generated by a_{n}, then $\left[a_{n}\right] \simeq \sigma\left(p^{n}\right),\left[a_{n}\right] \subset\left[a_{n+1}\right]$ for all n, and $\sigma\left(p^{\infty}\right)=\bigcup_{n=1}^{\infty}\left[a_{n}\right]$.

Proof
Consider $p^{n} a_{n}$. We know $a_{1}=p a_{2}, a_{2}=p a_{3}, \ldots, a_{n-1}=p a_{n}$ then $p^{n} a_{n}=p^{n-1}\left(p a_{n}\right)=p^{n-2} p a_{n-1}=. .=p a_{1}=0$. Therefore, the order of $\left[a_{n}\right]$ is p^{n} and by the well known theorem that two cyclic groups of the same order are isomorphic, $\left[a_{n}\right] \simeq \sigma\left(p^{n}\right)$. Let b be any element of $\left[a_{n}\right]$. Thus, $b=r a_{n}$, where r is some integer less than p^{n}. But $a_{n}=p a_{n+1}$, then $b=r p a_{n+1}$; therefore, $b \in\left[a_{n+1}\right]$ and $\left[a_{n}\right] \subset\left[a_{n+1}\right]$.

It is obvious that $\bigcup_{n=1}^{\infty}\left[a_{n}\right] \subset \sigma\left(p^{\infty}\right)$. Consider now $x \in \sigma\left(p^{\infty}\right)$ of order p^{r}, so $x=\frac{a}{p^{r}}+2$. We claim that $x \in\left[a_{n}\right]$. Let $a_{n}=\frac{b}{p}+$
2. We consider two cases.

1. Suppose b divides a, so $a=q b$, therefore $q_{n}=\frac{b q}{p}+z=$ $\frac{a}{r}+Z=x$.
p 2. Neither b divides a nor a divides b. Since $b<\mathrm{p}^{r}, a<\mathrm{p}^{r}$, then there exists some integer h such that $h b=a\left(\bmod . p^{n}\right)$. Therefore, $h a_{n}=\frac{h b}{p^{r}}+Z=\frac{a}{p r}+Z=x$ that imply $x \in \bigcup_{n=1}^{\infty}\left[a_{n}\right]$ so that $\sigma\left(p^{\infty}\right)=$ ∞
$U\left[a_{n}\right]$.
$\mathrm{n}=1$

Comrollary 4
Every proper subgroup of $\sigma\left(p^{\infty}\right)$ is finite and the set of subgroups is well ordered by inclusion.

Proof
Suppose there exists an infinite group G properly contained in $\sigma\left(p^{\infty}\right)$. We will show that this is impossible. Let $x \in G$, since also $x \in \sigma\left(p^{\infty}\right)$, x has finite order, say p^{n}, so $x=\frac{a}{p^{n}}+Z$ and since the order of x is the same as the order of a_{n}, then $[x]=\left[a_{n}\right]$. The order of the elements of G are either bounded or not. Suppose p^{r} is a bound of the order of the elements of G. Then, by theorem 14 , $G \subset\left[a_{r+1}\right]$ that contradicts our hypothesis that G is infinite. If the order of the elements of G are unbounded, then there exists $y_{i} \in G$ such that $y_{i} \in\left[a_{i}\right]$ for every i. But $\left[y_{i}\right]=\left[a_{i}\right]$, and
∞
$U\left[y_{i}\right]=\sigma\left(p^{\infty}\right)$. This contradicts the hypothesis that G is a proper ii
subgroup of $\sigma\left(p^{\infty}\right)$. Therefore, G is finite.
Now we will prove that the set M of subgroups of $\sigma\left(p^{\infty}\right)$ is well ordered by inclusion. Since $\sigma\left(p^{\infty}\right)=\bigcup_{n=1}^{\infty}\left[a_{n}\right]$ and all proper subgroups are finite, then, for any two subgroups G_{1}, G_{2}, either $G_{1} \subset G_{2}$ or $G_{2} \subset G_{1}$. Hence, the elements of any subset S of M are contained in some $\left[a_{n}\right]$. Therefore, S has a first element.

Corollary 5

$\sigma\left(p^{\infty}\right)$ has the descending chain conditions (DCC) but not the ascending chain condition (ACC).

Froof

By theorem 14, given a subgroup G of $\sigma\left(p^{\infty}\right), G$ is finite and $\left[a_{n}\right] \subset G \subset\left[a_{n+1}\right]$ for some $n . B u t\left[a_{n}\right] \supset\left[a_{n-1}\right] \supset \cdot . \quad . \quad\left[a_{1}\right] \supset 0$. Therefore, $\sigma\left(\mathrm{p}^{\infty}\right)$ has the DCC.

By theorem $14 \sigma\left(p^{\infty}\right)=\bigcup_{n=1}^{\infty}\left[a_{n}\right]$ with $\left[a_{n}\right] \quad\left[a_{n+1}\right]$; therefore, any ascending chain cannot stop after a finite number of steps.

Theorem 15

Let G be an ascending union of infinite cyclic groups C_{n} such that $C_{n}=\left[c_{n}\right]$ and $(n+1) c_{n+1}=c_{n}$, for $n=1,2, \ldots$ Then G is isomorphic to the additive group of rationals.

Proof
Let $Q_{n}=\left[\frac{1}{n!}\right], n=1,2, \ldots$ Clearly, $Q_{n} \subset Q_{n+1}$ and $Q=\bigcup_{n=1}^{\infty} Q_{n}$.
Define the map $\theta: G \rightarrow Q$ by $\theta\left(m c_{n}\right)=\frac{m}{n!}$, where m is an integer.

We must prove that θ is well defined, i. e., if $m_{1} c_{n}=m_{2} c_{r}$, where m_{1}, m_{2} and n, r are integers, then $\theta\left(m_{1} c_{n}\right)=\theta\left(m_{2} c_{r}\right)$. Suppose $n \leqq r$. Since $n c_{n}=c_{n-1},(n-1) c_{n-1}=c_{n-2}, \ldots,(r+1) c_{r+1}=c_{r}$, then, $c_{n}=\frac{r!}{n!} c_{r}$. Hence, $m_{1} c_{n}=m_{1}\left(\frac{r!}{n!}\right) c_{r}=m_{2} c_{r}$. Since c_{r} is an infinite cyciic group, $m_{1}\left(\frac{r!}{n!}\right)=m_{2} c_{r}$ implies that $m_{1}\left(\frac{r!}{n!}\right)=m_{2}$ and so that $\frac{m_{1}}{n!}=$ $\frac{m_{2}}{r!}$ which means $\theta\left(m_{1} c_{n}\right)=\theta\left(m_{2} c_{r}\right)$. Consequently, θ is well defined. Since $\theta\left(c_{n}\right)=\frac{1}{n!}, \theta\left(C_{n}\right)=Q_{n}$, it follows that θ is onto. Let $a, b \in G$. We may suppose $a, b \in C_{n}$ for some n. Hence, $a=m_{1} c_{n}$, $b=m_{2} c_{n}$ and $a+b=\left(m_{1}+m_{2}\right) c_{n} ; \theta(a+b)=\left(m_{1}+m_{2}\right) \frac{1}{n!}=\frac{m_{1}}{n!}+\frac{m_{2}}{n!}=$ $\theta(\mathrm{a})+\theta(\mathrm{b})$. Thus θ is a homomorphism.

Consider now the kernel of θ. Suppose that $\theta(a)=0$ for some $a \in G$. We have $a \in C_{n}, a=m c_{n}$. Then, $\theta(a)=\frac{m}{n!}=0$ and this is true only if $m=0$. Hence, $a=0$. Therefore the kernel is 0 and θ is an isomorphism.

Definition

Let A be a subgroup of B, and let $f: A \rightarrow D$ be a homomorphism. We say that D has the injective property in case f can be extended to a homomorphism $\mathrm{F}: \mathrm{B} \rightarrow \mathrm{D}$; in other words, an F exists making the adjoined diagram commute.

A group D is divisible if, and only if, D has the injective property.

Proof

Suppose D is divisible and there exists a homomorphism from A into D where A is a subgroup of B. We will prove that there is an $F: B \rightarrow D$ that extends f.

Consider the set $S *$ of all pairs (S, H), where S is a subgroup of B containing A and h is a homorphism from S to D that extends f. $S *$ is not empty, for $(A, f) \in S *$. We partially order $S *$ by $\left(A_{1}, h_{1}\right) \leqq$ $\left(S_{2}, h_{2}\right)$ in case $S_{1} \subset S_{2}$ and h_{2} extends h_{1}. Let $\left\{\left(S_{\alpha}, h_{\alpha}\right)\right\}$ be a simply ordered subset of $S *$ and define $\left(S_{o}, h_{o}\right)$ as follows: $S_{o}=U_{\alpha} S_{\alpha}$; if $s \in S_{o}$, then $s \in S_{x}$ for some α, thus defining $h_{0}(s)=h_{\alpha}(s)$. We claim that $\left(S_{o}, h_{o}\right) \in S^{*}$ and it is an upper bound of $\left\{\left(S_{\alpha}, h_{\alpha}\right)\right\}$. $S_{o}=U_{\alpha} S_{\alpha}$. Then S_{o} contains A and h_{o} extends f because the $h_{\alpha}{ }^{\prime} s$ are extensions of f; so, $\left(S_{o}, h_{o}\right) \in S^{*}$. Suppose now that $\left(S_{o}, h_{o}\right)$ is not an upper bound of $\left\{\left(\mathrm{S}_{\alpha}, \mathrm{h}_{\alpha}\right)\right\}$, then there is $\left(\mathrm{S}_{1}, \mathrm{~h}_{1}\right)$ such that $S_{0} C S_{1}$ and h_{1} extends $h_{0^{\prime}}$. But this is impossible because $S_{o}=\bigcup_{\alpha} S_{\alpha}$ and $S_{1} \subset \underset{\alpha}{U S_{\alpha}}$. By Zorn's lemma, there exists a maximal pair, (M, h). We shall prove that $M=B$.

Suppose there is an element $b \in B$ that is not in M. Let $M_{1}=$ $M+[b]$. It is clear that M is a proper subgroup of M_{1}, so it suffices to extend h to M_{1} to reach a contradiction.

```
Case 1. M \cap [b] = 0. Then M M = M\oplus[b]. Define g : [b]->D
```

to be the zero map. There is a map $F: M_{1} \rightarrow D$ extending h and g. In fact, any element a in M_{1} has a unique expression $a=a_{1}+b_{1}$, where $a_{1} \in M$ and $b_{1} \in[b]$. Define $F(a)=h(a)+g\left(b_{1}\right)=h(a)$. Clearly, F is a homomorphism and F is an extension of h.

Case 2. $M \cap[b] \neq 0$. Let k be the smallest positive integer for which $k b \in M$; then, every element y in M_{1} has the unique expression $y=m+t b$, where $t>k$. Let $c=k b$. Since $c \in M, h(c)$ is well defined and, by the divisibility of D, there is an element $x \in D$ with $k x=h(c)$. Define $F: M_{1} \rightarrow D$ by $F(m+t b)=h(m)+t x$. It is clear that F is well defined and for any $y_{1}=m_{1}+t_{1} b, y_{2}=m_{2}+t_{2} b$ in M_{1}

$$
\begin{gathered}
\mathrm{F}\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)=\mathrm{F}\left[\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)+\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \mathrm{b}\right]= \\
\mathrm{h}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)+\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \mathrm{x}= \\
\mathrm{h}\left(\mathrm{~m}_{1}\right)+\mathrm{t}_{1} \mathrm{x}+\mathrm{h}\left(\mathrm{~m}_{2}\right)+\mathrm{t}_{2} \mathrm{x}= \\
\mathrm{F}\left(\mathrm{y}_{1}\right)+\mathrm{F}\left(\mathrm{y}_{2}\right) .
\end{gathered}
$$

Hence, F is a homomorphism and the following diagram commutes

This contradicts the fact that M is maximal. Therefore, $M=B$.
Conversely, assume now that the group G has the injective property.
Let $x \in G$ and define $f_{x}: n Z \rightarrow G$ by $f_{x}(n p)=p x$. It is clear that f
iis a homomorphism since $\mathrm{f}_{\mathrm{x}}(\mathrm{nq}+\mathrm{np})=\mathrm{f}_{\mathrm{x}} \mathrm{n}(\mathrm{q}+\mathrm{p})=(\mathrm{q}+\mathrm{p}) \mathrm{x}=\mathrm{qx}+$ $\mathrm{F} X \mathrm{X}=\mathrm{f}_{\mathrm{x}}(\mathrm{nq})+\mathrm{f}_{\mathrm{x}}(\mathrm{np})$. Since G has the injective property and nZ iis a subgroup of Q, the following diagram commutes

Therefore, for any x there exists a homomorphism f_{x} and its extension g_{x}. Consider the set B of all homomorphisms g_{x}. Now, llet y be any element in G and let m be any integer. Then there exists some homomorphism $g_{x} \in B$ such that $g_{x}(r)=y$, where r is some rational different from zero. Since r is divisible by m, then $m r^{\prime}=r$ which implies $\mathrm{mg}_{\mathrm{x}}\left(\mathrm{r}^{\prime}\right)=\mathrm{y}$. Set $\mathrm{g}_{\mathrm{x}}\left(\mathrm{r}^{\prime}\right)=\mathrm{y}^{\prime} \in G$, thus, my' = y. Therefore, any nonzero element in G is divisible by every iinteger. Consequently, G is divisible.

Corollary 6

Let D be a subgroup of G where D is divisible. Then D is a direct summand of G.

Proof
Consider the diagram

where I is the identity map. By theorem 16, there is a homomorphism $1 P: G \rightarrow D$ such that $p(d)=d$ for every $d \in D$. By theorem 7, D is a direct summand of G.

Theorem 17

A group G is divisible if and only if $p G=G$ for every prime p.

1Proof
If G is divisible for any integer $n, n G=G$; in particular, for revery prime $\mathrm{p}, \mathrm{pG}=\mathrm{G}$.

Conversely, suppose now that for every prime $p, p G=G$. We have to prove that any $x \in G$ is divisible for every integer n. By hypothesis, any element $x \in G$ is divisible by every prime p.

Our first step will be to show that every $x \in G$ is divisible by revery power of any prime, i. e., x is divisible by p^{r}.

By hypothesis, x is divisible by p. Thus, there is some $y \in G$ such that $p y=x$, but y is also divisible by p. Then there is some $y_{1} \in G, \quad p y_{1}=y$. But y_{1} also is divisible by p. Then $p y_{2}=y_{1}$ for some $y_{2} \in G$. Repeating this process r times we will find $p y{ }_{r-1}=$: y_{r-2} and, putting all this together, $p^{r} y_{r-1}=x$. Therefore, any x in G is divisible by any power of any integer.

Let n be any integer and x be some element of G . By the fundamental theorem of the arithmetic, $n=p_{1} 1_{1} p_{2}{ }_{2} . . . p_{n}{ }^{r}{ }^{r}$, where the p_{i} are different primes and r_{i}, integers. There exists some $: z_{1} \in G$ such that ${ }^{r_{1}} 1_{z_{1}}=x$ and by step one, the following equations lhold.

$$
\begin{aligned}
& { }^{\mathrm{p}_{2}{ }_{2} z_{2}=z_{1}} \\
& { }_{p_{3}{ }^{r_{3}} z_{3}=z_{2}} \\
& p_{n}^{r} n_{n}=z_{n-1}
\end{aligned}
$$

Thius, ${ }^{r}{ }_{1} 1_{p_{2}}{ }_{2} \ldots p_{n}{ }_{n}{ }_{z}=x$, or $n z_{n}=x$. Therefore, x is divisible biy n.

Theorem 18

A p-primary group G is divisible if and only if $G=p G$.

Proof
If G is divisible, any element $x \in G$ is divisible by every initeger; in particular, by any prime p. Then $p G=G$ for every prime p.

Conversely, suppose $\mathrm{pG}=\mathrm{G}$. We claim that G is divisible by e:very prime; then, by theorem 17, the theorem follows.

First of all, we prove that G is divisible by any power of p. L.et $x \in G$, since $p G=G$, then there is $y_{1} \in G$ such that $p y_{1}=x$; ail:so, y_{1} is divisible by p_{1}, then for some $y_{2} \in G, p y_{2}=y_{1}$. If we reppeat this process n times and put together all the equalities, we geet $p^{n} y_{n}=x$. Therefore, x is divisible by any power of p. Let q bie any prime and $x \in G$ of order p^{m}. Since $\left(p^{m}, q\right)=1$, there ex:ists integer h and r such that $h p^{m}+r q=1$. Hence,

$$
\begin{aligned}
& x\left(h p^{m}+r q\right)=x \\
& x p^{m} h+q r x=x
\end{aligned}
$$

$$
\begin{gathered}
q(r x)=x \\
q y=x
\end{gathered}
$$

Therefore, x is divisible by any prime q.

lDesfinition

If G is an abelian group, $d G$ is the subgroup of G generated by alll divisible subgroups of G.

JLemma 5

dG is a divisible subgroup of G.

Proof

Let $n>0$ and let $x \in d G$; then, $x=x_{1}+x_{2}+\ldots .+x_{n}$ where $x_{i i}$ is in a divisible subgroup D_{i} of G. Since D_{i} is divisible, there is am element $y_{i} \in D_{i}$ with $m y_{i}=x_{i}$ for a given integer m and every i. Hence, $y_{1}+y_{2}+\ldots .+y_{n} \in d G$ and $x=m y_{1}+\ldots .+y_{n}=$ $m\left(y_{1}+\ldots .+y_{n}\right)$.

Definition

An abelian group G is reduced if $d G=0$.

Theorem 19

Every abelian group $G=d G \oplus R$ where R is reduced.

Proof

By corollary 6, dG is a direct summand of G. So, $G=d G \oplus R$ for some subgroup R. If R contains a divisible group M, then $d G \cap R$ is not empty, but $d G \cap R=0$ by hypothesis. Then, $M=0$ and R is reduced.

The abelian groups G, H are isomorphic if and only if $d G \simeq d H$ amd $G / d H \simeq H / d H$.

Piroof

Suppose $G \simeq H$, then by theorem $19, G=d G \oplus R$ and $H=d H \oplus R_{2}$. Leet $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{H}$ be an isomorphism and consider the restriction of f to d(G. Let $x \in d G$ and $f(x)=y$. Now, ny $y_{1}=x$ and $f\left(n y_{1}\right)=n f\left(y_{1}\right)=y$, so that $y \in d H, f(d G) \subset d H$. Let $y \in d H$ and n any integer, then $y=y_{1} n$. S:ince E is one-to-one there exists $x, x_{1} \in G$ such that $f(x)=g$ and $f\left(x_{1}\right)=y_{1}$. Then, $f\left(n x_{1}\right)=n f\left(x_{1}\right)=n y_{1}=y=f(x)$ and since f is ome-to-one, so $n x_{1}=x$. Therefore, $f \mid d G$ is onto and thus an isomorphism of $d G$ onto $d H$. Since $d G \simeq d H, G \simeq H$, then $G / d G \simeq H / d H$.

Conversely, suppose $d H \simeq d G$ and $G / d G \simeq H / d H$. By theorem 19, $G=d H \oplus R_{1}$ and $H=d H \oplus R_{2}$, where R_{1}, R_{2} are reduced. But we know $G_{i} / d G \simeq R_{1}, H / d H \simeq R_{2}$. Therefore $G \simeq H$.

Lemma 6
Let G and H be divisible p-primary groups. Then, $G \simeq H$ if and only if $G[p] \simeq H[p]$.

Proof
Let f be an isomorphism from G onto H. The image of $G[p]$ by f iss a subgroup of H. Let $x \in G[p]$, then $p x=0$ and $f(p x)=0 ; p f(x)=$ 0 , so $E(x) \in H[p]$. If $y \in H[p]$, then $p y=0$ and $y=f(x)$ for some $x \in G$; so that $p f(x)=0, f(p x)=0$ and since f is an isomorphism, $p: x=0$. Therefore, $G[p] \simeq H[p]$.

Now we will prove the sufficient conditions. Let $f: G[p] \rightarrow H[p]$ an isomorphism. We may consider f as a mapping $G[p] \rightarrow H$. Then, by theorem 16, H and G have the injective property; that is, there exists a homomorphism $F: G \rightarrow H$ extending f. We claim that F is an isomo rphism.

Let $x \in G$ with order p^{n}. We know $p^{n-1} x \in G[p]$ and $f\left(p^{n-1} x\right)=$ $y \in H[p]$ but H is divisible; then there is $y_{1} \in H$ such that $p^{n-1} y_{1}=$ 3y. We define $F(x)=y_{1}$. Because of the uniqueness of y_{1}, F is well Ge:fined. Let x_{1}, x_{2} be in G with order p^{r}, p^{n} respectively, $x_{1} \neq x_{2}$ anıd suppose $F\left(x_{1}\right)=F\left(x_{2}\right)$. This implies $y_{1}=y_{2}$, where $f\left(p^{r-1} x_{1}\right)=$ $T p^{r-1} y_{1}$ and $f\left(p^{n-1} x_{2}\right)=p^{n-1} y_{2}$. Suppose $n>f, p^{n} y_{1}=0, p^{r} y_{1}=0$, then $f^{n-1} y_{1}=p^{n-1} y_{2}=0$ but $p^{n-1} x_{2} \neq 0$, so $f\left(p^{n-1} x_{2}\right) \neq 0$. Therefore IF is one-to-one.

Let $y \in H$ with order $p^{n} . p^{n-1} y \in H[p]$ and for some $x_{1} \in G[p]$, $f\left(\left(x_{1}\right)=p^{n-1} y\right.$. Hence, G is divisible. There is $x \in G$ with $p^{n-1} x=x_{1}$ $f\left(\left(x_{1}\right)=f\left(p^{n-1} x\right)=p^{n-1} y\right.$, then $F(x)=y$. Consequently, F is onto and an isomorphism.

Theorem 21

Every divisible group D is the direct sum of copies of Q and off copies of $\sigma\left(p^{\infty}\right)$ for various prime p.

Proof

I) is divisible. Then any subgroup of D is also divisible; in particular $t D$ so that, $D \simeq t D \oplus D / t D$. It was shown earlier in theor:em 11 that $D / t D$ is a torsion-free divisible group. Thus it is a direct sum of copies of Q by corollary 2 .
tD is the direct sum of p-primary groups by theorem 9. Let H be the p-primary component of $t D ; H$ is divisible and $H[p]$ is a vector space over Zp by lemma 3. Let r be the dimension of this vector space and G be the direct sum of r copies of $\sigma\left(p^{\infty}\right)$. Since the direct sum of p-primary divisible groups is p-primary divisible group, so G is p-primary divisible group. The dimension of $\sigma\left(p^{\infty}\right)[p]$ is; 1 and $G[p]=\underset{1}{\sum} \sigma\left(p^{\infty}\right)[p]$. Hence, $G[p]$ has dimension r. Therefore, $H H[p] \simeq G[p]$ because both are vector spaces over $Z p$ and have the same dimension and by lemma 6, $G \simeq H$. This proves the theorem.

INotation

Let D be a divisible group. Then $D_{\infty}=D / t D$ and $D p=(t D)[p]$.

Theorem 22

If D and D^{\prime} are divisible groups, then $D \simeq D^{\prime}$ if and only if (1.) $D_{\infty}^{\infty} \simeq D^{\prime \infty}$; (2) for each $p, D p \simeq D^{\prime} p$.

1Proof

We know that $D=t D \oplus D^{\infty}$ and $D^{\prime}=t D^{\prime} \oplus D^{\prime \infty}$. Suppose $f: D \rightarrow D^{\prime}$ is an isomorphism. Consider now the image of $t D$ by f. If $x \in t D$ cand x has order n, then $n x=0, f(n x)=n f(x)=0$, so $f(x) \in t D^{\prime}$. Let $y \in t D^{\prime}$ with order m. There is $x \in D$ such that $f(x)=y$ and $\operatorname{mf}(x)=0, f(n x)=0$, then $n x=0$ and $x \in t D$. Since f is one-to-one and the restriction of f to $t D$ is onto $t D^{\prime}$, it implies $t D \simeq t D^{\prime}$ and $D^{\infty} \simeq D^{\prime \infty}$. By theorem $9 t D=\Sigma t D p, t D^{\prime}=\Sigma t D^{\prime} p$. Since $t D \simeq t D^{\prime}$ by theorem $10, \mathrm{tDp} \simeq t D^{\prime} \mathrm{p}$ and by lemma 6 this implies $t D p[p] \simeq$ ttD'p[p] for each prime p. Therefore, $D p \simeq D^{\prime} p$.

Suppose now (1) $D \infty \simeq D^{\prime \infty}(2) D p \simeq D^{\prime} p$ for each p. By lemma 6, $D_{T p} \simeq D^{\prime} p$ implies that $t D \simeq t D^{\prime}$. Since $D \simeq t D \oplus D^{\infty}, D^{\prime} \simeq t D^{\prime} \oplus D^{\prime \infty}$ then $D \simeq D^{\prime}$.

The above theorem can be stated as follows: If D and D^{\prime} are d:ivrisible groups, then $D \simeq D^{\prime}$ if, and only if, (1) D^{∞} and $D^{\prime \infty}$ have the same dimension; (2) Dp and D'p have the same dimension for each p. Not:e that D^{∞} is a vector space over Q and Dp is a vector space over $z_{p p}$.

Theorem 23

If G and H are torsion-free divisible groups, each of which iss isonorphic to a subgroup of the order, then $G \simeq H$.

Purciof
By lemma 2, G and H are vector spaces over Q. Since G is iscomorphic to a subgroup H_{1} of H, then the dimension of G is the same as the dimension of H_{1}. Also, H is isomorphic to a subgroup G_{1} of G so that the dimension of H is the same as the dimension o:f G_{1}. By Cantor-Schroder-Bernstein's theorem, the dimension of H i s the same to the dimension of G, and by theorem $12, H \simeq G$.

Theorem 26

Let G, H be torsion-free divisible groups and $G \oplus G \simeq H \oplus H$, the:n G $\simeq H$.

Pırooof
By theorem 12, $G \oplus G$ and $H \oplus H$ have the same dimension as a vec:tor space over Q. We will consider two cases. (1) When the
dimension of $G \oplus G$ is finite; (2) when the dimension of $G \oplus G$ is infinite.
(1) If the dimension of G is n, then the dimension of $G \oplus G$ is 2 n and also $H \oplus H$ has dimension $2 n$, so that, H has dimension n. Therefore, $H \simeq G$.
(2) If $G \oplus G$ has infinite dimension, then the dimension of G is the same as the dimension of $G \oplus G$ since the cross product of two infinite sets of the same cardinal has the same cardinal as each set.

Therefore, the dimension of $G \oplus G$ is equal to the dimension of G and to the dimension of H. By theorem $12, H \simeq G$.

Definition

F is a free abelian group on $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ in case F is a direct sum of infinite cyclic groups Z_{k} where $Z_{k}=\left[x_{k}\right]$.

Theorem 27

If F is free on $\left\{x_{k}\right\}$, every nonzero element $x \in F$ has the unique expression

$$
x=m_{k_{1}} x_{k_{1}}+\ldots+m_{k_{n}} x_{k_{n}}
$$

where the $m_{k_{i}}$ are nonzero integers and the k_{i} are distinct.
Proof
By theorem 5 any element $x \in \Sigma Z_{k}$ has a unique expression

$$
x=m_{k_{1}} x_{k_{1}}+\ldots+m_{k_{n}} x_{k_{n}}
$$

where the $m_{k_{i}}$ are nonzero integers and the k_{i} are distinct. This proves the theorem.

Theorem 28

Let $F=\sum_{i \in I} Z_{i}$ and $G=\sum_{j \in J} Z_{i}$ be free abelian groups. Then,
$F \simeq G i f$, and only if, J and I have the same number of elements.

Proof

Suppose $F \simeq G$ and F is free on $\left\{x_{i}\right\}, G$ is free on $\left\{y_{i}\right\}$. Let p be prime. Then F / pF and G / pG are vector spaces over Zp by lemma 3. We claim that the $\left\{x_{i}+p F\right\}$ is a basis for $F / p F$. Let $\left\{x_{k_{1}}+p F, \cdots, x_{k_{n}}+p F\right\}$ be any subset of $\left\{x_{i}+p F\right\}$ and suppose

$$
\bar{m}_{1}\left(\mathrm{x}_{\mathrm{k}_{1}}+\mathrm{pF}\right)+\cdots+\overline{\mathrm{m}}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{k}_{\mathrm{n}}}+\mathrm{pF}\right)=\overline{0}
$$

where $\bar{m}_{i} \in \mathrm{Zp}$. Hence, we have

$$
\bar{m}_{1} x_{k_{1}}+\bar{m}_{2} x_{k_{2}}+\ldots+\bar{m}_{n} x_{k}+p \bar{p}=\overline{0}
$$

or

$$
m_{1} x_{k_{1}}+m_{2} x_{k_{1}}+\ldots+m_{n} x_{k_{n}}=0
$$

But, by theorem 24, it implies $m_{1}=m_{2}=. .=m_{n}=0$, so that $\left\{\mathrm{x}_{\mathrm{i}}+\mathrm{pF}\right\}$ is a linearly independent set and also is maximal since there is no $y+p F$ such that $B=\left\{x_{i}+p F\right\} U\{y+p F\}$ is linearly independent because $y=m_{1} x_{k_{1}}+\ldots+m_{h} x_{k_{h}}$ and $y+p Z$ cannot
be linearly independent with $\left\{x_{1}+p F\right\}$. Therefore $\left\{x_{i}+p F\right\}$ is a basis for $F / p F$. Proceeding as above, we get that $\left\{y_{i}+p G\right\}$ is also a basis for $G / p G$. Since $F \simeq G, p F$ is isomorphic to $p G$. Therefore, $F / p F \simeq G / p G$. By the well known theorem, the cardinal of $\left\{x_{i}+p F\right\}$ is the same as the cardinal of $\left\{y_{i}+p G\right\}$ that implies I and J have the same number of elements.

Conversely, if I and J have the same number of elements, $F=\sum_{i \in I} Z_{i}$ and $G=\sum_{j \in J} Z_{j}$ have the same number of direct summands with $Z_{j} \simeq Z_{i}$, then, $F \simeq G$.

Definition

Let F be free on $\left\{x_{i}\right.$: i. The rank of F is the cardinal of I. If I is finite, we say that F has finite rank.

Theorem 25 states that the necessary and sufficient condition in order that two groups be isomorphic is that they have the same rank. As in vector spaces, if I is finite and has n elements, we say that F has rank n. Also, the above theorem gives the duality between the rank of a free abelian group and the dimension of a vector space. In order to stress this analogy, we make the following definition.

Definition. A basis of a free abelian group F is a free set of generators of F.

Theorem 29

Let F be free with basis $\left\{x_{k}\right\}, G$ and arbitrary abelian group and $\mathrm{f}:\left\{\mathrm{x}_{\mathrm{k}}\right\} \longrightarrow \mathrm{G}$ any function. There is a unique homomorphism $g: F \rightarrow G$ such that

$$
g\left(x_{k}\right)=f\left(x_{k}\right)
$$

for all k.

Proof

Let $\mathrm{Z}_{\mathrm{k}}=\left[\mathrm{x}_{\mathrm{k}}\right]$. We define $\mathrm{g}: \mathrm{F} \rightarrow \mathrm{G}$ by $\mathrm{g}(\mathrm{x})=\mathrm{g}\left(\mathrm{m}_{1} \mathrm{X}_{\mathrm{k}_{1}}+\ldots \ldots+\right.$ $\left.m_{n} x_{k}\right)=m_{1} f\left(x_{k_{1}}\right)+\ldots+m_{n} f\left(x_{k_{n}}\right)$.

The mapping g is well defined since any element $x \in Z_{k}$ has a unique expression as a linear combination of the x_{i} and the function of f is single-valued. Let $\mathrm{x}=\mathrm{m}_{1} \mathrm{x}_{k_{1}}+\ldots+\mathrm{m}_{\mathrm{n}} \mathrm{x}_{\mathrm{k}_{\mathrm{n}}}$ and $\mathrm{y}=$
$n_{1} x_{k_{1}}+\ldots .+n_{1} x_{h_{1}}$, then $g(x+y)=g\left(m_{1} x_{k_{1}}+\ldots+m_{n} x_{k_{n}}+\right.$ $\left.n_{1} x_{k_{1}}+\ldots+n_{1} x_{h_{1}}\right)=m_{1} f\left(x_{k_{1}}\right)+\ldots+m_{n} f\left(x_{k_{n}}\right)+n_{1} f\left(x_{h_{1}}\right)+$... $+n_{1} f\left(x_{h_{1}}\right)=g(x)+g(y)$. Then g is a homomorphism. Suppose now that there is another homomorphism g^{\prime} such that $g^{\prime}\left(x_{i}\right)=f\left(x_{i}\right)$.

If $x=n_{1} x_{k_{1}}+\ldots+n_{r} x_{k_{r}}, g(x)=n_{1} f\left(x_{k_{1}}\right)+\ldots+n_{r} f\left(x_{k_{1}}\right)$
and $g^{\prime}(x)=n_{1} g^{\prime}\left(x_{k_{1}}\right)+\ldots+n_{r} g^{\prime}\left(x_{k_{1}}\right)$ but $g^{\prime}\left(x_{k_{i}}\right)=f\left(x_{k_{i}}\right)$.
Hence, g^{\prime} coincides with the mapping that we have defined.

Corollary 7

Every abelian group G is a quotient of a free abelian group.

Proof
We first state that if X is any set, then there exists a free abe lian group F have X a basis. If X contains just one element,
x , then an infinite cyclic group Zx can be constructed that has x as a ganerator. Let $2 \mathrm{x}=\{\mathrm{nx}: \mathrm{n} \in \mathrm{Z}\}$ and define the addition of two elements by $n x+m x=(m+n) x$. It is clear that this operation is well defined and associative. The element ox is the identity and $-n x$ is the inverse of $n x$. Therefore, $Z x$ is an infinite cyclic group. For the general case, set $\mathrm{F}=\sum \mathrm{Zx}$. In order to prove the corollary, $x \in X$
set $F=\sum_{x \in G} Z x . \quad$ By theorem 26 , the identity mapping $I: G \rightarrow G$,
$I(x)=x$ can be extended to a homomorphism $g: F \rightarrow G$. Since I is the identity, g is onto and by the fundamental theorem of homomorphism, $F / K \approx G$, where K is the kernel of G. Therefore, G is the quotient group of a free abelian group.

Defirition

Let $\beta: B \rightarrow C$ be a homomorphism of B onto C. We say that F has the projective property in case that if $\alpha: \mathrm{F} \rightarrow \mathrm{C}$ is a homomorphism, then there is a homomorphism $\gamma: F \rightarrow B$ with $\beta \gamma=\alpha$, i. e., there is an α making the following diagram commute.

B

Theorem 30

An abelian group F is free if, and only if, it has the projective property.

Proof
Suppose F is free and on the above diagram is given β and α.

Let $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ be a basis for F . For each k there is an element $\mathrm{b}_{\mathrm{k}} \in \mathrm{B}$ suclh that $\beta\left(b_{k}\right)=\alpha\left(x_{k}\right)$ because β is onto. Define the function $f\left(x_{k}\right)=$ b_{k} from $\left\{x_{k}\right\}$ into B. By theorem 26, thiere is a unique homomorphism γ sluch that $\gamma\left(x_{k}\right)=b_{k}$ for all $x_{k} \in\left\{x_{k}\right\}$. In order to finish the proof of the theorem, we have to show that $\gamma \beta=\alpha$ and for this purpose it suffices to evaluate each on the set of generators of F. But $\beta_{\gamma}\left(x_{k}\right)=\beta\left(b_{k}\right)=\alpha\left(x_{k}\right)$ as requi.red.

Conversely, suppose F has the proje:ctive property, i. e., the following diagram commutes.

Since every abelian group is the quotient of a free abelian group, (corrollary 7), let B be a free abelian group such that $B / B^{\prime} \simeq F$. Set $\bar{C}=F$ and β the natural homomorphisim from B onto $F, \alpha=I$. By lhypothesis, the diagram commutes, $\gamma \beta=I$; since β is onto and $\gamma \beta$ is the identity mapping, then β is also one-to-one and consequently an isomorphism of B onto F. Therefore, F is free.

Corollary 8
Let G be an abelian group and let $\beta: G \rightarrow F$ be a homomorphism onto, where F is free. Then, $G=B \oplus S$, where $S \simeq F$ and B is the kermel of β.

Proof
Consider the diagram

where II is the identity map. By hypothesis, F is free. Then F has the projective property. That is, there exists a homomorphism $\gamma: F \longrightarrow G$ with $\beta^{\prime}=I$. But γ is one-to-one because, if not, $B \gamma$ caninot be one-to-one and $\beta \gamma$ is the identity mapping. Then, the image S of F by γ is isomorphic to F. We claim that $G=B \oplus S$. Let $x \in B \cap S$. Hence, $\beta(x)=0$ because $x \in B$ and $x=\gamma(y)$ where $y \in F$, so that $\beta \gamma(y)=0$ which implies $y=0$. Therefore, $x=0$ and $B \cap \cap=0$. Consider now $[B \cup S]$. It is obvious that $[B \cup S] \subset G$. Let $x \in G$ and $x \neq 0$. Then either $x \in S$ or not. If $x \in S$, then $x \in[B \cup S]$. If $x \notin S$, then $\beta(x)=y$. If $y=0$, then $x \in B$ and so $x \in[B \cup S]$. Suppose $\beta(x)=y \neq 0$. Since $\beta \gamma=I$, then $\beta \gamma(y)=y$. Let $\gamma(j)=x^{\prime}$, so $\beta\left(x^{\prime}\right)=y=\beta(x)$ or $\beta\left(x-x^{\prime}\right)=0$ which implies $x-x^{\prime} \in B$. That is, $x-x^{\prime}=b$ where $b \in B$. Therefore, $x=b+x^{\prime}$, but $b+x^{\prime} \in[B \cup S]$. So, $[B \cup S]=G$. By theorem 6, we then have $G=$ kernel $\beta \oplus S$.

Theorem 31

Every subgroup H of a free abelian group F is free. Moreover, ranik $H \leqq F$.

Proof
Let $\left\{x_{k}: k \in K\right\}$ be a basis of F. Define $F(I)=\sum_{k \in I}\left[x_{k}\right]$
where I is a subset of the index set K. Consider now the set S * of all pairs (B, I) where $I \subset K$ and $H \cap F(I)$ is free with a basis B surch that the cardinality of B is less or equal to the cardinal of I. Such pairs do exist, i. e., (ϕ, ϕ).

The relation defined on S^{*} by $(B, I) \leqq\left(B^{\prime}, I\right)$ where $B \subset B^{\prime}$ and $I \subset I^{\prime}$ is a partial order relation. Let (M, J) be such that $M=\underset{i}{U B_{i}}$ and $J=\underset{i}{\bigcup} J_{i}$. It is trivial that (M, J) contains the $\left(B_{i}, I_{i}\right)$, but we must verify that $(M, J) \in S^{*}$ in order that it be an upper bound. Since \mathbb{M} is the union of ascending independent sets, then M is also indeapendent. Also, $J \subset K$ and since $F(J)=\underset{i}{\bigcup_{i}} F\left(I_{i}\right)$, then the cardinal of M is less or equal to the cardinal of J. Also, M is a basis for $H \| \cap\left(\bigcup_{i} F\left(I_{i}\right)\right]$ since $H \cap\left[\bigcup_{i} F\left(I_{i}\right)\right]=\bigcup_{i}\left[H \cap F\left(I_{i}\right)\right]$ and M contains the B_{i} that are the basis for the $H \cap F\left(I_{i}\right)$. Hence, $\bigcup_{i} B_{i}=M$ is a basiis for $U\left[H \cap F\left(I_{i}\right)\right]$. Therefore, $(M, J) \in S^{*}$. Then, Zorn's theorem can be applied so there exists a maximal pair (Bo, Io). We claim that $I o=K$ which will complete the proof. Since $F(K)=F$ and $F \cap H=H$, Bo will be a basis for H.

Suppose Io $\neq \mathrm{K}$, i. e., there is an index $k \notin$ Io; set Io* = $\{I o, k\} . \operatorname{Then}, F(I o) \subset F(I o \%)$ and

$$
\begin{aligned}
& \frac{F\left(I o^{*}\right) \cap H}{F(I o) \cap H}=\frac{F\left(I o^{*}\right) \cap H}{F\left(I o^{*}\right) \cap H \cap F(I o)} \\
& \simeq \frac{\left(F\left(I o^{*}\right) \cap \mathrm{H}\right)+F(\text { Io })}{F(I o)} \subset \frac{F\left(I o^{*}\right)}{F(I o)}
\end{aligned}
$$

by the: second isomorphic theorem. Since Io* and lo are different b)y one element, then $F($ Io\% $) / F(I o) \simeq Z$ so that the original quotient is 0 or Z (every non-trivial subgroup of Z is cyclic and i.somorphic to Z). If the quotient is 0 , then $F(I o *) \cap H=F(I o) \cap H$. T'herefore, (Bo, Io*) $\in S^{*}$ and is larger than the maximal pair ('Bo, Io) which is a contradiction. Suppose now that the quotient is isomorphic to Z. Then, by corollary $8, F($ Io* $) \cap H=F($ Io $) \cap H \oplus L$, where $L \simeq Z$. The pair (Bo*, $\left.I o^{*}\right) \in S *$ and is larger than (Bo, Io), ai cont:radiction. Therefore, Io $=K$ as we claimed.

Theorem 32

An abelian group G is finitely generated if, and only if, it is ai quotient of a free abelian group of finite rank.

P'roof
Let $G=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and $F=\sum_{a_{i} \in G} Z_{i}$ where $Z_{a_{i}}$
dlenotes the infinite cyclic group generated by a_{i}. Consider the fiunction $f: F \rightarrow G$ defined by $f\left(a_{i}\right)=a_{i}$. By theorem 27 there exists aı unique homomorphism $g: F \rightarrow G$ that extends f. Since F has rank n, G'is the quotient group of a free abelian group of finite rank.

Suppose now G is the quotient group of a free abelian group F c)f finite rank. Then $F / K=G$, where K is a subgroup of F. By t:heorem 28, K is also free and rank $K \leqq r a n k F$. Let $y+K \in F / K$. Since $y \in F$, then $y=m_{1} x_{k_{1}}+\ldots+m_{n} x_{k_{n}}$, where the $x_{k_{i}}$ are in the basis $\left\{x_{i}\right\}$ of F. Hence

$$
\begin{gathered}
y+k=m_{1} x_{k_{1}}+\ldots+m_{n} x_{k_{n}}+k= \\
\left(m_{1} x_{k_{1}}+K\right)+\left(m_{2} x_{k_{2}}+K\right)+\ldots+\left(m_{n} x_{k_{n}}+K\right) .
\end{gathered}
$$

Thiis means that $y+K \in\left[x_{1}+K, \cdots, x_{n}+K\right]$. Then, $F / K \subset$ $\|\left[x_{1}+K,+\ldots+, x_{n}+K\right]$.

Consider any element of $y \in\left[x_{1}+K_{1}, \ldots, x_{n}+k\right]$. Then $y=\left(m_{k_{1}} x_{k_{1}}+k\right)+\left(m_{k_{2}} x_{k_{2}}+k\right)+\ldots+\left(m_{k_{r}} x_{k_{r}}+k\right)=m_{k_{1}} x_{k_{1}}+$ $m_{k_{2}}{ }^{2 x_{k_{2}}}+\cdots+m_{k_{r}} x_{k_{r}}+K$. So that $y \in F / K$. Therefore, F / K
iis; ffinitely generated.

Corrollary 9
A direct summand B of a finitely generated abelian group G is alisco finitely generated.

Pr:oof

Let B be a direct summand of G. Since G is finitely generated, there exists a free abelian group F of finite rank such that $\mathbb{F} / \mathrm{H} \simeq G . \quad B$ is a direct summand of G. Then there exists a direct summand of F / H isomorphic to B. By the correspondent theorem, there ex:ists a subgroup M containing H such that $M / H \simeq B$. By theorem 28, M is free abelian. Then, B is finitely generated.

Corcollary 10
Every subgroup H of a finitely generated abelian group G is iit:self finitely generated.

Let $F / A \simeq G$ where F is free abelian of finite rank and A is a subgroup of F. Since $F / A \simeq G$ and H is a subgroup of G, then there fexists a subgroup $H^{\prime} \subset F / A$ such that $H^{\prime} \simeq H$. By the correspondent theorem there exists a subgroup F^{\prime} of F containing A such that $I^{\prime \prime} / A \simeq H^{\prime}$. Therefore, H is isomorphic to F^{\prime} / A which is the quotient cof: a free abelian group of finite rank and by theorem 29, H is finitely ggeınerated.

Theorem 33

Every abelian group G can be imbedded in a divisible group.

IProof

By corollary 7, there is a free abelian group F with $G \simeq F / R$ Ifor some subgroup R of F. Let $F=\sum_{i \in k} Z_{i}$ since the infinite cyclic gr:oup Z_{i} is isomorphic to the additive group of integers, it follows that $F \subset \sum Q$ since each Z_{i} can be imbedded in a copy of Q. Therefore, $G \simeq F / R \subset(\Sigma Q) / R_{1}$ and this group is divisible being ia quotient of a divisible group.
(Corollary 11
An abelian group G is divisible if, and only if, it is a direct ؛summand of every group containing it.

JProof
We know by corollary 6 that if G is a divisible subgroup of D then G is a direct summand. This proves the sufficiency.

In order to prove the necessity, we imbedded G in a divisible group D that is always possible by Theorem 30. G is a direct summand of D which is divisible; therefore, G is also divisible.

Theorem 34

Every finitely generated subgroup A of Q is cyclic.

JProof

Suppose A has generators $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \ldots, \frac{a_{n}}{b_{n}}$. Let $b=\prod_{i=1}^{n} b_{i}$
and consider the function $f: A \rightarrow Z$ defined by $f(x)=b x$ for every : $x \in A$. First of $a 11$, we must show that f is well defined. For any $x \in A$, the expression

$$
x=m_{1} \frac{a_{1}}{b_{1}}+\ldots .+m_{n} \frac{a_{n}}{b_{n}}=\frac{\sum_{i=1}^{n} m_{i} \prod_{\substack{j=1 \\ j \neq 1}}^{n} b_{i} a_{i}^{n} b_{i}}{\prod_{i=1}^{n}}
$$

is unique. Then, $f(x)=\sum_{i=1}^{n} m_{i} \prod_{j=1}^{n} b_{i} a_{i}$ which is always well defined.

Now, if $x \neq y$, then $f(x)=b x$ and $f(y)=b y$, which are not equal unless $x=y ; f$ is one-to-one. We will prove now that f is a homomorphism with kernel 0 which will complete the proof.

For any $x, y \in A$,

$$
f(x+Y)=b(x+y)=b x+b y=f(x)+f(y)
$$

f is a homomorphism.

If $f(x)=0$, then $b x=0$ so that $x=0$. Therefore, the kernel of f is 0 .

lDefinition

Let G be a torsion-free group and $x \in G$ define

```
<x> = {y\inG: my \in[x] for some m \in Z, m\not= 0}.
```

JLemma 7
The group <x> is isomorphic to a subgroup of Q.

IProof
If $y \in\langle x\rangle$, then $m y=n x$ where m and n are integers and $m \neq 0$. JDefine the function $\mathrm{f}:\langle\mathrm{x}\rangle \rightarrow \mathrm{Q}$ by $\mathrm{f}(\mathrm{y})=\frac{\mathrm{n}}{\mathrm{m}}$, where m, n are such that my $=n x$. Since the numbers m, n are uniquely determined, then the function f is well defined. Let $\mathrm{y}, \mathrm{z} \in\langle\mathrm{x}\rangle$, then there exists m_{1}, $1 m_{2}$, and n_{2} such that $m_{1} y=n_{1} x$ and $m_{2} F=n_{2} x$. Suppose $z \neq y$, thus, if $n_{1}=n_{2}$, it implies $m_{1} y=m_{2} z$ and $m_{1} \neq m_{2}$. Otherwise $y=z$ which contradicts our hypothesis. This proves that if $x \neq y$, then $\frac{n_{1}}{m_{1}} \neq \frac{n_{2}}{m_{2}}$ which means that $\mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$. Therefore, f is one-to-one. Now, if twe prove that f is a homomorphism, the theorem will be proved. Let $y_{1}, y_{2} \in\langle x\rangle$ and $m_{1} y_{1}=n_{1} x, m_{2} y_{2}=n_{2} x$. Hence, $m_{1} m_{2} y_{1}=m_{2} n_{1} x$, $m_{1} m_{2} y_{2}=m_{1} n_{2} x$ and $m_{1} m_{2}\left(y_{1}+y_{2}\right)=\left(m_{2} n_{1}+m_{1} n_{2}\right) x$, so that $f\left(y_{1}+y_{2}\right)=$ $\frac{m_{2} n_{1}+m_{1} n_{2}}{m_{1} m_{2}}=f\left(y_{1}\right)+f\left(y_{2}\right)$. Therefore, f is a homomorphism as twe claimed.

JLemma 8
If G is torsion-free and $x \in G$, then $G /\langle x\rangle$ is also torsion-free.

Proof
Suppose $\bar{y} \in G /\langle x\rangle$ has finite order n, then $n(y+\langle x\rangle)=\overline{0}$. That means ny $\in\langle x\rangle$, but this cannot be the case because $\bar{y} \neq 0$. Therefore, $G /<x>$ is torsion-free.

Theorem 35 (Basis Theorem)

Every finitely generated abelian group G is the direct sum of cyclic groups.

Proof
Let $G=\left[x_{1}, x_{2}, . ., x_{n}\right]$. We prove the theorem by induction on n. If $n=1$, then G is cyclic and we are done. Suppose n > 1. We will consider two cases where, in the first case, G is torsion-free and the second case is general.

Case 1. G is torsion-free. By lemma $8, G /<x_{n}>$ is torsionfree and it is generated by $n-1$ elements. We know by induction hypothesis that $G /<x_{n}>$ is free abelian and that there exists a homomorphism of G onto $G /\left\langle x_{n}\right\rangle$. Then, by corollary $8, G=\left\langle x_{n}\right\rangle \oplus F$, where F is free abelian. Since $\left\langle x_{n}\right\rangle$ is the direct summand of a finitely generated group, by corollary 9, $\left\langle x_{n}>\right.$ is also finitely generated. By lemma 7, $\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle$ is isomorphic to a subgroup of Q and we proved in theorem 31 that a finitely generated subgroup of Q is cyclic. Therefore, $\left\langle x_{n}\right\rangle$ is cyclic and G is free abelian which means a direct sum of cyclic groups.

Case 2. This is a general case. We already know that G/tG is torsion-free and since G is finitely generated, by theorem 29, G/tG is finitely generated. Therefore, by case $1, G /$ tG is free
abelian. Since $G / t G$ is free abelian and $G / t G$ is the homomphic image of G by the natural homomorphism, then, by corollary 8, $G=t G \oplus F$, where F is free abelian. By corollary 9, $t G$ is finitely generated and torsion; therefore, it is a finite group. By the basis theorem for finite groups, tG is a direct sum of cyclic groups and the proof is complete.

Now, we give the fundamental theorem of finitely generated abelian groups.

Theorem 36

Every finitely generated abelian group G is the direct sum of primary and infinite cyclic groups and the number of summands of each kind depend only on G.

Proof
We proved earlier that $G \simeq t G \oplus(G / t G)$. The fundamental theorem for finite groups given us has the uniqueness of the decomposition of $t G$ into direct sum of cyclic groups. By theorem 25, $G / t G$ has a unique number of cyclic summands.

Definition

A subgroup S of G is pure in G in case $n G \cap S=n S$ for every integer n.

An alternative definition of a pure subgroup is the following. A subgroup S of G is pure if for any element $h \in S, h=n y$ for any integer n and $y \in G$ which implies $h=n h{ }_{1}$ with $h_{1} \in S$.

It is clear that both definitions are equivalent. Both
say that if an element of S is divisible by n in G, it is also divisible by n in S.

One of the simplest examples of a non-pure subgroup is the following. Let G be the additive group of integer module 4. $G=\{0,1,2,3\}$ and $S=\{0,2\}$. Then, 2 is a multiple of 2 in G but not in S, so S is not pure.

The following are some of the most simple properties of the pure groups. We omit the proof of most of them.

1. Any direct summand of G is pure in G.

Proof. Let $G=H \oplus S$. We know $n G=n H \oplus n S$. Therefore, $\mathrm{nG} \cap \mathrm{S}=\mathrm{nS}$.
2. If G / S is torsion-free, then S is pure in G.

Proof. Let $y \in S$ and $y=n x$, where $x \in G$. Consider $x+S$. Then $n(x+S)=n x+S=y+S=\overline{0}$. If $n x \in S$, $x \in S$, since G / S is a torsion group, so that $n G=n S$.
3. Since $G / t G$ is torsion-free, then $t G$ is pure. Furthermore, we gave an example in theorem 8 that $t G$ is not a direct summand of G. Therefore, a pure subgroup need not be a direct summand.
4. If G is torsion-free, a subgroup S of G is pure if and only if G/S is torsion-free.

Proof. Sufficiency is property 3. Suppose now that S is pure in G and consider $y+S \neq \overline{0}$. Then, if $n(y+S)=\overline{0}$, ny $=$ ny ${ }_{1}$ where $y_{1} \in S$ so that $n\left(y-y_{1}\right)=0$. But, by hypothesis, G is torsion-free. Therefore, $n\left(y-y_{1}\right)=0$ implies $y-y_{1}=0$.
5. Purity is transitive, i. e., if K is pure in H and H is pure in G, then K is pure in G.
6. Any intersection of pure subgroups of a torsion-free group G is pure.
7. A pure subgroup of a divisible group is divisible.
8. The ascending union of pure subgroups is pure.
9. Let S be pure in G and let $\bar{y} \in G / S$. Then y can be lifted to $x \in G$, where x and \bar{y} have the same order.

Proof. Let $y=\left(y_{1}+S\right) \in G / S$ and let n be the order of y. Then, ny $\in S$ and there is some $z \in S$ such that ny ${ }_{1}=n z$. Let $\mathrm{x}=\mathrm{z}-\mathrm{y}_{2}$. Then $\mathrm{nx}=\mathrm{nz}-\mathrm{ny} \mathrm{I}_{1}=0$ as we desired. If y has infinite order, then the element y_{1} has the required property.

Lemma 9

Let T be pure in G. If $T \subset S \subset G$ and S / T is pure in G / T, then S is pure in G.

Proof

Suppose $n g=s$, where $s \in T$ and $g \in G$. Then $n \bar{g}=\bar{s}$, where \bar{s} denotes the coset of s in S / T. By the purity of S / T, there exists an element $s^{\prime} \epsilon S / T$ with $n \bar{S}_{I}=\bar{s}$. Rewriting this equation in G we get

$$
n s^{\prime}-s=t
$$

for some $t \in T$. Hence $n s^{\prime}-n g=t$ but T is pure. Then there is $t^{\prime} \in T$ such that $n\left(s^{\prime}-g\right)=n t^{\prime}$ or $n s^{\prime}-n g=n t^{\prime}$. Thus, $s=n\left(s^{\prime}-t^{\prime}\right)$ and $s^{\prime}-t^{\prime} \in S$. Therefore S is pure in G.

Lemma 10
A p-primary group G which is not divisible contains a pure cyclic subgroup.

Proof
Suppose there is an $x \in G[p]$ which is divisible by p^{k} but not by p^{k+1}. Let $p^{k} y=x$. We claim that this element exists and [y] is pure in G.

By lemma 1, in a p-primary group every element is divisible by any integer prime to p. From this lemma we need to check only the divisibility by powers of p in order to prove that [y] is pure. Suppose $y_{1}=p^{r} y$ and y_{1} is divisible by p^{h} in G, i.e., $p^{r} y=p^{h} z, z \in G$. If $h>r$, we have $x=p^{k-r} p^{r} y=p^{k-r} p^{h} z$, or $x=p^{k+1}\left(p^{h-r-1} z\right)$ contradicting the hypothesis that x is not divisible by p^{k+1}.

Now, we will prove that our assumption that there is an $x \in G[p]$ which is divisible by p^{k} but not by p^{k+1} is true. Suppose that each $x \in G[p]$ is divisible by every power of p. If this is the case, we will prove that $p G=G$, so that G is divisible by theorem 18 contradicting our hypothesis. Let $y \in G$ and p^{k} equal its order. Then $p^{k-1} y=x$ with $x \in G[p]$. Since x is divisible by every power of p, so $x=p^{k} z_{1}$. Then $p^{k-1} y=p^{k} z_{1}, p^{k-1}\left(y-p z_{1}\right)=0$. This implies $p^{k-2}\left(y-p z_{1}\right) \in G[p]$. Therefore $p^{k-2}\left(y-p z_{1}\right)$ is divisible by p^{k-1}, i. e., $p^{k-2}\left(y-p z_{1}\right)=$ $\left.p^{k-1} z_{2}\right)=0$ which implies that $p^{k-3}\left(y-p z_{1}-p z_{2}\right) \in G[p]$.

Repeating this process k times we get

$$
\begin{gathered}
y-p z_{1}-p z_{2}-\ldots-p z_{k}=0 \\
y=p\left(z_{1}+\ldots+z_{k}\right)
\end{gathered}
$$

That is, every y in G is in $p G$. Therefore, $G=p G$.

Definition

A subset X of nonzero elements of a group G is independent in case $\sum \mathrm{m}_{\alpha} \mathrm{x}_{\alpha}=0$ which implies each $\mathrm{m}_{\alpha} \mathrm{x}_{\alpha}=0$, where $\mathrm{x}_{\alpha} \in \mathrm{X}$ and $m_{\alpha} \in Z$.

Lemma 11
A set of nonzero elements of G is independent if, and only if,

$$
[X]=\sum_{x \in X}[x] .
$$

Proof
Suppose X is independent. Let $x_{o} \in X$ and let $y \in\left[x_{0}\right]$
$\left[x-\left\{x_{0}\right\}\right]$. Then $y=m x_{o}$ and $y=\sum m_{\alpha} x_{\alpha}$, where each $x_{\alpha} \neq x_{o}$.

Therefore,

$$
-m x_{0}+\sum m_{\alpha} x_{\alpha}=0
$$

so that, by the independence of X, each term is 0 . Hence, $0=m x_{o}=y . \quad$ By theorem 6, $[x]=\sum_{x \in X}[x]$.

Conversely, suppose $[\mathrm{X}]=\sum[\mathrm{x}]$. By theorem 5, every $\mathrm{x} \in[\mathrm{X}]$ $\mathrm{x} \in \mathrm{X}$
has a unique expression

$$
x=m_{1} x_{1}+\ldots+m_{n} x_{n}
$$

Then, if $0=\sum m_{\alpha} x_{\alpha}$, each term is 0 . Otherwise, we have distinct representation for 0 .

Definition
A subset X of G is pure independent if X is independent and [X] is a pure subgroup of G.

Lemma 12
Let G be a p-primary group. If X is maximal pure independent, (i. e., X is contained in no larger pure independent), then G/[X] is divisible.

Proof
Suppose G/[X] is not divisible. Then, by lemma 10, it contains a pure cyclic subgroup [\bar{y}]. By property 9 of pure subgroups, \bar{y} may be lifted to an element $y \in G$, where y and \bar{y} have the same order. We claim that $X^{*}=X U\{y\}$ is pure independent, which will contradict the maximality of X. First of all

$$
[\mathrm{X}] \subset\left[\mathrm{X}^{*}\right] \subset G
$$

and $\left[X^{*}\right] /[X]=[\bar{y}]$ which is pure in $G /[X]$. Therefore, by lemma 9, [$\left.X^{*}\right]$ is pure in G. Secondly, X^{*} is independent. Suppose, $m y+\sum m_{\alpha} x_{\alpha}=0, x_{\alpha} \in X, m_{\alpha} \in Z$. In $G /[X]$, this equation becomes $m \bar{y}=0$ which means that the order of \bar{y} is m and since y and \bar{y} have the same order, then my $=0$. Hence $\Sigma \mathrm{m}_{\alpha} \mathrm{x}_{\alpha}=0$ and by the independence of X, each $m_{\alpha} x_{\alpha}=0$. Therefore, X^{*} is independent and so it is pure independent.

Definition

Let G be a torsion group. A subgroup B of G is a basic subgroup of G in the following cases.

1. B is a direct sum of cyclic groups.
2. B is pure in G.
3. G/B is divisible.

Theorem 37

Every torsion group G contains a basic subgroup.

Proof
By theorem 9 every torsion group has a decomposition as a direct sum of p-primary group. Then, if we show that every p-primary group has a basic subgroup, the theorem follows. Assume, therefore, that G is p-primary.

If G is divisible, then G is isomorphic to $\sigma\left(p^{\infty}\right)$. Then $B=0$ is a basic subgroup. If G is not divisible, then G does contain pure independent subsets by lemma 10.

Let Y be the set of all pure independent subsets of G. Partially order Y by ordinary inclusion. Let $\left\{Y_{\alpha}\right\}$ be a simply ordered subset of Y, i. e., the Y_{α} are pure independent subsets of G and given any two of them, one contains the other. Let Y_{1} be the union of these Y_{α}. But by property 8, the ascending union of pure subgroups is pure, so Y_{1} is pure. Consider now $\sum \mathrm{m}_{\alpha} \mathrm{x}_{\alpha}=0$ where $\mathrm{m}_{\alpha} \in \mathrm{Z}$ and $\mathrm{y}_{\alpha} \in \mathrm{Y}_{\alpha}$. Since the Y_{α} are partially ordered by inclusion, then $y_{\alpha} \in Y_{1}$ and there exists some α^{\prime} such that $y_{\alpha} \subset Y_{\alpha}$, for every α. Hence $\sum m_{\alpha} x_{\alpha}=0$ implies $m_{\alpha} x_{\alpha}=0$ for each α. Therefore, Y_{1} is independent. The set Y satisfies the hypothesis of Zorn's lemma. Therefore, there is a maximal pure independent subset X of G. The previous two lemmas show that $B=[X]$ is a basic subgroup.

Corollary 12

Every torsion group is an extension of a direct sum of cyclic groups by a divisible group.

Proof

The theorem follows from the previous theorem and the definitions of extension and basic groups.

Corollary 13 (Priofer)
Let G be a subgroup of bounded order, i. e., $n G=0$ for some integer $\mathrm{n}>0$. Then G is a direct sum of cyclic groups.

Proof

Since G is of bounded order, G is torsion and by theorem 34, G contains a basis $B . ~ L e t ~ y ~ B ~ G ~ G / B . ~ S i n c e ~ G / B ~ i s ~ d i v i s i b l e, ~$ $y+B$ is divisible by n. So $y+B=n(x+B)=\overline{0}$. Therefore, $G / B=0$ and, consequently, $G=B$.

Theorem 38

Let G be an abelian group and H a pure subgroup such that G/H is a direct sum of cyclic groups. Then, H is a direct summand of G.

Proof
For each cyclic summand of G / H, pick a generator y_{i}, i. e., $G / H=\sum \sigma\left(y_{i}\right)$. By property 9 of pure subgroup, we can select elements $x_{i} \in G$ such that the x_{i} and y_{i} have the same order. Let $K=\Sigma \sigma\left(x_{i}\right)$. We claim that $G=H \oplus K$.

If we prove that $[H+K]=G$ and $H \cap K=0$, then by theorem 6, the theorem follows.

1. $[H+K]=G$. Let t be any element in G and \bar{t} equal the image of t by the natural homomorphism n from G into G / H.

Hence $\bar{t}=\Sigma m_{i} y_{1}$, where $m_{i} \in Z$. Now, $n\left(t-\Sigma m_{i} x_{i}\right)=n(t)-$ $n\left(\sum m_{i} x_{i}\right)=n(t)-\sum m_{i} y\left(x_{i}\right)=\bar{t}-\sum m_{i} y_{i}=\overline{0}$, then $t-\sum m_{i} y_{i} \in H$. Since $\sum m_{i} x_{i} \in K$, we have $t \in[H+K]$.
2. $H \cap K=0$. Let $w \in H \cap K$, then $w \in K$, so that $w=\sum m_{i} x_{i}$ and $\eta(w)=\sum m_{i} y_{i}=\overline{0}$ because w is also in H. If y_{i} has infinite order then $m_{i}=0$. If y_{i} has finite order n_{i}, then m_{i} must be a multiple of n_{i}. In either case, since x_{i} and y_{i} have the same order, $a_{i} x_{i}=0$ for every i so that $w=0$.

Theorem 39

Let S be a pure subgroup of G with $n S=0$ for some $n>0$. Then, S is a direct summand of G.

Proof

Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G} /(\mathrm{S}+\mathrm{nG})$ be the natural map. It is obvious that this quotient is of bounded order since $n(G /(S+n G)=\overline{0}$. Also, $G /(S+n G)$ is the direct sum of cyclic groups by corollary 13. Let $G /(S+n G)=\Sigma \sigma\left(r_{\alpha}\right)$ where \bar{x}_{α} is a generator of $\sigma\left(r_{\alpha}\right)$. For each, \bar{x}_{α} is raised to $x_{\alpha} \in G .$. Then $r_{\alpha} x_{\alpha} \in S+n G$ since the order of $x_{\alpha} \bmod .(S+n G)$ is r_{α} and so

$$
r_{\alpha} x_{\alpha}=s_{\alpha}+n h_{\alpha}
$$

where $s_{\alpha} \in S$ and $h_{\alpha} \in G$ with r_{α} dividing n. Thus, we have

$$
s_{\alpha}=r_{\alpha}\left(x_{\alpha}-\frac{h}{r_{\alpha}} h_{\alpha}\right)
$$

Since S is pure, there is $s_{\alpha}{ }^{\prime} \in S$ with $s_{\alpha}=r_{\alpha} s^{\prime}{ }_{\alpha}$. Therefore, $r_{\alpha} y_{\alpha}=n h{ }_{\alpha}$ and $f\left(y_{\alpha}\right)=\bar{x}_{\alpha}$.

Let $K=\left[n G U\left\{y_{\alpha}\right\}\right]$. We claim that $G=S \oplus K$. We must prove that $S \cap K=0$ and $S+K=G$.

1. $S \cap K=0$. Let $x \in S \cap K$. Since $x \in K, x=\sum m_{\alpha} y_{\alpha}+n h$. Also $x \in S$, then $f(x)=\overline{0}$ so that $\overline{0}=\Sigma m_{\alpha} \bar{x}_{\alpha}$. Hence, r_{α} divides m_{α} for each α. But we know $r_{\alpha} y_{\alpha} \in$ nG so that $m_{\alpha} y_{\alpha} \in \operatorname{nG}$. Therefore, $\mathrm{x}=\sum \mathrm{m}_{\alpha} \mathrm{y}_{\alpha}+\mathrm{ny} \in \mathrm{nG}$. But $\mathrm{S} \cap \mathrm{nG}=0$ since for any element y in G that is also in S, we have ny $=0$. Consequently, $x=0$.
2. $S+K=G$. Let $x \in G$. Then $f(x)=\sum m_{\alpha} \bar{x}_{\alpha}=f\left(\sum m_{\alpha} y_{\alpha}\right)$ so $f\left(x-\sum m_{\alpha} y_{\alpha}\right)=\overline{0}$, or $x-\sum m_{\alpha} y_{\alpha}=s+n h \quad S+n G$. Therefore, $x=s+\left(n h+\sum m_{\alpha} y_{\alpha}\right) \quad s+K$.

Corollary 14

If $t G$ is of bounded order, then $t G$ is a direct summand of G. In particular, $t G$ is a direct summand if $t G$ is finite.

Proof

By property 3, $t G$ is pure in G. Then, if $t G$ is of bounded order, by the above theorem, $t G$ is a direct summand of G. And, of course, if $t G$ is finite, $t G$ is of bounded order.

Definition

A group G is indecomposable if $G \notin 0$ and if $G \simeq H \oplus K$. Then, either H or K is 0 .

Corollary 15
An indecomposable abelian group G is either torsion or torsionfree.

Proof

Suppose that G is an indecomposable group that is neither torsion nor torsion-free. Otherwise, we do not have anything to prove. Hence, tG is a proper subgroup of G. If tG is divisible, then, by corollary 6 , tG is a direct summand of G which contradicts our hypothesis so that tG is not divisible. By theorem 9, tG is the direct sum of p-primary groups so, by lemma 10, tG contains a cyclic and pure group $\sigma(\mathrm{p})$. It follows from theorem 36 , that $\sigma(p)$ is a direct summand of G, a contradiction.

Theorem 40

A torsion group G is indecomposable if and only if G is primary and cyclic or $G \simeq \sigma\left({ }^{\infty}\right)$ for some prime p.

Proof
The sufficiency condition is obvious. Suppose G is torsion and indecomposable. By theorem 9, G is the direct sum of $p-$ primary groups so that G is p-primary for some prime p. If G is of bounded order, then, by corollary 10, G is the direct sum of cyclic groups and G is indecomposable so that G is cyclic.

Suppose now that G is not of bounded order. If G is not divisible, it follows from lemma 10 that G has a pure cyclic subgroup $\sigma(p)$ and by theorem $36 \sigma(p)$ is a direct summand of G, a contradiction. Therefore, G is divisible and by theorem 21, it is a direct sum of copies of Q and $\sigma\left(p^{\infty}\right)$ for distinct p. Since G is torsion, we cannot have the case that G has as a direct summand copies of Q, and, because G is indecomposable, $G \simeq \sigma\left(p^{\infty}\right)$.

Theorem 41

Let G be an infinite abelian group with every proper subgroup finite; then $G \simeq \sigma\left(p^{\infty}\right)$ for some p.

Proof

Since every proper subgroup of G is finite, then G is torsion. By theorem 9, G is the direct sum of p-primary group. Suppose that G has infinite summand, then there exists a subgroup of G that is not finite. Since the finite direct sum of finite summand is finite, G cannot be decomposed as a direct sum of proper subgroups. Therefore, G is indecomposable and, by theorem 37, it follows that $G \simeq \sigma\left(p^{\infty}\right)$ because G cannot be cyclic.

Theorem 42

If an infinite abelian group G is isomorphic to every proper subgroup, then $G \simeq Z$.

Proof

Let $x \in G$ and $x \neq 0$. Consider the cyclic group generated by $x,[x]=D$. By hypothesis, $G \simeq D$ and since D is infinite cyclic group, it follows that $G \simeq Z$.

Now we will study a restricted class of torsion-free groups-those of rank 1.

Definition

The rank of a torsion-free group G is the number of elements in a maximal independent subset G.

Since a free abelian group is torsion-free, then our two notions of rank coincide for these groups. Below, we give some theorems and notation for this type of group.

Theorem 43

Every torsion-free group G can be imbedded in a vector space V over Q .

Proof

By theorem 30 the group G can be imbedded into a division group G. Consider the natural map $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{D} / \mathrm{tD}$. Since G is torsion-free, any element in G is not in $t D$, so if $x \in G$, $\mathrm{f}(\mathrm{x}) \neq 0$ and, consequently, $\mathrm{f}(\mathrm{G}) \subset \mathrm{D} / \mathrm{tD}$. By theorem 11, D/tD is torsion-free divisible group and by lemma 2, D/tD is a vector space over Q. Therefore, G is imbedded in the vector space D/tD.

Theorem 44

A torsion-free group G has rank at most r if, and only if, G can be imbedded in an r-dimensional vector space over Q.

Proof
If the rank of the torsion-free group G is less or equal to r, then, by the theorem above, $D / t D$ is a vector space over Q containing G. Suppose now that $D / t D$ has dimension q less than r. Let $\left\{x_{1}\right.$, . . . , $\left.x_{r}\right\}$ be a maximal linearly independent set in G. Hence, $\left\{\bar{x}_{1}, \ldots, \bar{x}_{r}\right\}$ is linearly independent set in $D / t D$,
where $f\left(x_{i}\right)=\bar{x}_{i}$. But this is a contradiction of our hypothesis since the dimension of $D / t D$ is q. Therefore, dimension of $\mathrm{D} / \mathrm{tD} \xrightarrow{\geqq} \mathrm{r}$.

Conversely, if G can be imbedded in a vector space V over Q of dimension at most r, then any subspace of V has dimension at most r. Let \bar{G} be the subspace of V such that $G \simeq \bar{G}$ and let $\left\{\bar{x}_{1}, \ldots, \bar{x}_{s}\right\}$ be a basis of \bar{G}. Then the corresponding set in $G,\left\{x_{1}, \ldots, x_{s}\right\}$, is maximal linearly independent. Hence, the rank of G is s with $s \leqq r$. Because of this theorem, the rank of a torsion-free group is well defined by the above definition. Thus, any two maximal linearly independent sets of G will be a basis of the vector space \bar{G} over Q.

Theorem 45

Let

$$
0 \longrightarrow \mathrm{~A} \longrightarrow \mathrm{~B} \longrightarrow \mathrm{C} \longrightarrow 0
$$

be an exact sequence of torsion-free groups. Then, rank $A+$ rank $C=r a n k B$.

Proof
We know by theorem 1 that B is an extension of A by C. Let $\left\{x_{1}, \ldots, x_{r}\right\}$ be a maximal independent set in A so the rank of A is r. Since the groups A and B are torsion-free, we can identify the rank of groups with the dimension of the subspace over Q in which they are imbedded. Hence, we can extend the set $\left\{x_{1}, \ldots, x_{r}\right\}$ to a maximal independent set in B,
$\left\{x_{1}, \ldots, x_{r}, x_{r+1}, \ldots, x_{n}\right\}$, since $A \subset B$. Also, $C \simeq B / A$ and rank $C=r a n k B / A$. But A and B are torsion-free. Then, rank $B / A=n-r$. Therefore, rank $A+r a n k C=r a n k B$.

Corollary 16
Any torsion-free group of rank 1 is indecomposable.

Proof
Suppose $G=G_{1} \oplus G_{2}$. But $0 \rightarrow G_{1} \xrightarrow{f} G \xrightarrow{g} G_{2}$
is an exact sequence if we define f and g by the identity and projective mappings, respectively. By the above theorem, rank $G=\operatorname{rank} G_{1}+\operatorname{rank} G_{2}$, but the rank of G_{1} and G_{2} is at least 1 for each one. Therefore, G is indecomposable.

Corollary 17
Any torsion-free group G of rank 1 is an isomorphic subgroup of Q.

Proof
By theorem 43, G can be imbedded in 1-dimensional vector space V over Q. Since $V \simeq Q$ and G is imbedded in V, G is isomorphic to some subgroup of Q.

The following subgroups of Q are non-isomorphic.
G_{1} : All rationals whose denominator is square-free.
G_{2} : All dyadic rationals, i. e., all rationals of the form $\frac{m}{2}$.
G_{3} : All rationals whose decimal expansion is finite.

Let $p_{1}, p_{2}, p_{3}, \cdots, p_{n}, \cdots$ be the sequence of primes.

Definition

A characteristic is a sequence

$$
\left(\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots, \mathrm{~K}_{\mathrm{n}}, \ldots .\right)
$$

where each K_{n} is a non-negative integer or the symbol ${ }^{\infty}$.
If G is a subgroup of Q and $x \in G$ is nonzero, then x determines a characteristic in the following way. We put $K_{n}=0$ if $p y=x$ has no solution in $G, K_{n}=K$ if $p_{n}^{k} y=x$ has solution but $p_{n}^{k+1} y=n$ has no solution. $K_{n}=\infty$ if all the equations $p_{n}^{i} y=x$ have solutions for every i.

It is useful to write each nonzero integer m as a formal infinite product, $m=\pi p_{i}^{\alpha_{i}}$, where the p_{i} range over all the primes and $\alpha_{i} \geqq 0$. If the element a is replaced by ma, where m is a nonzero integer, then there is no change in K_{n} if it is ∞, but it is finite and equal to $K \geqq 0$ and $m=c_{n}^{c} m^{\prime}$ with (p_{n}, m^{\prime}) $=1$. Then, after the change, it will be $K_{n}=K+c$.

Let $m=\pi p_{i}{ }_{i}$ and $n=\Pi p_{i}^{\beta_{i}}$ be given integers. If $a \epsilon G$ has the characteristic ($\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \ldots$.), then by the definition of characteristic, there is an $x \in G$ such that $m x=n a$ and only if $\alpha_{i} \leqq K_{i}+\beta_{i}$ for every i (we use by convention $\infty+\beta_{i}=\infty$).

The groups $2, Q, G_{1}, G_{2}, G_{3}$ (the last three defined as above) are of rank 1 and all contain $\mathrm{x}=1$.

The characteristic of $\mathrm{x}=1$ in each group is

Z : ($0,0,0, . .$.
$\mathrm{Q}:(\infty, \infty, \infty, \ldots)$
$G_{1}:(1,1,1, . .$.
$G_{2}:(\infty, 0,0, \ldots$.
$G_{3}:(\infty, 0, \infty, . .).$.

Distinct nonzero elements of the same group may have distinct characteristics. For example, in Z the characteristic of 6 is

$$
(0,1,1,0,0, \cdot . .)
$$

while the characteristic of 1 is

$$
(0,0,0,0, . . .)
$$

Definition

Two characteristics are equivalent if (1) they have ∞ in the same coordinates and (2) they differ in, at most, a finite number of coordinates.

It is obvious that this is an equivalence relation. An equivalence class of characteristics is called type.

Lemma 13

Let G be a subgroup of Q, and let x and x ' be nonzero elements of G. Then, the characteristics of x and x^{\prime} are equivalent.

Proof

Suppose first that $x^{\prime}=m x$ for some integer m. Then, the characteristics of x and x^{\prime} are equivalent because the characteristic of x differs from the characteristics of $m x$ in a finite
number of coordinates as we remarked above. Now, since G is a subgroup of Q, there are integers m and n such that

$$
\mathrm{mx}=\mathrm{nx} \mathrm{x}^{\prime}
$$

The characteristic of x is equivalent to that $m x$ and this one to $n x^{\prime}$ which is equivalent to that of x^{\prime}.

As a result of this lemma, if G is a torsion-free group of rank 1 (a subgroup of Q), we may define the type of $G, \Gamma(G)$, as the type of any nonzero element of G.

Theorem 46

Let G and G^{\prime} be a torsion-free group of rank 1. Then, $G \simeq G^{\prime}$ if and only if $\Gamma(G)=\Gamma\left(G^{\prime}\right)$.

Proof
Suppose $f: G \rightarrow G^{\prime}$ is an isomorphism. If $x \in G$ is nonzero, then if $p_{1}^{n} y=x, f\left(p_{i}^{n} y\right)=p_{i}^{n} f(y)=f(x)$; that is, x and $f(x)$ are divisible by the same powers of p_{i} for every i. Hence, x and $f(x)$ have equivalent characteristics. Therefore, $\Gamma(G)=\Gamma\left(G^{\prime}\right)$.

Assume that $\Gamma(G)=\Gamma\left(G^{\prime}\right)$ and that G and G^{\prime} are subgroups of Q. If a and a^{\prime} are two elements in G and G^{\prime}, respectively, then their characteristics $\left(K_{1}, K_{2}, K_{3}, . ..\right)$ and $\left(K_{1}{ }^{\prime}, K_{2}{ }^{\prime}\right.$, $K_{3}{ }^{\prime}$, . . .) differ in only a finite number of places. If we agree that the notation $\infty-\infty$ means 0 , then we may define a ration number λ by

$$
\lambda=\pi p_{i} i^{-K_{i}}
$$

It follows from the definition of equivalence and our convention concerning \propto that almost all the $K_{i}-K^{\prime}=0$. Define $f: G \rightarrow Q$ by $f(x)=u x$, where $u=\lambda \frac{a^{\prime}}{a}$. Since, by distributivity, $f(x+y)=u(x+y)=u x+u y=f(x)+f(y)$; thus, f is a homomorphism. Now, a rational number x is in G if and only if there are integers $m=\Pi p_{i}^{\alpha}$ and $n=\Pi p_{i}^{\beta}$ with $m x=n a$ and $\alpha_{i} \leqq \beta_{i}+K_{i}$ for all i. A rational y is in G^{\prime} if, and only if, there are integers m and n with my $=n a$ and $\alpha_{i} \leqq \beta_{i}+K_{i}^{\prime}$ for all i. We claim that $f(G) \subset G^{\prime}$. If $x \in G$, then $m x=n a$ and $\alpha_{i} \xlongequal[=]{〔} \beta_{i}+K_{i}$. Hence $m(u x)=n u a=(n \lambda) a^{\prime}$. Since $\alpha_{i} \stackrel{\leqq}{=}\left(\beta_{i}+K_{i}-K_{i}^{\prime}\right)+K_{i}$, then $u x=f(x) \in G^{\prime}$. Now, in a similar manner, define $g: G^{\prime} \rightarrow Q$ by $g\left(x^{\prime}\right)=u^{-1} x^{\prime}$. It is obvious that g is a homomorphisin. Let $y^{\prime} \in G^{\prime}$, then my' $=$ na' with $\alpha_{i} \leqq \beta_{i}+K_{i}^{\prime}$. Hence $m u^{-1} y^{\prime}=n u^{-1} a^{\prime}$ but $u^{-1}=\lambda^{-1} \frac{a}{a}$, so $m\left(u^{-1} y^{\prime}\right)=\left(n \lambda^{-1}\right) a$. Since $\alpha<\left(\beta_{i}+K_{i}^{\prime}-K_{i}\right)+K_{i}$, it follows that $u^{-1} y^{\prime}=g\left(y^{\prime}\right) \in G$. Therefore, $g\left(G^{\prime}\right) \subset G$ and f and g are inverse so that $G \simeq G^{\prime}$.

Theorem 47

If Γ is a type, then there exists a group of G of rank 1 with $\Gamma(G)=\Gamma$.

Proof
Let $\left(K_{1}, K_{2}, K_{3}, . ..\right)$ be a characteristic of I^{\prime}. We define the group G as the subgroup of G generated by all rationals of the form $\frac{1}{m}$ where for all $n, p_{n}{ }^{t}$ divides m if and only if $t \stackrel{K}{n}{ }_{n}$. We must prove that the rank of G is one. Let
$\frac{1}{m_{1}}$ and $\frac{1}{m_{2}}$ be elements of G. We will prove that they are not independent. Suppose that there exists integers h_{1} and h_{2} such that

$$
\mathrm{h}_{1} \frac{1}{\mathrm{~m}_{1}}+\mathrm{h}_{2} \frac{1}{\mathrm{~m}_{2}}=0
$$

If $\left(H_{1}, h_{2}\right) \neq 1$, we can simplify the above equation. Thus, suppose that $\left(h_{1}, h_{2}\right)=1$. Hence

$$
\begin{aligned}
& h_{1} m_{2}+h_{2} m_{1}=0 \\
& h_{1} m_{2}=-h_{2} m_{1}
\end{aligned}
$$

which implies that m_{1} and m_{2} have equivalent characteristics and the elements $\frac{1}{m_{1}}$ and $\frac{1}{m_{2}}$ are dependent. Therefore, the rank of G is 1 .

Also, we must prove that the element 1 has the given characteristic which is equivalent to proving that the equation

$$
\mathrm{p}_{\mathrm{n}}^{\mathrm{r}} \mathrm{x}=1
$$

always has a solution in G for every n if and only if $r \leqq K_{n}$. Since x belongs to G, then $x=\frac{h}{m}$, where m is divisible by p_{n}^{t} for all n if, and only if, $t \stackrel{K}{=}{ }_{n}$. Consequently, the above equation always has solutions and 1 has the given characteristic.

LITERATURE CITED

Kaplausky, I. 1968. Infinite abelian groups. University of Michigan Press, Ann Arbor, Michigan. 89 p.

Rotman, Joseph J. 1965. The theory of groups: an introduction. Allyn and Bacon, Inc., Boston, Massachusetts. 304 p.

VITA
Joaquin Pascual
Candidate for the Degree of
Master of Science

Report: Infinite Abelian Groups
Major Field: Mathematics

Biographical Information:

Personal Data: Born at Burgos, Spain, March 29, 1945.
Education: Graduated from Liceo "Luis Espelozin", Caracas, Venezuela, in 1962; received the Secondary Education Teacher Degree in mathematics from Instituto Pedagogico Nacional, Caracas, Venezuela in 1966.

[^0]: I sincerely thank Professor E. E. Underwood for his criticisms, guidance and suggestions in the preparation of this report.

