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NOTATION

Z : Set of integers
Q : Set of rationals

Zp : Group of integer modulo p

(ag, » « .y an} : Set whose elements are a;, . . ., a_

[a], TR an] : Subgroup generated by ays « o+ ey A

o(m) : Cyclic group of order m

o(pm) : p-primary component of rationals modulo one

tG : Torsion subgroup of G

dG : Maximal divisible subgroup of G

G[lp] : {x e G : px = 0}

nG : {nx : x ¢ G}

ZAk : Direct sum of the groups Ak (almost all coordinates are 0)
k € K

MA, : Direct product of the groups Ak
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INTRODUCTION

When the theory of groups was first introduced, the attention
was on finite groups. Now, the infinite abelian groups have come
into their own. The results obtained in infinite abelian groups
are very interesting and penetrating in other branches of Mathe-
matics. For example, every theorem that is stated in this paper
may be generalized for modules over principal ideal domains and
applied to the study of linear transformations.

This paper presents the most important results in infinite
abelian groups following the exposition given by J. Rotman in his

book, Theory of Groups: An Introduction. Also, some of the exer-

cises given by J. Rotman are presented in this paper. In order to
facilitate our study, two classifications of infinite abelian groups
are used. The first reduces the study of abelian groups to the
study of torsion groups, torsion-free groups and an extension problem.
The second classification reduces to the study of divisible and
reduced groups. Following this is a study of free abelian groups that
are, in a certain sense, dual to the divisible groups; the basis and
fundamental theorems of finitely generated abelian groups are proved.
Finally, torsion groups and torsion—-free groups of rank 1 are studied.
It is assumed that the reader is familiar with elementary group

theory and finite abelian groups. Zorn's lemma is applied several

times as well as some results of vector spaces.




PRELIMINARY RESULTS

The following results will be used in the support of this

paper, but are not directly a part of it.

1k

If K and S are groups, an extension of K by S is a group
G such that

a. G contains K as a normal subgroup.

b. G/K = S.

Every finite abelian group G is a direct sum of p-primary
group.

Every finite abelian group G is a direct sum of primary

cyclic groups.

If 6 =2 H,, then
T i
i:
mG = 2 mH,
i=1  *

where m is a positive integer.
n

If G = H,, then
. 1

Every vector space has a basis.

Two bases for a vector space V have the same number of

elements.




INFINITE ABELIAN GROUPS

All groups under ccnsideration are abelian and are written

additively. The trivial group is the one having one element and

Definition
In the following diagram, capital letters denote groups and

the arrows denote homomorphisms.

The following is one example of a commuting diagram

12

[oN]

Neg——-

, 36

where 26, 212, and Z36 are the groups modulo 6, 12 and 36 respectively

and 0(24) is a cyclic group of order 24,




3n

P B

where i is an identity homomorphism and commutes if gi

f

“e

we also







an exact sequence, then B is an

kernel of g, but this image is O0;




Proof

Suppose £ is onto, then the image of f is A Then the

k+2 k+2 k+1°

kernel of fk+l is Ak+l' Consequently, the image of fk+l is 0 and

is also the kernel of fk+2' Therefore, fk is one-to-one.

is one-to-one, thus the kernel of f, is

Suppose now that £ Kk

k

so the kernel of f is

TS : 3
0 and this kernel is the image of fk+l’ K1

A, and A is the image of £

1 b1 Therefore, f is onto.

k+2° k+2

Definition

The torsion subgroup of an abelian group G denoted tG is the
set of all elements in G of finite order.

Since G is abelian, the set of all elements of finite order is
a subgroup of G.

A group G is torsion in the case tG = G; G is a torsion-free

Theorem 3

We need to prove that there exists a normal subgroup of G that
is a torsion group and the quotient group of G by this torsion group
is a torsion-free group.

By definition, tG is a torsion group and tG is normal in G.

We shall now prove that G/tG is a torsion-free group.

Suppose nx = 0 for some x e G/tG and some integer n # O.




Xx = x + tG with x € G, 0 = nx = nx + tG, then nx € tG; hence there is

an integer m # 0 such that m(nx) = (mn)x = 0. Thus x has finite order,

x is in tG and x = 0. This proves the theorem.
Let K be a non-empty set and for each k « K, let there be given a

group A The set K is called an index set.

1

The direct product of the Ak’ denoted HAk is the group consisting

keK

of all elements <a, > in the cartesian product of the Ak under the

i.e., componentwise addition. We do not require that Ak # Ar if
k # r for k, ¥ € K; thus the same group can be counted many times.

consisting of all elements <a, > such that

The subgroup of TA "

k
keK

only finitely many a, are nonzero is denoted :AP and called

keK

Theorem 4

Let {AP} be a family of abelian groups, then

t(HAk) C TtA

k




-(ZA) = ItA, .,
L{“Pk, tAk

Proof
Let y be any element of t(HAk), so my = 0 for some integer

m # 0; that is,

¥ = e
my = <mak> =<0> =0
then, ma, = 0 for all ke K and any a, has finite order. Hence,

k k

y = <32 is one element of IItA, . Therefore, t(HAk)C: MtA

k k’

In order to prove that t(ZAk) = ZtAk, it suffices to show that
ZtAk<f t(ZAk) because t(ZAk)ci ftAk is a finite case of the first part
of the theorem.

Consider any element <a, > in ZtAk. Then any a, has a finite

order. Let m be the least common multiple of the order of the ak's.

then also <ma, > = 0, so <a,> belongs to

Since ma, = 0, for all ak, " K

k
t(EAk). This completes the proof.
Now we give an example that shows the inclusion t(HAk)<:_HtAk

Let x = <b,> & IItA, such that

Suppose that t(HAk) = HtAk. K I

bk is the generator of the O(pk) for each k €« K. The element x
has infinite order since, for each m there exists pk such that m < pk

But x also is in t(HAk). Then X cannot have infinite order because

this would be a contradiction. Therefore, the inclusion

t(lA ) C MTtA,
k k

is proper.
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Definition

The function pi defined by pi : MA—> A, P1 (<ak>) = a
keK

is called the ith projection.
It is obvious that the ith projection is a homomorphism from

onto A, .
1l

Theorem 5

Let {Ak} be a family of subgroups of G, then G = ZAk if and

only if every nonzero element g has a unique expression of the form

g=a + ...+ a where a ¢ A , the k, are distinct and
ki kn kl K 1 1

each a # 0.

k.,
i
Proof
Assume that G XAk. Let <a > be any element in ZAk. Almost
all coordinates of <ak> are zero. Let a, ak g o [ e ak be the
1 2 n
coordinates of <a”’ different from zero with a e Ak . Consider
i i
the elements in ZAk<ak Zsocap Ch e .,<ak >, where a >’ has all
1 2 n |
the coordinates zero except in the kith place that has a - Hence,
i
= <a > + <a + . . .+ <a >. Let f be the isomorphism from
kl ku kn

G onto ZAk and let x ¢ G such that f(x) = <a,>. Therefore, the inverse
f, £ 7, maps x = f_l(<ak>) = f_l(<a >+<a >+ .. .+ <a >) =

£ " (<a, >) + f_1(<ak ) v . .+ f'l(<a

1 7 n
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In order to finish the proof, we must show that f_l<ak > € Ak .
il i

Consider the subgroup A'ki(: ZAk, where A'ki = {<aki>} and <aki>

has all the coordinates 0 except the kith that is a € Ak g It
i i

is obvious that Ak is isomorphic to A'k under the map a, —=° <a >.
i i i i

-1 _
Since f is an isomorphism, then f l(A' )= A'k and consequently,

I 3
i il
f_l(A' ) = Therefore f—l(<a >) is in and any element
k? " M ’ k, A, J
i i i i
g € G has a unique expression of the form g = a 9P 0 o o &r a -
il n

Conversely, suppose that the last statement is true. We define

by n(g) =<a>if g=a + . . .+ a_ ,
k kl kp

the function n from G into ZAk

where a € Ak . The function n is well defined because if g has
i i

two images then by the uniqueness of the representation of g, both
images are equals. n is also one-to-one. Suppose that the elements

g, = a * e owowFE 5, g, =Db +. . .+5b are different and have
; 2 k k
1 n 1 m

the same image <C >, then <C

K = <b, > = <a > but by hypothesis

k- K &

a. # bk for some ki; hence, n is one-to-one. Let <ak> be any
i i

element in ZAk, hence a + ...+ a represent some unique g
kl km '

in G, then <ak> is the image of g by n and so n is onto.

If 81 and g, have the representation given above, then

ﬂ(g]J = <a> n(gz) = <bk>




(;ﬂ-{gzj=n[ak+ +ak)+(bk<+"'+b”=
1 n 1 m
a *+ hk) = <a > + <b3k> =
(gl) + "'|(g2_).

Therefore, n is an isomorphism of G into ZZA, . This completes the

k

proof.
Theorem 6

Let {Ak} be a family of subgroup of G.. Then G = ZAk if and

—LJ _hk] = O.

k#i

only if G = [V Ak]’ and for every i, A, () [
I i

Proof
Suppose G ZAk, then by theorem 5 anys element g in G has a

unique expression of the form g = a, + . . .+ a where ay € A

1 n i ki

and a # 0, Buta + .. .+a ¢ [UA], so Gc [V Ak] and obviously
. k
i 1 n k k

G C.[L)Ak]' Then G = [t)Ak]. Let g be ome element of Aifﬂ [kgi AkJ’

then a, = a, + . . . + but g has a uinique representation, so
i

Kk 8 »
n

0. This proves tthe first part of the theorem.

o))
]
[
]

Suppose now that G L/Ak] and A, N [[ U Ak] = 0 for every i.

k A ki
Let g be any element of G, i. e., g & [L)AAk], then we claim that
k
g e is a unique represemtation of g where a, € A
%, k_ ko Tk

and a, # 0.
i




Suppose that g has other representation, g = bk ol ol Oy &7 bk o
i m
g -g=( -b, )+ .. .+ (81 - b, ) =0 but A, O SN =0
Ty ‘8 g 17 'kt K
a —=hb: =T|ow . .= - = 0. 8 = b B v e =
Then, a, » ak bk 50 ak bk 5 , 1k
1 n n 1 1 n
b, . Therefore, any element in G has a unique representation and by

theorem 5, G = ZAk.

Remark 1
It is easy to see that if G = A ® B, then the direct summand

B is isomorphic to the factor group G/A.
Theorem 7

subgroup A of G is a direct summand of G if and only if there

is a homomorphism p : G—*®A such that p(a) = G for every ae A.

Proof
Suppose that A is a direct summand of G. Then, the projection

is a homomorphism of G onto A and p(a) a for

Conversely, if there is a homomorphism p : G —¢ A, with the property
a for every a € A, then we claim that the kernel K of p is such
First of all, we will show that KN A = 0. Let b
an element in K N A, then p(b) = 0 because b € K and p(b) =b
because b & A. Then b = O.
Also, we must show that [A U K] = G. It is evident that [A U K] ¢ G.

any element in G, then p(b) = b if b ¢ A. Suppose, f(b) = c

and b e G - A, so f(b) - c =0, f(b - c¢c) =0, or b ~ ¢ &€ K. Therefore,




14

a; b = a+ c where ae K and ¢ € A so any element b & G is

Therefore, G = [K U A} and by theorem 6, G = A & K.

€ and let n be an integer. x is divisible by n if there
have order n. If (m, n) = 1, then x is divisible by m.
order n and (m, n) = 1, then there exists integers

that mp + ngq = 1. Hence, x(mp + nq) = x, (xm)p + (xn)q = x.

Since xn = 0 and (xm)p = (xp)m, if we let y = xp, then my = x

and thus, x is divisible by m.
Theorem 8

an abelian group G whose torsion subgroup is not a

set of all primes and let G = To(p). We claim
peP

direct summand.
tG is a direct summand; then, by Remark 1, G = (G/tG & tG).
shall prove that tG = Io(p). Evidently, Zo(p) ¢ tG. Suppose
G and mx = 0, for some integer m # O, then mx = 0 for

o(p) and by the fact that the order of the

divides the order of the group, then m = 0 (mod. p) for
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Xp # 0. There are only finitely many coordinates xp
from zero, otherwise, m is divisible by infinitely many

primes and this is impossible. Hence, tG < Zo(p) and so

is to prove that G/tG has an element different
and divisible by every prime p. Consider the element
in G/tG where ap is the generator of o(p) for every prime
a prime, then by lemma 1, for each prime p # q there
o(p) with qxp = ap. Let <xq> € G be such that any

has the above property except xq = 0. Thus
<X > = <g > = <y>
q D - y

has 0 in each coordinate save the qth where it has aq

q(<x > + tG) = q<x > + tG =
P 12

<a - <y> + tG =
P

<a > + tG.
p

direct summand of G, then G/tG is isomorphic to some
Therefore, G needs to have some element divisible
Suppose that this is the case. Assume that

G is divisible by every prime p, then p<y > <X

q q q
Hence, <« > = <x > 1. e, y = x for ever
q > pyq q > P.Q q M
particular, if q = p, then pyp = xp = 0. Therefore, if

by every prime, then each component of <xq is O
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0. This is a contradiction. Therefore, our assumption

direct summand of G is false.

prime. A group G is p-primary (or is p-group) in

in G has order of a power of P.
Theorem 9

group G is the direct sum of p-primary groups.

p~primary subgroup of G, i. e., Gp is the set

have order of a power of p. We want to that
G, x # 0, and the order of x be n. By
c-_-'] e
fundamental theorem of the arithmetic, n=9p = . . . p_ where
!\l. i.llll
primes and the exponents e, = 1. Let

and consider the greatest common divisor of the n, 's.

k.
i
that
L, e,n_k)=l.
i h
h

there exists integers m, such that I m n, = 1 and

i=1 i

m.n X = X

20 ot ;
= mi(pkink X) = mi(nx) = 0. Therefore, the
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. Al i =
minkix € kai so minkix # 0 for otherwise minki sn

and this contradicts the fact that

1 I
h
'L mink' = 1.
i=1 i
that any x in G can be written as unique form x = Xp) +
1
Xy s where ka,é‘ ka., the Dk, are distinct and each XDk, # 0.
h i i i i
h
We proved above that Xp, = WM X3 that is, x 'Z B Suppose
i i i=1 i
another representation, x =y, + . . . + vy, . Thus,
i “n
h
z = v 1 +
s mirﬁ(,x y x y[{
i=1 i i n
1
z = r +
pmmy =l Vi
i=1 i il n
E mm.n, X = nyk' fE o 10l o OF nykn = 0.

1

= 0 so that the order of the Y 'S
i

E e e AW S

the divisors of n are the Pl 's. Therefore, Y € ka
i i

1

gt

1, . . ., h and Ve =X - By theorem 5, G = Zka 5
i i

i
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Theorem 10

G and H be a torsion group. G = H if and only if Gp = Hp

for every prime p.

f be an isomorphism of G onto H and f_l be the inverse of f.
a Q o
Gp, and p be the order of x. Then p f(x) = f(p x) = £(0) = O.
Therefore, f(Gp) ¢ Hp and by symmetry, f_l(Hp) D Gp. This means

Hp; thus, fiGp is an isomorphism from Gp onto Hp so we have

Conversely, if fp is an isomorphism of Gp onto Hp, for every p,
function f : G — H defined by f<xp> = <fp(xp)> is an

isomorphism. In fact, let x, y ¢ G, then

f(x +vy) = f<x + > = <f (x + YA
L p yD P P yp
<f (x )+ f (y)> =<f (x)>+ <f (y )>=
p P PP p P PP

f(x) + f(y).

Let x, y € G,
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but the fp 's are isomorphisms, then
i

for all i, so that x = y contradicting our hypothesis that x # y.

Therefore f is one-to-one. Let y ¢ H, y =y + . ..ty =
P Py

f (x.)+ ...+ f (x)=1Ffx, +...+x)=f(x). Then, f is
Py 1 Pk K *

Therefore, f is an isomorphism of G onto H.
Up here we have studied arbitrary abelian groups and are
some important reductions. Theorem 3 reduces the study of
abelian groups to the study of torsion groups and torsion-
groups. Theorems 8 and 9 reduce the study of torsion groups
study of p-primary groups. We will now study a generalization

groups of rationals and the group of reals, called the divisible

G is divisible if each x € G is divisible by every

addition group of the rational numbers, denoted by Q, is
divisible. Given any rational a and any integer n 0, there exists
ﬁ € Q such that na' = a. Also the following groups are

divisible: the additive group of reals, the additive group of

and the multiplicative group of the reals.
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Theorem 11

A quotient of a divisible group is divisible.

Let G be a divisible group and H a subgroup of G. For any
integer n > 0 and a given a + H € G/H we assert that there exists
€ G/H such that n(b + H) = a + H. In fact, it is always
possible to find n and b such that nb = a and therefore the element
G/H has the property that n(b + H) = n(b + H) = a + H.
is always possible, G/H is divisible.

The converse of this theorem is not true and the following is

In theorem 8, we constructed the group G = llo(p) and also we
peP

that is not divisible. However, we will prove that G/tG

+ tG € G/tG and n any non-prime integer greater than
e o(p), it is divisible by any n p, by lemma 1,
p, because n = r (mod. p) where r
any non-prime integer. We will now

divisible by every prime. Let q be any prime,
result holds except forzﬂle o(q). We know
qy = 0. Let <yq> &tG, where all the coordinates of

are zero except the qth that is qu o(q). Of course, <yq>

<xp + tG € G/tG, then there exists <Zp> + tG such that

(<Z >+ G) = (<x > = <y >) + tG =
= p P 7q

<x > + tG.
p
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Therefore, G/tG is divisible.

Remark 2
It is clear that a direct sum (direct product) of groups is

divisible if, and only if, each summand (factor) is divisible.

Lemma 2

A torsion-free divisible group is a vector space over Q.

Proof
Let G be a torsion-free divisible group. We define the scalar
multiplication as follows: for any % € Q and x & G, %X = ay,

y &€ G and by = x. This scalar multiplication is well defined
because of the uniqueness of the number y, i. e., for a given integer
n and x € G, ny = x, y is unique. Suppose there exists yl such that
ny, = x. Then n(y - yl) = 0. This means y - Yy is either O or
an element of finite order; since G is torsion-free, y - Yy = 0.
Therefore y = yq Now, we shall show that this scalar multipli-
cation satisfies the axioms of a vector space.

1. For any %, e Q, x é G, 2 = ay, with byl = X, gx =<y,

d b

v, (3, 8, _ad+cb _ _

5 X, {h - d}“ = X (ad + cb)y3 where bdy3 X.
a € 3 .
Now, B + FL A + Yy but x = byl = dy2 = dby3, thus, ay, +
a ¢ a © a ©
= (= + Dx. , G+ 9x = 2 + =x.
ady3 + cby3 (b + d)x Therefore (b d)x DX g

I
>

a s - é = il
D b(x +y) = ay with byl = x + y and ox = ay, with by2
a . _ _ a a_ _
7Y < av, with by3 = y. Then, x + vy b(y2 + y3) and b X + Y

a(y2 + y3) =ay, = %(x + y) so the scalar multiplication is

distributive over addition.
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e . B
3. (a) ( d)x = acy,, with bdyl = X.
aylc a
(b) b(EX) = b(cy2) = ay,, where dy2 = x, by3 SRET
Since by1 =, and Yy = ¥qs then (a) and (b) are equal.
4, l.x = x for any x € G. Therefore, the group G over

Q is a vector space.

Corollary 1

Let V be a vector space over F. Considering V as an abelian

group, V is the direct sum of copies of F.

Let B = {x, : ke K} be a basis of V and let Fk denote the one-

dimensional vector space generated by X .

Let f be the function from Fk onto F such that for any ax, e Fk

f(axk) = a. It is clear that f is one-to-one, onto and also

f(bxk + axk) = f(a + b)xk = a + b. Therefore, Fk is isomorphic to

the additive group of F.

We claim that the additive group V is isomorphic to I Fk' Any
keK
vector x in V has a unique expression x = Zrk X where the T #0
i i il
and all the xk are distinct; furthermore, each rk Xy & Fk . By
i i i i

theorem 5, V = ZFk.

Lemma 3

An abelian group with pG = 0 is a vector space over Zp.

Proof
Let k denote the residue class of the integer k in Zp.

Define a scalar multiplication on G by kx = kx, where x € G.

—
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This operation is well defined for if k = k', then k - k'

It
=
o

]
=
"

for some integer m so that (k - k')x = mpx = 0; hence, kx

It is easy to verify the axioms of a vector space in this case.

Corollary 2

1. Every torsion-free divisible group G is a direct sum
of copies of Q.
2. An abelian group G in which any nonzero element has prime

order p is a direct sum of copies of a(p).

Proof

1. By lemma 2, G is vector space over Q. Therefore, by
corollary 1, G is the direct sum of copies of Q.

2. By lemma 3, G is a vector space over Zp and by corollary 1,
G is the direct sum of copies of Zp but Zp = o(p), then by theorem

10, £Zp = Zo(p). Therefore, G = Io(p).

Theorem 12

Let V and W be vector spaces over F, then V and W are iso-

morphic if and only if V and W have the same dimension.

Proof
I = 1 7 =
Let B, {al, Gp s v v e 50 e e o) be a basis of V and B,
Brs Boys o v v s Bn s « « «} be the image of Bl by the isomorphism
L ErTy
f(al) = B,
f(a,) = 8
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f(a ) =8
n n

Let x be any element of V, then x has a unique expression of the

form x = a, a SR LG with a, ¢ F and o

k, 'k k "k k .€ ¢

k 1°

Since any y in W is a linear combination of the Bi's, then B2

spans W. Suppose that B, is a linear dependent; that is, there is

2

a subset {Bk T Bk } of 32 such that ak Bk + . . .+ ak P
l n l l n n

0 where the a, 's are not all 0. Suppose a  # 0, then a, f(a, ) +
ky ky ki kg

) =0. f(a, o, +. . .+ a o ) =0 but f is an
n n = | n n

isomorphism so a, & P 1ol 0 o S a, o = 0. With a, # 0 and the
11 n n i

set {ak s s ak } is linearly dependent. This contradicts
1 n

the fact that B, is a basis. Therefore, B, is linearly independent

1 2

and a basis of W with the same number of elements as that of Bl.

Conversely, suppose now that V and W have the same dimension,

then if B, = {al LS } is a basis of V and B, =
ful, By s v e e s By e } is a basis of W and the mapping
£(a)) = By
f(-’_‘xz) = [j2
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f(a ) =8
n n

is one-to-one. Now, we extend the mapping f as follows: if xg V

and x = o +...+a a , then f(x) =a B, <+ . . +a B
akl kl kn ¥n 171 n n

It is clear that f is well defined and one-to-one.

Let y € W, then y = B, +. . .+a B andy = f(a, a, + .
akll k_“m k, %

+

+ a Bm) = f(y). So, f is onto. It is clear, f(x + y) = f(x)
m

f(y), for every x, y« V. Therefore, V = W as a vector space.

Corollary 3

Let V and W be vector spaces over F. As abelian groups, V = W,

if and only if, V and W have the same dimension.

Proof

By theorem 12, V = W as a vector space. Let f be an isomorphism
from V to W. Then f maps V as abelian group onto the abelian group
W and one-to-one. Let x, y € V, then f(x + y) = v(x) + f(y).

Therefore, V = W as abelian groups.

Lemma 4

The group Q/Z is a torsion and divisible group.

Proof

Let §-+ Z € Q/Z, the order of §-+ Z is b. Given any integer n
and §'+ Z, then the element y = EB- + Z € Q/Z is such that
ny = §-+ Z. Therefore, Q/Z is a torsion and divisible group.

The p-primary component of Q/Z is a subgroup and consequently

it is also a divisible group.
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Definition

If p is a prime, o(pm) denotes the p-primary component of Q/Z.

Let A(p) denote the set of all rationals between 0 and 1 of the
n > . (p) ) !
form m/p , where m, n = 0. We define on A the binary operation
2

"addition modulo 1" as usual. For example, if p = 3, then-% b

1 38 2

-4 == =
0, 3 9 3 etc

Theorem 13

A(p) is a p-primary group and Q/Z = ZA(p{

Proof

First of all, the operation "addition modulo 1" is well defined

and it is associative and commutative; O is the identity and - EE
p

is the inverse of EE' The order of E—n is pn, therefore, A(p) is
p 2

a p-primary group.
Let x € o(pm), thus x has order of a power of p, say pn,

o n
X = é-+ Z with (a, b) = 1. So, an =2 + 2 =0. Then ég_ b

b b
h € Z or hb = apn; since (b, a) = 1, then b = rpn for some integer
r that means x = —EE + Z, but this element does not have order pn
p

so r = 1 and the element x of order prl has the form EE + 7.
|

Consider now the mapping f from o(pw) into A(p) defined by
™ M2 o
fGE; +2) = E;_ Let C—?— + 2) # (—¥—'+ Z) be elements of o(p )
1 2
P p p D
ml 312 m] m,)
and suppose f(—— + Z) = f(— + Z), thus — = — (mod. 1).

r, T, r, r,

b p p p
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m, m, m, m,

So, - — = k for some integer k. This means — - + Z = 0.
r r r r
1 2 1 2

P P p p
m, m,
—;—-+ Z = - + Z. Therefore, f is one-to-one and onto because for

1 2
P p
m m

any € A(p), f(EL-+ 7)) = L Also, fC—l— + 72 + T + 2Z2) =

. pr pr r, r,

P P
m m m m m m

AR R R IS R T R

r r r r r r

1 2 1 2 P 2

P P p p

: . (p) . o

an isomorphism and A = g(p ).

We know by theorem 9, Q/Z = Zo(pw) and by theorem 10, Zo(pm) =

ZA(p); therefore, Q/Z = ZA(p).
Theorem 14
Let @a,, @, 5 « « « 5 @ 45 « « « 5, be nonzero elements of
1 2 n
o(p ) such that pa; = 0, Pa, =a; 5« .« 5 Pa_ g = a .,

1f [an] is the cyclic subgroup of o(pm) generated by a s then

[an] > o(pn), [an]<: [a ] for all n, and o(pm) = B [fal):

n+l =] O

Proof

- o n ’

Consider p a . We know a4, = Pay, 8, =Ppaz 5 - « . , 8 ;% pan

n n-1 n-2

then p a =7p (pan) =p 'pa_;=...=pa = 0. Therefore,
the order of [an] is pn and by the well known theorem that two
cyclic groups of the same order are isomorphic, [an] = o(pn).
Let b be any element of [an]. Thus, b = ran, where r is some integer

therefore, b & [a ]

then b = rpa bl

less than pn. But a =

pan+l’ n+l;

[

and [an]C:”[an+l
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[ee)

It is obvious that ngl[an] C:o(pw). Consider now x & o(pm)

b
of order pr’ SO X = 2 + Z. We claim that x & [a ]. Let a = — +
% n n r
P D
Z. We consider two cases.
- bq
1. Suppose b divides a, so a = gb, therefore qa_ = — + Z =
p
2 4+ 7 =x.
r
P r s
2. Neither b divides a nor a divides b. Since b < p , a < p,
then there exists some integer h such that hb = a (mod. pn). There-
fore, h —&+Z—a—+z— that impl oo[ ] thto(m)—
re, ha = pr = pr = X at imply x egzl an so a P

U [a_].

n=.1 n

pomollarz 4

Every proper subgroup of o(pw) is finite and the set of subgroups

is well ordered by inclusion.

Proof

Suppose there exists an infinite group G properly contained in
o(pw). We will show that this is impossible. Let x € G, since also

J(pm), x has finite order, say pn, SO X = 2; + Z and since the
P

order of x is the same as the order of a s then [x] = [an]. The

order of the elements of G are either bounded or not. Suppose pr
is a bound of the order of the elements of G. Then, by theorem 14,
G C:[ar+l] that contradicts our hypothesis that G is infinite. If

the order of the elements of G are unbounded, then there exists

v € G such that ‘A eé [ai] for every i. But [yi] = [ai], and
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U[yi] = o(pw). This contradicts the hypothesis that G is a proper
;

subgroup of O(pw). Therefore, G is finite.
Now we will prove that the set M of subgroups of o(pm) is well

ordered by inclusion. Since o(pw) =B [an] and all proper subgroups
n=1

are finite, then, for any two subgroups Gl’ G2, either Glc; G2 or
G2<CIGl. Hence, the elements of any subset S of M are contained in
S ome [an]. Therefore, S has a first element.

Corollary 5

o(pm) has the descending chain conditions (DCC) but not the

ascending chain condition (ACC).

Froof

By theorem 14, given a subgroup G of U(pm), G is finite and

[an] CG c(a ] for some n. But [an] :)[an_l] =)ol 53 & :)[al]C}fL

nt+1
Therefore, o(pw) has the DCC.

By theorem 14 o(pw) = |) [a ] with [a_] [
ozl O n

an+l]’ therefore,

any ascending chain cannot stop after a finite number of steps.

Theorem 15

Let G be an ascending union of infinite cyclic groups Cn such

that Cn = [Cn] and (n+l)cn+l = c» for n =1, 2, '+ ¢« Then G ds

isomorphic to the additive group of rationals.

Proof
A _ ¥
Let Qn = [;T], n=1, 2, . . . Clearly, QnCZ Qn+l and Q = ;{lQn.
Define the map 6 : G—Q by G(mcn) = %T’ where m is an integer.
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= m,C where m

We must prove that 6 is well defined, i. e., if myc 2Cps 1°

m

]
-

2 and n, r are integers, then G(mlcn) = H(mzcr). Suppose n

Since nc = (n—l)cn_ =c oW s e (r+l)cr+ = ¢ _, then,

G

n-1’° 1 o
1z r! . . I e

c_ =—c . Hence, mc =m(=)c =m,c . Since C_is an infinite

n n! r 1™n I1'n!"r 2T r

m

Y 2l 1
—_— =m.c i ies z —— = i1 g that ——
my n!) m,C_ implies that ml(nl) m, and so that =

cyclic group,

m

2 which means 6(m

1 Cn) = G(mzcr). Consequently, 6 is well defined.

=

Since 9(cn) =<%T, e(C ) = Qn’ it follows that 6 is onto. Let

a, b € G. We may suppose a, b & Cn for some n. Hence, a = m,c ,

1™n
b = m,c and a + b = (ml + m2)cn; 6(a + b) = (ml + mz)%T = ;% Lt g% -
6(a) + 6(b). Thus 6 is a homomorphism.
Comsider now the kernel of 6. Suppose that 8(a) = 0 for some a &€ G.
We have a « C, a=mc. Then, 6(a) = %1 = 0 and this is true only if
m = 0. Hence, a = 0. Therefore the kernel is O and 6 is an iso-

morphism.

Definition
Let A be a subgroup of B, and let f : A—sD be a homomorphism.
We say that D has the injective property in case f can be extended

to a homomorphism F : B —- D; in other words, an F exists making the

adjoined diagram commute.
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Theorem 16

A group D is divisible if, and only if,D has the injective pro-

perty.

Suppose D is divisible and there exists a homomorphism f from
A into D where A is a subgroup of B. We will prove that there is an
F : B—D that extends f.

Consider the set S* of all pairs (S, H), where S is a subgroup of

B containing A and h is a homomorphism from S to D that extends f.

<

S* is not empty, for (A, f) € S*. We partially order S* by (Al’ h.)

1

(S h2) in case Slc: S2 and h2 extends h,. Let {(Sa, ha)} be a simply

2? 1

ordered subset of S* and define (SO, ho) as follows: SO = s ; if

s & SO, then s & Sx for some a, thus defining ho(s) = ha(s). We

claim that (So, ho)e: S* and it is an upper bound of {(Sa’ ha)}'
S =(S . Then S contains A and h extends f because the h 's
o LY o o o

are extensions of f; so, (SO, ho) € S*. Suppose now that (SO, ho)

is not an upper bound of {(Sa, ha)}’ then there is (S hl) such

l’

that SOC: Sl and hl extends ho. But this is impossible because

SO =L)Sa and Sl c USa. By Zorn's lemma, there exists a maximal pair,
a a

(M, h). We shall prove that M = B.

Suppose there is an element b ¢ B that is not in M. Let Ml =

M+ [b]. It is clear that M is a proper subgroup of Ml, so it suffices

to extend h to Ml to reach a contradiction.

Case 1. M N [b] = 0. Then M, = M®[b]. Define g : (b]—~ D
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to be the zero map. There is a map F : Ml—+ D extending h and g.

]
o
+
on

In fact, any element a in Ml has a unique expression a

I
or
~
s8]
~

where al_é M and bl<9 [b]l]. Define F(a) = h(a) + g(bl)
Clearly, F is a homomorphism and F is an extension of h.

Case 2. M N [b] # 0. Let k be the smallest positive integer
for which kb ¢ M; then, every element y in M, has the unique expression
y =m + tb, where t > k. Let ¢ = kb. Since c e M, h(c) is well defined
and, by the divisibility of D, there is an element x € D with kx = h(c).
Define F : M~ D by F(m + tb) = h(m) + tx. It is clear that F is

well defined and for any y = m + tlb, Y, = m, + t2b in Ml

Fi(y, + y2} = Ff(m. + m2) + (tl + tz)h] =

1 1

h(ml + mzj + (tl + tz)x =

h(ml) - ol e i o h(mz) + t2X =

if

F(yl) - F(yz).

Hence, F is a homomorphism and the following diagram commutes

This contradicts the fact that M is maximal. Therefore, M = B.

Conversely, assume now that the group G has the injective property.

Let x € G and define fx : nZ— G by fx(np) = px. It is clear that f
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iis a homomorphism since fX(nq + np) = an(q + p) = (@ + p)x =qgx +
PX = fX(nq) + fX(np). Since G has the injective property and nZ

iis a subgroup of Q, the following diagram commutes

dh

lq
00— nZ —®Q

Therefore, for any x G there exists a homomorphism fX and its

extension " Consider the set B of all homomorphisms g, Now,
let y be any element in G and let m be any integer. Then there
exists some homomorphism g, € B such that gx(r) =y, where r is

some rational different from zero. Since r is divisible by m, then

E
R
[

r wvhich implies mgx(r') = y. Set gx(r') =y' € G, thus,
my = y. Therefore, any nonzero element in G is divisible by every

integer. Consequently, G is divisible.

(Corollary 6
Let D be a subgroup of G where D is divisible. Then D is a

direct summand of G.

Proof

Consider the diagram
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where I is the identity map. By theorem 16, there is a homomorphism
ip : G— D such that p(d) = d for every de D. By theorem 7, D is a

«direct summand of G.
Theorem 17
A group G is divisible if and only if pG = G for every prime p.

If G is divisible for any integer n, nG = G; in particular, for
tevery prime p, pG = G.

Conversely, suppose now that for every prime p, pG = G. We have
to prove that any x « G is divisible for every integer n. By hypo-
thesis, any element x ¢ G is divisible by every prime p.

Our first step will be to show that every x e« G is divisible by
every power of any prime, i. e., x is divisible by pr.

By hypothesis, x is divisible by p. Thus, there is some y e G
stsuch that py = x, but y is also divisible by p. Then there is

tsome y, € G, Py, = Y- But Yy also is divisible by p. Then Py, = ¥y

for some Yy € G. Repeating this process r times we will find PY . 1 =

1
We_o and, putting all this together, pryr_l = x. Therefore, any x
:in G is divisible by any power of any integer.
Let n be any integer and x be some element of G. By the
r, T, r
fundamental theorem of the arithmetic, n = P, Py & @ o pnn, where

the p; are different primes and ro, integers. There exists some
1

z, & h tha

1 G such that pl z

lhold.

1 - X and by step one, the following equations




2
BA i
r, )
RS
r
2 =2
Ph %n n-1
r,. r r
h o _ £ m % S
T’hws, P, Py P, Z, =¥ ormnz =x Therefore, x is divisible
by n.
Theorem 18

A p-primary group G is divisible if and only if G = pG.

P'rioof

If G is divisible, any element x & G is divisible by every
imteger; in particular, by any prime p. Then pG = G for every prime
P

Conversely, suppose pG = G. We claim that G is divisible by
erviery prime; then, by theorem 17, the theorem follows.

First of all, we prove that G is divisible by any power of p.
Leit x G, since pG = G, then there is Yy G such that Py, = X3
ailiso, vy is divisible by Pys then for some yz(é G, Py, = ¥y- If we
rejpeat this process n times and put together all the equalities, we
giet pnyn = x. Therefore, x is divisible by any power of p. Let q
bie any prime and x € G of order pm. Since (pm, q) = 1, there

exx:ists integer h and r such that hpm + rq = 1. Hence,
x(hpm + rq) = x

xpmh + qrx = x

35
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q(rx) = x

qQy = X.

"Thierefore, x is divisible by any prime q.

IDe:finition
If G is an abelian group, dG is the subgroup of G generated by

«alll divisible subgroups of G.

JLeemma 5

dG is a divisible subgroup of G.

iPrroof

Let n > 0 and let x ¢ dG; then, x = X, + Xy + .. .+ X where

>Xi,is in a divisible subgroup Di of G. Since Di is divisible, there is
1

am element v; 3 Di with my, = X, for a given integer m and every i.

Heznce, Y F Wie i a0+ Y, € dG and x = my ¢ % o o o ar my =

(]

+

).

m((yl + . !

Definition

An abelian group G is reduced if dG = O.
Theorem 19
Every abelian group G = dG ® R where R is reduced.

By corollary 6, dG is a direct summand of G. So, G = dG ® R
for some subgroup R. If R contains a divisible group M, then dG N R
is not empty, but dG/1 R = 0 by hypothesis. Then, M = 0 and R is

reeduced.
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Theorem 20

The abelian groups G, H are isomorphic if and only if dG = dH

amd G/dH = H/dH.

Suppose G = H, then by theorem 19, G = dG ® R and H = dH & RZ'
Leet £ : G-vH be an isomorphism and consider the restriction of f to
d(G. Let x e dG and f(x) = y. Now, ny, = X and f(nyl) = nf(yl) =y,
sio that y € dH, f(dG) < dH. Let y « dH and n any integer, then y = y,n.

S:iince £ is one-to-one there exists x, x, € G such that f(x) = g and

1
f(xl) =y Then, f(nxl) = nf(xl) =ny, =y = f(x) and since f is
ome-to-one, SO nxl = X. Therefore, f|dG is onto and thus an iso-

morphism of dG onto dH. Since dG =~ dH, G ~ H, then G/dG = H/dH.
Conversely, suppose dH = dG and G/dG = H/dH. By theorem 19,
G =di & Rl and H = dH & R2, where Rl’ R2 are reduced. But we know

H/dH = R,. Therefore G = H.

G,/dG = R 2

l,
Liemma 6

Let G and H be divisible p-primary groups. Then, G = H if

aind only if G[p] = H[p].

Let f be an isomorphism from G onto H. The image of G[p] by f
its a subgroup of H. Let x &€ G[p], then px = 0 and f(px) = 0; pf(x) =
0, so £(x) € H[p]. If y € H[p], thenpy = 0 and y = f(x) for some
x € G; so that pf(x) = 0, f(px) = 0 and since f is an isomorphism,

px = 0. Therefore, G[p] = H[p].
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Now we will prove the sufficient conditions. Let f : G[p]—H[p]

an isomorphism. We may consider f as a mapping G[p]— H. Then, by

theorem 16, H and G have the injective property; that is, there exists
a homomorphism F : G-# H extending f. We claim that F is an iso-

mo rphism.

Let x € G with order pn. We know pn_lx € G[p] and f(pn_lx) =

we H[p] but H is divisible; then there is v, & H such that pn_lyl =

Ww. We define F(x) =y Because of the uniqueness of yqs F is well

1°

de:fined. Let x X, be in G with order pr, pn respectively, X, # X,

:and suppose F(xl) = F(xz). This implies Y1 = Yo where f(pr_lxl) =

1 n-1 n r
P ¥, Suppose n > f, p v, = 0, p vy, = 0,

i1k

r-1 n-
P y, and f(p xz)

m-1 _ n-1
Yl p Yo

‘thien p 0 but pn_lx2 # 0, so f(Dn_lxz) # 0. Therefore

F is ome-to-one.

Let y&€ H with order pn. pn_lye H({p] and for some xlé Clp ],

f{x]] = pn—ly. Hence, G is divisible. There is x € G with pn_lx = X

-1 =
n xX) = pn ly, then F(x) = y. Consequently, F is onto

it
Hh
o

f((x )

amd an isomorphism.
Theorem 21

Every divisible group D is the direct sum of copies of Q and

off copies of o(pm) for various prime p.

Prroof

D is divisible. Then any subgroup of D is also divisible; in
particular tD so that, D = tD ® D/tD. It was shown earlier in
ttheorrem 11 that D/tD is a torsion-free divisible group. Thus it is

a direct sum of copies of Q by corollary 2.




tD is the direct sum of p-primary groups by theorem 9. Let
H be the p-primary component of tD; H is divisible and H[p] is a
vector space over Zp by lemma 3. Let r be the dimension of this
vector space and G be the direct sum of r copies of O(pm). Since
thhe direct sum of p-primary divisible groups is p-primary divisible
grroup, so G is p-primary divisible group. The dimension of o(pm)[p]

r [s0)
iiss 1 and G[p] = Zo(p )[p]. Hence, G[p] has dimension r. Therefore,
1

H[p] G[p] because both are vector spaces over Zp and have the

ssame dimension and by lemma 6, G = H. This proves the theorem.

INootation

Let D be a divisible group. Then D= = D/tD and Dp = (tD)[p].
Theorem 22

If D and D' are divisible groups, then D = D' if and only if

(L) D = D'w; (2) for each p, Dp = D'p.

Proof
We know that D = tD § D» and D' = tD' ® D'w. Suppose f : D—+¥ D'

:is. an isomorphism. Consider now the image of tD by f. If x &« tD

:aand x has order n, then nx = 0, f(nx) = nf(x) = 0, so f(x) € tD'.

ILet vy « tD' with order m. There is x ¢ D such that f(x) = y and

1

mf (x) 0, f(nx) = 0, then nx = 0 and x¢ tD. Since f is one-to-one

@and the restriction of f to tD is onto tD', it implies tD = tD'
@and Do =~ D', By theorem 9 tD = ItDp, tD' = £tD'p. Since tD = tD'
by theorem 10, tDp = tD'p and by lemma 6 this implies tDp[p] =

ttDp[p] for each prime p. Therefore, Dp = D'p.

39




Suppose now (1) D= = D'ew (2) Dp =~ D'p for each p. By lemma 6,
Dyp D'p implies that tD = tD'. Since D =~ tD ® D», D' =~ tD' @ D'
tthen D = D'.

The above theorem can be stated as follows: If D and D' are
d:iwisible groups, then D = D' if, and only if, (1) D» and D'= have
tthee same dimension; (2) Dp and D'p have the same dimension for each p.

Niot:e that D= is a vector space over Q and Dp is a vector space over

Z}p.

Theorem 23

If G and H are torsion-free divisible groups, each of which

its isomorphic to a subgroup of the order, then G = H.

Pircof
By lemma 2, G and H are vector spaces over Q. Since G is

itssomorphic to a subgroup H, of H, then the dimension of G is the

1

same as the dimension of Hl' Also, H is isomorphic to a subgroup

G1 of G so that the dimension of H is the same as the dimension

of Gl' By Cantor-Schroder-Bernstein's theorem, the dimension of H

iss the same to the dimension of G, and by theorem 12, H = G.

Theorem 26

?

Let G, H be torsion-free divisible groups and G ® G H & H,

tthen G >~ H.

Piroof
By theorem 12, G ® G and H ® H have the same dimension as a

viector space over Q. We will consider two cases. (1) When the




dimension of G ® G is finite; (2) when the dimension of G @& G is
infinite.

(1) If the dimension of G is n, then the dimension of G ® G
is 2n and also H ® H has dimension 2n, so that, H has dimension n.
Therefore, H = G.

(2) If G® G has infinite dimension, then the dimension of G
is the same as the dimension of G ® G since the cross product of
two infinite sets of the same cardinal has the same cardinal as
each set.

Therefore, the dimension of G ® G is equal to the dimension of

G and to the dimension of H. By theorem 12, H = G.

Definition

FF s a free abelian group on {x, } in case F is a direct sum

k
i T s = " =
of infinite cyclic groups Zk where Ak [Xk]'

Theorem 27

5
1

] every nonzero element x € F has the unique

If F is free on {x
expression

X = mk xk T o ow s o mk xk

i n n

where the m ~ are nonzero integers and the ki are distinct.
i

Proof

By theorem 5 any element x € IZ has a unique expression

k

X = In.k xk TR mk xk
1 n mn




42

where the m  are nonzero integers and the ki are distinct. This
i

proves the theorem.
Theorem 28
Let F= ¢ Z, and G = [ Zi be free abelian groups. Then,
i€l * jeJ

F if, and only if, J and I have the same number of elements.

Proof

Suppose F = G and F is free on {xi}, G is free on {yi}. Let p
be prime. Then F/pF and G/pG are vector spaces over Zp by lemma
3. We claim that the {xi + pF} is a basis for F/pF. Let

{x, + pF, ..., x_ + pF} be any subset of {xi + pF} and suppose

kl kn
ml(xk + pF) + . + mn(xk + pF) =0
1 n
where ﬁié Zp. Hence, we have
m + m.x  + + m + pF =0
Nlhi m2}k, mnx‘ pF
1 2 n
or
mlxk + myX, + - o mnxk = 0
1 3 n
But, by theorem 24, it implies mo=m,=...=m = 0, so that

{xi + pF} is a linearly independent set and also is maximal since
there is no y + pF such that B = {x_+ pF} U {y + pF} is linearly
i

independent because y = mlxkl P o o o ar mhxkh and y + pZ cannot
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be linearly independent with {x1 + pF}. Therefore {xi + pF} is
a basis for F/pF. Proceeding as above, we get that {yi + pG} is
also a basis for G/pG. Since F * G, pF is isomorphic to pG. Therefore,
F/pF = G/pG. By the well known theorem, the cardinal of {xi + pF}
is the same as the cardinal of {yi + pG} that implies I and J have
the same number of elements.
Conversely, if I and J have the same number of elements,

F= I Zi and G = T Z, have the same number of direct summands
iel jeJ d

with Z, =~ Z,, then, F = G.
j i

Definition

Let F be free on {xi 3 5l I}. The rank of F is the cardinal
of I. If I is finite, we say that F has finite rank.

Theorem 25 states that the necessary and sufficient condition
in order that two groups be isomorphic is that they have the same
rank. As in vector spaces, if I is finite and has n elements, we
say that F has rank n. Also, the above theorem gives the duality
between the rank of a free abelian group and the dimension of a
vector space. In order to stress this analogy, we make the following
definition.

Definition. A basis of a free abelian group F is a free set of

generators of F.
Theorem 29

Let F be free with basis {xk}, G and arbitrary abelian group
and f : {xk}-w G any function. There is a unique homomorphism

g : F— G such that




for all k.

Let Z, = [x,]. We define g : F—%G by g(x) = g(mlxk + . . .+
1

mx ) =m £{x + « ¢« « + 0 G il I
n X Bl ) mnf(ak )
n 1 n

The mapping g is well defined since any element x & Zk has a

uni que expression as a linear combination of the X, and the function

is si - . = + ... =
of f is single-valued. Let x mlxkl + mnxkn and y

k k

g 5 ol 5 + = o W i
n,x, + + nlxhl then g(x + y) g(mlx - + m_ X ’ +

H;Hkl R nlxhl) = mlr(xk]j e e mnf(xkn) + nlthh]) +

+ nlf(xh ) = g(x) + g(y). Then g is a homomorphism. Suppose

il
now that there is another homomorphism g' such that g'(xi) = f(xi).
If x = n_x Lis e sl 3 (x) = X
If % = o8, # nx , 8(x) n, £(x, ) + + 0 f(x )
1 r 1 1
] = ] ] 1 o
and g'(x) = n,g (Xkl) T » n_g (Xkl) but g (in) = f(xki).

Hence, g' coincides with the mapping that we have defined.

Corollary 7

Every abelian group G is a quotient of a free abelian group.

Proof
We first state that if X is any set, then there exists a free

abelian group F have X a basis. If X contains just one element,
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X, then an infinite cyclic group Zx can be constructed that has x

as a generator. Let Zx = {nx : ne Z} and define the addition of two
elements by nx + mx = (m + n)x. It is clear that this operation

is well defined and associative. The element ox is the identity and
-nx is the inverse of nx. Therefore, Zx is an infinite cyclic group.

For the general case, set F = I Zx. In order to prove the corollary,
xeX

set F = I Zx. By theorem 26, the identity mapping I : G-¢ G,
xeG

I(x) = x can be extended to a homomorphism g : F—+ G. Since I is the
identity, g is onto and by the fundamental theorem of homomorphism,
F/K = G, where K is the kernel of G. Therefore, G is the quotient group

of a free abelian group.

Definition

Let B : B—vC be a homomorphism of B onto C. We say that F
has the projective property in case that if a : F—»C is a homo-
morphism, then there is a homomorphism y : F— B with By = a, i. e.,

there is an o making the following diagram commute.

Theorem 30
An abelian group F is free if and only if, it has the projective
property.

Proof

Suppose F is free and on the above diagram is given B and o.
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Let {xk} be a basis for F. For each k there is an element bkeg B
sucth that B(bk) = a(xk) because B is omto. Define the function f(xk) =
b, from {Xk} into B. By theorem 26, thiere is a unique homomorphism

: = e . . .
y stuch that Y(xk) b, for all xk {xk} In order to finish the

k
prowf of the theorem, we have to show that y8 = o and for this
purjpose it suffices to evaluate each om the set of generators of
F. But By(xk) = B(bk) = u(xk) as requi.red.

Conversely, suppose F has the proje:ctive property, i. e., the

following diagram commutes.

B———% ——% )

Sinice every abelian group is the quotie:nt of a free abelian group,
(corollary 7), let B be a free abelian group such that B/B' = F.
Set C = F and B the natural homomorphisim from B onto F, a = I.

By lhypothesis, the diagram commutes, y8 = I; since B is onto and YB
is ‘the identity mapping, then B is also' one-to-one and consequently

an :isomorphism of B onto F. Therefore, F is free.

Corwllary 8

Let G be an abelian group and let B : G—»F be a homomorphism
onto, where F is free. Then, G =B ® S, where S * F and B is the

kermel of B.

Proof

Consider the diagram
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&
i
J’I
G ® F -0
where is the identity map. By hypothesis, F is free. Then F

has the projective property. That is, there exists a homomorphism
Y : F—=»G with B~ = I. But y is one-to-one because, if not, By
cannot be one-to-one and By is the identity mapping. Then, the
ima;ge S of F by y is isomorphic to F. We claim that G =B & S.
Lett x« BN S. Hence, B(x) = 0 because x€ B and x = y(y)

v &« F, so that By(y) = 0 which implies y = 0. Therefore, x = 0
and BM S = 0. Consider now [B (J S]. It is obvious that [BU S] C G
Let x € G and x # 0. Then either x € S or not. 1If xe S, then
xe (BUS]. If x¢ S, then B(x) =y. If y =0, then x £ B and so
x € [B (U S]. Suppose B(x) =y # 0. Since By = I, then Ry(y) =y.
Let y(y) = x', so B(x') =y = B(x) or B(x — x') = 0 which implies

€ B. That is, x - x' = b where b € B. Therefore, x b + x',

Theorem 31

Every subgroup H of a free abelian group F is free. Moreover,

rankk H = F.

Pro‘of_

Let {x, : k € K} be a basis of F. Define F(I) = £ (Xk]
kel
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where I is a subset of the index set K. Consider now the set S¥*
of all pairs (B, I) where I K and H /) F(I) is free with a basis
B :swiclh that the cardinality of B is less or equal to the cardinal of
I. Swch pairs do exist, i. e., (¢, ¢).
The relation defined on S* by (B, I) = (B', I) where B B'
and I ¢ I' is a partial order relation. Let (M, J) be such that

M =(UIBi and J =UJi' It is trivial that (M, J) contains the (Bi’ Ii)’
i 3l

but we must verify that (M, J) € S* in order that it be an upper bound.
Since M is the union of ascending independent sets, then M is also

independent. Also, J < K and since F(J) = U F(Ii), then the cardinal
i

of M is less or equal to the cardinal of J. Also, M is a basis for

HNO [ U F(Ii)] since HN [ li F(Ii)] = (JIHN F(Ii)] and M contains

i 4

the Bi that are the basis for the H N F(Ii)' Hence, (J Bi =M is a
i

basiis for U[H N F(Ii)]' Therefore, (M, J) & S*. Then, Zorn's theorem
i

can be applied so there exists a maximal pair (Bo, Io). We claim
thatt Io = K which will complete the proof. Since F(K) = F and
Fif) H = H, Bo will be a basis for H.

Suppose Io # K, i. e., there is an index k % Io; set Io* =
{Io, k}. Then, F (Io)c F(Io*) and

F(Io*) N H _ F(Io*) N H
F(Io) A H F(Io*) N\ H N F(Io)

. (F(Io*) N H) + F(Io) . F(Io*)
F(Io) ~ F(Io)
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by the: second isomorphic theorem. Since Io* and lo are different

by one element, then F(Io*)/F(Io) = Z so that the original

quotient is 0 or Z (every non-trivial subgroup of Z is cyclic and
isomorphic to Z). If the quotient is 0, then F(Io*)/) H = F(Io)/) H.
T'herefore, (Bo, Io*) & S* and is larger than the maximal pair

((Bo, 10) which is a contradiction. Suppose now that the quotient is
i.somorphic to Z. Then, by corollary 8, F(Io*)/ H = F(Io)) H® L,
where L = Z. The pair (Bo*, Io*) € S* and is larger than (Bo, Il0),

a1 contradiction. Therefore, Io = K as we claimed.
Theorem 32

Anm abelian group G is finitely generated if, and only if, it is

a1 quotient of a free abelian group of finite rank.

P’roof

Let G = [a a , a ] and F = Lz where Z
a a

1 SEAEE S n . .
aieG i i

dlenotes the infinite cyclic group generated by a, . Consider the
fiunction f : F—% G defined by f(ai) = a,. By theorem 27 there exists
a1 unique homomorphism g : F-—¥® G that extends f. Since F has rank n,
G is the quotient group of a free abelian group of finite rank.
Suppose now G is the quotient group of a free abelian group F

of finite rank. Then F/K = G, where K is a subgroup of F. By

AN

ttheorem 28, K is also free and rank K rank F. Let y + K ¢ F/K.

Sii e F, th = + . . .+ here the re i
since y s en y mlxkl mnxkn’ \ xki are in

the basis {xi} of F. Hence
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(mlxk + K) + (mZXk, + K+ ...+ (mnxk + K).
1 2 n
Thiiss means that y + K &€ [xl + K, ..., X + KJ. Then, F/K C
Mlxz, + K, +. . .+, x +K].
1 n
Consider any element of y & [xl + Kl A » X + K]. Then

v + + + + ... =
W (mk X, K) (mk X, K) + (mk X, + K) mo X +

11 2 72 Top nic 171

me et A mox K. So that y € F/K. Therefore, F/K
2 72 r r

iis; finitely generated.

Coircollary 9
A direct summand B of a finitely generated abelian group G is

@al:so finitely generated.

Proof

Let B be a direct summand of G. Since G is finitely generated,
tthiewre exists a free abelian group F of finite rank such that
F/'H G. B is a direct summand of G. Then there exists a
suimmand of F/H isomorphic to B. By the correspondent theorem, there
exists a subgroup M containing H such that M/H B. By theorem 28,

M is free abelian. Then, B is finitely generated.

(Corollary 10

Every subgroup H of a finitely generated abelian group G is

it:self finitely generated.
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Let F/A = G where F is free abelian of finite rank and A is
@a subgroup of F. Since F/A = G and H is a subgroup of G, then there
e€exztists a subgroup H'< F/A such that H' = H. By the correspondent
tthieorem there exists a subgroup F' of F containing A such that
IF' /A = H'. Therefore, H is isomorphic to F'/A which is the quotient
fi a free abelian group of finite rank and by theorem 29, H is finitely

sgemmerated.
Theorem 33

Every abelian group G can be imbedded in a divisible group.

IPr-oof
By corollary 7, there is a free abelian group F with G = F/R

ifor some subgroup R of F. Let F = I Zi since the infinite cyclic
iek

(group 2. is isomorphic to the additive group of integers, it
ifollows that F<C IQ since each Zi can be imbedded in a copy of Q.
‘Thierefore, G = F/RC (ZQ)/Rl and this group is divisible being

quo tient of a divisible group.

(Corollary 11

An abelian group G is divisible if, and only if,it is a direct

sswmmand of every group containing it.

JPrroof
We know by corollary 6 that if G is a divisible subgroup of D

then G is a direct summand. This proves the sufficiency.
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In order to prove the necessity, we imbedded G in a divisible
igroup D that is always possible by Theorem 30. G is a direct summand

©f D which is divisible; therefore, G is also divisible.
Theorem 34
Every finitely generated subgroup A of Q is cyclic.

JProof
A 2y
Suppose A has generators P S
1 2

o‘|m
=

n
. Letb= 1b

=}
[

and consider the function f : A—e Z defined by f(x) = bx for every
xe A. First of all, we must show that f is well defined. For any

x & A, the expression

n n
I m, MTb.a
el =1t
a a ,
x=n—1+ +m-—g—'—--’ -l—-—-—#l :
1 bl n bn n
I b,
i=1 7t
n n -
is unique. Then, f(x) = I m, 1l b,ai which is always well defined.
i=1 ' j=1

j#l
Now, if x # y, then f(x) = bx and f(y) = by, which are not equal
unless x = y; f is one-to-one. We will prove now that f is a homo-
morphism with kernel O which will complete the proof.

For any x, y € A,

f(x+Y) =b(x+y) =bx + by = f(x) + £(y)

f is a homomorphism.
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If £f(x) = 0, then bx = 0 so that x = 0. Therefore, the kernel

«of £ is O.

IDefinition

Let G be a torsion~free group and x €& G define
<x> = {y € G : my € [x] for some m € Z, m # 0}.

ILemma 7

The group <x> is isomorphic to a subgroup of Q.

IProof

If y € <x>, then my = nx where m and n are integers and m # O.
IDefine the function f : <x>—+*Q by f(y) = ﬁ; where m, n are such that
my = nx. Since the numbers m, n are uniquely determined, then the
function f is well defined. Let y, z &€ <x>, then there exists m s

m, and n, such that my = ngx and mZF = n,X. Suppose z # y, thus,

if n, = Ny, it implies my = m,z and my # m, . Otherwise y = i whlci
L 5

contradicts our hypothesis. This proves that if x # y, then El #-M'
1 2

which means that f(x) # f(y). Therefore, f is one-to-one. Now, if
we prove that f is a homomorphism, the theorem will be proved. Let

€ <x> and m

Yys ¥y 191 = PyXs MY, = noX. Hence, m m,y., = myM, X,

2 2 1 i | 2

= m,n.X and mlmE(yl -+ yz) = (mzn

1 2y2 1%9 + mlnz)x, so that f(y, + Vi} =

1

jm2nl + mlnz

m,m

= f(yl) + f(yz). Therefore, f is a homomorphism as
172

we claimed.

JLemma 8

If G is torsion-free and x € G, then G/<x> is also torsion-free.
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Proof
Suppose y € G/<x> has finite order n, then n(y + <x>) = 0,
That means ny @ <x>, but this cannot be the case because y # O.

Therefore, G/<x> is torsion-free.

Theorem 35 (Basis Theorem)

Every finitely generated abelian group G is the direct sum

of cyclic groups.

Let G = [xl, Xog o5 = o s xn]. We prove the theorem by
induction on n. If n = 1, then G is cyclic and we are done.
Suppose n > 1. We will consider two cases where, in the first
case, G is torsion-free and the second case is general.

Case 1. G is torsion-free. By lemma 8, G/<xn> is torsion-
free and it is generated by n - 1 elements. We know by induction
hypothesis that G/<xn> is free abelian and that there exists a
homomorphism of G onto G/<xn>. Then, by corollary 8, G = <xn ®F,
where F is free abelian. Since <x > is the direct summand of a
finitely generated group, by corollary 9, <X > is also finitely
generated. By lemma 7, <Xn> is isomorphic to a subgroup of Q
and we proved in theorem 31 that a finitely generated subgroup
of Q is cyclic. Therefore, <xn> is cyclic and G is free abelian
which means a direct sum of cyclic groups.

Case 2. This is a general case. We already know that G/tG

is torsion-free and since G is finitely generated, by theorem 29,

G/tG is finitely generated. Therefore, by case 1, G/tG is free
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abelian. Since G/tG is free abelian and G/tG is the homomorphic
image of G by the natural homomorphism, then, by corollary 8,
G = tG ® F, where F is free abelian. By corollary 9, tG is
finitely generated and torsion; therefore, it is a finite group.
By the basis theorem for finite groups, tG is a direct sum of
cyclic groups and the proof is complete.

Now, we give the fundamental theorem of finitely generated

abelian groups.
Theorem 36

Every finitely generated abelian group G is the direct sum
of primary and infinite cyclic groups and the number of summands

of each kind depend only on G.

Proof

We proved earlier that G = tG ® (G/tG). The fundamental
theorem for finite groups given us has the uniqueness of the
decomposition of tG into direct sum of cyclic groups. By

theorem 25, G/tG has a unique number of cyclic summands.

Definition

A subgroup S of G is pure in G in case nG/} S = nS for
every integer n.

An alternative definition of a pure subgroup is the following.
A subgroup S of G is pure if for any element h € S, h = ny for

any integer n and y € G which implies h = nh1 with hl.e S.

It is clear that both definitions are equivalent. Both
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say that if an element of S is divisible by n in G, it is also
divisible by n in S.

One of the simplest examples of a non-pure subgroup is the
following. Let G be the additive group of integer module 4.
G=1{0, 1, 2, 3} and S = {0, 2}. Then, 2 is a multiple of 2
in G but not in S, so S is not pure.

The following are some of the most simple properties of
the pure groups. We omit the proof of most of them.

1. Any direct summand of G is pure in G.

Proof. Let G=H® S. We know nG = nH # nS. Therefore,
nGN S = nS.

2. If G/S is torsion-free, then S is pure in G.

Proof. Let ye& S and y = nx, where x ¢ G. Consider x + S.

0. If nxe S, xe€ S, G/S

Then n(x + S) =nx +S =y + S

is a torsion group, so that nG nS.

3. Since G/tG is torsion-free, then tG is pure. Furthermore,
we gave an example in theorem 8 that tG is not a direct summand
of G. Therefore, a pure subgroup need not be a direct summand.

4, 1f G is torsion-free, a subgroup S of G is pure if
and only if G/S is torsion-free.

Proof. Sufficiency is property 3. Suppose now that S is
pure in G and consider y + S # 0. Then, if n(y + S) 5,
ny = ny, where v, € S so that n(y - yl) = 0. But, by hypothesis,
G is torsion-free. Therefore, n(y - yl) = 0 implies y - Yy = 0.

5. Purity is transitive, i. e., if K is pure in H and H is

pure in G, then K is pure in G.
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6. Any intersection of pure subgroups of a torsion-free
group G is pure.

7. A pure subgroup of a divisible group is divisible.

8. The ascending union of pure subgroups is pure.

9. Let S be pure in G and let y € G/S. Then y can be
lifted to x € G, where x and § have the same order.

Proof. Let y = (yl + S) € G/S and let n be the order of y.
Then, ny € S and there is some z € S such that ny, = nz. Let
X= 2=y, Then nx = nz - ny, = 0 as we desired. If y has

infinite order, then the element Yy has the required property.

Lemma 9
Let T be pure in G. If T< S € G and S/T is pure in G/T,

then S is pure in G.

Proof
Suppose ng = s, where s €¢ T and g € G. Then né = s, where

s denotes the coset of s in S/T. By the purity of S/T, there

exists an element s' & S/T with ngl = 5. Rewriting this equation

in G we get

ns' - s =t
for some t € T. Hence ns' - ng = t but T is pure. Then there
is t'€ T such that n(s' - g) = nt' or ns' - ng = nt'. Thus,
s =n(s' -t') and s' - t' € S. Therefore S is pure in G.

Lemma 10
A p-primary group G which is not divisible contains a pure

cyclic subgroup.

_
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Proof

Suppose there is an x € G[p] which is divisible by pk but

not by pk+l. Let pky = x. We claim that this element exists

and [y] is pure in G.

By lemma 1, in a p~primary group every element is divisible
by any integer prime to p. From this lemma we need to check only
the divisibility by powers of p in order to prove that [y] is
pure. Suppose v, = pry and vy is divisible by ph in G, 1. e.,

pry = phz, z€ G. If h>r, we have x = pk—rpry = pk—rphz, or

k+1
=P

h-r-1
(p =

z) contradicting the hypothesis that x is not
divisible by pk+l.
Now, we will prove that our assumption that there is an
. . n k k+1 |,
x € G[p] which is divisible by p but not by p is true.
Suppose that each x € G[p] is divisible by every power p-
If this is the case, we will prove that pG = G, so that G
is divisible by theorem 18 contradicting our hypothesis. Let
k ; k-1 .
y € G and p equal its order. Then p "y = x with x & G[p].
Since x is divisible by every power of p, so x
- k k-1
Pk ly =Pz, P (y - pzl) = 0. This implies
Therefore pk_z(y - pzl) is divisible by
k-122) = 0 which implies that pk—B(y -

Repeating this process k times we get
Y - P2, = P2, = s+ + « =pz, =0
1 2 k

y = p(z1 F i Vel L)

That is, every y in G is in pG. Therefore, G = pG.
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Definition
A subset X of nonzero elements of a group G is independent
in case Im x = 0 which implies each m x = 0, where x € X
a o a“a a

and m € Z.
o

Lemma 11

A set of nonzero elements of G is independent if, and only if,

[X] = © [x].
xeX

Proof

Suppose X is independent. Let X, € X and let y e [xo]

[X - {xo}]. Then y = mx and y = Zmaxa, where each X, # x .

Therefore,
-mx_ + Imx =0
o a o

so that, by the independence of X, each term is 0. Hence,

0= mx_ = y. By theorem 6, [X] = I [x].
x€X
Conversely, suppose [X] = I [x]. By theorem 5, every x € [X]
xeX

has a unique expression

171 T nn

Then, if O = Zmaxa, each term is 0. Otherwise, we have distinct
representation for O.
Definition

A subset X of G is pure independent if X is independent and

[X] is a pure subgroup of G.
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Lemma 12
Let G be a p-primary group. If X is maximal pure independent,
(i. e., X is contained in no larger pure independent), then

G/ [X] is divisible.

Proof

Suppose G/[X] is not divisible. Then, by lemma 10, it contains
a pure cyclic subgroup [y]. By property 9 of pure subgroups,
y may be lifted to an element y € G, where y and y have the same
order. We claim that X* = X U {y} is pure independent, which

will contradict the maximality of X. First of all
[X] C [X*)C ¢

and [X*]/[X]) = [y] which is pure in G/(X]. Therefore, by lemma

9, [X*] is pure in G. Secondly, X* is independent. Suppose,

my + Emaxa = 0, X, € X, m € 2. 1In G/[X], this equation becomes

m§ = 0 which means that the order of y is m and since y and y have
the same order, then my = 0. Hence Zmaxu = 0 and by the independence
of X, each mx, = 0. Therefore, X* is independent and so it is

pure independent.

Definition

Let G be a torsion group. A subgroup B of G is a basic
subgroup of G in the following cases.

1. B is a direct sum of cyclic groups.

2, B is pure in G.

3. G/B is divisible.
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Theorem 37
Every torsion group G contains a basic subgroup.

By theorem 9 every torsion group has a decomposition as a
direct sum of p-primary group. Then, if we show that every
p-primary group has a basic subgroup, the theorem follows.
Assume, therefore, that G is p-primary.

If G is divisible, then G is isomorphic to o(pm). Then
B =0 is a basic subgroup. If G is not divisible, then G
does contain pure independent subsets by lemma 10.

Let Y be the set of all pure independent subsets of G.
Partially order Y by ordinary inclusion. Let {Ya} be a simply
ordered subset of Y, i. e., the Ya are pure independent subsets
of G and given any two of them, one contains the other. Let
Y. be the union of these Ya' But by property 8, the ascending

1

union of pure subgroups is pure, so Yl is pure. Consider now

Im x =0 wherem € Z and y € Y . Since the Yo are partially
oo i o .
ordered by inclusion, then xlé Yl and there exists some a'
such that y ¢ Y , for every a. Hence Im x = 0 implies m x =0
6] a a o o

for each a. Therefore, Y. is independent. The set Y satisfies

1
the hypothesis of Zorn's lemma. Therefore, there is a maximal

pure independent subset X of G. The previous two lemmas show

that B = [X] is a basic subgroup.

Corollary 12

Every torsion group is an extension of a direct sum of cyclic

groups by a divisible group.

Ny



62

Proof
The theorem follows from the previous theorem and the defini-

tions of extension and basic groups.

Corollary 13 (Priufer)

Let G be a subgroup of bounded order, i. e., nG = 0 for

some integer n > 0., Then G is a direct sum of cyclic groups.

Proof

Since G is of bounded order, G is torsion and by theorem 34,
G contains a basis B. Let y + B € G/B. Since G/B is divisible,
y + B is divisible by n. Soy + B = n(x + B) = 0. Therefore,

G/B = 0 and, consequently, G = B.
Theorem 38

Let G be an abelian group and H a pure subgroup such that
G/H is a direct sum of cyclic groups. Then, H is a direct

summand of G.

Proof

For each cyclic summand of G/H, pick a generator Yi» 1. €.,
G/H = Zo(yi). By property 9 of pure subgroup, we can select
elements xiei G such that the X, and v, have the same order.
Let K = Zo(xi). We claim that G = H @ K.

I1f we prove that [H+ K] = G and HN K = 0, then by theorem
6, the theorem follows.

1. [H+ K] = G. Let tbe any element in G and t equal

the image of t by the natural homomorphism n from G into G/H.
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Hence t = Zmiyi, where m, € Z. Now, n(t - Zmixi) = n(t) -

T = = =t - = -
n( mixi) n(t) Zmiy(xi) t Zmiyi 0, then t Zmiyie H.

Since Zmixié K, we have t € [H + K].

2. HNK=0. Letwe HN K, then w & K, so that w = Im, x,
A, I,

and n(w) = Zmiyi = 0 because w is also in H. If bjn has infinite
order then m, = 0. If Yy has finite order n, then m, must be

a multiple of n In either case, since X, and v; have the same

i

order, ax, = 0 for every i so that w = 0.

Theorem 39

Let S be a pure subgroup of G with nS = 0 for some n > 0.

Then, S is a direct summand of G.

Proof

Let £ : G —~G/(S + nG) be the natural map. It is obvious
that this quotient is of bounded order since n(G/(S + nG) = O.
Also, G/(S + nG) is the direct sum of cyclic groups by corollary
13. Let G/(S + nG) = Zo(ru) where ia is a generator of o(ra).
For each, §a is raised to Xa.é G.__ Then raxaé S + nG since

the order of X, mod. (S + nG) is r and so

where saé: S and ha e G with r, dividing n. Thus, we have
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r s' . Therefore,
Q Q

Since S is pure, there is Sa'é S with S,

ry, = nha and f(ya) =X -

Let K = [nG UV {ya}]. We claim that G =S ® K. We must prove
that SN K =0 and S + K = G.

1. SNK=0. Let xe S/\ K. Since xe€ K, x = Zmaya + nh.
Also x € S, then f(x) = 0 so that 0 = Zmaia' Hence, r, divides m,

for each a. But we know rayae nG so that mayae nG. Therefore,

X = Zmaya+ ny € nG. But S (1 nG = 0 since for any element y

in G that is also in S, we have ny = 0. Consequently, x = O.
2. S+K=0G. Let x& G. Then f(x) =Imx = f(Imy )
a’a a’a

so f(x - Zmaya) = 0, or x - Zmaya = s + nh S + nG. Therefore,

x=5+ (nh + Zmy ) S + K.
@’ a

Corollary 14

If tG is of bounded order, then tG is a direct summand of

G. In particular, tG is a direct summand if tG is finite.

Proof
By property 3, tG 1is pure in G. Then, if tG is of bounded
order, by the above theorem, tG is a direct summand of G. And,

of course, if tG is finite, tG is of bounded order.

Definition
A group G is indecomposable if G # O and if G ~ H & K.

Then, either H or K is O.

Corollary 15

An indecomposable abelian group G is either torsion or torsion-

free.
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Proof

Suppose that G is an indecomposable group that is neither
torsion nor torsion-free. Otherwise, we do not have anything
to prove. Hence, tG is a proper subgroup of G. If tG is divisible,
then, by corollary 6, tG is a direct summand of G which contradicts
our hypothesis so that tG is not divisible. By theorem 9, tG
is the direct sum of p-primary groups so, by lemma 10, tG
contains a cyclic and pure group o(p). It follows from theorem

36, that o(p) is a direct summand of G, a contradiction.
Theorem 40

A torsion group G is indecomposable if and only if G is

primary and cyclic or G = o(pm) for some prime p.

The sufficiency condition is obvious. Suppose G is torsion
and indecomposable. By theorem 9, G is the direct sum of p-
primary groups so that G is p-primary for some prime p. If G
is of bounded order, then, by corollary 10, G is the direct sum
of cyclic groups and G is indecomposable so that G is cyclic.

Suppose now that G is not of bounded order. If G is not
divisible, it follows from lemma 10 that G has a pure cyclic
subgroup o(p) and by theorem 36 o(p) is a direct summand of G,
a contradiction. Therefore, G is divisible and by theorem 21,
it is a direct sum of copies of Q and o(pm) for distinct p.
Since G is torsion, we cannot have the case that G has as a
direct summand copies of Q, and, because G is indecomposable,

G = O(pm).

—
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Theorem 41

Let G be an infinite abelian group with every proper sub-

group finite; then G = o(p ) for some p.

Proof
Since every proper subgroup of G is finite, then G is torsion.
By theorem 9, G is the direct sum of p-primary group. Suppose
that G has infinite summand, then there exists a subgroup of G
that is not finite. Since the finite direct sum of finite
summand is finite, G cannot be decomposed as a direct sum of
proper subgroups. Therefore, G is indecomposable and, by theorem

37, it follows that G = o(pw) because G cannot be cyclic.
Theorem 42

If an infinite abelian group G is isomorphic to every proper

subgroup, then G = Z.

Proof

Let x € G and x # 0. Consider the cyclic group generated
by x, [x] = D. By hypothesis, G * D and since D is infinite cyclic
group, it follows that G = Z.

Now we will study a restricted class of torsion-free groups--

those of rank 1.

Definition

The rank of a torsion-free group G is the number of elements

in a maximal independent subset G.
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Since a free abelian group is torsion-free, then our two
notions of rank coincide for these groups. Below, we give

some theorems and notation for this type of group.

Theorem 43

Every torsion-free group G can be imbedded in a vector space

V over Q.

Proof

By theorem 30 the group G can be imbedded into a division
group G. Consider the natural map £ : D—D/tD. Since G is
torsion-free, any element in G is not in tD, so if xe G,

f(x) # 0 and, consequently, f(G) € D/tD. By theorem 11, D/tD
is torsion-free divisible group and by lemma 2, D/tD is a vector
space over Q. Therefore, G is imbedded in the vector space

D/tD.
Theorem 44

A torsion-free group G has rank at most r if, and only if,

G can be imbedded in an r-dimensional vector space over Q.

If the rank of the torsion~-free group G is less or equal
to r, then, by the theorem above, D/tD is a vector space over Q
containing G. Suppose now that D/tD has dimension q less than r.

Let {xl 5 Of o ol.g xr} be a maximal linearly independent set in

G. Hence, {§l T e e R ol §r} is linearly independent set in D/tD,
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where f(xi) = ;i' But this is a contradiction of our hypothesis
since the dimension of D/tD is q. Therefore, dimension of

>

D/tD = r.
Conversely, if G can be imbedded in a vector space V over Q
of dimension at most r, then any subspace of V has dimension at

most r. Let G be the subspace of V such that G =~ G and let

T

y

) ;s} be a basis of G. Then the corresponding set

10 G, = xs}, is maximal linearly independent. Hence,

]_ 3

the rank of G is s with s = r. Because of this theorem, the
rank of a torsion-free group is well defined by the above
definition. Thus, any two maximal linearly independent sets of

G will be a basis of the vector space G over Q.
Theorem 45

Let
O——+A—B—2C—» 0

be an exact sequence of torsion-free groups. Then, rank A + rank

C = rank B.

We know by theorem 1 that B is an extension of A by C. Let
LxL SI% e o 1y xr} be a maximal independent set in A so the rank
of A is r. Since the groups A and B are torsion-free, we can
identify the rank of groups with the dimension of the subspace

over Q in which they are imbedded. Hence, we can extend the

set {x, , . . . , x_} to a maximal independent set in B,
1 r

—.
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{x T - b3
e M Ll

C = B/A and rank C = rank B/A. But A and B are torsion-free.

s xn}, since A € B. Also,

Then, rank B/A = n

r. Therefore, rank A + rank C = rank B.

Corollary 16

Any torsion-free group of rank 1 is indecomposable.

Proof

Suppose G = G, & G,. But

is an exact sequence if we define f and g by the identity
and projective mappings, respectively. By the above theorem,
rank G = rank Gl + rank G2, but the rank of Gl and G2 is at least

1 for each one. Therefore, G is indecomposable.

Corollary 17

Any torsion-free group G of rank 1 is an isomorphic subgroup

of Q.

By theorem 43, G can be imbedded in l-dimensional vector
space V over Q. Since V = Q and G is imbedded in V, G is
isomorphic to some subgroup of Q.

The following subgroups of Q are non-isomorphic.

Gy ¢ All rationals whose denominator is square-free.

G2 : All dyadic rationals, i. e., all rationals of the form Ek
ke

G, : All rationals whose decimal expansion is finite.
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Let pPys Pys Pgs + + - 5 P 5 + + - be the sequence of primes.

Definition

A characteristic is a sequence

Ry By 50 o Ko w0 )

where each Kn is a non-negative integer or the symbol o,

If G is a subgroup of Q and x € G is nonzero, then x
determines a characteristic in the following way. We put
Kn = 0 if py = x has no solution in G, Kn = K if piy = x has

k+1

solution but p, y=n has no solution. Kn o if all the

. i . .
equations P,y =X have solutions for every 1i.

It is useful to write each nonzero integer m as a formal
*1
infinite product, m = Hpi , where the p; range over all the

2

primes and a, 0. If the element a is replaced by ma, where m
i

is a nonzero integer, then there is no change in Kn if it is oo,
S . > c .
but it is finite and equal to K = 0 and m = cnm' with (pn, m') = 1.

Then, after the change, it will be Kn =K + c.
oy Bi
Let m = Hpi and n = Hpi be given integers. If ae& G has

K ), then by the definition

1’ K2’ 3°

of characteristic, there is an x € G such that mx = na and

the characteristic (K

<
only if ai = Ki + Bi for every i (we use by convention « + Bi = o),

The groups Z, Q, Gl’ G2, G3 (the last three defined as above)

are of rank 1 and all contain x = 1.

The characteristic of x = 1 in each group is

Z : (0, 0, 0, . . .)
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Distinct nonzero elements of the same group may have distinct

characteristics. For example, in Z the characteristic of 6 is

0, 1,1,0,0, ...),

while the characteristic of 1 is

0, 0, 0, 0, . . .).

Definition

Two characteristics are equivalent if (1) they have « in
the same coordinates and (2) they differ in, at most, a finite
number of coordinates.

It is obvious that this is an equivalence relation. An

equivalence class of characteristics is called type.

Lemma 13
Let G be a subgroup of Q, and let x and x' be nonzero
elements of G. Then, the characteristics of x and x' are

equivalent.

Proof
Suppose first that x' = mx for some integer m. Then, the

characteristics of x and x' are equivalent because the charac-

teristic of x differs from the characteristics of mx in a finite
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number of coordinates as we remarked above. Now, since G is

a subgroup of Q, there are integers m and n such that

The characteristic of x is equivalent to that mx and this one to
nx' which is equivalent to that of x'.

As a result of this lemma, if G is a torsion-free group
of rank 1 (a subgroup of Q), we may define the type of G, I'(G),

as the type of any nonzero element of G.
Theorem 46

Let G and G' be a torsion-free group of rank 1. Then,

€ G' if and only if T'(G) = T(G').

Proof
Suppose f : G—G' is an isomorphism. If x & G is nonzero,
. § n n n .
then if Py = X f(piy) = pif(y) = f(x); that is, x and f(x) are
divisible by the same powers of Py for every i. Hence, x and
f(x) have equivalent characteristics. Therefore, T(G) = I'(G").
Assume that I'(G) = I'(G') and that G and G' are subgroups
of Q. If a and a' are two elements in G and G', respectively,

K., K

then their characteristics (Kl’ 9s Kgs v s ) and (Kl', K2',

Kq', . . . ) differ in only a finite number of places. If we

agree that the notation » - « means 0, then we may define a

ration number A by




It follows from the definition of equivalence and our

by distributivity, f(x + y) = u(x + y) = ux + uy = f(x) + f(y);
thus, f is a homomorphism. Now, a rational

if and only if there are integers m = Hp?i and

mx = na and i + K, for

if, and only if, there

o, = Bi + Ki' for all i. We claim that f(G)Z G'. If xe& G,

A

then mx = na and oy B, + Ki. Hence m(ux)

i
Since o, = (B, + K, -= K.') + K., then ux
i i i il i

in a similar manner, define g : G'=—» Q by g(x') = u_lx’. it

is obvious that g is a homomorphism. Let y'€ G', then my' = na'

= -] - -
with o, = B. + K.'. Hence mu 1y' = nu a but u L
i i i

m(u—ly') = (nA_l)a. Since a < (Bi + Ki' - Ki) + Ki’ it follows
that u_ly' = g(y') € G. Therefore, g(G') C G and f and g

are inverse so that G = G'.
Theorem 47

If I is a type, then there exists a group of G of rank 1

with T(G) = T.

Proof

Let (Kl’ K K ) be a characteristic of I'. We

2o 3
define the group G as the subgroup of G generated by all

rationals of the form-i where for all n, pnt divides m if and

<
only if t = Kn. We must prove that the rank of G is one. Let
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i“ and %— be elements of G. We will prove that they are not
1 2

independent. Suppose that there exists integers h, and h, such

1 2
that
L B,
™1 "2
If (Hl, hZ) # 1, we can simplify the above equation. Thus,
suppose that (hl’ h2) = 1. Hence
hlm2 + hzml =0

h.m = - hzm

12

1

which implies that my and m, have equivalent characteristics

and the elements %— and %— are dependent. Therefore, the rank
1 2
of G is 1.

Also, we must prove that the element 1 has the given charac-

teristic which is equivalent to proving that the equation

always has a solution in G for every n if and only if r = K .
Since x belongs to G, then x = %, where m is divisible by pg

for all n if, and only if, t - Kn. Consequently, the above equation

always has solutions and 1 has the given characteristic.
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